
OPENNPAR: A System for Developing, Programming, and Designing
Non-Photorealistic Animation and Rendering

—Extended but Unpublished Version of the Pacific Graphics 2003 Short Paper—

Nick Halper Tobias Isenberg Felix Ritter
Bert Freudenberg Oscar Meruvia Stefan Schlechtweg Thomas Strothotte

Department of Simulation and Graphics
Otto-von-Guericke University of Magdeburg

{nick|isenberg|fritter|bert|oscar|stefans|tstr}@isg.cs.uni-magdeburg.de

Abstract

The notable amount and variation of current techniques in
non-photorealistic rendering (NPR) indicates a level of ma-
turity whereby the categorization of algorithms has become
possible. We present a conceptual model for NPR, on which
we base a modular system, OPENNPAR, which integrates
NPR algorithms into distinct classes in which their compo-
nents are modularized and consequently re-integrated for
various rendering purposes.This allows OPENNPAR to re-
produce many kinds of NPR algorithms, including the in-
tegration of 2D and 3D methods. Additionally, the system
provides support for a range of users (developers, program-
mers, designers) according to their respective levels of ab-
straction, thus being available in multiple contexts. Ulti-
mately, OPENNPAR holds great potential as a tool in the
development, augmentation, and creation of NPR effects.

1. Introduction

The nature of non-photorealistic rendering (NPR) in its sim-
plest definition, is a form of visual communication. As com-
munication is virtually endless in its possibilities, NPR at-
tempts to succinctly define options within this scope. Par-
ticular rendering styles are capable of conveying context-
specific information in an application-dependent environ-
ment. Thus, there is a need for an effective rendering system
which provides support for multivariate applications.

Despite the plethora of non-photorealistic effects avail-
able, there exists a rather limited number of primitives ac-
tually employed to generate these effects. There also re-
mains a similarly limited number of general techniques
for the application of these primitives. The ingenuity of
the algorithms underlying the aforementioned effects lies
not in the mere application of these primitives, but rather,
in their combination. Thus, a system could be designed
wherein all modular components are freely combined and

interchanged. Moreover, photorealistic rendering is a sub-
set of non-photorealistic rendering—the term NPR is often
misleading in this context. Therefore, this system could also
include photorealistic capabilities.

To achieve the necessary modularity for the proposed sys-
tem, NPR techniques must first be categorized according
to their various properties. Specific classes of algorithms
can then operate on the same sets of data—consequently
sidestepping unnecessary data conversions between soft-
ware projects. In addition, NPR algorithms can be individu-
ally broken down into a set of smaller algorithms, wherein
an ‘elementary set’ of algorithms are eventually defined.
Logically, keeping modules small and simple increases the
range and flexibility when generating more complex algo-
rithms. Finally, functionality is little without application.
An effective means of presenting available options in the
system to a variety of users will allow content creation at a
level that satisfies individual requirements. Involved herein
are those who actually create the modules, those who plug
the different modules together to create a specific effect, and
finally those who use effects to produce images.

The paper is structured based on these user classes and
we describe the tasks involved at each level of abstraction.
Our main contribution is an attempt to unify many NPR
techniques within a single framework. We present the ini-
tial system, OPENNPAR which embodies this framework
in Section 2. Developing extensions to this system is de-
scribed in Section 4, programming using the system in Sec-
tion 5, and using the system to design new effects in Sec-
tion 6. We base our conclusion in Section 7 on our achieve-
ments.

2. OPENNPAR

In this section we outline our design goals used to struc-
ture the basic architecture for our NPR system, OPEN-
NPAR. We first categorize our base classes for algorithms

1

http://wwwisg.cs.uni-magdeburg.de/isg/halper.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/isenberg.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/fritter.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/bert.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/oscar.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/stefans.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/tstr.html.en
http://isgwww.cs.uni-magdeburg.de/index.html.en
http://www.uni-magdeburg.de/unv_eng.html
mailto:nick@isg.cs.uni-magdeburg.de
mailto:isenberg@isg.cs.uni-magdeburg.de
mailto:fritter@isg.cs.uni-magdeburg.de
mailto:bert@isg.cs.uni-magdeburg.de
mailto:oscar@isg.cs.uni-magdeburg.de
mailto:stefans@isg.cs.uni-magdeburg.de
mailto:tstr@isg.cs.uni-magdeburg.de
mailto:nick@isg.cs.uni-magdeburg.de

and groups of users on which we base a conceptual frame-
work and introduce initial components for the core system.

2.1. Classes of Algorithms and Users

The field of NPR contains a large number of different render-
ing algorithms that come from many areas. This diversity
makes it difficult to come up with a single system that en-
compasses all NPR styles and techniques. However, there
are similarities between algorithms that make a classifica-
tion possible. For instance, DURAND proposes a classifica-
tion into four parts [3]: a spatial system, a primitive system,
an attribute system, and a mark system. Although useful for
terminology and discussion, there is still no clear direction
for a unification of algorithms into a single system.

Our basic philosophy is to allow users of the system to
define their own approach for producing the final output by
making available a powerful, flexible, and extensible set of
tools. We aim to provide small well-identified modules for
better inter-operability, centered around a small set of ba-
sic primitives. Thus, we focus on direct relationships be-
tween primitives: primitives serve as states in our system
described by attributes, and processes define operations on
or between those primitives. In Figure 1 we propose a clas-
sification of three main categories of primitives on which
algorithms can operate. Note that the processes (arrows) in
the conceptual diagram can fall into any of the four cate-
gories proposed by DURAND above.

Figure 1: Our conceptual model for algorithms in NPR.

Visualizing the classification of primitives according to Fig-
ure 1 enables us to create building blocks (individual pro-
cesses) that can be used in various combinations (a se-
quence of processes) for different rendering pipelines (the
collective sequence of processes). In fact, many hybrid algo-
rithms use combinations of two or all three of these classes
(for an overview see [16, 3]). Table 1 outlines processes
between primitives according to our conceptual model for
several ‘classic’ NPR algorithms. Having such basic build-
ing blocks, the user can freely combine NPR algorithms
in order to achieve a certain kind of image. However, the

Name Description

SAITO & TAKA-
HASHI, Compre-
hensible Render-
ing [13]

Surfaces fill Images with shaded, z,
normal data; Images process silhou-
ette Image; Image processing (com-
posite shaded and silhouette)

SALISBURY et al.,
Pen-and-Ink [14]

Surfaces fill reference Image; ref-
erence Image generates Strokes;
Strokes draw into Image

MEIER, Painterly
Rendering [12]

Images generate Strokes (particles);
Strokes map to and Images texture
Surfaces

KOWALSKI et al.,
Graftals [10]

Surfaces fill ID and desire Images;
ID Image processing; desire Images
generate Strokes; Strokes draw into
Images

Table 1: A selection of classic NPR Algorithms and how they relate to the
model in Figure 1.

amount of knowledge involved in the “programming” pro-
cess for a rendering pipeline is different depending on the
level of abstraction. Hence, a distinction into different types
of users is needed. These types are—with increasing level
of abstraction—developer, programmer, and designer.

At each level of abstraction, certain knowledge is needed;
the higher the level, however, the less significant are techni-
cal and technological details so that the designer can con-
centrate on the image generation process. Thus, the goal of
OPENNPAR is to embody our conceptual model for algo-
rithms in NPR shown in Figure 1 and support user groups
of various knowledge levels for creating NPR images.

Developer OPENNPAR Programmer Designer

develops

modules

uses modules

to produce

modifiers

uses modifiers

to generate

effects

End User

views

images

elements

modules modules modifiers images

Developer OPENNPAR Programmer Designer

develops

modules

uses modules

to produce

modifiers

uses modifiers

to generate

effects

End User

views

images

elements

modules modules modifiers images

Figure 2: OPENNPAR knowledge pipeline

In Figure 2 we show the knowledge requirements and
dataflow between the various user groups and OPENNPAR.
Designers are given the task of creating new images by ap-
plying a selection of effects onto existing images. Thus, to
work effectively designers only need knowledge of what
results are produced once processes reach the final image.
The selection of effects offered to designers are assembled
by programmers. Programmers understand the relation-
ships between processes and the various categories of primi-
tives. From this knowledge they can assemble modules into
a rendering pipeline to produce an effect. The more mod-
ules that are provided to programmers, the more operations
and thus effects they can offer to designers. The developer’s

2

task, therefore, is to broaden OPENNPAR’s base functional-
ity by extending classes of primitives (by creating elements)
and adding modular operations that decide what to do with
them. Before we go into details for the user categories, we
first describe some initial components of OPENNPAR.

3. Basic Architecture

OPENNPAR is built on the foundation provided by OPEN
INVENTOR architecture, an object-oriented graphics archi-
tecture, that allows us to use a scene-graph based approach
[15] to support our conceptual framework.

The OPEN INVENTOR scene-graph consists of three
classes of nodes: shape nodes, which represent 3D ge-
ometric objects, property nodes, which represent appear-
ance or other qualitative characteristics of the scene, and
group nodes, which are containers that collect nodes into
graphs. The communication between nodes is handled
through fields. In addition, nodes can access external data
in stored in elements. These nodes are traversed by actions
which trigger specific behaviors in each node. A typical ac-
tion is the render action which causes shape nodes to render
their components to the frame buffer.

With respect to our conceptual model, primitives are
composed from elements, whereas processes are performed
in the render action procedure in nodes during a rendering
traversal. In addition, OPENNPAR restricts each node to
perform one specific process only—we distinguish these
nodes from normal OPEN INVENTOR operation by calling
them modules. Thus, we execute processes in Figure 1
though the use of modules, and represent the classes of prim-
itives with elements. Fields are also used to aid the propaga-
tion of data between modules.

3.1. An Initial Set of Elements

In keeping with our design goals of inter-operability, the
number of elements should be minimal but offer generic
functionality. We implemented a few initial extensions and
additions to elements in OPEN INVENTOR to provide data
structures that support our various primitives:

Winged Edge Data Structure: provides surface connectivity
information for surface primitives and covers a large
and efficient generality of use [1].

Images: Many NPR algorithms require storage of additional
data in image buffers. Thus OPEN INVENTOR im-
age class is extended to include floating point data—
effectively storing normal, depth, and G-buffer data.

Stroke elements: coordinate, material, and normal elements
in OPEN INVENTOR can be used to describe points
along a line or curve. However, we implemented addi-
tional elements required by strokes, such as thickness
and orientation values.

3.2. An Initial Set of Modules

Modules, in contrast to elements, can be numerous but suc-
cintly defined. This allows groups of modules to operate on
similar sets of elements, thus facilitating their combination.
Adding new elements to extend primitives requires the use
of modules to either: (1) generate these elements from ex-
isting data, or (2) define data directly for pushing into the
element state. Thus, we include the following modules use-
ful for a large number of non-photorealistic algorithms:

camera light

coords render

surface

to image

generate

winged-edge

render

strokes

to image

generate

silhouette

strokes

group

thicken

strokes

smoothen

strokes

distort

image

group

camera light

coords render

surface

to image

generate

winged-edge

render

strokes

to image

generate

silhouette

strokes

group

thicken

strokes

smoothen

strokes

distort

image

group

1

2

3

1 2 3

Figure 3: OPENNPAR scene graph example. The images represent con-
tents of the frame-buffer at stages in the rendering traversal.

Render modules: We include specialized OPENGL render
modules for surfaces, strokes, and images, each out-
put defined by primitive elements describing attributes.
Additional surface modules fill images with normals,
UV, and object ID data. Figure 3 shows render module
output at various stages during the rendering traversal.

Surface modules: OPEN INVENTOR includes many nodes
that can be treated as surface modules. We add a mod-
ule to generate generic descriptions of surfaces in the
winged-edge elements. The most widely used NPR
algorithms that require such information are silhou-
ette algorithms, thus we include a silhouette module
that reads winged-edge elements to generate stroke el-
ements. For instance, in Figure 3 the ‘generate winged-
edge’ module generates winged-edge elements that de-
scribe the surface of all its children, subsequently ac-
cessed by the silhouette generation module that sets
stroke element data.

Image modules: A variety of image processing modules
are added which propagate data through image fields.
Unconnected field I/O utilize the frame-buffer image.

3

http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.opengl.org/
http://www.sgi.com/software/inventor/

Thus, in Figure 3 the ‘distort image’ module reads in
the current contents of the frame-buffer, processes it,
and outputs contents back to the frame-buffer.

Stroke modules: To offer a variety of styles for stroke styl-
ization, we introduce modules that modify the stroke
primitive elements (e.g. thicken, smoothen, orientate,
and perturbation). The last group node in Figure 3 con-
tains two stroke stylization modules after the silhouette
generation module: a smoothen and thicken module
that read and modify the current stroke elements. No-
tice how the stroke render module renders undistorted
strokes on top of the image since strokes were gener-
ated from surface elements.

4. Developing OPENNPAR

The developer’s job is to add functionality to OPENNPAR
by extending or creating new elements and modules. A
primary challenge for the developer is to support inter-
operability between modules and encourage their re-use.
This can be done by adding a great number of modules, but
constraining the functionality of each to compute a single,
specific task. In contrast, elements in the system should
be kept generic to maintain a small set that covers a broad
range of application. In this manner, a variety of modules
can operate on the same set of elements which aids the in-
terchange of data and resulting flow of computation. We
now demonstrate these principles by showing examples of
effective contributions to OPENNPAR.

4.1. Modularizing Stroke Operations

Our first example demonstrates how breaking down algo-
rithms into elementary tasks adds flexibility and maintains
modularity in OPENNPAR. Each elementary algorithm is
encapsulated inside a module that can then be used indepen-
dently or in combination with other modules.

We wanted to add functionality to OPENNPAR that
would enable us to use 3D stylized strokes inside a rendered
environment. To do this, there were a number of problems
to overcome. First, we required that stylizations could be ap-
plied across long, smooth strokes. Second, we experienced
stylization artifacts when strokes were projected to the view-
port from 3D. Our final problem was that stylization mod-
ules could potentially alter positions of strokes that would
then interfere with the scene.

We solved each of these problems with singular modules:
(1) a module that connects strokes sharing common vertices;
(2) a module that filters stylizations artifacts in projected
strokes; (3) a module that performs fast hidden line removal
(so that strokes could be rendered ‘on top’ of scenes). De-
tails of these algorithms can be found in [8].

By keeping basic functionality in separate modules, we
can apply them in a flexible variety of combinations in addi-
tion to the problem for which they were implemented. Fur-
thermore, they are simple to use since the results of each
module are tightly defined. One or more of these modules
are used in each of our programming examples in Section 5.

4.2. Modifying Elements for Surface Shaders

Often developers can add modules to manipulate elements
in unconventional ways. As a result, existing modules de-
signed to use these elements will produce output differing
from their initial intentions.

In our implementation, surface shaders generally modify
elements so that subsequent rendering modules produce a
different result. From a developer’s perspective, a surface
shader module simply sets values in elements used by ren-
dering modules. For instance, we can add a module to mod-
ify texture coordinate elements based on lighting conditions.
When inserted along with a texture module containing a two-
tone image before the actual surface rendering module, we
achieve the cartoon effect in [11].

We also take advantage of modularity present in modern
graphics hardware programmability. To implement hard-
ware features, we add elements that indicate current hard-
ware options to use, and modules that load vertex programs
and texture combiners to the graphics card. We leave the
programmers to actually define what the hardware should
do by allowing them to place code into a text field that is
then compiled by the hardware modules. In this case, it is
the hardware configuration that influences the subsequent
output of rendering modules.

4.3. Re-using Elements for Skeletonization

As new algorithms are introduced, developers will often be
required to support these using additional data structures.
However, rather than adding new data structures for every
algorithm we come across, we can map algorithms onto ex-
isting ones. This adds potential for alternative uses of ele-
ments and re-use of modules.

We demonstrate this by adding support for skeletoniza-
tion in OPENNPAR, which is used in many NPR techniques
(e. g., Deussen et al. [2]). The skeletonization process col-
lapses edges in a surface definition. To do this, we make
sure to load surface definitions into the winged-edge ele-
ment using an existing winged-edge module. Now, we can
add a skeleton module that computes using the winged-edge
element. Rather than adding a new element to store the
skeleton data, we leave the skeleton as represented by the
winged-edge. These ‘skeleton’ elements can now be ac-
cessed by any subsequent modules in the scene graph. In
addition, a separate module was included to generate a set of

4

strokes from the winged-edge data. Now we can also view
and manipulate the skeleton using available stroke modules.
The stroke generation module can also be re-used on ‘regu-
lar’ winged-edge surface definitions. This would now pro-
duce strokes from the wire-frame of a surface with equal
opportunities for manipulation and stylization.

4.4. Extending Modules to Encapsulate Interaction

Developers can extend existing modules in OPENNPAR
by using object-oriented strategies of deriving functional-
ity from parent classes. We can even extend functionality
beyond the representation and rendering of primitives. For
instance, we added a novel form of interaction for NPR by
extending a surface rendering module to evaluate whether
or not object shadows on a plane are touched by the mouse
pointer. To pass information about the shadow plane down
the rendering pipeline, we added an element encapsulating
the coefficients of the plane equation. Hence, the extended
render module can test for an intersection of the ray from
the mouse pointer to its shape in the shadow plane. An ap-
plication that uses this interaction method is discussed in
Section 5.2.

4.5. Polymorphic Rendering

Developers can present a variety of modules used for the
same intent, but which produce results tailored towards a
specific application requirement. For example, different ren-
dering requirements can be supported by OPENNPAR by
increasing our choice of rendering modules that act on the
same element data.

In this case, we can implement a stroke rendering mod-
ule that computes a particle simulation of paint along the
course of a stroke and another that employs a hairy brush
algorithm. These can take the same stroke elements as sug-
gestions for using varying brush widths and sizes, speed,
pressure, and so on. Furthermore, output does not need to
be constrained to the visible frame-buffer. A module that
takes strokes and generates a POSTSCRIPT file is possible
by translating the stroke coordinates and thickness elements
into the required format. As another alternative form of out-
put, we have implemented a module with an input image
field that consequently produces a video file. This allows
renderings to be captured ‘live’ or sequenced into a steady
animation.

5. Programming with OPENNPAR

The programmer accesses the functionality of OPENNPAR
with the understanding of how modules can be placed into
a rendering pipeline to produce desired results. Currently, a
programmer can construct content by editing a scene-graph

description in a text file and viewing the scene, or by calling
OPENNPAR’s API directly within an application.

In some cases, there are dependencies between modules
and care must be taken to ensure they are placed in an ap-
propriate order with their field connections properly setup.
However, since modules in OPENNPAR are sufficiently
succinct, relationships between them can be easily identi-
fied. Therefore, the real task given to the programmer is
to exploit OPENNPAR’s range of effects and, at times, de-
fine new algorithms by coming up with novel ways of order-
ing modules and interchanging data. In the following sub-
sections, we look at how a few examples of these are con-
structed through different means of using the OPENNPAR
API.

5.1. 3D Painter

Our first example is simply an exercise in using the OPEN-
NPAR API directly within an application. This program
allows a user to import any 3D scene and directly ‘paint’
on its surface. We use OPENNPAR to render the painted
strokes as well as accessing many of its standard operations
such as picking, interaction, and shading methods (see Fig-
ure 4). The interaction technique used is much like the al-
gorithm shown in [9] where strokes are formed in 3D by
‘drawing’ on the surface of an object. The difference here
is that each point picked on a surface maps its surface coor-
dinates, normal, and color (from material or texture) to the
stroke point. Additionally, the application constructed a util-
ity that allowed for an undo-history of stroke operations by
directly accessing the field data of the relevant coordinate,
normal, and material modules for stroke elements.

Figure 4: OPENNPAR Scene-graph for 3D Painter.

As a consequence of using OPENNPAR, the entire C++
code for this application (including comments) is less than

5

http://www.adobe.com/products/postscript/

(a) 3D Painter: Textured strokes ‘paint’ over
models in this still life scene

(b) Illustrative Shadows: Shadows convey the current inter-
action context

(c) Real-time NPR: Modular surface shaders
integrated into a game

Figure 5: Applications that use OPENNPAR.

1000 lines. Despite this remarkably small program, it al-
lowed an animation of the painted scene in Figure 5(a) to
be created by a user in a very short frame of time when
given the model.

5.2. Interactive Illustration

Here, our computer generated illustrations make extensive
use of non-photorealistic abstraction techniques to reduce
the complexity of depicted structures. As the user interac-
tively explores relationships in the scene, relevant details
are emphasized whereas less important aspects are deem-
phasized or omitted to guide the focus of the viewer.

Figure 5(b) depicts the application of OPENNPAR mod-
ules to illustrate the current interaction context. Additional
information about correlations between structures of a 3D
model are displayed in shadows to enhance a users contex-
tual understanding. In addition to photorealistic modules,
the programmer made use of OPENNPAR’s modules that
cast individual shadows on a plane to enable a special kind
of interaction (see Section 4.4). We also see two alternative
uses of modules: first, a silhouette module placed so that
stokes are aligned around the outline of shadows, rather than
the actual structures, and second, modules to derive skele-
tons were used to guide placement of annotation anchors.
In addition to color, line styles applied to the strokes of the
outlines emphasize the relevance of important structures.

5.3. NPR in Games

Figure 5(c) shows a sample scene from a game prototyp-
ing tool in OPENNPAR. Since games demand real-time, the
programmer makes optimal use of the programmability fea-
tures of hardware surface shader modules (a vertex program-
ming and a texture combiner module, see Section 4.2) that
is combined with other surface shading modules. We see

examples of cool-to-warm shading, cel shading, stroke tex-
tures, and colorized hatching.

The cool-to-warm shading [5] is achieved by defining
the vertex programming module to honor material colors of
surfaces. As a result, this can be combined with a material
module and is used for the teapot and environment. Colored
hatching also reflects an object’s color. However, a texture
combiner module is added so that the interpolated diffuse
color is blended with white based on a gray-scale image
defined by a texture module. The cel shading is achieved
by instructing the vertex programming module to generate
texture coordinates for a one dimensional gray-scale texture
based on the angle between a surface normal and light vec-
tor. This is combined with a texture combiner module pro-
grammed to use this texture to darken or lighten the object’s
base color (cf. Figure 10 (bottom)). The black-and-white
stroke textures are rendered as described in [4].

5.4. Using an External Application for Stippling

Programmers of external applications can still use OPEN-
NPAR’s features. We take the case of frame-coherent stip-
pling, designed and implemented outside of OPENNPAR.
This is a stippling technique where most of the computation
occurs as a pre-processing stage that structures a point hier-
archy before the points are selectively rendered at run-time.

The point generation is done off-line independently from
OPENNPAR. The output of this stage, however, can be writ-
ten to a file which complies with one of OPENNPAR’s file
formats that defines the stipples as ‘point’ strokes. While
the stipple generation stage still lies on the side of the pro-
ducer, the rendering part now relies on OPENNPAR. Thus,
potential for additional rendering features in OPENNPAR,
such as its silhouette generation modules, can be used to
generate the result shown in Figure 6(a).

6

(a) Using OPENNPAR to render
stipples and silhouettes.

(b) Visible silhouette rendered in real-time
with oil paint texture and depth cueing.

(c) Comparison of rendering silhouette drawings or skeleton drawings
for different sizes of the object.

Figure 6: Sample algorithms implemented using OPENNPAR.

Figure 7: An animation played back with nine different image filters for artistic effect.

5.5. Editing an Animation Description to Export
Filtered Video

An external 3D application can output an animation to a
file that is then marked up by the programmer to produce
a video including a few special effects from OPENNPAR.
Note, that here no compilation is necessary to produce the
results shown in Figure 7. A simple text editor and knowl-
edge of OPENNPAR’s API format is required.

OPENNPAR is able to read in VRML files that include
additional animation nodes (currently we support vertex in-
terpolation and group translation/rotation). The program-
mer edited the VRML scene description to add an image
module at a specific location to read in contents of the frame-
buffer once the initial rendering of an animation frame was
complete. A number of image processing modules were
then appended to the scene graph. The effects for the im-
age processing modules are controlled by their input image
fields—in this case by typing in external image file names
to use as filters—and connecting their outputs and inputs to
propagate results. The last image processor module’s out-
put was connected into the image field of a video module,
which was parameterized to insert images at specific time
intervals to a video file. Producing this file was now simply
a matter of using an available viewer application to read in
the scene which would automatically run the animation.

5.6. Creating Level-of-Detail Silhouettes

Clever use of ordering modules and interchanging often al-
lows programmers to define new algorithms. For this exam-
ple, we construct a silhouette algorithm to generate stylized
silhouette strokes at interactive rates that also uses a level-
of-detail technique. As in the previous section, this can be
achieved entirely through the use of a text file without need
for any compilation.

We first insert the silhouette generation module that fills
the stroke pipeline—the stroke elements—with silhouette
edges. The stroke rendering module, at this moment, would
simply produce thin lines for the silhouettes since no stylis-
tic elements of the strokes have been used. To this effect,
three stroke modules to support the 3D stylization of strokes
(that we introduced in Section 4.1) were added directly after
the silhouette module. Now, we can add stylization modules
to affect the visual appearance of strokes and render these
by disabling the z-buffer field in the surface renderer so that
clean strokes are drawn ‘on top’ of the scene. The styliza-
tion achieved in Figure 6(b) combined stroke modules to in-
fluence stroke thickness elements, texture modules to read
RGBA images from an external file, and a texture coordi-
nate generator module to define the mapping of the texture
onto each stroke.

For reduced level-of-detail (LOD), we could simply re-
place the silhouette generation module with a skeletoniza-

7

http://www.web3d.org/
http://www.web3d.org/

tion module and load the stroke pipeline with the skeleton
data (see Section 4.3). This would similarly concatenate the
skeleton edges to strokes and apply stylization to it. We no-
tice that the skeleton is effective in conveying a good idea
of the shape of an object when the object is far away (see
comparison in Figure 6(c)). In addition, it proves compu-
tationally efficient due to viewpoint independence and typi-
cally generating less lines to convey the whole object than
the full silhouette. To combine these two results, we added
a LOD module that would select between the silhouette gen-
eration and skeletonization modules depending on the pro-
jected size of objects. Thus, when this scene is now loaded
by a viewer application, the stylized silhouette of an object
is replaced with its skeleton as it recedes into the distance.

6. Designing with OPENNPAR

Designers are given the task of creating visual results that
carry a desired communicative intent. Whereas the pro-
grammer has the technical expertise to experiment with the
system at a modular level, designer productivity increases
when part of an entirely visual and iterative creative pro-
cess. However, OPENNPAR at the modular level still im-
poses knowledge requirements about the inter-operability of
modules—potentially hindering the creative process.

Consequently, we devised an interface to overcome im-
positions on designers by mimicking the designer’s creative
process in coming up with new images [7]. The contribu-
tions to the interactive design of effects are (1) a method of
interaction which leaves the user unaware of the dimension-
ality of the data being used to create a given effect, and (2) a
method of computation which assembles a unique pipeline
of graphical operations to achieve the desired effect.

The tools created by programmers for designers are
called modifiers. A modifier manipulates, adds, or removes
modules in a scene graph, thus providing simple means for
designers to interface OPENNPAR, whereby the modular
components are abstracted by programmers into effects that
produce results. In addition, each modifier is limited to use
only its class of modules (e. g., a modifier cannot affect both
a surface-shading module and an image module in the scene
graph). Consequently, each modifier is a self-contained el-
ementary block that fits into more complex, powerful struc-
tures according to our conceptual diagram.

6.1. A Method of Interaction

Modifiers abstract technical knowledge about module use in
OPENNPAR. Thus, the designer is left unaware of data di-
mensionality and type-conversion requirements for effects
composition. To take advantage of this, we implemented a
simple interface to OPENNPAR wherein the designer sim-
ply ‘sketches out’ from existing images in a workspace and

Figure 8: (left) Sketching out a new modifier. (center) Selecting a modifier
from a pie-menu. (right) Result of applying a modifier.

to
im

a
g
e

lighten

to
im

a
g
e

lighten

silhouette

to
im

a
g
e

lightensilhouette

to
im

a
g
e

lighten

silhouette

to
im

a
g
e

lightensilhouette

to
im

a
g
e

lighten softensoften

silhouettebasecolor silhouettebasecolor soften

to
im

a
g
e

thicken lighten soften

to
im

a
g
e

thicken lighten

softensilhouette

to
im

a
g
e

basecolor lighten softensilhouette

to
im

a
g
e

basecolor lighten

Application sequence

surface stroke image

Figure 9: Designer and underlying system view of piping modifiers. Each
of the displayed results at the top store a graph of modifiers (in
this example a linear sequence) applied to the original scenes.
Computational short-cuts are indicated by the dotted lines be-
tween successive modifier graphs.

selects a modifier effect from a pie-menu to produce a new
effect (see Figure 8).

Figure 9 (top) shows an applied sequence of modifiers in
which each visual result is consistent with designer expecta-
tions. Notice that from an algorithmic point of view, certain
computations in this order are actually infeasible. For in-
stance, the computation of the base color surface modifier
cannot be done given a 2D image result as input (from the
lighten modifier). In the next section, we show how this is
made possible.

6.2. A Method of Computation

Each applied modifier is computed by first structuring a
graph of modifiers from its inputs. Then, the applied modi-
fier is inserted into the appropriate location within this graph
of modifiers. Its field connections into other modifiers are
then organized (or re-organized), and any necessary compo-
nents for conversions between field connections are inserted.
Thus, each modifier maintains an internalized ordering of
the application of previous modifiers as its inputs.

In Figure 9 we see the actual translation of the designer’s
visual dataflow to the underlying system’s dataflow. The

8

Figure 10: Circling modifiers (left) and subsequent dataflow encapsula-
tion and remapping of inputs (right).

end result is a dataflow of modifiers that start with import
modifiers. These introduce a scene graph that is first filtered
through surface-shading modifiers and then stroke modi-
fiers before converting 3D data into 2D images for input
into subsequent image modifiers.

6.3. Re-use of Graphs of Modifiers

Since modifiers are self-contained effects that encapsulate
a history of operations as a graph of modifiers, they can
easily export and import combinations of modifiers, called
compound modifiers, for re-use. We demonstrate this with
a few examples combining both 2D and 3D effects.

In Figure 10 (top) we construct a composite effect from
an image modifier ‘select’ and a surface modifier ‘black’.
Circling the select modifier collapses the dataflow and
remaps input to the newly generated ‘composite’ modifier,
mapping foreground and background inputs into the encap-
sulated field connections. Similarly, in Figure 10 (below),
surface and image modifiers are combined to create a car-
toon effect. Collapsing the select modifier in this case maps
its single input to its respective encapsulated dataflow in the
new ‘cartoon’ modifier. Finally, Figure 11 shows the com-
bination of both the composite and cartoon modifier that
integrates all the 2D and 3D effects.

To compute the saving and renaming of modifiers into
new modifiers we count the number of unique import mod-
ifiers that enter the modifiers’ dataflow encapsulation. For
instance, the ‘composite’ example has two unique import
modifiers that form part of its encapsulated dataflow, there-
fore the newly created ‘composite’ modifier has two inputs
that can be renamed (as they are in the example). In contrast,
the ‘cartoon’ shader has only one unique import modifier en-

Figure 11: Combining the ‘cartoon’ and ‘composite’ modifier

tering its dataflow, therefore requiring only one input.

6.4. Creating Complex Effects

Programmers can implement a very limited set of modi-
fiers in a short space of time. Yet even with this limited
set, enough functionality is provided so that designers can
come up with interesting and diverse effects. This is made
possible by the modular capabilities of OPENNPAR. For in-
stance, the designer’s task in Figure 12 was simply to play
with the interface. Starting from the two images shown at
the left, the designer experiments with 10 simple modifiers
to come up with a ‘sponge-painting’ effect shown on the
right. Notice, that at every point in the sequence the de-
signer has simply taken a result and directly applied a new
effect to it.

Figure 12: Producing complex effects from modifiers that manipulate
modules in a rendering pipeline.

7. Conclusion

We have presented OPENNPAR, a system for creating NPR
and animation. OPENNPAR appears to be the first system
of its kind that allows for a range of different user classes to
both reproduce a variety of algorithms as well as create new
ones. This was made possible by structuring OPENNPAR

9

onto a conceptual framework for NPR that categorizes al-
gorithms and primitives to support the interchange and re-
use of data. Consequently, OPENNPAR offers potential for
defining an effective presentation method within the wide
scope of NPR.

A limitation of the system is that algorithms are con-
strained to formulations in the scene graph. Thus, certain
NPR pipelines utilizing multiple primitives, in particular
those requiring feedback loops, require atypical structuring
of the scene-graph. This may invoke additional implementa-
tion overhead and loss of performance. Although we are us-
ing OPENNPAR in both advanced education and research,
we have not yet conducted a broad evaluation of the usabil-
ity of the tool. However, we hypothesize that any existing
NPR algorithm can be created by modularizing components
into OPENNPAR. The effectiveness of the system lies in the
flexibility of available modules and the completeness of its
elements.

Development principles have been outlined and demon-
strated using examples to effectively extend OPENNPAR’s
functionality. Programmers can access this functionality
either by linking an application directly to OPENNPAR
or through textual descriptions of modules in a rendering
pipeline. Due to its modular structure, pre-defined effects
can be reproduced or entirely new ones created by the ma-
nipulation of interchangeable modules.

OPENNPAR also offers a top-down approach to the cre-
ation of NPR effects by allowing designers to define which
algorithms should be used. In order to support this, a
method of computation and interaction was introduced, sep-
arating the implementation of effects composition from the
interface used to create effects. This allows designers to
declaratively specify effects to apply without concern for
algorithmic type restrictions or organizational issues of con-
trolling dataflow. Whereas this interactive method sacrifices
some control, we do propose that designers, at least in the
experimental stage, should be unencumbered by interaction
overheads.

In conclusion, OPENNPAR holds vast potential as a
tool for the development, augmentation, and creation of
NPR. Further details about OPENNPAR can be found in
[6] and www.opennpar.org which also includes anima-
tions and example applications.1

References

[1] B. G. Baumgart. A Polyhedral Representation for Computer
Vision. In Proceedings AFIPS National Computer Confer-
ence, volume 44, pages 589–596, 1975.

[2] O. Deussen, J. Hamel, A. Raab, S. Schlechtweg, and
T. Strothotte. An Illustration Technique Using Hardware-

1Please note that this domain is no longer active.

Based Intersections and Skeletons. In Proc. Graphics Inter-
face’99, pages 175–182. Morgan Kaufmann, 1999.

[3] F. Durand. An Invitation to Discuss Computer Depiction. In
Proc. NPAR’2002, pages 111–124, New York, 2002. ACM
Press.

[4] B. Freudenberg, M. Masuch, and T. Strothotte. Real-Time
Halftoning: A Primitive for Non-Photorealistic Shading. In
Rendering Techniques 2002: Proc. Eurographics Workshop
on Rendering, pages 227–231, 331, Aire-la-Ville, Switzer-
land, 2002. Eurographics Association.

[5] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A Non-
Photorealistic Lighting Model for Automatic Technical Illus-
tration. In Proc. SIGGRAPH’98, pages 447–452, New York,
1998. ACM SIGGRAPH.

[6] N. Halper. Supportive Presentation for Computer Games.
PhD thesis, University of Magdeburg, Oct. 2003.

[7] N. Halper, S. Schlechtweg, and T. Strothotte. Creating
Non-Photorealistic Images the Designer’s Way. In Proc.
NPAR’2002, pages 97–104, New York, 2002. ACM Press.

[8] T. Isenberg, N. Halper, and T. Strothotte. Stylizing Silhou-
ettes at Interactive Rates: From Silhouette Edges to Silhou-
ette Strokes. Computer Graphics Forum (Proc. Eurograph-
ics 2002), 21(3):249–258, Sept. 2002.

[9] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowal-
ski, J. C. Lee, P. L. Davidson, M. Webb, J. F. Hughes, and
A. Finkelstein. WYSIWYG NPR: Drawing Strokes Directly
on 3D Models. In Proc. SIGGRAPH’2002, pages 755–762,
Reading, MA, July 2002. Addison Wesley.

[10] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev,
R. Barzel, L. S. Holden, and J. F. Hughes. Art-Based Ren-
dering of Fur, Grass, and Trees. In Proc. SIGGRAPH’99,
pages 433–438, New York, 1999. ACM Press.

[11] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Styl-
ized Rendering Techniques for Scalable Real-Time 3D Ani-
mation. In Proc. NPAR’2000, pages 13–20, New York, 2000.
Addison Wesley.

[12] B. J. Meier. Painterly Rendering for Animation. In Proc.
SIGGRAPH’96, pages 477–484, Reading, MA, Aug. 1996.
Addison Wesley.

[13] T. Saito and T. Takahashi. Comprehensible Rendering of 3-
D Shapes. In Proc. SIGGRAPH’90, pages 197–206, New
York, 1990. ACM Press.

[14] M. P. Salisbury, S. E. Anderson, R. Barzel, and D. H.
Salesin. Interactive Pen-and-Ink Illustration. In Proc. SIG-
GRAPH’94, pages 101–108, New York, 1994. ACM Press.

[15] P. Strauss and R. Carey. An Object-Oriented 3D Graphics
Toolkit. In Proc. SIGGRAPH’99, pages 341–349, New York,
1992. Addison Wesley.

[16] T. Strothotte and S. Schlechtweg. Non-Photorealistic Com-
puter Graphics: Modeling, Rendering, and Animation. Mor-
gan Kaufmann, San Francisco, 2002.

10

www.opennpar.org
http://dx.doi.org/10.1145/1499949.1500071
http://dx.doi.org/10.1145/1499949.1500071
http://www.graphicsinterface.org/proceedings/1999/107/
http://www.graphicsinterface.org/proceedings/1999/107/
http://www.graphicsinterface.org/proceedings/1999/107/
http://doi.acm.org/10.1145/508530.508550
http://portal.acm.org/citation.cfm?id=581896.581925
http://portal.acm.org/citation.cfm?id=581896.581925
http://doi.acm.org/10.1145/280814.280950
http://doi.acm.org/10.1145/280814.280950
http://doi.acm.org/10.1145/280814.280950
http://edoc.bibliothek.uni-halle.de/servlets/DocumentServlet?id=6723
http://doi.acm.org/10.1145/508530.508548
http://doi.acm.org/10.1145/508530.508548
http://dx.doi.org/10.1111/1467-8659.00584
http://dx.doi.org/10.1111/1467-8659.00584
http://dx.doi.org/10.1111/1467-8659.00584
http://doi.acm.org/10.1145/566570.566648
http://doi.acm.org/10.1145/566570.566648
http://doi.acm.org/10.1145/311535.311607
http://doi.acm.org/10.1145/311535.311607
http://doi.acm.org/10.1145/340916.340918
http://doi.acm.org/10.1145/340916.340918
http://doi.acm.org/10.1145/340916.340918
http://doi.acm.org/10.1145/237170.237288
http://doi.acm.org/10.1145/97879.97901
http://doi.acm.org/10.1145/97879.97901
http://doi.acm.org/10.1145/192161.192185
http://doi.acm.org/10.1145/142920.134089
http://doi.acm.org/10.1145/142920.134089
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=1558607870
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=1558607870

	Introduction
	OpenNPAR
	Classes of Algorithms and Users

	Basic Architecture
	An Initial Set of Elements
	An Initial Set of Modules

	Developing OpenNPAR
	Modularizing Stroke Operations
	Modifying Elements for Surface Shaders
	Re-using Elements for Skeletonization
	Extending Modules to Encapsulate Interaction
	Polymorphic Rendering

	Programming with OpenNPAR
	3D Painter
	Interactive Illustration
	NPR in Games
	Using an External Application for Stippling
	Editing an Animation Description to Export Filtered Video
	Creating Level-of-Detail Silhouettes

	Designing with OpenNPAR
	A Method of Interaction
	A Method of Computation
	Re-use of Graphs of Modifiers
	Creating Complex Effects

	Conclusion

