
Master 2 Research - Interaction Specialty

Interactive Illustrative Map Visualization

Author:
Seren Thompson

Supervisor:
Tobias Isenberg

Hosting lab/enterprise:
INRIA AVIZ

1 April, 2015 – 30 September, 2015

Secrétariat - tel: 01 69 15 66 36 Fax: 01 69 15 42 72
email: Murielle.Benard@u-psud.fr

Contents
Contents i

1 Introduction 1

2 Related Work 5

3 Concept 8
3.1 Overview . 8
3.2 Techniques . 10

4 Realization 15

5 Results and Evaluation 20

6 Conclusion and perspectives 21

Bibliography 23

i

Summary
Contemporary maps are designed for utility, but neglect the traditional artistic
aspects of cartography. We create a web-based tool to allow users to play with
map data in creative ways and explore the aesthetic aspects of abstracting and
stylizing map presentations. We build on previous work in this area and integrate
pan-and-zoom map navigation with localized and global data-abstraction techniques,
including force-direction, Progressive Meshes, and modified Ramer-Douglas-Peucker
line simplification. Using this application and these techniques, users can interact
with map information and explore the artistic aspects of cartography, bringing
creativity to an area which is normally focused on utility.

Keywords
Cartography, Maps, Web, Javascript, Abstraction

ii

C
h

a
p

t
e

r

1
Introduction

Maps are a common and powerful tool in modern society. With the advent of mobile
devices, wireless networks, and accurate geo-location, the availability and utility
of maps has never been greater. Because maps are representations of geography
and not photographic reproductions, map information is neccessarily an abstracted
model of reality. Cartographers often modify these representations for utilitarian
reasons, however maps have many uses besides way-finding and navigation. In this
thesis we discuss our project to enable users to customize map data for their own
purposes. Our tool allows users to create and visualize embellished and abstracted
representations of map information.

Map designers alter the represtation of map data for a number of reasons. Pro-
jecting a curved surface (e. g. a globe) onto a flat plane introduces distortion and
map designers must choose which aspects to distort. Because of this, there exist
dozens of map projections, each one with different trade-offs in surface continuity
and distortion to area, bearing, and distance [26] (see examples in Figure 1.1).

Cartographers also commonly employ abstraction to increase a map’s clarity and
readability. Grouping, eliminating, and highlighting map elements are techniques
that help users understand the dense information being presented. For example, a
useful grouping abstraction is the practice of dividing map features into a limited
set of visually-distinct feature classes such as roads (highway, state-road, unpaved,
etc.) and land (building, park, forest, etc). Map features of the same class are then
represented identically (except for shape) despite the real-life differences between
class members. Another commonly used abstraction technique is eliminating small or
trivial features to reduce clutter, while emphasizing or enlarging important small-scale

Figure 1.1: Projections from left to right: Lambert’s cylindrical, Equidistant cylindrical,
Mercator, ordinary sinusoidal, symmetrically interrupted sinusoidal. [9].

1

CHAPTER 1. INTRODUCTION 2

Figure 1.2: Map of London Underground
system, showing how most line angles
have been reduced to horizontal, vertical,
and diagonal [24].

Figure 1.3: Celestial map showing atten-
tion to artistry and decorative qualities,
“Celeste-Septentrional”, Nicolas de Fer,
1705.

features (e. g. bathrooms, hiking-paths, and points-of-interest). Even core elements
such as roads are typically abstracted since, for large scale maps, they would be too
thin to see without enhancing their displayed width.

Adherence to geographical truth can obscure the information that a map needs to
convey and creative representations can help make the important aspects more salient.
In the 1930s, the London Underground switched over to a simplified schematic map
of stations and connecting lines (see Figure 1.2), conceived by Harry Beck [10]. The
design was initially rejected as being too radical a departure from the traditional
representation, but was adopted after a trial run of the map was wildly popular [23].

Cartography has evolved into a science in which accuracy, utility, and information
content are normally the focus. Even after the Middle Ages, map-makers straddled
the boundary between faithful representation and creative expression. In France,
during the Age of Enlightenment, cartographer Nicolas de Fer produced hundreds of
well-received works which focused more on artistic effect than accuracy [18] (see the
example in Figure 1.3).

The style and presentation of map data strongly influences user experience,
both in terms of usability and pleasure [17]. Map appearance emerges from a
combination of the aesthetics of the era, and the technology available. The most
modern electronic maps have a flat appearance with small set of discrete colors.
By contrast, early western maps from the 1600s have much more detail, colors (as
permitted by the printing technology), and embellishment. The embellishments are
particularly interesting as they add artistic and cultural content that lends flavor
and context to the geographic information. Examples include Henricus Hondius’s
double-hemisphere map of the world which includes depictions of the four elements

CHAPTER 1. INTRODUCTION 3

Figure 1.4: Double Hemisphere Map, Henricus Hondius, c 1630. Public domain.

as well as portraits of notable figures Figure 1.4, and the engraving of Leo Belgicus
by Jodocus Hondius Figure 1.5 which merges a map of the Netherlands with the
heraldic figure of the lion, a cultural reference to the on-going war for independence.
These maps are artistic works as well as cartographic tools, and as such have styles
representative of their time periods and pleasing to their respective audiences. These
works inspire our efforts to create modern maps where the style and embellishments
are derived from actual data, as befitting of our modern data-centric culture.

Our motivation for creating our map abstraction tool stems from our desire
to give users a way to play with the representation of map data. Users of digital
maps already customize them to a degree, such as by choosing layers to display or
by incorporating personalized data, however very few of these features incorporate
aesthetic or creative aspects beyond those which further the primary practical goals.
Additionally, people utilize familiar cultural artifacts for creative or artistic purposes,
especially if those artifacts are imbued with cultural or emotional meaning. Maps
are firmly in this camp: a country, state, or island’s outline is often an instantly
recognizable to its residents and can be as much of a rallying symbol as a flag or coat
of arms. Therefore we aim to for our project to be used as a tool to create aesthetic
value from map data that is personally meaningful.

CHAPTER 1. INTRODUCTION 4

Executive summary

Figure 1.5: Jodocus Hondius, “Leo Belgicus – map of
the Low Countries”. Public domain.

For this map abstraction project,
we use OpenStreetMap carto-
graphic data. Once the user se-
lects a location, we take the data
and load it into an undirected
graph structure from which the
map is displayed. Users can ap-
ply a number of different algo-
rithms individually or in combi-
nation to the graph data in or-
der to alter the map’s structure
and make it more abstract. Ad-
ditionally, we automatically dec-
orate the map’s line segments
with colored brush strokes. This
stylization can be modified algo-
rithmically by the code, or man-
ually by the user.

Overview

This thesis will present six major sections including this introduction. In the Related
Work section, we present relevant work in the fields of cartography, abstraction, and
map interaction. In the following Concept section we detail the ideas and motivation
behind our map-abstraction concept. We also cover our technical contributions
and how our work extends the ideas implemented in the Illumap project. In the
Realization section, we cover the details of our implementation, the design decisions
we made, and the challenges we encountered. In the Evaluation and Results section,
we then cover our final implementation and evaluate it in light of our motivations.
Finally, we present our conclusions and perspectives on the project.

C
h

a
p

t
e

r

2
Related Work

Our project touches upon traditional and modern art, cartography, non-photorealistic
computer rendering (NPR), algorithmic three-dimensional shape simplification, and
interactive web-based applications. We cover these areas and related work in the
rest of this chapter.

Map making traditionally has been a type of artistry and many map makers
were also painters, engravers, woodcutters, and printers. For inspiration from the
late Middle Ages, we can look to the work of Sebastian Münster Figure 2.1 whose
simplified depiction of Italy contains elements, almost symbols, of landscape features
rather than actual landforms. We also see the common stylization of borders from
that time period, in which the hard black border line contains a colored halo which
aids in easily identifying political areas.

Figure 2.1: Carta d’Italia di Sebastian Münster, 1550
[20].

Nicolas de Fer’s artistically
embellished works are informa-
tive as to what departing from
strict geographic representation
can offer, while more modern
pieces such as Ed Fairburn’s
“Croydon” (see Figure 2.3) show
that aesthetic objectives can be
achieved in an additive way, by
modifying the spatial aspect.

Finally, modern abstraction-
ist art informed our ideas for ab-
straction algorithms. Piet Mon-
drian’s later neoplastic works
such as “Composition with Red,
Yellow, and Blue” (Figure 2.2)
were the inspiration for our or-
thogonalization.

In the domain of NPR, we follow research for abstracting images and shapes by
replacing low-level detail with coarser and more uniform objects that suggest the
original detail. Examples of this form of abstraction include watercolor rendering
(e. g. [5]), image-mosaic construction (e. g. [13]), and stroke-based rendering (e. g.
[14]).

We use techniques from a number of simplification methods, including progressive
meshes [15], quadratic-error surface simplification [11], and line generalization [22,
7, 28, 29]. These algorithms are already used in GIS and map applications such as

5

CHAPTER 2. RELATED WORK 6

Figure 2.2: “Composition with Red, Yel-
low and Blue”, Piet Mondrian, 1942. Pub-
lic domain (EU).

Figure 2.3: Map blended with facial fea-
tures. “Croydon”, Edward Fairburn, 2014
[8].

Mapshaper [1].
The work of Mi et al. [19] is also instructive with their differentiation of shape

simplification vs. shape abstraction. Shape simplification removes small-scale detail,
while their abstraction technique deconstructs shapes into component parts and
removes parts. Their results are impressive, but unfortunately are inapplicable for the
type of map data we use. Their technique requires cohesive shapes with associated
insides and outsides which our map data, a collection of line segments, does not have.
Because of this, we implemented line simplification techniques instead.

Online maps are common these days, but most use tiles of pre-rendered raster im-
ages rather than raw vector data. Projects like Polymaps1 and its successor, Leaflet2,
allow vector overlays of standard raster tiles, while the Kartograph framework3 allows
developers to create interactive SVG maps. While inspirational, ultimately these
projects were not appropriate for our use since either their vector support is for only
overlays, or they do not support processing of the vector data.

Our line segment decoration, which gives the map its color, is primarily inspired
1http://polymaps.org/
2http://leafletjs.com/
3http://kartograph.org/

http://polymaps.org/
http://leafletjs.com/
http://kartograph.org/

CHAPTER 2. RELATED WORK 7

by Tarbell’s Substrate [27] simulation4 (see Figure 2.4). This simulation generates
random paths which terminate upon intersecting each other, producing images that
bear a striking resemblance to cities surrounded by countryside. Our implementation
builds on this idea by replacing random paths with actual geographic data, and
enabling interactive modification of the map structure.

Figure 2.4: Screen capture of a Substrate vi-
sualization [27].

The design of our code and applica-
tion architecture comes from a number
of different areas, but is heavily influ-
enced by the D3 library by Mike Bo-
stock [2], Addy Osmani’s Javascript de-
sign patterns [21], and the advice from
Douglas Crockford’s “Javascript: The
Good Parts” [4].

We also studied the visually unique
styles of different map services. Some of
the differences in appearance (as can be
seen in the Map Compare5 screenshot in
Figure 2.5) stem from their utilitarian
design goals, but they are also influenced
by the aesthetics of the map designers.
Color pallet, line weight, and fill patterns
all contribute to the style of a map and contribute to its visual distinctiveness,
independent of the underlying cartographic data.

4http://www.complexification.net/gallery/machines/substrate/
5http://mc.bbbike.org/mc/

Figure 2.5: Screen capture of a Map Compare comparison [12].

http://www.complexification.net/gallery/machines/substrate/
http://mc.bbbike.org/mc/

C
h

a
p

t
e

r

3
Concept

3.1 Overview
We believe there are a number of potential uses for aesthetically-pleasing abstracted
map data. To gauge interest in this type of work, we can look to the acceptance
and use of other abstractions as well as data-driven art. The explosive popularity of
fractal renderings in the 1980’s, particularly the Mandelbrot set [6], demonstrated the
public’s interest in data-driven art. Abstraction of real-world data is also popular, for
example, on mobile devices where users have many options for applications that can
process photos to make them appear to be analog works of art such as oil paintings,
pencil sketches, or charcoal drawings. Abstracted and stylized map data could be
used in static form for posters or desktop backgrounds, while animated abstraction
sequences could be used as screensavers or visual-entertainment pieces.

We draw much inspiration from the Illumap [16] project. In particular, we extend
Isenberg’s approach by: a) providing interactive stylization options; b) allowing users
to select locations via 3rd party tools; c) allowing users to change the map data during
the abstraction process by panning and zooming; d) providing undo functionality;
e) making the process available via the web; f) enabling touch input; g) allowing users
to save and restore locations and abstractions; and h) adding interactive localized
abstraction techniques. We elaborate on these extensions and other concepts below.

Because stylization of map data strongly influences user experience [17], we want
to give users the opportunity to explore and play with different styles. We take
inspiration from Tarbell’s Substrate [27], whose color pallet was inspired by Jackson
Pollock’s work.6 We include the coloration features found in Isenberg’s [16] project
and extend them to allow animation of the color pallet and a more natural selection
process through direct manipulation.

We also provide abstraction of map features as a major map interaction for
the user. Though most maps employ abstraction for utilitarian purposes, we are
interested in the aesthetics possibilities that abstraction brings. For instance, users
may be able to abstract and deform map geometry to produce patterns that are
visually pleasing while still conveying a sense of the original location. Using particular
combinations of algorithms may produce patterns that resemble other objects (similar
to cloud watching) as in Figure 3.1. Our choice of abstraction algorithms is inspired
by the Illumap implementation, as well as online projects such as the interactive
particle demonstration of glfx.js.7 We provide abstraction techniques that users

6“1000 color palette stolen from Jackson Pollock” —Jared Tarbell, 2003
7http://evanw.github.io/glfx.js/

8

CHAPTER 3. CONCEPT 9

can run non-interactively (the Ramer-Douglas-Peucker technique [22, 7], progressive
meshes [15], and orthogonalization), as well as modified interactive force-direction
techniques that allow more of a playful exploration of data abstraction.

Figure 3.1: Example of potential apophenia or “cloud-
watching” with abstracted map data: Face with eyes
closed (upper-right) and three-eyed creature (lower-
left).

In order for the map data
to be interesting and personally
meaningful to users, we provide
them the ability to choose the
map starting location. We want
users to be able to play with
data from locations with which
they may be familiar, or loca-
tions which are iconic since al-
lowing users to choose their loca-
tion should give them increased
investment in the exploration,
and hopefully additional enjoy-
ment and inspiration. To select
this initial location, we provide a
tie-in with a standard mapping
service which lets users search
for and pinpoint a location be-
fore switching over to our ab-
straction tool.

To facilitate exploration and selection of map data, we also provide a “slippy-map”
interface within our tool. This allows users to drag the map in order to change
location and load previously unavailable data. This interface provides zooming
features as well, allowing users to change the detail level interactively. This enhances
location discovery by enabling users to easily switch between high-level overviews of
areas and low-level detailed inspection of specific spots. It also facilitates switching
between known locations since users can smoothly combine high and low-detail
panning.

Our goal is to make this project accessible to a wide audience, and easy to use. For
this reason, we implement our abstraction tool as a web-application. In comparison,
the Illumap project is a stand-alone Java program which must be downloaded and
run. Our web-based implementation is highly accessible, since users do not need to
configure or install anything beyond a standard web-browser. As a web-app, it also
runs on mobile devices via users’ browser, giving us access to alternate modalities
(e. g. touch input, accelerometer readings, microphones), which we can use to augment
the user interface. It also benefits us as developers since we can take advantage of a
wide variety of web-based resources such as javascript libraries and map-data servers.

We believe that the previously-stated goals will allow users to focus on the artistic

CHAPTER 3. CONCEPT 10

and playful aspects of the abstraction process. There are some potential implications
of our design decisions, however. Most maps color schemes are carefully designed
with clarity and accessibility in mind. Because we give users many options for map
coloration and appearance, the user runs the risk of making poor display choices.
The same is true of the abstraction process: the complete freedom to apply different
abstraction techniques in any order means that users may choose aesthetically poor
combinations. These potential drawbacks are mitigated by the ease of rechoosing
display options, undoing actions, and restarting the abstraction process.

Because our project uses live map data, it requires a working internet connection
when first starting or loading new data (triggered when moving or zooming). We
implemented and tested offline capability8, but decided not to expose this functionality
to the user since we do not anticipate it benefitting our users. We anticipate many
users will be first-time visitors, who require internet access to merely load the
application. We also predict that most users will scroll and scale the map which
requires an internet connection to load and display new map data.

The abstraction algorithms and map stylization can be processor intensive. Users
of slower computers, especially mobile devices, may notice variation in abstrac-
tion performance depending on the algorithms selected. Improving performance is
definitely possible but not something we focused on for this iteration of the project.

3.2 Techniques
The simplification and abstraction techniques we employ can be applied by the user
jointly or independently. The abstraction techniques process map information at the
level of simple, connected, undirected polylines stored in a graph structure (rather
than polygons or other higher-level structures). We calculate the user’s viewing area
and detail level, and download the appropriate map data in vector-tile form9 from
the OpenStreetMap service before transforming it into a format that our abstraction
algorithms can process. Because we are not concerned with maintaining the original
map data, some of our techniques remove or relocate map lines. Below we detail
the abstraction techniques we have selected as well as the decoration technique.
The example images are modified versions of the raw data shown in section “A” of
Figure 3.2, a street map of Schiermonnikoog island in the Netherlands.

8Caching for offline use was useful when the OSM vector tiles servers went offline during
development.

9Description of available vector formats: http://openstreetmap.us/~migurski/vector-
datasource/

http://openstreetmap.us/~migurski/vector-datasource/
http://openstreetmap.us/~migurski/vector-datasource/

CHAPTER 3. CONCEPT 11

Figure 3.2: Map from OpenStreetMap of Schiermonnikoog island in the Netherlands. This
view is prior to any abstraction.

3.2.1 Force-Directed Relaxation

The force-direction algorithm smooths the appearance of the map, by moving each
moveable point towards the group-center of its neighbors. It operates on all vertices
in the graph during each iteration, but no edges are removed. The algorithm is fairly
simple: for each point, average the vectors from the point to each of its neighbors,
scale the resulting vector by a constant “spring force” to generate an offset for the
point, and, once all of the points’ offsets have been calculated, translate each point
by its offset. This has the effect of causing all points to move toward the center, and
straight ways (lines made up of multiple points) to become curved. This technique
also has the effect of highlighting map segments that are disconnected from nearby
segments, since the relaxation tends to contract the line segments moving their
endpoints away from each other (see the lower right edge of section “B” in Figure 3.2
for an example of a disconnected line segment).

3.2.2 Orthogonalization

Our Orthogonalization algorithm produces map segment layouts reminiscent of Piet
Mondrian’s work (see section “C” in Figure 3.2). It modifies lines segments’ angles,
pushing them toward horizontal or vertical alignments based on which orientation
they are currently closest to. Like the force-direction technique, orthogonalization
operates on all points per iteration, but does not remove any edges.

The algorithm adds offsets to the vertices of each edge, causing the angle of the
edge to change. For unconnected angles this is a simple process. Most of the map

CHAPTER 3. CONCEPT 12

edges are connected to at least two neighbors however, so we use an iterative process
similar to the force-direction technique, where a vertex’s final offset is the average of
all the offsets generated when processing each edge of which it is a member. Since
this process involves much interaction between edges, we simplify the calculations by
using one half of the smaller of the vertical or horizontal component of the vector,
and applying it as an offset such that it will rotate the edge toward alignment with
the closer coordinate axis. This is much faster, but can introduce oscillation due to
combined offsets pushing a vertex beyond the point our algorithm would settle on.
To prevent this, we use a dampening factor of 0.35 which slows convergence but also
reduces oscillation.

3.2.3 Progressive Meshes

Progressive meshes [15] are normally used in 3D surface mesh simplification. It is one
of the techniques we use which eliminates line segments in addition to moving them.
It works by collapsing edges, which is essentially merging an edge’s vertices into a
new single vertex and updating the adjacent edges to connect to the new vertex, as
in Figure 3.3.

2 MESHES IN COMPUTER GRAPHICS
Models in computer graphics are often represented using triangle
meshes.1 Geometrically, a triangle mesh is a piecewise linear sur-
face consisting of triangular faces pasted together along their edges.
As described in [9], the mesh geometry can be denoted by a tuple
(K V), where K is a simplicial complex specifying the connectivity
of the mesh simplices (the adjacency of the vertices, edges, and
faces), and V = 1 m is the set of vertex positions defining
the shape of the mesh in 3. More precisely (cf. [9]), we construct
a parametric domain K m by identifying each vertex of K with
a canonical basis vector of m, and define the mesh as the image
V(K) where V : m 3 is a linear map.
Often, surface appearance attributes other than geometry are also

associated with the mesh. These attributes can be categorized into
two types: discrete attributes and scalar attributes.
Discrete attributes are usually associated with faces of the mesh.

A common discrete attribute, the material identifier, determines
the shader function used in rendering a face of the mesh [18]. For
instance, a trivial shader functionmay involve simple look-up within
a specified texture map.
Many scalar attributes are often associated with a mesh, including

diffuse color (r g b), normal (nx ny nz), and texture coordinates
(u v). More generally, these attributes specify the local parameters
of shader functions defined on themesh faces. In simple cases, these
scalar attributes are associated with vertices of the mesh. However,
to represent discontinuities in the scalar fields, and because adjacent
facesmayhavedifferent shading functions, it is common to associate
scalar attributes not with vertices, but with corners of the mesh [1].
A corner is defined as a (vertex,face) tuple. Scalar attributes at a
corner (v f) specify the shading parameters for face f at vertex v.
For example, along a crease (a curve on the surface across which
the normal field is not continuous), each vertex has two distinct
normals, one associated with the corners on each side of the crease.
We express a mesh as a tuple M = (K V D S) where V specifies

its geometry, D is the set of discrete attributes df associated with
the faces f = j k l K, and S is the set of scalar attributes s(v f)
associated with the corners (v f) of K.
The attributes D and S give rise to discontinuities in the visual

appearance of the mesh. An edge vj vk of the mesh is said to be
sharp if either (1) it is a boundary edge, or (2) its two adjacent faces
fl and fr have different discrete attributes (i.e. dfl = dfr), or (3) its
adjacent corners have different scalar attributes (i.e. s(vj fl) = s(vj fr)
or s(vk fl) = s(vk fr)). Together, the set of sharp edges define a set
of discontinuity curves over the mesh (e.g. the yellow curves in
Figure 12).

3 PROGRESSIVE MESH REPRESENTATION
3.1 Overview
Hoppe et al. [9] describe a method, mesh optimization, that can
be used to approximate an initial mesh M by a much simpler one.
Their optimization algorithm, reviewed in Section 4.1, traverses the
space of possible meshes by successively applying a set of 3 mesh
transformations: edge collapse, edge split, and edge swap.
We have discovered that in fact a single one of those transforma-

tions, edge collapse, is sufficient for effectively simplifying meshes.
As shown in Figure 1, an edge collapse transformation ecol(vs vt)

1We assume in this paper that more general meshes, such as those con-
taining n-sided faces and faces with holes, are first converted into triangle
meshes by triangulation. The PM representation could be generalized to
handle the more general meshes directly, at the expense of more complex
data structures.

v t

v s

v l v r v l v r v s

ecol

vsplit

Figure 1: Illustration of the edge collapse transformation.

v 1

v 2

v 3

v 4

v 5

v 6

v 7

v 1

v 2

v 3

v 4

v 5

v 6

v 1

v 2

v 3

M i+1 M i

ecol i

M 0

ecol 0

m 0 =3

s 0 =2

s i =4

(i = 3)
v 1

v 2

v 3

v 4

v 5

v 6

v 7

M f

v 1

v 2

v 3

M c

A c

(a) (b)

Figure 2: (a) Sequence of edge collapses; (b) Resulting vertex
correspondence.

unifies 2 adjacent vertices vs and vt into a single vertex vs. The ver-
tex vt and the two adjacent faces vs vt vl and vt vs vr vanish
in the process. A position s is specified for the new unified vertex.
Thus, an initial mesh M = Mn can be simplified into a coarser

mesh M0 by applying a sequence of n successive edge collapse
transformations:

(M=Mn)
ecoln 1 ecol1 M1 ecol0 M0

The particular sequence of edge collapse transformations must be
chosen carefully, since it determines the quality of the approximating
meshes Mi i n. A scheme for choosing these edge collapses is
presented in Section 4.
Letm0 be the number of vertices inM0 , and let us label the vertices

of mesh Mi as Vi = v1 vm0+i , so that edge vsi vm0+i+1 is
collapsed by ecoli as shown in Figure 2a. As vertices may have
different positions in the different meshes, we denote the position
of vj inMi as i

j.
A key observation is that an edge collapse transformation is in-

vertible. Let us call that inverse transformation a vertex split, shown
as vsplit in Figure 1. A vertex split transformation vsplit(s l r t A)
adds near vertex vs a new vertex vt and two new faces vs vt vl and
vt vs vr . (If the edge vs vt is a boundary edge, we let vr = 0
and only one face is added.) The transformation also updates the
attributes of the mesh in the neighborhood of the transformation.
This attribute information, denoted by A, includes the positions s
and t of the two affected vertices, the discrete attributes d vs vt vl
and d vt vs vr of the two new faces, and the scalar attributes of the
affected corners (s(vs), s(vt), s(vl vs vt vl), and s(vr vt vs vr)).
Because edge collapse transformations are invertible, we can

therefore represent an arbitrary triangle mesh M as a simple mesh
M0 together with a sequence of n vsplit records:

M0 vsplit0 M1 vsplit1 vsplitn 1 (Mn =M)

where each record is parametrized as vspliti(si li ri Ai). We call
(M0 vsplit0 vsplitn 1) a progressive mesh (PM) representa-
tion of M.
As an example, the mesh M of Figure 5d (13,546 faces) was

simplified down to the coarsemeshM0 of Figure 5a (150 faces) using

100

Figure 3.3: Illustration of the edge collapse transfor-
mation [15].

The collapsed edge is cho-
sen by generating an error met-
ric for each edge in the map
graph. The error metric mea-
sures how much error would
be introduced by collapsing the
edge, and the edge with the low-
est error value is for collapsing.
Our version of progressive mesh
simplification differs from the
original technique [15, 11] by
taking into account that vertices
may have a degree <3, some-
thing which never occurs in 3D
surface meshes. It also uses edge length as the error metric, which is simple and quick
to calculate. Since each operation must calculate and sort the lengths of potentially
several thousand edges, a more complex error metric would be prohibitively slow to
use barring the implementation of a caching mechanism.

3.2.4 Ramer-Douglas-Peucker

The Ramer-Douglas-Peucker technique can be used to simplify map data at the “way”
level. Ways are lines made of of a series of connected edges, with each edge connecting

CHAPTER 3. CONCEPT 13

to at most two other edges. The technique works backwards (for our purposes), by
starting from the most simplified version of a way (i. e. a single line segment from the
first vertex to the last) and generating a sequence of vertex additions that eventually
result in the original polyline. At each step, the algorithm selects the vertex that is
furthest from the connecting edge. It then adds the vertex, resulting in two edges,
and calls itself recursively on each of the new edges.

The algorithm in its original form has several limitations for our use case. First,
it produces a hierarchy of operations instead of a linear sequence. It also operates
on single polylines rather than collections such as contained in map. Finally, the
algorithm works backwards for our purposes, from most simplified (a single edge)
to least (the original polyline). Due to these limitations, we used a customized
extension of the technique from [16]. We run the algorithm normally, but build a
linear sequence of simplification steps by merging the results from each recursive
split. The merge is performed such we that vertex collapses with lower error (i. e.
vertex distance from simplified edge) are chosen before collapses with higher error.
We maintain the recursion results order (i. e. we merge but do not sort recursion
results) as we merge so that for any series of abstraction steps the algorithm chooses
one with the least error. We finish each merge with the vertex collapse operation
between the two segments which gives as a reversed order of operation, from detailed
to simplified. Finally, using the same algorithm, we merge the results for each way.
This gives us a simplification sequence for the entire map, in the correct order.

3.2.5 Interactive Localized Repulsion

This is an interactive abstraction technique that allows users to apply a repulsive
force to an area on the map. When the user drags a mouse or finger across the map,
we repeatedly calculate and apply a force on all map nodes away from the pointer.
The force is a fixed value which we then attenuate using the inverse-square of the
distance between the pointer and the node. The attenuation localizes the most of
the effect, giving the users control over which map data is affected by the technique.
The result of moving the point in the densest area of the map is illustrated in section
“D” of Figure 3.2. Using this technique has the effect of expanding an area, similar
to lens magnification techniques (as described in [3]). Because this technique uses
dragging, which we also use for panning the map, we allow the user to select which
mode (panning or repulsion) they desire via a selector in the user-interface.

3.2.6 Stylization

Along the feature lines of our map, we add decoration in the form of perpendicular
colored lines that blend together to simulate a water-color brush-stroke away from
the feature line. We place the decoration lines along a single side of the feature line in

CHAPTER 3. CONCEPT 14

Figure 3.4: Example of stylization via line segment decoration.

order to highlight the line as well as avoid overpainting dense areas (see Figure 3.4).
The decoration lines extent is proportional to the length of the feature line they
come from, which also helps curtail crowding in areas of short dense features. As
part of our design to allow aesthetic exploration and experimentation, we allow the
user to influence the color-pallet, weight, and orientation of the strokes.

C
h

a
p

t
e

r

4
Realization

Our implementation is built upon several design goals. We want the interface to be
intuitive and easy to explore, enabling first-time users to discover the effects of our
abstraction techniques through playful interaction rather than instruction. To this
end, we want effects of user actions to be immediately apparent and reversible. We
also want users to be able to personalize their experience through their choice of map
location and scale, and through their abstraction and stylization choices. Finally,
we want to provide an experience rich and varied enough to capture users’ interest
beyond the initial discovery phase. On the technical side, we want the application to
be easily accessible, run on all major operating systems, and require no prior system
configuration. We also want the application to be responsive even on slower systems.

These goals led us to a series of design decisions around the interface, features,
and a data processing. In our user interface, we employ standard graphical interface
conventions such as buttons and dragging behavior. We also avoid interaction
techniques that only work on one type of device. For example, we avoid pointer-
hovering or right-clicking for interaction since mobile devices tend not to have them
available. We also adjust our interface in consideration of Hick’s Law [25], exposing
the fewest number of controls possible and moving infrequently used controls, such
as preferences, into panels that are normally hidden.

To support our goals of the application running cross-platform and with no
setup, we decided to implement a web-based application in Javascript. Almost
every internet-connected consumer computing device has web-browsing capability,
so we would easily be able to reach a wide audience. Additionally, this would allow
us to leverage existing Javascript libraries for building custom user-interfaces and
interacting with map data. The libraries available and also features we wanted
to implement informed our data processing decisions. We wanted be able to pan
and zoom our map interface, which necessitated keeping a history of abstraction
steps so that they could be applied to new map data as it came into view. This
history could also be used to support a rudimentary undo, by reapplying all but
the last abstraction step to the original data. To support panning and zooming,
we opted to use GeoJSON vector-tiles10 which are easy to consume via Javascript
and can be downloaded in parallel. This is in contrast to the Illumap [16] project
which used OSM XML (OpenStreetMap’s native XML format) and downloaded the
entire map in one operation. For rendering, we chose to use SVG (Scalable Vector
Graphics) rather than Canvas, despite Canvas being more performant due to SVGs
being simpler to generate and manipulate.

10OpenStreetMap vector-tiles are still an experimental service at the time of writing.

15

CHAPTER 4. REALIZATION 16

Our design and approach are inspired by that of Illumap [16], but contain
significant differences. In addition to using arrays of GeoJSON vector-tiles instead
of dynamically-generated OSM XML, we chose to simplify the interface by reducing
the number of interface elements available at any given time. We accomplish this by
merging some interface elements, moving others into popup dialogs, and eliminating
application features which are unnecessary or provided by the browser. For instance,
the Illumap application provided two buttons for each type of abstraction, one which
ran the abstraction technique once and the other which ran it continuously. We
merge these two buttons into one which runs the abstraction continuously while the
button is being pressed. We also were able to remove the file management buttons
for loading data since our data is now loaded automatically based on map location.
By making these changes we were able to reduce the user interface elements on the
main page from 3511 to 10 12 (see comparison in Figure 4.1).

Figure 4.1: Our application controls (top) and Illumap applications controls (bottom).

We reimplemented the existing Illumap simplification techniques however the
underlying code is quite different due to the differences between Java, which is
strongly-type and object-oriented, and Javascript, which is functional and weakly-
typed.

Javascript is a popular language with an active development community. Because
of this we had a number of tools available which dealt with graphics and specifically
map rendering. Some of the tools we considered were

Because few of the current tile-based map rendering engines were able to use map
vector data13 and because none of them were designed to store and re-render modified
vectors, we wrote much of the application from scratch. The two libraries we did
integrate were graphlib16, a directed multi-graph library we used store and manipulate
map coordinate relations, and D3js17, an extremely powerful and flexible library that

1117 buttons, 11 checkboxes, 4 sliders, 1 drop-down menu, 1 color indicator, 1 text field.
129 buttons, 1 text field.
13Leaflet14 and Polymaps15 are able to render vectors for map overlays, but still use raster tiles

for the underlying map image
16https://github.com/cpettitt/graphlib/
17http://d3js.org/

https://github.com/cpettitt/graphlib/
http://d3js.org/

CHAPTER 4. REALIZATION 17

allows data-driven transformations of documents. D3js also provides asynchronous
fetching of server tiles, transformations between map and screen coordinate systems,
mouse and touch input detection, and visual data rendering.

Figure 4.2: In these two tiles, the
highlighted path segments share a
unique ID and will be merged by our
application before abstraction and
rendering.

There were a number of challenges to realiz-
ing our application. The Javascript language has
a number of design limitations (as enumerated in
[4]), which make scoping tricky and passing con-
text between functions tricky or impossible. The
normal workaround is to reduce depth of com-
partmentalization to make components and state
available, or to follow design and architectural
patterns that reduce the need for components
to address each other. We used a combination
of these techniques to overcome these challenges,
which also helped us integrate our third-party
libraries.

Most slippy-maps download and directly dis-
play tiles of data, however since we are storing
and displaying modified data, we had to write
significant code to tie map movement to down-
loading, modifying, and rendering. This code also
has to track the abstraction steps already taken
by a user, and reapply them when fresh data
is loaded. Because vector tiles are downloaded
asynchronously, coordinating multiple download
threads proved challenging since they needed to
integrate tile data into a shared data store and
trigger the re-abstraction process before refresh-
ing the display. A number of third-party libraries
provide solutions (Q18, Promisejs19, and Async20

to name a few), and the latest version of the
Javascript standard, ECMAScript 2015 (ES6),
includes Promises which provide native support
for handling deferred and asynchronous computa-
tions. Browser support for promises is incomplete
however, and integrating third-party libraries requires learning and introduces com-
plexity. Therefore we wrote our own handler that tracks outstanding tile requests
and triggers re-abstraction and rendering at regular intervals or when all requests

18http://documentup.com/kriskowal/q
19https://www.promisejs.org/
20https://github.com/caolan/async

CHAPTER 4. REALIZATION 18

have completed. The tiles are merged into a single data structure before abstraction
or rendering, with paths that are split across tiles being rejoined based on the unique
feature ids (see example Figure 4.2).

Keeping abstracted maps from changing appearance when panning is a challenge.
Since most abstraction methods (progressive meshes being the exception) affect map
points differently based on the other map points in view, abstraction outcomes will
be different when users pan and bring new data into view. We currently reapply
the map abstraction steps to the entire map, but this causes existing map data to
change appearance when panning. A better solution might be to bring fresh data
into view without reapplying the abstraction steps, however this would break our
undo feature since it currently reapplies the abstraction steps to all visible map data.

The final challenge involved the coordinate reference system employed. Map
points arrive from OpenStreetMap defined by latitude and longitude coordinates.
We store them and perform most abstraction modifications on them in this native
format, converting them to x and y screen coordinates (using D3js’s Mecator projec-
tion transformation) at the rendering stage. Storing and operating on geographic
coordinates works well for integrating other geographic data with the abstracted map
and requires one less caching layer21 to maintain, but introduces some complexity
and computational overhead since we have do the screen-projection transformation
(using D3js) for each display refresh. For interactive abstraction techniques, we also
also have to transform mouse coordinates to geographic coordinates before we can
calculate any interaction with map points.

We continue to improve and add features to our map abstraction application.
Currently it runs on personal computers and mobile touch-based devices. Its capa-
bilities include map abstraction using forced-directed relaxation, orthogonalization,
progressive meshes, user-directed repulsion, and a modified Ramer-Douglas-Peucker
technique. Users are able to pan and zoom to dynamically load new map data. We
also have searching (via 3rd party) and undo features. The application can work
offline after being loaded for the first time, though panning and zooming will be
limited to map areas that have already been visited and cached.

The current version of our application does have certain limitations. Though
offline mode is available, it is not robust and will fail in some cases such as when bad
data has been cached. We have focused most of our effort on the network-enabled
capabilities of our application, so it would be very difficult to distribute it and map
data to an offline user. Performance is also not at a satisfactory level for maps
with more than a few hundred points, especially on mobile devices. Even when the
underlying algorithms are performant, we do not always refresh the display at regular
intervals, leading to the appearance of freezing. Finally, the Javascript code is not as

21We currently cache raw tiles and abstracted geographic data, but not data in screen-projection
coordinates.

CHAPTER 4. REALIZATION 19

modular as we would like and does not lend itself to being extended or debugged in
its current form.

For the next version of the application, we intend to address the previous lim-
itations and add additional features. Offline capabilities will require new caching
mechanisms which should in turn enable us to operate internally on screen coordinates
rather than geographic coordinates. This should in turn improve our performance
and reduce our code complexity. We intend to revisit rendering via Canvas instead
of SVG and test whether any potential speed increase is worth the added complexity.
We would also like improve the screen updating frequency to give more consistent
user feedback. To improve performance, we can work on several areas including
leveraging D3js quadtrees to speed up interactive abstractions, precomputing edge
tangents for stylization rendering, employing memoization where beneficial, using
SVG transformations to move points rather than redrawing them, and tuning areas
of code that are called the most frequently. We can dramatically improve undo
performance by caching previous abstraction results rather than recomputing them
to arrive at a previous state. We would also like to add OSM XML support so
that we can draw data directly from the OpenStreetMap servers and not rely on
experimental vector tile services. Finally, adding the ability for users to save their
abstraction to PNG, SVG, or browser cookie could improve users’ experience since
they would have something to keep at the end of a session.

C
h

a
p

t
e

r

5
Results and Evaluation

At the time of writing, our application (shown in Figure 5.1) was not in a finalized
state for user testing, and the vector tile service was unavailable which blocked
panning and zooming. Therefore we did not perform user testing and instead
gathered informal feedback. The feedback indicated that the incomplete features
needed to be finished and improved before the tool could be used as intended.
These features included the stylization selection tools, pan-and-zoom, and general
performance.

Figure 5.1: Screen capture of web application.

When the project is complete and a tile service available, more formal user and
performance testing is in order to evaluate if the application achieves the previously
stated project goals, how discoverable the different features were, and how each one
performed.

20

C
h

a
p

t
e

r

6
Conclusion and perspectives

In this thesis, we presented an application for abstracting, stylizing, and playing
with map data. It is motivated by the Illumap [16] project and the Substrate [27]
project which show the aesthetic possibilities of abstracting real or simulated map
information. The goal of this work is to provide users with an intuitive and enjoyable
means of interacting with and modifying map data, while requiring no training or
system preparation. Our implementation improves upon the previous work in Illumap
by making it accessible via the web, simplifying the interface, adding interactive
abstraction techniques, and implementing a slippy-map interface. We expect this
project to be useful for visualizing the effects of different abstraction techniques, for
generating stylized depictions of familiar landscapes, and as a leisure time activity
for assisted creativity.

We implemented our application using HTML, CSS, and Javascript, and lever-
aged the D3js and graphlib libraries. Our data is downloaded dynamically from
OpenStreetMap’s experimental vector tile server. Our feature-set includes five dif-
ferent abstraction techniques, map style customization, jumping to or searching
for a location, loading and saving the abstraction state, and the ability to undo
abstraction steps. During development we encounter challenges included performance
issues, handling asynchronous network operations, preventing abstraction results
from changing when importing new data, and handling transformations between geo-
graphic coordinates and screen coordinates. We overcame issues around asynchronous
operations and coordinate transformations, but leave performance improvements and
preventing abstraction shifts to future work.

To properly evaluate the performance of this work, qualitative and quantitative
user testing would be useful. Due to time constraints, we only performed informal
user surveys and no technical performance evaluations. Additionally, because the
project is not yet finished, the feedback is incomplete due to certain features (e. g.
undo and mobile use) being prohibitively slow. By the end of the internship, we
expect the program to have evolved in both performance and existing features (e. g.
line decoration) and new (e. g. abstraction saving and loading), which would address
user feedback concerning usability and enjoyment.

There were additional features that would have been desirable, had more time
been available. For example, additional interactive abstraction techniques using
multitouch could be implemented. Also, using color values from an image as a
force-guide could produce interesting abstractions that resembled the guide image.

21

Acknowledgments
I would like to thank my wife Angela for her infinite patience and academic advice,
my infant son Julien who graciously started sleeping through the night earlier than
expected, my advisor Tobias Isenberg whose advice, availability, and attention to
detail were invaluable and made this thesis possible, and Mike Bostok, the author of
D3js, whose many tutorials and extensive help online showed me what is possible
with Javascript.

22

Bibliography
[1] Matthew Bloch and Mark Harrower. Map-

Shaper.org: A Map Generalization Web Ser-
vice. In Proc. AutoCarto. Cartographic and
Geographic Information Society, 2006.

[2] Michael Bostock, Vadim Ogievetsky, and
Jeffrey Heer. D3 data-driven documents.
IEEE Transactions on Visualization and
Computer Graphics, 17(12):2301–2309, De-
cember 2011.

[3] M. S. T. Carpendale and Catherine Mon-
tagnese. A framework for unifying presen-
tation space. In Proceedings of the 14th
Annual ACM Symposium on User Interface
Software and Technology, UIST ’01, pages
61–70, New York, NY, USA, 2001. ACM.

[4] Douglas Crockford. JavaScript : the good
parts. O’Reilly, Beijing Cambridge, 2008.

[5] Cassidy J. Curtis, Sean E. Anderson,
Joshua E. Seims, Kurt W. Fleischer, and
David H. Salesin. Computer-Generated Wa-
tercolor. In Proc. SIGGRAPH, pages 421–
430, New York, 1997. ACM.

[6] A. K. Dewdney. Computer recreations. Sci
Am, 253(2):16–24, aug 1985.

[7] David H. Douglas and Thomas K. Peucker.
Algorithms for the Reduction of the Number
of Points Required to Represent a Digitized
Line or Its Caricature. Cartographica: The
International Journal for Geographic Infor-
mation and Geovisualization, 10(2):112–122,
December 1973.

[8] Edward Fairburn. Sma2003ll ink study over
a pocket map, 2014. Website, 2014. Ac-
cessed: 2015-07-11.

[9] Carlos A. Furuti. Map projectios: Inter-
rupted maps. Website, 1996. Accessed:
2015-07-13, Copyright 1996, 1997.

[10] Ken Garland. Mr Beck’s underground map.
Capital Transport, Harrow Weald, Middle-
sex, 1994.

[11] Michael Garland and Paul S. Heckbert. Sur-
face simplification using quadric error met-
rics. In Proceedings of the 24th Annual Con-
ference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’97, pages
209–216, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[12] GmbH Geofabrik. Map compare, website.
Web site, 2015. Accessed: 2015-07-20.

[13] Alejo Hausner. Simulating decorative mo-
saics. In Proceedings of the 28th Annual
Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’01, pages
573–580, New York, NY, USA, 2001. ACM.

[14] Aaron Hertzmann. A survey of stroke-based
rendering. IEEE Computer Graphics and
Applications, 23(4):70–81, 2003.

[15] Hugues Hoppe. Progressive meshes. In Pro-
ceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’96, pages 99–108, New
York, NY, USA, 1996. ACM.

[16] Tobias Isenberg. Visual abstraction and
stylisation of maps. The Cartographic Jour-
nal, 50(1):8–18, feb 2013.

[17] John Krygier and Denis Wood. Making
maps: a visual guide to map design for GIS.
Guilford Press, 2011.

[18] Viktoras Lukoševičius. Cartographic im-
age of samogitia in the old maps of lithua-
nia, poland and other neighboring coun-
tries (1700–1939). Geodesy and Cartography,
40(2):75–97, apr 2014.

[19] Xiaofeng Mi, Doug DeCarlo, and Matthew
Stone. Abstraction of 2d shapes in terms
of parts. In Proceedings of the 7th Inter-
national Symposium on Non-Photorealistic
Animation and Rendering, NPAR ’09, pages
15–24, New York, NY, USA, 2009. ACM.

[20] Sebastian Münster. Carta d’italia. Website,
1550. Accessed: 2015-07-10.

23

BIBLIOGRAPHY 24

[21] Addy Osmani. Learning JavaScript design
patterns. O’Reilly Media, Sebastopol, CA,
2012.

[22] Urs Ramer. An iterative procedure for the
polygonal approximation of plane curves.
Computer Graphics and Image Processing,
1(3):244 – 256, 1972.

[23] Maxwell Roberts. Underground maps unrav-
elled : explorations in information design.
Maxwell J. Roberts,Distributed by the au-
thor Maxwell J. Roberts, Wivenhoe, Essex,
UK Wivenhoe, Essex, UK, 2012.

[24] Sameboat. London underground overground
dlr crossrail map. Website, 2014. Accessed:
2015-07-10, Licensed under CC BY-SA 4.0
via Wikimedia Commons.

[25] Steven Seow. Information theoretic models
of HCI: A comparison of the hick-hyman law
and fitts' law. Human-Comp. Interaction,
20(3):315–352, sep 2005.

[26] John P. Snyder. Map Projections - A Work-
ing Manual. United States Government
Printing Office, 1987.

[27] Jared Tarbell. Substrate, website and simu-
lation. Web site and simulation, 2003. Ac-
cessed: 2015-07-09.

[28] M. Visvalingam and J. D. Whyatt. Line
generalisation by repeated elimination of
points. The Cartographic Journal, 30(1):46–
51, jun 1993.

[29] Sheng Zhou and ChristopherB. Jones.
Shape-aware line generalisation with
weighted effective area. In Developments
in Spatial Data Handling, pages 369–380.
Springer Berlin Heidelberg, 2005.

	Contents
	Introduction
	Related Work
	Concept
	Overview
	Techniques

	Realization
	Results and Evaluation
	Conclusion and perspectives
	Bibliography

