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Abstract

We explore the applications of shallow-depth three-dimensional interaction on a
touch-sensitive tabletop display. To guide this exploration, we chose the partic-
ular application of a virtual, simulated sandtray, such as those used in certain
kinds of play therapy. This sandtray program is developed and evaluated in
cooperation with several experts in sandtray therapy.

The usefulness of a virtual sandtray for play therapy is discussed, and some
possibilities of the virtual world are explored to see what advantages a digital
sandtray can have over its physical counterpart.

Interaction with 3D objects on a tabletop is extended from previous work,
allowing for full control over all six degrees of freedom. For further manipula-
tions, the concept of virtual tools is introduced. Such tools avoid modality in the
interface, thereby allowing for their use in a collaborative, multi-user setting.
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Chapter 1

Introduction

Much work in the human-computer interaction field nowadays investigates the
interaction with large displays and touch screens, and tabletop computers in
particular. However, the vast majority of this research only uses images that are
as two-dimensional as the display itself, whereas little is said about interaction
with a virtual three-dimensional world. Yet humans are familiar from birth with
three-dimensionality, making interaction with the virtual 3D realm a worthwhile
object of study.

As a case study into 3D interaction on tabletop computers, we construct a
virtual sandtray, inspired by the (physical) sandtrays used in sandtray therapy.
In this form of therapy, the patient is allowed to play freely with a range of small
figures or toys in a box, or tray, filled with sand. The form factor and affordances
of a physical sandtray have many similarities with those of a tabletop computer,
making the virtual sandtray a suitable stepping stone into the field of 3D on
tabletops.

Moreover, there are many potential advantages to the use of a virtual sand-
tray instead of a physical one. The absence of physical limitations means we can
provide therapy patients with a greater range of options to express themselves.
A digital implementation might also appeal more to patients of a certain age
group.

The rest of this chapter is organized as follows. The project description
(‘what’) is given in Section 1.1, its motivation (‘why’) in Section 1.2 and its
method (‘how’) in Section 1.3. The project is scoped in Section 1.4, and its
objectives are presented in Section 1.5. Finally, Section 1.6 will introduce the
structure of the rest of this thesis.

1.1 Project description

In this project, we construct a computer program that simulates a sandtray
on a tabletop computer. Of course, representing the full richness of real-world
interaction is not feasible; instead, we aim for a program that is similar in
concept and purpose to a physical sandtray, while reducing the possibilities in
some areas and extending them in others.

Figure 1.1 shows the prototype application resulting from this project; the
‘demo’ video referred to in appendix A demonstrates the prototype in action.
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Figure 1.1: A screenshot of the sandtray application constructed in this project.
It shows a typical scene that could be constructed during an actual therapy
session, with an airfield, two aircraft, a forest and a deer.

The figure and video serve only to show the general idea; the details will be
discussed in depth throughout this thesis. It is good to keep in mind that this
application is merely a prototype, a proof-of-concept, rather than a polished,
finished application that is ready for use in actual therapy sessions.

1.2 Motivation

The reasons for undertaking this particular project fall into two categories. On
the one hand, there are questions from the field of human-computer interaction
relating to 3D interaction, tabletops and direct touch, that can be explored
using the virtual sandtray. On the other hand, there are various reasons why
a digitally supported form of sandtray therapy could be advantageous over the
current, purely physical setup.

Tabletop computers are used mainly for collaboration. As such, researchers
try to find ways to perform real-world collaboration tasks on tabletops, such
as passing documents, making sketches and taking notes. Because the tabletop
is a two-dimensional surface, it most naturally affords interaction with two-
dimensional virtual objects, which is what most tabletop research focuses on.
However, in real-world collaboration, people have the ability to easily flip, stack,
sort and store artifacts using the third dimension. Such abilities could be offered
on tabletop computers by adding a third dimension to the virtual world as well.
Since the touch input to a tabletop is two-dimensional in nature, this raises the
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problem of how interaction with the third dimension should take place. The
virtual sandtray serves as a case study to investigate this problem.

A sandtray is a suitable case to study for several reasons. First, like a
tabletop, it is a horizontal surface, with all the affordances that come with it.
Second, unlike for example the 3D world of first-person games, a sandtray stays
in the same place relative to the viewer, eliminating the need for viewpoint
changing. Third, sandtrays in therapy have a suitable size to be represented on
tabletop computers at 1:1 scale. All these factors make the sandtray a relatively
good match for the affordances of a tabletop computer.

From a therapeutic point of view, there are also several reasons to develop a
virtual sandtray. One advantage of a tabletop computer over a tray of sand with
toys is that it may appeal more to patients of a certain age group. Especially
teenagers may find a sandtray childish, but might be more motivated to play
with a modern, “cool” piece of technology. A virtual sandtray can also be more
suitable for patients with certain forms of autism, who dislike the feel of sand
and the disorder of a sandtray.

Another therapeutic advantage is that a virtual sandtray can offer func-
tionality that is simply not possible in a physical one, because the latter is
constrained by the laws of physics. In the digital world we, the designers, have
nearly unlimited freedom. We can leverage this freedom to provide the pa-
tient with more ways to express themselves in the sandtray, thereby giving the
therapist more insight into their psyche.

1.3 Method

During the investigation, a prototype of a virtual sandtray program was devel-
oped for a tabletop computer. This was done using readily available tabletop
hardware. The prototype is based on the Java framework that was developed
by Hancock for his work on 3D display and interaction on tabletop computers
[Han07a; Han07b].

The design and evaluation of this program was done in cooperation with
three sandtray therapists. During initial development, we have been in contact
with them via e-mail to discuss the aspects of the project relevant to therapy.
Decisions about which features to include in the prototype were largely based
on this correspondence. When the prototype was in a presentable state, the
therapists were physically present to evaluate the application first-hand and
provide feedback, by which further research can be guided.

1.4 Scope

The topic of tabletop interaction is vast, and so are the potential possibilities
of a virtual sandtray. It is therefore necessary to clearly define the scope of this
project in the various areas that it touches upon.

Our main field of research is human-computer interaction, and in particular
tabletop interaction. Interaction techniques using direct touch obviously play
an important role throughout this work. Although we do design for multi-user
interaction, research into the nature of collaboration is not an important part
of this work.
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The virtual sandtray is, essentially, a computer simulation of a physical sys-
tem, and therefore uses results from the field of computational physics. However,
we will not attempt to create a perfect simulation of the physical sandtray in
the digital world. In particular, the use of simulated sand in our implementa-
tion would be a large project in itself, and we will not attempt it. Apart from
resizing, we will not perform any deformations on the objects in the sandtray,
but restrict ourselves to the simulation of rigid bodies only.

The topic of modality in interfaces is too large and varied to attempt to
provide a solution to all problems. Therefore, the notion of virtual tools must
be seen as exploratory, and reveals only the tip of the iceberg.

In terms of hardware, we use only the possibilities offered by a tabletop
computer without any extra devices; no haptic devices, physical proxies or other
possible input devices will be used. We do, however, assume that a large number
of touch points can be detected simultaneously. The use of sound effects might
be a feasible addition, but will not be explored; the only output will thus be in
the form of a two-dimensional image on a tabletop screen.

Some well-established techniques from the field of three-dimensional com-
puter graphics are used in the implementation. We also use some results from
computational geometry.

1.5 Objectives

The aim of this project is threefold. Firstly, it explores what the advantages and
drawbacks of a virtual sandtray are in comparison to a physical one. Secondly,
the project develops some new and augmented techniques in the more general
field of 3D interaction on touch-sensitive displays, and raises questions to be
answered by future work. Thirdly, it explores the concept of ‘virtual tools’,
which could prove to be a useful paradigm on touch screens, and on tabletops
in particular.

1.5.1 Possibilities of a virtual sandtray

A virtual sandtray offers many options that a physical one does not, because
it is not constrained by the laws of physics. Many of these potential features
are considered, but not all of them will be explored in this project; instead,
only a subset will be chosen for implementation and investigation. Features to
be implemented will be selected based on their feasibility, their usefulness for
therapy, and their relevance to interactions research.

1.5.2 3D interaction on touch displays

The interaction techniques referred to in the previous section will, for the most
part, not be specific to virtual sandtrays only. Rather, the results found in this
investigation will allow themselves to be used for interaction with 3D objects
on touch displays in general, for example, other creative applications, or virtual
desktops. Hence, the second purpose of this thesis is to provide more general
results in the field of 3D interaction on touch-sensitive displays.
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1.5.3 Virtual tools

It is generally recognised in the human-computer interaction community that
modality is a bad thing for interfaces. On tabletops, where multiple people
can interact simultaneously, modality presents an even larger problem. In this
thesis, we introduce the notion of ‘virtual tools’, which can be used to avoid
system-maintained modes and thereby help to avoid mode errors and reduce
cognitive load.

1.6 Organization

The rest of this thesis is organized as follows. First, in Chapter 2, we investigate
related literature on tabletop and 3D interaction, and on storytelling software.
For readers unfamiliar with sandtray therapy, Chapter 3 gives the necessary
background information. In Chapter 4, we then construct the design of our
virtual sandtray based on this information. Interaction with figurines is a suffi-
ciently large topic to warrant a chapter by itself, and is presented in Chapter 5.
The concept of virtual tools, which act on the sandtray and its contents, is
introduced and explored in Chapter 6. Chapter 7 gives an overview of the im-
plementation of the program, without getting into too much detail. The results
of an evaluation session with sandtray therapists are presented in Chapter 8, and
finally, Chapter 9 presents our conclusions and indicates directions for further
research.

Each of the following chapters starts with an introduction of its contents and
structure. The main matter of the chapter follows, and then each is rounded off
with a short summary.
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Chapter 2

Related work

This chapter embeds our work in the existing literature, giving references to
related publications and indicating the relevance of each publication to our work.
This work is based on previous work in several different fields within computer
science, and interactions research in particular. The rest of this chapter is
divided into sections according to the primary field of study of the publications.

Section 2.1 describes some general work related to tabletops. In Section 2.2
we discuss some applications of tabletop computers that are in some way related
to our work. In Section 2.3 we give an overview of the current state of direct
touch hardware. The most directly relevant literature, however, is that on
interaction methods on tabletop computers, as discussed in Section 2.4. Finally,
other forms of storytelling software and hardware are discussed in Section 2.5.

2.1 Tabletops and interaction

Grossman and Wigdor provide a taxonomy [Gro07] of 3D display and interaction
on tabletops (and several other device categories), giving such systems a place
along various dimensions. In their terminology, the perceived and actual display
spaces of our 3D sandtray are both 2D table constrained, since the projection
space is constrained to the 2D plane of the tabletop, and the viewer perceives
it as a 2D surface even though 3D objects are projected onto it. In our current
work, no viewpoint correlation is taking place, although an interesting direction
to explore would be the use of head tracking to provide motion parallax. The
tabletop is touch-sensitive, hence, we use a direct 2D input space. The physical
form of the display is, of course, a table, of either personal or collaborative size.
Interesting future work would be to allow the use of physical proxy objects on
the table. Grossman et al. mention the problem of mapping 2D input to 3D
space, a problem that we will address in Section 5.3.

Terrenghi et al. [Ter07] performed an exploratory study to investigate the
fundamental differences between interaction with the actual physical world and
interaction with the digital simulation thereof on a tabletop surface. They
conclude that designers should not strive for the most faithful representation of
the real world, but rather think about what properties of the real world help
people accomplish a certain task, and then try to use possibly different styles
of interaction to accomplish that same task in the digital world. We use this
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approach when designing our sandtray by not slavishly trying to emulate real-
world behaviour, but using only those real-world concepts that are useful in the
virtual realm as well.

A study by Jacob et al. [Jac94] suggests that the input device that is em-
ployed in a particular application should match the task at hand and the in-
teraction method used to accomplish that task. This suggests that the two-
dimensional input to a tabletop screen is a poor input device to manipulate a
three-dimensional scene. However, true three-dimensional input devices are not
yet widely available, so several methods have been developed to manipulate 3D
scenes using 2D touch input; see further Section 2.4.2.

Ryall et al. [Rya04] explore the effect of table size on collaboration. Although
they focus on the use of tabletops in a group setting, some factors, such as
physical reach and visibility, are equally applicable to a single-user application.
They find no significant effect of table size on the completion time of an assembly
task, but this may be due to the fact that the two tables used in the study do
not differ much in size (80 cm and 107 cm diagonals). A tentative conclusion
we can draw is that table size is not a very significant factor in our work.

2.2 Applications of tabletop computers

Most work related to tabletop computers focuses on collaboration in a multi-
user setting. Yet, much of this work can directly be applied to the simpler,
single-user case. We mention here some of the applications of tabletops that are
closely related to our work.

Streitz et al. [Str99] use a tabletop computer as a part of their i-LAND
‘roomware’ project. The i-LAND project focuses on the use of several different
roomware components, such as wall displays and chairs with built-in tablet
computers, to foster creativity. A tabletop computer is used for collaboration in
concert with the other components. The ‘creativity’ aspect is of much interest
to us, but unfortunately the paper says little about this aspect in general.

Several applications of tabletops in the medical world were investigated by
Piper. Piper and Hollan [Pip08] experimented with a tabletop computer to
facilitate the conversation between a deaf person and their physician. This
conversation uses text entry through both keyboards and speech recognition. A
direct-touch interface can be used to move and organize speech bubbles, and is
also used to display medical images relevant to the conversation. Although this
work focuses more on collaboration, and the form of the communication is very
different, the setup is very reminiscent of ours: a doctor and a patient using a
tabletop computer to communicate.

Piper et al. [Pip06] also developed a cooperative game on a tabletop com-
puter to help autistic children develop their social skills. The objective of the
game is to construct a path from tiles, in such a way to maximize the score.
Enforcing of the rules was done either by a human moderator or by the software
itself. Although mostly focused on the group cooperation aspect, this work does
demonstrate that tabletop computers can be a valuable tool when working with
children in general and in a therapeutic setting in particular.
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point of contact

pen or finger

electrical current

Figure 2.1: The working of a resistive touch screen. Pressure exerted by a pen,
finger or other object presses two strips of conducive material together, allowing
a current to run.

2.3 Direct touch technologies

Several different technologies exist that provide touch sensitivity on tabletop
screens and displays in general. To give the reader an overview of the options
without wasting too many words, we will not discuss all of the possibilities,
instead mentioning only the most common and useful methods.

One of the most commonly used methods is the resistive touch screen, used
in devices like drawing tablets and the Nintendo® DS. Two layers inside the
screen are separated by a narrow space, one layer with horizontal strips of
conducive material, one with vertical strips. Pressure on the screen closes the
gap and allows an electric current to run. By measuring the resistance between
each pair of strips, the electronics can determine which intersection was closed;
see Figure 2.1. Another possibility is to use resistive films instead of strips and
applying an alternatingly horizontal and vertical voltage gradient. In this case,
the location of the contact point can be determined by measuring the amount
of current that flows through the layer. A major limitation of this technique is
that it is single-touch only; when multiple touch points are present, there is no
way to detect each one individually.

Capacitive technology, such as that used in the Apple® iPhone� and iPod®

Touch, does allow for multi-touch. It uses a thin, transparent coating of con-
ducive material as a capacitor, which is electrically charged. When the layer
is touched, the drop in charge and thereby voltage is measured in each corner.
From this data, the touch location can be computed. By using a grid instead
of a uniform film, multi-touch can be achieved. Since it uses the natural ca-
pacitance of the human body, such a touch screen can only be used with bare
skin.

MERL’s DiamondTouch [Die01] uses a similar technique called capacitive
coupling: people sit or stand on pads through which they become electrically
charged, and antennas in the table surface detect the proximity of this charge.
By varying the charge between different people, the system can detect who is
touching where. Because the antennas in the table surface are arranged in rows
and columns, theoretically only one touch per person can be detected, similar
to a resistive touch screen. However, using timing information it is possible to
provide multi-touch.

Various methods using infrared cameras above the table surface have been
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point of contact

infrared cameras

Figure 2.2: The working of a DViT touch sensor [SMA03]. From the image
of a finger registered by multiple cameras, the position of the finger can be
reconstructed.

developed, such as in the DViT technology [SMA03] shown in Figure 2.2. A
fingertip or other object close to the surface is registered by a number of cameras,
from which the position can be triangulated. The number of simultaneous
touches that can be detected depends on the number of cameras and their
positioning; the four cameras in the corners of the SMART Board, which uses
DViT, can distinguish at most two touches at a time. Part of our work was
performed using such a SMART Board [SMAa].

In the Microsoft Surface [Mic], the table is flooded from below with infrared
light. Cameras below the surface register the light reflected from touches and
objects close to the surface. Computer vision methods can be used to convert the
camera images into discrete touch points, along with size and shape information.
The number of touches that can be detected is only limited by processing power.
It is also possible to detect objects even if they are not in direct contact with
the surface, but it can be difficult to distinguish these from objects that are
actually in contact.

A similar technique is ‘frustrated total internal reflection’, better known as
FTIR [Han05]. An acrylic layer inside the screen is flooded with infrared light,
which is normally totally reflected inside the layer. When the layer surface is
touched, the total internal reflection is broken and the light will diffusely leave
the layer. Again, a camera beneath the table is used to register the escaped
light, as illustrated in Figure 2.3. The number of simultaneous touches that can
be detected is only limited by processing power, and is practically unlimited
even with commodity hardware. This method cannot detect objects that are
not in contact with the surface. On the other hand, it is possible to deduce an
indication of pressure from the amount of infrared light that reaches the camera.
FTIR is the technique used by the SMART Table [SMAb] on which most of our
research was conducted.
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Figure 2.3: The working of FTIR touch detection [Han05].

2.4 Direct touch interaction methods

The most straightforward way to use touch input is to take traditional point-
and-click mouse-based interfaces and replace the mouse input by the touch of
a fingertip. However, representing the ‘hover’ action (moving the mouse over
an object without clicking it) can generally not be replicated in a direct touch
setting. In general, traditional desktop interaction is a poor fit for tabletops and
multi-touch screens in general. Much research therefore focuses on novel inter-
action methods to replace the traditional mouse input by interaction techniques
more suited to direct touch input. Other works explore the possibilities of the
richer input provided by a touch sensor, consisting of multiple simultaneous
touches, shape information or pressure information.

Of those methods that focus on tabletops, most are intended for use by
multiple people at the same time. Although, in our project, a single person
will be interacting most of the time, we do not assume single-user interaction
only, so many of the methods used in multi-user interaction are still applicable.
Most interaction techniques focus on two-dimensional interaction, that is, the
virtual space and objects interacted with seem two-dimensional; but techniques
for interacting with three-dimensional space and objects also exist.

2.4.1 2D interaction methods

Since a screen surface naturally suggests a two-dimensional space, much research
focuses on novel methods to interact with two-dimensional objects.

One of the most natural and useful things to do on tabletops, both physical
and digital ones, is to move things around, possibly rotating them so they
face a particular direction. A study by Forlines et al. [For05] investigated three
different methods to automatically orient documents while they are moved. One
of their more interesting findings is that the fastest and most precise method is
not always the method that is subjectively preferred by the test subjects.
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point of contact

object centre

Figure 2.4: Integrated rotation and translation technique using a single finger,
as described by Kruger et al. [Kru05]. The method acts as if an opposing force
was applied to the object centre. As the finger is dragged to the right, the
object’s centre will lag behind the touch point.

Kruger et al. [Kru05] describe a method for integrated rotation and trans-
lation of two-dimensional objects using only a single point of contact; see Fig-
ure 2.4. To constrain the motion to translation only, a special region on the
object can be used.

The work of Liu et al. [Liu06] has similar goals, but uses a specialized input
device to measure the rotation of the hand, thereby achieving a very direct
match between input and output space.

Hancock et al. [Han06] surveyed five different interaction methods to support
rotation and translation of two-dimensional objects. They conclude that no
single technique is superior, and that the choice of interaction method should
depend on the specific task to be performed. All these studies in 2D form the
foundations of the 3D work that we build upon.

In many situations, interaction beyond the moving and rotating of objects
can be desirable. Other behaviours can be triggered by traditional buttons and
menus, which are well understood. However, on a tabletop computer it is also
possible to use gestures. To name just one of many examples, Wu and Bal-
akrishnan [Wu03] use various gestures and hand shape postures to manipulate
a furniture layout in their RoomPlanner application. They also employ tool
palettes and context-sensitive menus. RoomPlanner is similar to our sandtray
in the sense that it allows for the construction of a 3D virtual environment,
although RoomPlanner disregards the 3D aspect and focuses on the floor plan
exclusively.

Some two-dimensional applications use simulated physics as a means of in-
teraction. Reetz et al. [Ree06] describe a flicking method similar to physical
tossing, that can be used to move objects across a large distance to a location
that would normally be out of reach. Flicking is a feature that comes ‘for free’
in our project since we use a full physics simulation engine.

Cao et al. [Cao08] in their ShapeTouch application use the shape of contact
point to represent, among other things, the amount of force applied to two-
dimensional objects. Although we do not attempt this in our project, it is an
interesting path for future research. They also use various gestures inspired by
the physical world to trigger actions such as peeling and sliding.

Davidson and Han [Dav08] use pressure information to slightly tilt two-
dimensional objects out of the plane, so that they can be moved over and un-
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derneath each other. Depth cues are added to indicate the tilt of objects to
the viewer, thereby moving this application in the direction of the 3D realm.
In fact, this can be seen as a forerunner of the concept of ‘shallow-depth’ 3D,
which we will define shortly.

2.4.2 3D interaction methods

Although tabletops are most naturally suited to interaction with a 2D virtual
world, 3D applications are also possible. The mapping from the 2D touch input
to actions in the 3D virtual world is a problem to which many solutions have
been proposed, but it remains a challenging issue.

3D interaction with 3D input

To achieve 3D input to a tabletop computer, extra hardware is required. This
section discusses some publications that use such hardware for various purposes.
Although we do not use any such hardware, some of the findings are still of
interest to us.

Balakrishnan and Kurtenbach [Bal99] investigate the possibility of bimanual
navigation in a 3D world. They conclude that such two-handed control can be
superior to one-handed control, if a suitable interaction technique is chosen.
This finding is of much interest to us, since two-handed control is a realistic
possibility on a multi-touch tabletop computer.

Fröhlich et al. [Frö00] use three-dimensional physics simulation for assembly
tasks on the Responsive Workbench. Their method works by connecting one’s
hands to the object via virtual springs. Although, as Wilson et al. [Wil08]
discuss, springs do not work well when the contact points are moved apart, the
concept of physics simulation remains viable and is heavily used in our project.

The SandScape project by Ishii et al. [Ish04; Wan02] uses physical sand
(actually consisting of glass beads) onto which an image is top-projected. This
allows one to deform the table surface directly. The thickness of the layer of
sand is measured by observing the amount of infrared light that passes through
it. A partly physical, partly digital approach such as this might be more inviting
than a purely digital approach, but is unfortunately outside the scope of this
project.

3D interaction with 2D input

Hancock et al. [Han07b] extend the 2D method from previous work by Kruger
et al. [Kru05] to work with 3D objects in ‘shallow-depth’ 3D. This means that,
although the objects manipulated are three-dimensional, their depth coordinate
cannot be changed using the described interaction method. Furthermore, two
other methods are described that use two and three touches, respectively, to
provide more control. The three-touch method was found to be faster, and it
was also the method preferred by test subjects. Since our work is based on this
technique, a more detailed description is provided in Section 5.3.

As with two dimensions, three-dimensional interaction methods can also be
based on physics simulations. Using the two-dimensional input of a pen on a
tablet, Agarawala and Balakrishnan [Aga06] employ 3D graphics and physics
simulation in their BumpTop application to bring the desktop metaphor on
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Figure 2.5: The physics-based interaction technique by Wilson et al. [Wil08].
The contours of the contacts are extended into the virtual world as bundles of
stick-shaped particles.

desktop computers closer to the real world. BumpTop supports tossing and
piling of icons. The interaction method is mainly based on gestures, but also
employs pie-shaped menus.

Wilson et al. [Wil08] use a physics simulation in which the outline of the
fingers is ‘extended’ by narrow cylinders into the virtual 3D world (Figure 2.5).
This allows for surprisingly rich interactions, using not only fingertips but also
the side of the hand, or other physical objects. However, moving objects ver-
tically is quite challenging at best. Stacking is demonstrated only with special
pillow-shaped objects, which will slide on top of each other when pressed to-
gether. Another issue with this method is the lack of precision, which could be
a problem in applications that require precise control. Yet, the technique is not
without merits, and although we did not implement it, we indicate how future
work could incorporate this technique.

2.5 Technologies supporting storytelling

The purpose of our virtual sandtray, like that of its physical counterpart, is to
enable and encourage the telling of a story. Several computer-based applications
have been developed with a similar purpose.

Much work concerning digitally supported storytelling by children is due to
Cassell. Most of her work focuses on collaborative storytelling and the use of
artificial partners therein, but some is more directly related to our sandtray.
The StoryMat developed by Cassell and Ryokai [Cas99; Cas01] is a physical
play mat with physical toys which are tracked by a computer system. This
system bears striking resemblances to our sandtray application, but has a much
more tangible interface.

Earlier work by Bers et al. [Ber98] uses a system called SAGE to help
young cardiac patients cope with their situation. The system employs a robotic
stuffed animal to encourage children’s exploration of their inner worlds through
storytelling. Like sandtray therapy, this is also a form of therapy-through-
storytelling.

Zagal et al. [Zag04; Zag06] used the Alice software [Ali], running on standard
desktop computers, to allow children aged 11 and 12 to create 3D animations
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telling a fable. The storytelling was prepared and thought out in advance, which
contrasts with the more spontaneous storytelling that is the focus of our work.

2.6 Summary

The most directly relevant literature for our work is indubitably that on 3D
interaction on tabletops by Hancock et al. [Han07b], since our work can be seen
a use case for their interaction techniques, and also extends them. The work of
Wilson et al. on the use of physics simulations on tabletops [Wil08] is also highly
relevant, and to a lesser degree also the work on BumpTop by Agarawala and
Balakrishnan [Aga06], which does not use tabletops or direct-touch input, but
does show how interactions beyond translating and rotating could be integrated.
We make use of the FTIR technology developed by Han [Han05], and it is good
to keep the possibilities and limitations of this technology in mind, but we do
not in any way extend his results.

There is one body of related work that was intentionally left out of this
chapter, which is the work on sandtray therapy. Because this thesis is about
computer science, we will not reference any psychology literature, but instead
present only the aspects that are relevant to our work in a somewhat less formal
manner. This overview of sandtray therapy is given in the next chapter.
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Chapter 3

Sandtray therapy

Because we attempt to create a tool that could be used in sandtray therapy,
it is necessary to have some understanding of what sandtray therapy actually
is. This chapter describes the sandtray, the figurines, and the way in which
a therapy session is conducted. Since the focus of this thesis is on computer
science and interaction, not on psychology and therapy, we will not go into
the details of the working of this type of therapy. Instead, we focus mostly on
the mechanics, as gathered from correspondence and interviews with sandtray
therapists and various sources on the web.

An overview of the concepts of sandtray therapy is presented in Section 3.1.
A description of the physical tray of sand and its varieties are given in Sec-
tion 3.2. The figurines used in sandtray therapy are described in Section 3.3.
Finally, Section 3.4 gives an impression of how a sandtray therapy session is
conducted.

3.1 Overview

Sandplay therapy is a form of therapy introduced by Dora Kalff [Kal] in the
1950s. The patient plays in a sandbox using a range of toys and other objects,
dry and wet sand, and sometimes water. Though it is possible to create a static
scene in a sandtray, patients are encouraged to use the sand and the figures to
act out a story. This playing has a healing effect in itself, and may also serve as
an expression of the subconscious, to be analysed afterwards. An example of a
sandtray is shown in Figure 3.1.

The further psychological background and details of this form of therapy
are outside the scope of this thesis, although we will refer to the psychological
aspects of our application whenever these are directly relevant to the design and
implementation itself.

The terms ‘sandtray therapy’ and ‘sandplay therapy’ are sometimes used
interchangeably, but they do refer to different things. Kay Bradway writes
about this distinction [Bra06] and suggests that the term ‘sandplay’ be reserved
for the specific form of therapy that Kalff developed, while ‘sandtray’ should be
used for any form of therapy involving sand, water and miniatures. In line with
this suggestion, we will use the term ‘sandtray’ throughout this thesis.
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Figure 3.1: A sandtray showing several different objects [Wal08a].

3.2 The sandtray

The original sandtray used by Kalff [Kal] measures approximately 72 by 50
centimetres and is 6 centimetres deep. Its bottom is painted bright blue to
suggest the presence of water. The fact that the tray is placed horizontally
immediately creates a suggestion of ‘ground’, inviting the creation of a scene or
landscape. The edges of the tray form a clear boundary between the real world
and the play world, delimiting the fantasy.

Dry and wet sand can be used to fill the tray. Sometimes water is also
provided. The sand can be used to draw in, to form a landscape with mountains,
valleys and rivers, or to create shapes. In this sense, the sand is a very open and
expressive medium. It can also be used to partly or completely bury objects,
which has several profound psychological interpretations.

Not just the visual aspect of the sandtray is important; the other senses also
play a role. The feel of the sand and the texture of the figurines contribute
to the experience, but sounds and even smell can also be relevant. Since the
therapist will generally object to the patient eating the sand, the sense of taste
does not play any significant role.

3.3 The figurines

The objects that the patient plays with are often called ‘miniatures’, ‘figures’,
‘figurines’, ‘toys’ or simply ‘objects’. We feel that the word ‘object’ is too general
(especially in a programming context) and the others are too specific, and have
arbitrarily adopted the term ‘figurine’ to refer to the objects that the patient
plays with. Figure 3.2 shows an example of shelves with various figurines.
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Figure 3.2: Shelves filled with figurines [Wal08b].

27



The main purpose of the figurines is to provide a medium to play with.
However, another purpose is suggestion: the various figurines may evoke certain
reactions in the patient, suggesting a certain scene or story.

Such suggestions evoked by a figurine come in two flavours. Firstly, there
is the archetypical association that most people have when seeing a certain fig-
urine. Items with symbolic value, such as a key or an hourglass, can therefore
play an important role. Another symbolic aspect of the figurines are dualities,
such as large/small, heavy/light, fast/slow and good/evil. Secondly, the associ-
ation that a certain person has with a figurine will be unique for each person. A
spider will evoke a different reaction in a biologist than it will in someone with
arachnophobia. Many figurines will also have a symbolic purpose, representing
entities from the patient’s world, or even the patient themselves.

The set of provided figurines should be as broad as possible, with represen-
tations of all kinds of objects and creatures from both the real and imaginary
worlds: people, animals, fairytale creatures, vegetation, stones, houses, vehicles,
et cetera.

Figurines from the outside environment can also be brought in. For exam-
ple, a stick could be broken into pieces which would serve as swords for the
characters, a handful of pine cones of different sizes could represent a family, an
empty cigarette box could serve as a cradle, or a piece of cardboard could be
folded to form a house.

The size of the figurines is associated with their perceived power or relevance,
and therefore a range of sizes of figurines is provided. Having more than one
of the same or a similar figurine can also be important if the patient wants to
depict a family or other kind of group. Furthermore, figurines can be modified
in many ways: they can be stacked, taped together, or painted, to name just a
few of the possibilities.

Some therapists offer the figurines in boxes, with no particular organization
at all. Others present them on shelves or group them into categories, such as
fantasy, western, household and sports. This is largely a matter of the personal
style of the therapist.

3.4 The sandtray session

Most often, the patient is a single person. However, sandtray therapy can also
be used for problems within couples or entire families. In these cases, multiple
people will be playing at the same time, (hopefully) interacting with each other.
Although we will use the singular ‘patient’ throughout this work, it is good to
keep in mind that this word may actually refer to multiple people.

The role of the therapist during play is usually a passive one. The therapist
will never touch the sandtray or even offer suggestions, unless explicitly asked
to do so by the patient. However, therapists’ styles differ, and some therapists
will in some cases ask the patient to depict the situation that is troubling them,
or take turns with the patient in putting things into the sandtray.

After the patient is done playing, a picture can be taken of the final situation
in the sandtray. The therapist will sometimes discuss the story or scene with the
patient, asking questions like “Why did you put this witch there?” or “What do
you think about the snake?” In some cases, the patient will also clean up and
take the scene apart under observation of the therapist. The order and manner
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in which the patient disassembles the scene can lead to insights.

3.5 Summary

We have seen that a sandtray is a shallow box filled with sand, discussed why
it looks like that, and what the possibilities of a sandtray are. We showed
that all kinds of objects are used to play with in the sandtray, and we know
that this playing is framed within a therapy session with the therapist playing a
mostly passive role. We now have sufficient information about physical sandtray
therapy to begin designing its virtual counterpart.
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Chapter 4

The virtual sandtray

This chapter discusses the global design of a virtual sandtray. First, we limit
our design space by the available hardware, described in Section 4.1. From the
information presented in this section and in the previous chapter on sandtray
therapy, we derive in Section 4.2 general guidelines and considerations to be
kept in mind during the design. In Section 4.3, we list the possible features that
a virtual sandtray could have, and select a subset of these for implementation
and investigation. We then proceed to describe the design itself. Section 4.4 dis-
cusses how to project the three-dimensional sandtray onto the two-dimensional
tabletop screen. Section 4.5 discusses globally what the virtual sandtray will
look like. Finally, Section 4.6 will motivate the need for a physics simulation
engine and describe how it is used.

A note on language: though the people interacting with the sandtray can be
either male or female, we use the female pronoun exclusively to avoid awkward
constructions.

4.1 Hardware

As discussed previously, we design our sandtray application for readily available
tabletop hardware, and do not use any other devices or extensions. It is therefore
necessary to have a good understanding of the affordances and limitations of
the pieces of hardware used in this project.

Two pieces of hardware are used for the development of this system: a
table based on the SMART Board, and the SMART Table. Since the design
of our application is partly governed by the possibilities and limitations of the
hardware used, we describe both devices in detail in the following sections.

Development began on the larger, two-touch SMART Board table, but
moved to the smaller SMART Table as soon as it became available for this
project. Most of the design was done for the newer SMART Table, which is the
reason that three-touch techniques (as discussed in the upcoming Section 5.3.3)
are used without restraint.
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4.1.1 SMART Board table

The larger of the two touch sensitive tables used in this project is a table based
on the SMART Board ‘for Flat-Panel Displays’ [SMAa]; see Figure 4.1. The
viewable area of this table is approximately 146 by 110 centimetres in size.
Four projectors underneath the table each project a quarter of the image on the
table surface, leading to visible seams. The projectors each have a resolution
of 1400 Ö 1025, leading to a total resolution of 2800 Ö 2100 at approximately
50 ppi (pixels per inch).

Touches are detected above the surface by SMART’s DViT technology, which
uses four infrared cameras in the corners of the table. This method allows
only two touches to be detected at any given time; the presence of more than
two touches will lead to unpredictable results. Moreover, objects do not need
to touch the surface in order to be detected, which sometimes leads to false
positives, for example when some fingers are bent underneath the hand and the
knuckles come too close to the table surface.

Figure 4.1: The table based on the SMART Board.

4.1.2 SMART Table

The other piece of hardware used in this project is the new SMART Table1

[SMAb] shown in figure Figure 4.2. This table has a viewable area of 59 by 44
centimetres. A projector underneath the table projects an image of 1024 Ö 768
pixels via two mirrors, leading to an approximate resolution of 44 ppi.

1The naming of these SMART products may be confusing; in particular, the large ‘table
based on the SMART Board’ described in Section 4.1.1 is a custom-built device, and should
not be confused with the smaller ‘SMART Table’ from Section 4.1.2, which is a consumer
product.
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Touches on this table are detected using frustrated total internal reflection
(FTIR) [Han05] using a 60 Hertz, 640Ö 480 pixels infrared camera placed under-
neath the table. FTIR theoretically allows for an infinite number of touches to
be detected simultaneously. The practical limit is dictated by processing power
and is, according to the manufacturer, 40 simultaneous touches. Assuming that
the entire camera image is spanned by the tabletop screen, the resolution of the
camera is 27 ppi, or slightly less than 1 mm per pixel. Subpixel processing can
theoretically improve this precision; however, we found that the points detected
by the software, even after calibration, can show a consistent error of several
millimetres in certain regions of the screen. However, this error is negligible
compared to the size of a fingertip, and will not be noticed in most cases.

Figure 4.2: The SMART Table.

4.2 General design considerations

Sandtray interaction can be described in just one sentence: the patient plays in
a tray with sand, water and a wide range of figurines. The generality of this
description implies how broad the range of possible interactions actually is: the
patient can interact in the full six degrees of freedom, use all ten fingers and
other parts of the hand or even body, bring in outside objects, etcetera. We will
have to severely limit this freedom in order to create a virtual sandtray on a
tabletop. Instead of taking the physical sandtray and taking possibilities away
to come up with a workable design, we take a bottom-up approach: starting
with nothing, we add features until a sufficiently rich counterpart of a physical
sandtray has been reached.

The patient should be actively involved with the scene she is constructing,
and not with the interface that is used to construct that scene. It is therefore
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of vital importance that the interface is as natural and unobtrusive as possi-
ble. This is the first and most important consideration that guides our design.
Whenever it is possible to trade off some power for a greater naturalness of
interaction, we should probably choose to do so.

On the other hand, the interaction must not be too limiting. The patient
is acting out a story, and if she feels too much constrained by the limits of the
system, she will not be able to express herself adequately and the quality of the
therapy will suffer.

4.2.1 Multi-user interaction

In most cases, only one person will be interacting at any given time. The role
of the therapist is mostly passive. However, the patient can ask the therapist to
participate in the play or help out when she is having difficulties, and in those
cases it becomes necessary for the system to support multi-user interaction.
This is also necessary when couples or families are using the application, or
when we view the application as a general storytelling tool. We must therefore
design the application to support multiple people interacting at the same time.

An important consequence of this assumption is that there can be no global
mode switching. In other words, there must be no way in which the actions of
one person can affect the interpretation of the touches of another. (Note that
neither of the systems we design for are able to determine who is touching.)
This excludes, for example, the paradigm of ‘tools’ that is common in paint
programs on desktop computers.

4.3 Features

The digital world, and in particular the virtual sandtray, offers many possibilities
that the physical does not allow. We must consider carefully which of these
possibilities are worthwhile to implement. Inversely, the physical sandtray also
allows for things that are extremely difficult or impossible to replicate in the
digital realm. Yet, some of these are essential to sandtray therapy, so we must
find an appropriate approximation in the digital world.

These considerations give rise to a list of features that will be considered for
inclusion in the virtual sandtray. Because it is impossible within the scope of
this project to implement everything on the list, a selection must be made. The
full list of potential features will be presented shortly, but because we want to
avoid repetition or excessive cross-referencing, we first discuss the criteria that
are used to select a subset of the list for implementation. We can then discuss
each potential feature at the point where it is mentioned.

4.3.1 Selection criteria

The items in the feature list give rise to the following question: which of these
options provide an actual benefit for the therapy? Since this is a profound
question that would require much research, most of which is in the field of psy-
chology and not in computer science, we will not address this question further.
However, our communications with sandtray therapists will allow us to make a
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selection. Our first selection criterium is thus: features should be beneficial for
therapy.

Another question raised by reading through the upcoming feature list is:
what interaction techniques should be used to provide these options? This
is a question well within the field of computer science and, more specifically,
interactions research, and will be the primary focus of this thesis. Our second
selection criterium is therefore: features should allow for the investigation of
new interaction techniques.

A last question that can be asked about some features is: can it even be
done? It is of little use to try and do the impossible, or spend a disproportionate
amount of time on the implementation. Our third selection criterium is thus:
features should be feasible.

In the following two sections, we will present the list of features that were
considered for implementation. Section 4.3.2 gives the list of features that will
be implemented, together with a motivation; Section 4.3.3 lists features that
will not be implemented within this project.

4.3.2 Features to be implemented

Below is a list of the features that will be included in the sandtray prototype,
each with a motivation for its inclusion. For each feature, forward reference
is included to the section in which the feature and its interaction issues are
discussed in more detail.

� There is a clearly defined and delimited space that represents the sand-
tray.
The fact that a sandtray is a clearly delimited, self-contained space is
important, because it allows the patient to be above and outside the
constructed scene. The boundaries of the tabletop will provide a clear
boundary to the space. Camera movements and viewpoint changes are
ruled out by this decision. Section 4.5 goes into more detail about the
way the virtual sandtray is shown.

� Objects can be placed in the sandtray, moved and rotated, and removed.
Obviously, without these basic abilities, not much of the original ‘sandtray’
concept would remain. More about the interaction with figurines can be
found in Chapter 5.

� Objects in a virtual sandtray can be duplicated, so there is (theoretically)
no limit on the number of copies created.
From discussion with therapists, it follows that this is a worthwhile feature
to consider: for example, it allows for the creation of a herd of cows, a
family of people, or a forest. It should also be easy to implement this in
an intuitive and unobtrusive way. Duplication is an implicit part of the
figurine selection process and is described in Section 5.2.4.

� Objects can be grown, shrunk or otherwise modified in ways that physical
objects do not allow.
Resizing of objects was seen by therapists as a very useful option, because
larger objects are perceived as more important, more powerful or more
threatening. The interaction technique used to accomplish resizing can
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and will be an interesting question in the field of interactions research and
is addresses in Section 6.3. Due to time constraints, other transformations
will not be considered.

� The sandtray floor can be ‘painted’ with different colours or textures.
In a physical sandtray, the sand itself can be sculpted, piled up or dug into,
which allows for the creation of an environment in which the figurines are
placed. This creation of an appropriate ‘backdrop’ for the story is part of
the storytelling process. However, it is difficult to provide simulated sand,
and more difficult to allow for natural interaction with it. Although this
would be a very interesting direction for future research, we will sidestep
these issues and provide the much simpler ‘painting’ ability. The appropri-
ate interaction technique for painting may not be as obvious as it seems,
and is discussed in depth in Section 6.4.

4.3.3 Features not to be implemented

Many features were considered for implementation, but were discarded for vari-
ous reasons, often due to time constraints. However, since many of them would
provide interesting directions for future research, we briefly mention them below.
We distinguish features related to the figurines themselves, the environment and
others.

Figurines

� Objects can be buried beneath the surface.
In a physical sandtray, burying objects is an action with important psy-
chological connotations, and something similar should be provided in the
virtual sandtray. With the interaction technique that was used, burying
could be made possible by simply pushing them down until they are below
the surface. However, there should also be some way to dig the object up
again, and maybe some indication that something is buried. These open
issues could not be addressed due to time constraints.

� Objects can be animated, either by predefined animations or by user-
defined motions.
Pre-animated 3D models were not readily available to us, and it is unclear
whether they would provide a benefit for therapy over static models. User-
defined animation would be an interesting direction to explore, but is too
large a topic to tackle in this project.

� The influence of gravity can be changed, either globally or per object, to
allow for light or even weightless objects that can be suspended in the air,
possibly in combination with air resistance.
Though different gravity and air resistance could easily be implemented
for different models, there does not seem to be an appropriate real-life
metaphor that can be turned into an interaction technique to change these
properties dynamically. We would therefore have to resort to unnatural
controls like buttons or sliders.

� Cloth and other soft, deformable objects can be added.
The physics engine does support these, but they are difficult work with and
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often show unpredictable or unstable behaviour. Moreover, not all interac-
tion techniques used for rigid bodies are well-defined on deformable bodies,
with the notable exception of the technique by Wilson et al. [Wil08].

� It can be possible to stick or glue objects together.
This frequently happens in physical sandtray therapy through the use
of tape or glue. However, given the versatility of those media, they are
difficult to replicate on a tabletop. Instead, we could allow for sticking
objects together by simply moving them both at the same time so that
they intersect. Moving both objects apart independently could then be
used unstick them. This would be an interesting feature to investigate,
but requires more experimentation to determine whether it is feasible.

� Figurines can be coloured or painted.
This would allow for considerably more creative freedom. However, this
requires much work to determine the best interaction technique that can
make this possible.

Environment

� A simulation of sand can be used instead of a flat surface.
Physical sand was used by Wang et al. in their SandScape project [Wan02],
but the dynamics are difficult to replicate in a physics simulation, and
might also slow the system down too much. It is not clear how the richness
of interaction with real-world sand (digging, piling, scraping, tunneling,
. . . ) can be provided by a two-dimensional touch surface; however, this
would be a very interesting question to explore in future research.

� Lighting conditions can be changed, allowing for more appropriate lighting
to set a particualar mood for the scene.
This would provide the patient with more expressive power, and could be
implemented simply by adding ‘lamp’ objects to the scene. This feature
was not added due to time constraints.

� The point of view can be made changeable.
According to therapists, this would either give the patient a new per-
spective on the scene, or disrupt her own relation with it. Because of its
questionable benefit this feature was not included.

� A virtual camera can be placed inside the sandtray, or one could look
through the eyes of a figurine, allowing the patient to view the scene from
the inside.
This suggestion was considered by the sandtray therapists to be a very
compelling option. It would evoke empathy with that particular figurine,
and would be useful not only for therapy but also for education. However,
we either need to place that view somewhere on the tabletop screen, which
would partly or completely hide the ‘objective’ view of the sandtray, or
provide a second, vertically oriented monitor.

� Sound effects can be used to enhance the physical feel of the scene.
Though a good idea for an actual application, this does not add much
value to our prototype, which is mainly used for interactions research.
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(a) Parallel projection (b) Perspective projection

Figure 4.3: Comparison of two common projection modes on the same scene.
Because the light source is directional and straight above the scene, shadows
are hardly visible in the parallel projected image.

Other

� A sandtray therapy session can be stored and replayed without the need
for a video camera.
This can be less intrusive for the patient and is therefore quite desirable.
However, since we are only working on a prototype and not on a real appli-
cation, and since this feature would not be interesting from an interactions
point of view, we did not implement it.

4.4 3D projection

Now that we have made a selection of the features we do and do not want, we
can begin to make decisions about what the actual sandtray program will look
like.

A first choice concerns the method of projection. The problem of projecting
a three-dimensional scene on a screen that is only capable of displaying a two-
dimensional image is well-studied in computer graphics. This section discusses
some of the choices made concerning the 3D to 2D projection process.

4.4.1 Projection type

Desktop applications that display three-dimensional scenes on a two-dimensional
display screen commonly employ linear perspective projection, which makes ob-
jects farther away from the viewer appear smaller. In some special-purpose
applications like CAD programs, parallel or ortographic projection is also used.
This form of projection does not make faraway objects look smaller, but an
advantage is that parallel lines in the scene will appear as parallel lines in the
projection. The two projection methods are shown side by side in Figure 4.3.

When the depth of the scene (perpendicular to the screen) is small, such as
in the case of our sandtray application, both projection types will give similar
results. However, using a perspective projection might still result in a slight
depth cue. Another compelling reason for choosing perspective projection is
the interaction technique used to lift objects, as discussed in Section 5.3.5.
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4.4.2 Viewpoint

In nearly all desktop applications, it is assumed that the point of view, and
therefore the viewer, is somewhere straight in front of the centre of the screen.
If the screen is viewed from the side, the image looks distorted. Usually, this
does not pose any serious problems, and without special head-tracking devices
(which can be as simple as a Nintendo® Wii� remote [Lee07]) the software
developer often has no other choice.

The assumption that the viewer’s eyes are located straight above the centre of
a tabletop computer, however, is more questionable. It might be more sensible
to assume a viewpoint somewhere off to the side of the table, on the same
side where the patient is standing or sitting. However, although we are often
dealing with a single person interacting with the system, the therapist will be
viewing the scene from the other side. Moreover, such an off-axis projection
might be confusing for people who are used to the graphics displayed in, for
example, computer games. For these reasons we decided to use a standard,
on-axis projection.

4.4.3 Depth cues

To give the viewer a sense of three-dimensionality, even though she is looking at
a two-dimensional image, several techniques have to be combined. One of the
first and most important, perspective projection, has already been discussed.

Another obvious depth cue is occlusion: an object that partly covers another
object will be perceived as being in front of the other. This can be trivially
implemented using the depth buffer of 3D rendering libraries such as OpenGL.

To make objects look three-dimensional instead of flat, a suitable lighting
model can be used. Surfaces that face directly towards the light will appear
brighter than surfaces turned more away from it. This, too, is trivial to imple-
ment using modern 3D graphics libraries.

After these depth cues are added, the scene still lacks a certain sense of
depth. Although the figurines themselves look three-dimensional, it is difficult
to judge how high above the sandtray floor a figurine is positioned. This can
be solved by a technique slightly more advanced than the previously mentioned
ones, namely shadow casting. If the object casts a shadow on the floor, the
distance between the object and the shadow gives a strong indication of the
distance between the object and the floor.

Because of the perspective projection, objects will not remain in the same
place on the screen when they are dropped from a height. Instead, they follow
a path inward to the screen centre. To indicate where the object will land when
dropped, we put the light source that casts the shadows straight above the table,
and infinitely far away.

It would be even better if the shadow edges would soften as the distance
between the shadow caster and the receiver becomes larger. However, this is
difficult to implement and has not been attempted in this project.

4.5 Screen layout

The sandtray proper will be shown as an area underneath the table surface. We
will therefore see the inside of its walls as a frame around the sand. These walls
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Figure 4.4: The four projection areas on the SMART Board table. Only one of
these is taken up by the sandtray.

serve to enhance the perception that the interaction is going on underneath the
table surface, rather than on it (see Figure 4.5 on the upcoming page 40).

The particular angle from which the sandtray is observed can have an effect
on the perception of the scene. Therefore, we prefer that the viewer either has
a fixed perspective (that is, she is on the same side of the table at all times), or
is able to change her perspective at will, but without ever being forced to do so.

On the large SMART Board table, it is difficult even for a tall Dutchman to
reach across the table to the other side. Since we do not want to force the viewer
to walk around to the other side, thus forcing her to change her perspective, the
actual interaction has to take place within a limited area. As the seams between
the images from the four projectors naturally suggest boundaries, we decided
to reserve one of these areas for the sandtray proper; see Figure 4.4. The other
three areas remain available for displaying other information. However, we must
keep in mind that these areas are difficult to reach and thus to interact with.

The smaller SMART Table measures 59 by 44 centimetres, somewhat smaller
than Kalff’s original 72 by 50 centimetre sandtray. The best approximation,
therefore, is to have the sandtray take up the entire screen. This leads to the
question how we can access features that do not reside in the sandtray itself,
such as the storage space for the figurines.

4.5.1 Drawers

Common solutions in desktop applications to the problem of not having enough
screen real estate include pop-up menus, dialog windows, folding panels docked
to the side of the window, and floating tool palettes that can be moved partly
offscreen. Our solution is similar to the latter. However, instead of using the
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Figure 4.5: The empty sandtray, right after the start of the program. The walls
of the sandtray are shown, as well as the handles of three drawers that reside
off the sides of the screen.

abstract concept directly, we used a more physical metaphor, namely that of
drawers. The role that is played by the title bar of a tool window is here played
by the handle of the drawer. The main difference is that the drawer is more
constrained in its movement: it can only move along a single axis, and there are
limits to how far it can move along that axis.

The drawers can be partly or entirely offscreen, but have a handle protruding
into the visible area that can be pulled to slide the drawer out into view. This
concept is especially useful on the smaller SMART Table, where the entire
screen will be taken up by the sandtray. On the large SMART Board table, the
entire drawer might be visible in one of the three auxiliary areas, but since these
might be hard to reach, the handle can be used to slide the drawer towards the
storyteller in order to interact with its contents.

Figure 4.5 shows the sandtray in its initial state, on a system where the
drawers reside offscreen. The look of opened drawers depends on their content.
Open drawers in action will be shown later, in Figures 5.3, 6.2 and 6.4.

4.6 Physics simulation

To give the viewer as much as possible a sense of realism of the virtual sandtray,
it is not sufficient to make it merely look realistic. It is of equal importance
to make objects act and interact in a way that resembles the physical world
as closely as possible. For this purpose, we employ a physics simulation en-
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gine [NVI]. The ‘bowling’ video referred to in appendix A demonstrates the use
of the physics engine (although its use is also evident in the other videos).

Although it would be possible to have only the figurines in the actual sand-
tray be controlled by the physics engine, we chose to adopt a more radical
approach. Nearly every object in the application is also an actor in the physics
engine, including walls, drawers, figurine representations inside the drawer, and
the painting hose (see Section 6.4). This approach ensures that everything in the
application responds to outside interactions and to other objects in the most
natural way possible. Drawers will retain their momentum when flicked, fig-
urines put back into the drawer bounce realistically around the other figurines
inside the drawer, and the painting hose will find its way in between the figurines
inside the sandtray.

However, for the greatest possible usability, some concessions to physical
realism have been made. These will be discussed in their respective sections: in
particular, Section 5.1 and Section 6.4.2.

The use of a physics simulation in an interface and the interaction with
that interface is a recurring theme throughout this work. Although this is by
no means the first interface to employ physics [Frö00; Aga06; Wil08], this and
all previous applications are ad hoc, lacking a general theoretical framework or
design guidelines. This work does not attempt to present such a framework, but
does contribute one more point to the design space.

4.7 Summary

In this chapter, much of the design of the virtual sandtray was discussed. We
presented the SMART Table on which primary development of the prototype
takes place. We motivated the importance of a natural, fluid interface and the
fact that we should not assume single-user interaction. Then we listed many
possibilities that a virtual sandtray could offer, and selected a subset of these
for implementation and investigation. We then made some decisions regarding
the projection of the 3D scene; in particular, the assumption of a viewpoint
straight above the table, and the use of shadows. We decided where to place
things on the screen and introduced the notion of retractable drawers to save
screen space. Finally, the need for a physics simulation was motivated.

We will now turn to a more specific design issue, important enough to war-
rant its own chapter: the interaction techniques used to control figurines.
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Chapter 5

Interaction with figurines

Most of the time spent with the virtual sandtray will be spent interacting with
figurines. It is therefore of the utmost importance to ensure that this interaction
is as smooth and unobtrusive as possible. In this chapter, we discuss how this
is achieved.

First, in Section 5.1, we describe how we use the physics engine to make
figurines respond in a natural way to each other and their surroundings. Sec-
tion 5.2 describes how the collection of available figurines is organized and how
figurines to play with can be selected. Finally, in Section 5.3, we present an in-
depth discussion of how figurines can be moved around in the sandtray, and the
choices that were made during the design of this interaction. This last section
is one of the core parts of this thesis.

5.1 Figurines as physical objects

As said before, in Section 4.6, all figurines are also actors in the physics engine.
This means that we get many real-world behaviours ‘for free’: figurines will fall
when not resting on anything, bump into each other, knock each other over,
bump into walls, etcetera.

Figurines are represented graphically as arbitrary triangle meshes. However,
the meshes from the library we use need not be closed, connected or manifold,
and the physics engine is fairly limited even in its support for ‘well-behaved’
mesh objects. We therefore present figurines to the physics engine in the form of
a simplified convex hull; see also Sections 7.5.2 and 7.5.3 in the implementation
chapter. This implies that highly nonconvex objects will sometimes collide
when, visually, there is no contact between the two. In practice this turns out
not to be a significant problem.

A more serious problem arises when trying to make tall figurines, such as
people, stand upright. The 3D models we use were not designed for this purpose.
More often than not, their centre of mass is somewhere outside the area of
contact with the ground, so the figurines will fall over. This can be solved in
different ways, all involving ‘cheating’ the physics engine:

1. When the object is close to being upright, apply a force or torque that
pulls it towards the upright position.
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2. Move the centre of mass to a different position.

3. Add a ‘pedestal’ at the bottom of the figurine to expand its area of contact
with the ground, much in the same way as toy soldiers have.

We chose a combination of 2 and 3: invisible square pedestals were added
as separate shapes at the bottom of unstable figurines. Because the pedestals
have nonzero mass, they also pull the figurine’s centre of mass down somewhat.
(The pedestals are square because the physics library does not natively support
cylindrical shapes.)

Both the convex hull and the pedestals are illustrated in Figure 5.1.

5.2 Selection of figurines

The current sandtray application contains around 160 different figurines. These
were selected from the Viewpoint e-Catalog, a large commercial library of 3D
models. A list of these figurines is provided in appendix B. Even though the
range of figurines might be adequate, it might well prove to be too limited; it is
not unreasonable to imagine a collection of several thousands of models.

Because of the large number of figurines available, we need to devote some
thought to how these can be found and selected. Different approaches to im-
pose structure on and to display the collection are discussed in Section 5.2.1
and Section 5.2.2 respectively. The way to display individual figurines in the
collection is discussed in Section 5.2.3. Finally, Section 5.2.4 discusses how the
figurines from this collection can be selected for use in the sandtray.

5.2.1 Structuring

In general, there are several different methods that allow someone to select an
object from a collection. The simplest is to present the collection in a ‘flat’
and unstructured way. Another possibility is a hierarchical approach, where
objects are presented much like files in a filesystem, organized into directories
and subdirectories. A third possibility is a labeling approach, in which multiple
labels can be associated with an object, and subsets of the collection are shown
based on a selection of labels. Combinations of these methods are also possible.

In the physical version of sandtray therapy, the figurines are usually on wall-
mounted shelves or in boxes. Whether or not there is there any specific ordering
or organization to them depends on the therapist. When figurines are presented
in a more or less random way, the patient will form associations that would not
be formed if a more structured search had been used. On the other hand, when
the figurines are sorted by category, the patient will better be able to select
matching figurines to depict, say, a fairy tale or a domestic scene.

Despite the fact that a large collection of figurines may become unwieldy,
we chose to present figurines as one large set, without any imposed ordering
or structure. The reason for this choice is simply that we were not aware at
the time that not all therapists use the same method. Arranging figurines in
different groups would be a fairly trivial extension.
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(a) On the screen.

(b) In the physics engine.

Figure 5.1: An illustration of how figurines are shown on the screen, and how
they are represented in the physics engine. Note the convex hulls and the
pedestals underneath some of the figurines.
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5.2.2 Layout

To decide how to organize the figurine collection on the screen, we look once
again at the physical case. A box or basket, in which figurines are piled up,
would clearly be difficult to use when only two-dimensional input is available
and it is not possible to use one’s hands to dig into the collection. Thus, it is
better to use a layout without any stacking, that is, constrained to at most two
dimensions.

For any sufficiently large collection of figurines, the tabletop screen is not
large enough to contain them all at the same time. Some form of scrolling or
zooming, or a combination thereof, is therefore needed. Since zooming would
give the impression of physically enlarging the figurines, this might reduce the
sense of realism of the application. We therefore opted for a scrolling-only
approach. We combine this with the sliding of a drawer, as discussed in Sec-
tion 4.5.1. The figurine drawer can be slided into and out of view by dragging
its handle as normal, but the floor of the drawer itself can also be grabbed and
scrolled around with a single finger. Tossing (having it retain its momentum
after the touch is released) is also possible, and the drawer will slowly spin to a
halt.

In order not to bias against figurines placed in the far regions of the scrollable
area, we made the drawer ring-shaped, as shown in Figure 5.2. As with a regular
scrolling area, the largest part of the drawer is off screen. The size of the drawer
is computed at program startup to accomodate all figurines. Figure 5.3 shows
the final implementation of the ring-shaped drawer.

This design bears similarities to the concept of ‘interface currents’ by Hin-
richs et al. [Hin05], which was inspired by Lazy Susan-type devices like cor-
ner cupboards and luggage conveyor belts. However, an interface current will
flow continously, whereas our drawer will come to a halt as a result of friction.
Whereas interface currents can be moved freely and resized, our drawer can only
be moved in a constrained manner.

5.2.3 Representation

It is possible and in some situations beneficial to represent objects by something
else than their physical appearance, such as a name, description or icon. How-
ever, in our case the most natural and unobtrusive way to display the figurines
is simply to show their actual image as it would appear inside the sandtray.

The ring-shaped drawer initially contained only one row of figurines, at their
full size. This decision was made based on the available screen space; it is
certainly possible to show multiple concentric rows of figurines above each other
on the screen, but they would have to be shown at less than their full size. Note
that the figurines in the drawer appear larger than they would on the sandtray
floor, because the drawer is higher up and thus closer to the viewpoint.

Based on later informal feedback, it was decided that the drawer needed
to show more figurines on the screen at the same time. For that purpose, a
concession to realism was made and the figurine representations in the drawer
were shrunk to a fraction of their original size. The final sandtray prototype
shows figurines in four rows, which gives a good tradeoff between the ability to
see many figurines at once, and the ability to see each in sufficient detail and to
touch them without requiring too much precision. See again Figure 5.3 for the
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Figure 5.2: The circular drawer; the white rectangle represents the area that is
visible on the screen. When the handle is dragged, the drawer will slide in and
out. When the ring itself is dragged, it will spin around.

Figure 5.3: The ring-shaped figurine drawer in the sandtray program.
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Figure 5.4: After tapping the cow figurine, a copy of it was made and grew to
its full size. The copy rests on the drawer and can now be moved around.

resulting layout.

5.2.4 Selection

When a figurine has been chosen to be placed in the sandtray, it can be dragged
out with a single finger from the drawer into the sandtray to place it there. As
soon as the figurine is picked up from the drawer, its smaller representation will
grow to its full size with a short animation to indicate what is happening.

When a figurine is dragged from the drawer, a copy remains behind. One
can thus to create multiple copies of the same figurine, for example to create an
army or a forest. This is a significant advantage over the physical limitations
imposed by the real world. Figure 5.4 illustrates both the copying and the
resizing.

The interaction technique for moving figurines out of the drawer is exactly
the same as the technique used to move figurines within the sandtray. For
example, it is also possible to move a figurine up and out of the drawer by
placing two fingers on it and moving them apart. Moreover, figurines in the
drawer are controlled by the physics engine in exactly the same way as those
in the sandtray and will therefore give the same impression of being actual,
physical objects.

5.2.5 Removal

Obviously, once figurines have been placed in the sandtray, there is a need for
the ability to remove them again. Several interaction techniques could be chosen
to do this:

� A button that, when clicked, makes the next touch delete a figurine. How-
ever, this would imply a mode switch, and thus break down in a multi-user
setting (see also Section 6.1).

� A button that appears alongside a figurine. However, any kind of button
would adversely affect the feel of physical reality.
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� A gesture, such as crossing out the figurine. However, gestures are hard
to discover; one has to be told about them. Moreover, the gesture might
interfere with the normal way of interaction.

� A tool, such as a magic wand, that will delete any figurine it touches. This
would integrate well with the concept of physicality, but might be difficult
to use.

� Simply moving the figurine (partly) off the screen, as with the post-its in
the collaborative application by Hilliges et al. [Hil07]. Though potentially
a good method, it might also negatively affect the physical feel of the
application if figurines can be pushed right through the sandtray wall.

Again, we took a hint from the physical world, in which figurines are not
simply ‘deleted’. Rather, they are put back on their shelf or in their box. We
therefore implemented deletion simply by putting figurines back into the drawer.
As soon as they move off the screen, they vanish. This does not require any
additional machinery that clutters the interface, and proved to be a natural and
even somewhat discoverable technique.

5.3 Moving figurines

To move figurines around in the sandtray, we use an interaction method devel-
oped by Hancock et al. [Han07b], modified to suit the needs of the sandtray
application. This method provides direct control over objects. More indirect
methods such as the physics-based proxy method by Wilson et al. [Wil08] do
not provide sufficient control, and, moreover, do not allow for vertical movement
of objects.

Hancock et al. describe three different interaction techniques, requiring one,
two, or three touches, respectively. All three methods developed by Hancock
et al. allow for the rotation and translation (RNT) of three-dimensional objects
on a touch-sensitive surface in so-called ‘shallow-depth 3D’. This means that,
although the objects exist in a three-dimensional virtual space, their depth
coordinate does not change; the objects’ origin is constrained to a plane at a
certain fixed depth. Therefore, there are five degrees of freedom that can be
controlled: three of rotation and two of translation.

We will describe these three techniques briefly in the following three sections.
For a more complete and precise discussion, refer to the paper by Hancock et al.
[Han07b].

The descriptions of the original one-, two- and three-touch techniques are
followed by a description of our own modifications of the three-touch technique,
including a natural extension that also allows for vertical movement, and a
discussion of the advantages and disadvantages of these modifications.

5.3.1 One-touch

With only a single touch point, the two-dimensional RNT method developed
earlier by Hancock et al. [Han06] can be extended to three dimensions. It is
possible to rotate and translate the object in three dimensions by dragging it
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Figure 5.5: Illustration of the use of the one-touch interaction technique. Com-
pare this to Figure 2.4 on page 21. The object is rotated and translated as if
an opposing force is applied to the centre of the object. The point of contact
remains under one’s finger. When performing a straight motion, as shown here,
the object’s centre will eventually drag behind the finger. (The special regions
for constrained movement are not shown in this example.)

with a single finger (3D RNT). The point of contact on the object remains under
one’s finger at all times, as if one has a ‘sticky finger’.

This method assigns special significance to a point in the object, called its
centre. This will ususally be the object’s coordinate origin or its (perceived)
centre of mass, but it does not have to be. Informally stated, the method acts
as if there is a weight at the centre of the object: the object moves in such a way
that the point of contact remains under one’s finger, but rotation is preferred
over translation while doing this. The example in Figure 5.5 illustrates the
operation of the one-touch technique.

Formally, the method works as follows. The depth buffer is probed at the
initial location of the touch to find a depth value associated with the touch
point. This depth value is used to determine the 3D point of contact on the
surface of the object. The same depth value is also used to interpret the final
location of the touch. The object is rotated about its centre to bring the point
of contact as close to the final touch location as possible, then translated in the
x- and y-directions to bridge any remaining distance.

To perform more constrained interaction, two special regions on the object
are provided. Touching the object in one of these regions enables certain con-
straints on the motion. One region provides translation only, much like the title
bar in common windowing systems allows for translation of the window. The
other region provides translation and rotation in two dimensions only (2D RNT,
as in [Kru05]) like in Figure 2.4, restricting the rotation to be about the z-axis.

Although this interaction technique feels quite natural, its speed and accu-
racy are relatively low. Moreover, the need for special regions unnecessarily
complicates the interaction technique. The use of more fingers at the same time
can alleviate these problems, as the following section describes.
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5.3.2 Two-touch

This technique can obviously only be used on surfaces capable of detecting
more than one touch at the same time. Such multi-touch surfaces are becoming
more mainstream, for example with the introduction of the Apple® iPhone�
and iPod® Touch. Both the SMART Board and the SMART Table used in
this project are also capable of detecting multiple touches at the same time
(although the SMART Board is limited to two).

When only a single finger is used with this interaction technique, it uses the
2D RNT method as described previously. That is, the object can be translated
in the plane, but rotates only about the z-axis, so that the same side of the
object remains facing upwards; see Figure 5.6a.

When a second touch is detected, this touch will be used to rotate the object
about the global x- and y-axes. Moving the second finger in the y-direction
rotates the object about the x-axis and vice versa. See Figure 5.6b for an
illustration of this.

The interaction with the second finger feels as if one is rolling a trackball
to rotate the object. Although this is a natural way to perform rotations, the
second finger does not remain in contact with the same point on the object
throughout the interaction, and in fact need not be in contact with the object
at all.

Again, a special dedicated region is provided to perform a translate-only
movement. To eliminate the need for this region as well, a third touch can be
added, as described in the following section.

5.3.3 Three-touch

It is important to note that the SMART Board does not support more than two
touches, so this interaction technique limits the hardware platforms to devices
like the SMART Table.

This technique is demonstrated in Figure 5.7. The first touch will perform
translation only, as shown in Figure 5.7a. The second touch performs rotation
about the first touch point, but constrained to the z-axis; see Figure 5.7b.
The third touch performs rotation about the x- and y-axes as described in the
previous section. All these rotations are still done about the object’s centre.

Although this may sound complicated and unintuitive, a user study by Han-
cock et al. [Han07b] indicated that subjects prefer the three-touch technique
over the one- and two-touch techniques. Moreover, tasks are performed faster
using the three-touch technique. We will therefore base our own interaction
technique on the three-touch method.

5.3.4 Multiple objects and crossing

On a true multi-touch surface such as the SMART Table, it would be desirable
if multiple people could manipulate different objects at the same time, or (es-
pecially in the case of the sandtray) if one person could manipulate two objects
simultaneously using different hands. The methods by Hancock et al. do not
support this, because the first touch defines an ‘active’ object, and all other
touches are assumed to be related to this object. However, these methods can
easily be extended to support the manipulation of multiple objects at the same
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(a) In contrast with the one-touch technique shown in Figure 5.5, dragging with one finger
will still perform a translation, but the object now only rotates about the z-axis.

(b) The second touch rotates the object about an axis in the xy-plane, perpendicular to the
finger’s motion. The second touch can be a second finger of the dominant hand, or (as shown
here) a finger of the nondominant hand. In this example, the centre of rotation is the first
touch point; we can also choose to rotate about the object’s centre.

Figure 5.6: Illustration of the use of the two-touch interaction technique.
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(a) Using the three-touch technique, the first touch will only translate the object.

(b) The second touch rotates the object about the z-axis. This can either be a second finger
of the dominant hand (as shown here) or a finger of the nondominant hand.

(c) The third touch rotates about an axis in the xy-plane in the same way as the second touch
does in the two-touch technique (Figure 5.6b). The only difference is that, in the three-touch
technique, a second finger must be placed (in this case the right thumb) before this rotation
can be performed.

Figure 5.7: Illustration of the use of the three-touch interaction technique.
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time, by requiring that every touch starts initially on the object that one intends
to manipulate.

This requirement may make it difficult to manipulate small objects, because
multiple fingers have to touch within a small area. It may also be difficult
to grab a very thin object. To partly mitigate these problems, we implement
‘crossing’: a touch does not have to start on an object, but as soon as it comes
into contact with one, it is assigned to that object. This makes it possible to
‘sweep’ a finger across an object and pick it up along the way.

5.3.5 Vertical movement

To be able to use the drawers, and to be able to stack objects, it must be possible
to move objects vertically. The most natural way to provide this ability is to
let go of the shallow-depth 3D concept and modify the interaction technique
to allow for movement in the z-direction as well, providing control over all six
degrees of freedom.

In the three-touch technique, two degrees of freedom (movement in the x-
and y-direction) are assigned to the first touch, one (rotation about z) is assigned
to the second touch, and again two (rotation about x and y) to the third touch.
It therefore makes sense to assign the z-movement to the second finger. This
can be done in a natural way by mapping the distance between the first and
second touch to the z-movement: moving the fingers apart raises the object,
and moving them closer together lowers it.

If a perspective projection is used, moving down makes the object appear
smaller and moving it up makes it appear larger. This method then becomes
very reminiscent of zooming in or out, and in fact uses the same gesture that is
already being employed by mainstream devices such as the Apple® iPhone�.
An illustration of this interaction can be found in Figure 5.8. The ‘figurines’
video in appendix A demonstrates the use of this interaction technique in the
sandtray prototype.

As long as one or two fingers are used, this method feels very direct and
natural. Objects can easily be moved around and into the desired position and
orientation.

A slight disadvantage of the technique is that 2D rotation and z-movement
are performed with the same finger, and are therefore difficult to perform sepa-
rately. Often, a rotation will lead to a movement in z and vice versa. However,
this is easily noticed and corrected for.

Also, when the first two touch locations are close together, the z-movement
becomes very sensitive. A small movement of the fingers will lead to a large
movement in the z-direction. This makes z-movement hard to control, but can
be compensated for by placing the fingers farther apart initially.

5.3.6 Stickiness

It can be observed that, during some of the interactions described previously,
the initial point that was touched on the object’s surface remains under one’s
finger throughout the interaction. It is as if the finger is ‘sticky’, which is the
term we will use for this phenomenon. Note that it is possible that a finger that
is initially sticky becomes unstuck, because some other finger causes the object
to move.
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Figure 5.8: Controlling the depth coordinate with the modified three-touch
technique. Moving the first two fingers apart raises the object; moving them
closer together lowers it. This figure also illustrates the necessity of depth cues;
even with an added ‘fog’ effect, it is still possible to perceive the action as scaling
instead of z-movement.

Let us take Hancock’s original three-touch technique as an example. Trans-
lation with the first finger is sticky. When a rotation with the second finger is
performed, this is done about the first finger, so the first finger remains sticky
under this interaction.

The second finger, however, is not sticky: it can be moved towards and away
from the first finger without resulting in any motion of the object, so the point
of contact between the second finger and the object changes. When we use the
second finger for depth movement, however (Section 5.3.5), the object’s image
grows along with the distance between the first two fingers. In that case, the
second finger does become sticky.

When a rotation is performed with the third finger (which is not sticky at
all), the object rotates about its centre. This means that the initial points of
contact of the first and second fingers rotate away from the finger itself, breaking
the stickiness of the first two fingers.

We believe that stickiness is an important property, because it strengthens
the sense of physical contact between the finger and the object. Thereby, it
makes one feel more ‘in touch’ with the virtual scene. Depth movement already
made the second finger more sticky; the following two sections describe two
more attempts to make the three-touch technique more sticky.

Rotation about the touch point

In the described three-touch technique, xy-rotation using the third finger causes
the point of contact of the first finger to be rotated away from the first touch,
breaking the ‘stickiness’ metaphor. To solve this problem, we can make the
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Figure 5.9: The three-touch technique using rotation about a single axis, that
passes through the first two touch points. Note how the rotation is constrained
to this axis, even though the third finger does not move perpendicular to that
axis.

object rotate about the point of contact of the first finger.1 Obviously, the
point of contact itself will then in the same location – under the first finger –
during such a rotation, making the first finger sticky.

However, this leads to another problem, when the object is rotated in such a
way that its centre gets close to the first contact point. In this case, the 2D RNT
(controlled by the second finger) becomes unstable, since the direction of the
short vector from the centre to the contact point is ill-defined.2 This causes the
object to randomly jitter about the z-axis. The problem was solved by creating
a ‘dead zone’ around the centre of the object. If the first touch is inside the
dead zone, only translation and no rotation is performed. Unfortunately this
solution is less than elegant.

Single-axis rotation

As we saw previously, when the third finger is used to perform rotation around
the first touch point, about both the x- and y-axes, the stickiness of the second
finger breaks down as well. If we want to retain it, our only option is to let
the third finger perform a rotation about the axis through the contact points
of the first two touches, as shown in Figure 5.9. The amount of rotation is
then controlled by the change in distance from the third touch point to the line
through the first two. Note that, instead of controlling two degrees of freedom,
the third finger now only controls one.

This technique was evaluated informally, but found to be harder to use than
the original rotation technique, even though the second finger is now sticky.
Although no formal study was performed to investigate this further, we can

1During such a rotation, the object’s centre can be lifted out of the plane to which it
should be confined. This is easily solved by projecting it back onto the plane after the other
transformations have been performed.

2This problem actually occurs also when no second touch is being used and the first touch
point is close to the object centre. However, this rarely occurs since in 2D RNT interaction
people tend to drag an object by a point away from the centre.
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Figure 5.10: When an object is dragged using three fingers, the object will
rotate, even though this was probably not the intended meaning of the action.

point out three potential causes.

� The technique feels more limited because instead of two, now only one
degree of freedom can be controlled.

� It is difficult to define a rotation axis perpendicular to narrow objects.

� When the first two fingers are close together, the axis of rotation is ill-
defined.

In light of these issues, the rotation with the third finger was changed back
to the original technique.

5.3.7 Relative rotation

The discussion in this section applies to both the two-touch and the three-touch
technique, but for readability we present it in terms of the three-touch technique
only.

In the original implementation, the 3D rotation using the third finger de-
pends on the absolute motion of the finger. As a consequence, if an object is
dragged across the screen using three fingers that do not move relative to each
other, it will still rotate (Figure 5.10).

This problem can be solved in a simple way by interpreting the third finger’s
movement not in the absolute sense, but relative to the location of the first
finger. This does not change anything in the case when one just wants to rotate
the object without moving it. In the case when the first two fingers are moved
when the third is stationary, the effect will now be a rotation where there was
no rotation before; however, in our experiments we have never observed anyone
using this unnatural gesture in practice, and it is unclear what its result should
be.
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5.4 Summary

We began this chapter by detailing how figurines are represented in the physics
engine, detailing some sacrifices that were made to realism for the sake of per-
formance, reliability and, especially, usability. Then we discussed how the col-
lection of figurines is presented on the screen for selection, and how they can be
selected and placed in the sandtray.

Finally, once a figurine is in the sandtray proper, the largest amount of
time will be spent moving figurines around when acting out a story. For that,
we use the three-touch technique by Hancock et al., augmented with crossing
and vertical movement. Rotation about the touch point was used to made the
technique more ‘sticky’. For even more stickiness, we also experimented with
rotation about an axis through two touch points, but found it inadequate and
reverted to the original technique. To avoid undesired rotation when dragging
an object with multiple fingers, we made rotation depend on the relative instead
of the absolute position of the third finger.

This concludes our discussion of the interactions with figurines and other
virtual objects with six degrees of freedom. We now turn to other manipulations
that can be performed on figurines and their environment, through the use of
virtual tools.
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Chapter 6

Virtual tools

It is extremely common in computer programs that multiple different actions
can be performed on the same object. For example, in a painting application,
one can paint on the canvas, draw circles, and select regions. All these are done
by clicking or dragging the mouse on the canvas. Considering our sandtray,
moving and rotating figurines is the only action discussed so far, but what if
more possibilities are to be added? Evidently, some mechanism is needed to tell
the application how to interpret our input. When the same input event can be
interpreted in different ways, according to some ‘mode’ that the system is in,
the interface is said to be ‘modal’.

Virtual tools provide a way around mode switching, but to understand its
significance, we first need to discuss mode switching itself. This is done in
Section 6.1. We then describe, in Section 6.2, how virtual tools can provide
a way around the inherent problems of mode switching. We then present two
examples of virtual tools, in the form of the scale drawer (Section 6.3) and the
paint drawer (Section 6.4). The latter has an interesting generalization, which
is discussed in Section 6.4.4.

6.1 Mode switching

The most commonly used paradigm used in desktop applications is mode switch-
ing. By being in a different mode, the system will interpret our input in a
different way. (The definition of what constitutes a mode can be made more
precise, but this notion will suffice for the following discussion.) For example,
by clicking and thereby activating different buttons on the side of the screen, we
can choose whether we want to paint, draw circles or select. In general, we can
draw a distinction between the extents of the effects of the mode, the feedback
that is given to indicate the current mode, the means by which the mode is kept
active, and the means by which the mode is activated.

6.1.1 Mode extent

The effect of a mode can have different extents. Some, but not all, possibilities
are the following.
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� A ‘global’ mode has an effect throughout the program. On systems where
multiple people interact simultaneously, such as tabletops, the use of a
mode with global effects is, in general, undesirable, because the input of
one person would depend on a mode possibly selected by someone else.
Although scenarios can be imagined in which people collectively decide
to switch the global mode, this does not account for the common case of
multiple people working on different tasks simultaneously.

� A ‘per-user’ mode has effects only for a particular individual. It is unclear
how this should be implemented on systems that are unable to distinguish
between input of different individuals.

� A ‘per-object’ mode only affects a certain object in the program. This
can only be made to work if there are clearly separate objects, and no
more than one person will be interacting with an object at the same time.
Our sandtray is an excellent example of a situation where such a solution
might be appropriate.

This discussion only addresses the effects of the mode switch, sidestepping
the questions of how to activate the mode, and how feedback about the current
mode is given.

6.1.2 Mode feedback

Although mode switching might be the best we can do given the current desktop
hardware, it is not optimal [Ras00]. It burdens people with an additional cogni-
tive load because they have to be constantly aware of what mode the application
is in.

Often feedback is provided to alleviate this problem, for example a change
of the mouse pointer shape, but this is not always effective, desirable or even
possible. For feedback to be effective, it needs to be in the locus of attention,
thereby necessarily distracting from the task at hand. Even the mouse pointer
is not always in the locus of attention: often, the attention is focused instead
on the object under the cursor.

6.1.3 Mode maintenance

Sellen et al. [Sel92] draw a useful distinction between ‘user-maintained’ and
‘system-maintained’ modes.

� A system-maintaned mode is one that will remain active without any
action on the part of the person interacting. System-maintained modes
are the main cause of the general aversion against mode switching, because
one has to be constantly aware of the mode that the system is in.

� A sometimes better alternative is to turn the mode into a user-maintained
mode: the mode is only active as long as the some physical action is
performed, such as holding down the Shift key on the keyboard. Press-
ing down a mouse button is, in some cases, also interpreted as a user-
maintained mode switch. User-maintained modes implicitly provides di-
rect, tactile feedback, generated by the person instead of by the system.

59



User-maintained modes thereby create much more awareness of the cur-
rent mode and greatly reduce mode errors as a result. As we will see in
Section 6.4, the concept can very well be mapped to tabletop systems.

6.1.4 Mode activation

Every possible input that we can give to the system can serve as a mode switch.
It is even possible to interpret this mode-switching input differently, depending
on the current mode. This is not as exotic as it may sound: a toggle button is
just one example. Depending on the current state the button is in, clicking or
tapping it will either activate or deactivate it.

Since any possible input can be used to switch modes, the following sections
outlines some of the more commonly used possibilities.

Buttons

Pressing a button is one of the most common ways of instructing a system to
perform a certain action. Buttons can be used on physical devices, on mouse-
based desktop interfaces and also on touch-based devices. Their popularity
is explained by their ease of use, their ease of implementation and their wide
applicability.

Buttons can be used to switch into a system-maintained mode, such as click-
ing the brush button to switch to the brush tool in Photoshop, or pressing Esc
to switch the modal text editor Vi into navigation mode. However, buttons can
also be used for user-maintained modes; the Shift key is an example of this, the
mouse button in a drag-and-drop operation is another.

Gestures

There seems to be no concensus in the literature about the definition of the word
‘gesture’. Raskin [Ras00] defines a gesture as “a sequence of human actions
completed automatically once set in motion.” While it is arguably useful to
define a term for this concept, being essentially the ‘atom’ of input, the word
‘gesture’ might be too specific. Other authors implicitly use the word to mean
hand gestures as made during human speech [Kje96], or as paths of a particular
shape, for example drawn with a pen on a tablet [Wob07; Aga06; Cle09].

For our purposes, we define the word ‘gesture’ to mean “a human pose or se-
quence of human actions with a particular, significant shape.” This encompasses
both hand gestures and specific pen strokes, but is narrower than Raskin’s def-
inition because it excludes actions like button pressing, in which the shape of
the action does not play a role.

Some gestures are suitable for switching to system-maintained modes, such
as the mouse gestures in the 3D modelling program Blender that activate the
translate, rotate and scale tools. Some can be used for user-maintained modes.
For example, a pointing gesture could move objects in a virtual reality applica-
tion as long as the someone is pointing at them.

Although gesture-based interfaces can be very powerful in the hands of an
expert, there is the inherent problem of learnability of gestures. The mapping
from gestures to actions is often largely arbitrary, and there is no cue to indicate
which gestures are understood by the system.
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Another problem is that some gestures, especially when based on vision
systems, are difficult to detect reliably. This problem is exacerbated when the
space in which the gesture takes place is also used for other interactions, as
might be the case on a tabletop. In such cases, a mode switch is needed to put
the system in ‘gesture-recognition mode’ [Li05].

Pressure

Since some tabletop systems provide the programs running on them with pres-
sure information, this information can be used to implicitly switch modes,
thereby creating a user-maintained mode. Li et al. [Li05] investigated five dif-
ferent ways of mode switching on a tablet PC, to switch between drawing and
gesture modes. They showed that pressure-based switching is feasible. How-
ever, they also found that different people use different amounts of pressure.
Although people will partly adapt to a fixed threshold, for best performance
the threshold should be adapted to the particular person. On a tabletop that
is incapable of distinguishing different people, this is not possible.

6.2 Virtual tools

Looking at Sections 6.1.2 and 6.1.3, it is clear that user-maintained modes have
significant advantages over system-maintained modes in terms of mode errors.
However, many ways of switching into a user-maintained mode are not possible
on tabletop computers, where the only means of input is touch.

A viable option for mode switching in ‘object-based’ interfaces is to switch
mode based on the location of the object. For example, we could designate
specific areas for each different way of modifying the object. The scaling drawer
discussed in Section 6.3 is an example of this.

For another option, we take a clue from the physical world. When building
a bike shed with various tools, such as a hammer, a screwdriver and a paint
brush, it is nearly impossible to make a mode error; one wouldn’t even try to
drive in a nail using a paintbrush, or turn a screw using a hammer. Now that
we have a sandtray with a consistent way of manipulating virtual objects, it
is worth investigating whether we can create virtual objects that can be used
as ‘tools’ to act on other objects. This eventually resulted in the painting tool
described in Section 6.4.

6.3 Scaling tool

Scaling (resizing) figurines is of the compelling possibilities that a virtual sand-
tray offers and a physical one does not. The size of an object has important
psychological connotations: larger objects are perceived as more important,
more powerful or more menacing. It would therefore be good if the virtual
sandtray offered a way to change the size of the figurines.

There is a very intuitive way to scale objects, which is the two finger ‘pinch’
motion. Unfortunately that motion is already mapped to vertical movement
(see Section 5.3.5), so we cannot use it to scale objects. Although this mapping
could be changed, we felt that vertical movement was a more frequently used
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action than scaling, warranting its mapping to this easy and intuitive ‘pinch’
gesture.

Several options were considered for the interaction of this tool.

1. Provide figurines of different scales in the first place. However, this would
clutter the drawer, and there is no way to change the size after choosing
a figurine.

2. A tool that can be picked up and touched to the object that should be
scaled. A slider or dial on the tool could then be used to adjust the size.
However, when attempting to fill in the details, many problems arise. For
example, if we use the three-touch technique for moving the tool, what
finger could then be used to adjust the dial? Does the tool have to be in
contact with the object throughout the scaling process? If so, this will be
difficult to do because the object boundaries change. If not, then the tool
would have to ‘remember’ what object was touched last.

3. A pump to inflate or deflate objects, with a nozzle that can be connected to
them. The physical metaphor is clear, but it suffers from the same problem
as the slider tool: how would one connect the nozzle to an object?

4. A special box in which an object can be placed; then duplicates of different
sizes would appear. No special interaction technique would be needed to
operate this tool. Moreover, it could also double as a tool for cloning
objects. A disadvantage is that the object needs to be taken out of its
context and moved to the scale box.

5. Two boxes: one that will slowly make its contents grow, one that makes
them shrink. No special interaction techniques would be needed for this
option either, but it also requires taking the object out of its place. An-
other disadvantage is the dependence on time.

Eventually, we decided on a combination of options 2 and 4. A special box
is provided in a drawer, pulled in from the right side of the screen, in which
objects can be placed that are to be resized. Because multiple objects can be
placed inside the box, each with different size limits, a slider control with a
maximum and minimum value would be misleading. Instead, we offer a round
dial that is attached next to the box. The dial is drawn with a ridged surface
to indicate its affordance, and can be spun with a single finger in an intuitive
fashion. When the dial is turned to the right, the object(s) in the drawer grow;
when it is turned to the left, they shrink (up to certain limits).

The drawer is illustrated in Figure 6.1; a screenshot of the implementation
is shown in Figure 6.2. The scaling tool is also shown in the ‘scaling’ video
referred to in appendix A.

Because the drawer requires that the figurine be taken out of its context,
it may not be the best choice in terms of usability. However, we chose it over
some in-place tool, because the painting tool described next (Section 6.4) already
provideded the opportunity to study such a tool.
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Figure 6.1: Schematic illustration of the scale drawer. When the dial is turned
to the right, as shown here, the figurine grows. When turned to the left, it
shrinks.

Figure 6.2: A series of screenshots of the scale drawer in action. Spinning the
dial grows and shrinks all figurines in the drawer.
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6.4 Painting tool

So far, we have largely ignored the sand in the physical sandtray in our design
of the virtual sandtray. But we cannot ignore it forever, because the sand does
have several important purposes:

1. hills and mountains can be created by piling sand up,

2. valleys can be created by digging,

3. rivers, lakes, ponds and seas can be created by digging until the blue
sandtray bottom is revealed,

4. figurines can be made to stand upright by pushing them down into the
sand,

5. figurines can be partly or completely buried.

Because we are constrained to tabletop hardware, we will not use physical
sand like Wang et al. [Wan02]. Simulation of virtual sand is certainly possible,
but fluid dynamics like this are a difficult problem in general. Although software
exists to perform such simulations, and the physics library we use does offer fluid
dynamics to a certain extent, this does not solve the larger and mostly unex-
plored problem of interacting with the sand. It was therefore decided early on
that sand simulation would, unfortunately, be outside the scope of this project.

Instead, we decided to add the possibility to ‘paint’ with a texture image on
the sandtray floor. Although this does not make it possible to change the depth
(items 1 and 2), with a suitable water-like paint it could serve as a substitute for
item 3. Item 4 is addressed differently by giving unstable figurines a pedestal
(Section 5.1), and item 5 has not currently been implemented.

For the design of the painting interaction, several options were considered.

1. A ‘fingerpainting’ style interaction, where fingers can be dipped into a
paint bucket, and then painted with. Unfortunately, this would come
down to a per-finger or per-person mode switch, neither of which are
supported by our hardware.

2. A brush that can be moved around using the standard three-touch tech-
nique (see Section 5.3.5) and can be dipped into a paint bucket to set its
colour. However, such a tool would be difficult to control: it would have
the full six degrees of freedom although for the painting it would really
need only two. Moreover, if we make it brush-shaped it will suffer from
the difficulty of controlling narrow objects (Section 5.3.4).

3. A spray can that can be moved around using the standard technique.
This would have the same problems as the paint tool, but since it is less
narrow, might be easier to control. However, how would we turn it on and
off? Simply turning it on as soon as it is picked up is insufficient, because
we need the ability to move the spray can to another location without
actually painting anything.

Eventually, we settled on a variation of item 3, more reminiscent of an air-
brush. A nozzle with large handles on each side for easy interaction is used
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Figure 6.3: The paint drawer, showing four different paint buckets, the hose and
the nozzle. Because both the nozzle and a bucket are being touched simultane-
ously, paint will flow from the nozzle.

to paint. Paint buckets in a drawer, pulled in from the side of the screen, are
used to select the type of paint. A hose connects the nozzle to the chosen paint
bucket. See Figure 6.3 for an illustration of the usage of the paint drawer, and
also the ‘painting’ video referred to in appendix A.

Only when the nozzle is held, and a paint bucket is touched, will the nozzle
start to paint on the sandtray floor. The bucket will usually be selected using
the nondominant hand.1 If the bucket is released, it is no longer clear what
paint should be used, so the painting stops. If the nozzle is released, it is no
longer clear where the painting should take place, so the painting stops.

Note that this is a user-maintained mode switch (Section 6.1.1), and thus
does not suffer from the problems of system-maintained modes. Moreover, it
is an object-specific mode, and therefore will not interfere with possible other
actions going on outside the painting system. Though no formal study was
performed, our initial impressions of this form of bimanual interaction are quite
positive.

6.4.1 Drawer and paint buckets

The paint drawer is made as narrow as possible in order not to obscure too
much of the underlying floor, which could be subject to painting. The paint
buckets are arranged in a row and each of them shows the texture of the paint
that is contained in it.

6.4.2 The hose

When the paint drawer is pulled into view, the hose will be folded underneath
it, and the nozzle will stick out on the side. When the nozzle is picked up from

1For this reason, it would be better to switch the location of the paint drawer to the right
side if a left-handed person is using the system.
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Figure 6.4: Initially, the painting hose is folded underneath the drawer. As soon
as the nozzle is touched, the hose is released, and will not be retracted again
until the drawer is closed.

this position, the hose is released and follows the nozzle around. The other
end of the hose is connected out of sight to the bottom of the drawer. When a
paint bucket is touched, this end will move to the bottom of the bucket. When
the drawer is closed again, the virtual springs that held the hose in place are
reactivated and the hose is pulled back into its starting position. The initial
situation and a subsequent state are shown in Figure 6.4.

In the physics engine, the hose is represented as a series of capsule shapes,
connected to each other by spherical joints (Figure 6.5). These joints are con-
figured with springs to give the hose a preference for remaining straight. To
prevent the hose from accidentally pulling figurines around during painting, the
physics engine was instructed to have figurines affect the hose, but not vice
versa.

Normally, the hose is shown as white and slightly transparent. When paint-
ing, it will however fill up with the paint texture used, which is animated to
flow through the hose as long as the painting continues.

6.4.3 The nozzle

The nozzle can be moved around in the standard way, with one exception: upon
picking it up, the nozzle will automatically rotate (about the touch point) to
point down towards the sandtray bottom. This is the orientation that the nozzle
will always be used in, so it is simply a shortcut, and does not require any special
or new interaction techniques.
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Figure 6.5: The painting hose as represented in the physics engine. It consists
of a string of capsule shapes, connected by spherical joints.

When the nozzle is painting, it will draw the chosen texture on the sandtray
floor with a circular shape. The radius of the circle depends on the proximity
of the nozzle to the floor. If the nozzle is held high, far away from the floor,
it paints a big circle, suitable for filling in large regions at once. If the nozzle
is held low, close to the floor, it will paint a small circle, suitable for adding
details. This is illustrated in Figure 6.6.

6.4.4 Mouse emulation

The hose was designed to solve the problem of painting on a surface. This
problem is also solved, albeit in a different way, by the paint brush tool in
drawing applications for desktop computers. With such a tool, one can paint
on the canvas using the mouse.

It is interesting to note that the this problem yielded very similar solutions
in the desktop and the tabletop world. On the desktop, the brush is positioned
by moving the mouse and thereby the mouse pointer to the desired location;
on the tabletop, this is done by dragging the nozzle with one or more fingers.
On the desktop, the brush is activated by pressing the mouse button; on the
tabletop, this is done by holding down a finger on a paint bucket.

This similarity can in fact be generalized: in the painting hose, we have
nothing short of an emulation of a mouse on a tabletop. One finger controls
the cursor, whereas another is used to press buttons. This gives us the ‘hover’
ability that mice have, but is lacking on tabletops. Moreover, it gives us multiple
buttons, to which different meanings can be assigned, where normally all touches
are equal. Without any modifications, it is also possible to provide multiple
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Figure 6.6: Screenshots of the painting tool in action. The lower the nozzle is
held, the smaller the radius of the painted area becomes.
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mice on one system. How well this mouse emulation works, and comparing it
to alternatives, would be an interesting topic of further research.

One might argue that this type of interaction does not play to the strengths of
tabletop systems. However, it can possibly be used to make desktop applications
run without modification on tabletop systems. Moreover, as the painting hose
shows, even when not trying to emulate desktop systems, there is sometimes a
need for the action of ‘pointing without clicking’.

6.5 Summary

We defined the notion of ‘mode switch’ and made the distinction between
system-maintained and user-maintained modes. We saw why system-maintained
modes break down in a multi-user setting, and showed that virtual tools are a
form of user-maintained modes that provide a way around this problem. We
then presented two virtual tools, one that switches an object’s mode based on
its location, and another that switches mode based on a virtual object being
‘held’ under one’s finger. We saw that the latter, the painting tool, is actually
a possible representation of a desktop computer mouse on a tabletop computer.

The notion of virtual tools is an interesting one, and this chapter only re-
vealed the tip of the iceberg. More research is needed to categorize and structure
the possibilities and to determine what works and what does not. In the mean-
time, we will outline some implementation details of the sandtray prototype in
the following chapter.
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Chapter 7

Implementation

This chapter describes the implementation of the virtual sandtray in software.
The aim is to give the reader an impression of how the implementation works,
not to provide in-depth developer’s documentation. Many details are therefore
omitted.

The chapter begins with a general overview of the system in Section 7.1.
It then describes in Section 7.2 how touch input is read and processed. Sec-
tion 7.3 describes the workings of the rendering pipeline and some implementa-
tion choices made concerning rendering. Section 7.4 describes the physics engine
and how it is being used. Finally, Section 7.5 details how the figurine meshes
are preprocessed, stored and used.

7.1 General

The sandtray program was built in Java [Suna] on top of a framework by Mark
Hancock, which provides a uniform interface to different touch hardware plat-
forms, and implements the various multi-touch techniques.

This framework heavily depends on the Java3D library [Sunb] for vector and
matrix operations and for texture handling. Although this library also contains
classes for construction of a scene graph, these are not used.

7.2 Touch input

In order for the program to be easily portable to different hardware platforms,
the framework abstracts away the details of the platform, providing touch data
to the program in a uniform way. Essentially, this touch data consists of a set
of current touch points for each moment in time. The touch points themselves
obviously have x- and y-coordinates, but actually provide more data fields to
represent the capabilities of each device. For example, on the DiamondTouch
each touch point also carries the identifier of the person who is touching, and
on the SMART Table the size of the touch point is provided.

Interfacing with the different pieces of touch hardware (and some other de-
vices) is done through their various APIs. We describe briefly how input is
handled for each device.
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The DiamondTouch [Die01] provides a Java API that sends out ‘enriched’
mouse events. It is wrapped by the framework, which listens to these events
and updates the set of current touch points accordingly.

The SMART Board [SMAa] has a C++ API only. This is wrapped by C++
code that calls Java event handlers through JNI, the Java Native Interface.

The SMART Table [SMAb] provides its touch data through a .NET API, but
also outputs an XML stream over a TCP/IP connection. Although this feature,
and the format of the stream, is undocumented, the XML is quite simple and the
relevant fields could easily be found. Again, the incoming sets of touch points
are converted into our universal format for consumption by the application.

Finally, for easy testing on a desktop computer, a simple class is provided
that simulates touch input using a three-button mouse. The left button (assum-
ing a right-handed setting) simulates a single touch, placed when and where the
button is pressed, following the cursor movement, and removed when the button
is released. The middle mouse button does the same, but touch points placed
in this way remain on the surface even after the button is released. All touch
points placed in this way are removed by clicking the right mouse button. Note
that it is not possible to move these touch points after the middle button is
released. Although by no means the most flexible or intuitive scheme, it works
well enough for testing our application on a desktop machine.

7.3 Rendering

For rendering, the program uses hardware acceleration with OpenGL through
the JOGL (Java OpenGL) library [JOG]. This library provides a very thin wrap-
per around the OpenGL API; essentially, all OpenGL functions are contained
in a GL class and have the same name and signature as their C counterparts.

The current collection of figurines consists of nearly half a million vertices.
Combined with multi-pass rendering for the shadow mapping, this turned out
to be a problem: on an NVIDIA GeForce 7900 GS graphics card, the frame
rate varied between 10 and 20 frames per second, which is too low for smooth
interaction. Two significant optimizations were implemented: vertex buffer
objects, and frustum culling. These are described below, followed by a discussion
of the technique used to render shadows.

7.3.1 Vertex buffer objects

To speed up rendering, since the meshes do not change, we store these in
OpenGL vertex buffer objects (VBOs), defined in the ARB vertex buffer object
extension [Ope03]. These are stored on the OpenGL server; usually, this means
that they are uploaded to memory on the graphics card, saving the bandwidth
that would otherwise be used to transfer the mesh data every frame. This gives
a significant speedup in rendering.

7.3.2 Frustum culling

Another optimization that can be done is frustum culling. Because of the size of
the ring drawer, most of the figurines in the drawer will actually be off the screen.
We can therefore save much vertex processing power by not rendering these
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offscreen figurines in the first place. Determining whether a figurine is visible is
done simply by checking whether its bounding ball intersects the view frustum.
More about the computation of the bounding ball is said in Section 7.5.4.

7.3.3 Shadow mapping

As mentioned in Section 4.4.3, providing drop shadows is essential to give the
viewer a sufficient sense of depth. Different techniques have been developed over
the past decades to make objects cast shadows onto other objects. We opted for
one of the simplest and oldest techniques, namely shadow mapping. A full dis-
cussion of this algorithm is outside the scope of this thesis; see Williams [Wil78]
for the original description of the method. Shadow mapping can be insufficient
for large and general scenes, but its limitations do not pose a problem in our
limited setting.

Shadow mapping is done in multiple passes. The rendering of a frame con-
sists of 2n + 1 steps, where n is the number of shadow-casting lights:

� First, the scene is rendered from the point of view of each of the n lights.
We use OpenGL framebuffer objects (FBOs), as defined in the extension
EXT framebuffer object [Ope08], to draw the depth buffer into an offscreen
texture for use as a shadow map.

� Then, the scene is rendered once from the point of view of the camera,
without any of the shadow-casting lights enabled. This produces the image
of the scene as if everything were in shadow.

� Finally, the scene is rendered, with additive blending, from the point of
view of the camera for each of the n lights. Only the current light is
enabled in each of these passes, but it is modulated by the shadow map
lookup. This produces light pixels wherever the pixel is visible from the
point of view of the light, and dark pixels elsewhere.

It is worthwhile to note that the rendering of the final scene can be condensed
from n + 1 passes into a single pass by offloading the lighting calculation to a
fragment shader. Especially in the case of many lights, this would give a signif-
icant speed boost. We did not implement this because in our case there is only
one shadow-casting light, and moreover, the framerate was already sufficiently
high for smooth interaction.

A limitation of this approach arises when transparent surfaces are used.
Because of depth buffering, objects behind a transparent surface (from the point
of view of the camera, not from the light) would receive no light, because the
light passes would fail the depth test. In the current version of the sandtray
application this poses no serious problem. However, if the need for a solution
arises, the shader approach would also eliminate this problem.

7.4 Physics

For the rigid-body physics simulation, we use NVIDIA’s (formerly Ageia’s)
PhysX engine [NVI]. Because this engine was specifically developed for use in
games, it is optimized for high performance, and utilizes the graphics processing
unit to perform parts of the computations.
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To use PhysX, which has a C++ API, from Java, we use a wrapper called
JPhysX [Kra]. This is a very thin wrapper, and most of it is even automatically
generated by SWIG, the Simplified Wrapper and Interface Generator [SWI]. As
a result, the full power and potential of the PhysX library is exposed to our
Java program.

However, to make use of some features of PhysX, such as the cooking API
and error handling, we found that JPhysX was not sufficient. Although the
source of the wrapper itself is available, the SWIG interface file from which it
was constructed is not part of the JPhysX distribution (probably because it
includes portions of the proprietary PhysX header files). Without this interface
file, modifying the auto-generated JPhysX code would be very cumbersome.
We therefore constructed some functionality in C++ and linked these with
Java through another set of SWIG-generated JNI wrappers to overcome these
limitations.

7.5 Figurines

The aim of this project was not to model a large collection of figurines by
hand. Instead, we used a library, namely the 2002 edition of the Viewpoint
Premier e-Catalog. This library contains over 14,000 pre-made models of many
different types, and at varying levels of detail. Although some of these models
are NURBS-based, most consist of triangle meshes. The models are stored in
a custom format, but can be exported by the catalogue program to standard
formats such as Wavefront OBJ. Even though the catalogue displays coloured
and textured thumbnail previews, no colours or textures are actually exported,
and whether this data is actually present in the library is still unclear.

Based on input from sandtray therapists, we selected 158 models from the
catalogue, taking care not to pick meshes with too little detail because they
would look ugly, or with too much detail because they would slow down the
system. The largest model contains around 17,000 vertices; the average is ap-
proximately 3,000. A list of descriptive titles of all models is given in appendix B.

7.5.1 OBJ file loading

The meshes were exported to OBJ files. Because OBJ is a fairly simple plain-
text format, it was easy to write a parser that imported these files into Java
data structures.

However, even after optimizations, this parsing turned out to be far too slow,
taking minutes of loading time at each launch of the program. We therefore built
a preprocessor that loads the OBJ files one by one, writes the data into a Java
object containing a small number of large arrays, and serializes this object to
a file using the Serializable interface. This reduced the startup time of the
sandtray program to mere seconds. This speed is mostly limited by hard drive
bandwidth, because a second launch of the program (when the files are still in
an operating system or hard drive cache) is significantly faster.
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7.5.2 Mesh cooking

Even though NVIDIA’s physics engine, PhysX, is quite powerful, it has some
limitations. It supports two types of meshes: convex hulls and arbitrary triangle
meshes. However, we found that collision detection using arbitrary triangle
meshes can be unreliable and in some cases even crashes the engine completely.
We therefore chose to use convex hulls only. PhysX comes with a separate
API, the so-called ‘cooking’ API, to convert a set of vertices into a convex hull,
represented in a format that the engine can directly use.

During the preprocessing step already mentioned in Section 7.5.1, we also
cook the meshes and store the cooked data in a file. This prevents having
to re-cook the meshes at each startup of the sandtray. It is this part of the
preprocessing that gave the preprocessor program the name Kitchen.

7.5.3 Mesh simplification

Another (badly documented) limitation is that convex meshes can contain at
most 256 polygons. Even though the cooking API will happily cook meshes
with larger numbers of polygons, this results in runtime crashes when one tries
to use the produced data. Because most of our meshes contain more than 256
faces, often even when only the convex hull is considered, it was necessary to
simplify the meshes before handing them off to the cooking API.

Simplification of meshes is a difficult problem in general, and much work has
been done to investigate this. Many different algorithms exist, each with specific
properties that make it suitable or unsuitable for a particular application. Our
requirements are as follows:

� The number of faces in the output must be bounded by a prespecified
constant. Some algorithms only allow us to specify a certain tolerance,
while the actual number of faces produced is unpredictable.

� Either the algorithm must be simple to implement, or a library must be
readily available with a suitable license for our use.

� The algorithm must work on many different kinds of shapes, since the
shapes of the figurines are highly diverse.

� Preferably, the algorithm should be able to deal with n-gons (faces with
more than three vertices), because these can be stored in the OBJ format
and might thus be present in the input. However, under the assumption
that all n-gons are planar and convex, we can easily triangulate them, so
this is not a hard requirement.

� Non-manifold surfaces should be handled, because we cannot be certain
that all models from the catalogue will be manifold.

� Preferably, the produced simplified mesh encloses approximately the same
volume as the original mesh; that is, it should not only contract or only
expand the volume. This will give the best approximation of the original
mesh when simulated in the physics engine.

� It should not take more than a minute to simplify a mesh of the size we
are using. We do not want the preprocessing for all the meshes to take
overly long.
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On the other hand, the following properties may be desirable in some appli-
cations, but not particularly in ours:

� The ability to produce, in a single run, multiple simplifications at varying
levels of detail. We need only one simplified version.

� Preservation of the original mesh topology. Since we are computing the
convex hull of the vertices, the triangles and thus the topology produced
are of no concern to us.

Several methods from the literature were examined based on their properties
as stated by the original authors. Various algorithms by Hoppe et al. [Hop93;
Hop96] were found to be too complex and possibly too slow. Turk’s retiling
algorithm [Tur92] is not suitable for models with sharp corners and edges.

Eventually, the quadric-based method by Garland [Gar97; Gar99] was found
to be suitable. This algorithm works by repeatedly contracting edges into a
single point, reducing the adjacent triangle faces to zero area, then deleting
them. The edges to contract are selected based on a cost function, that is
computed as the distance to a quadric surface that locally approximates the
original shape of the mesh. The algorithm does not attempt to preserve the
mesh topology, which allows for more agressive optimization.

Although a library called QSlim [Gar04] is available that implements this
method, it is written in C++. Interfacing between Java and C++ is possible,
but quite painful, so the algorithm (except for some optimizations for edge cases
– literally) was reimplemented in Java.

7.5.4 Bounding ball and box computation

For fast and simple view frustum culling, as described in Section 7.3.2, it was
necessary to know the smallest bounding ball for each mesh. Although the
problem is well-defined, algorithms to compute the minimum bounding ball
are nontrivial. We therefore used the Miniball library for this, developed by
Gärtner [Gär99].

The smallest axis-aligned bounding box of meshes is needed to line them
up in the drawer, among other applications. This box is trivial to calculate,
but to save some time during startup of the main sandtray program, it is also
calculated in the preprocessing phase.

7.6 Summary

In this chapter, we gave the reader an overview of the implementation of the
virtual sandtray prototype. We discussed the technologies used, and touched
upon some of the larger implementation hurdles. We also briefly described some
of the more interesting algorithms that were used in the prototype.

We now turn to the evaluation of the developed prototype.
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Chapter 8

Evaluation

Besides the involvement of sandtray therapists in the design process, we also
evaluated our prototype in an informal, day-long session together with two sand-
tray experts. Parts of the session were videotaped for later reference. This chap-
ter presents our qualitative findings. The contents of this chapter raise many
interesting issues and can serve as a guide in determining the path for further
research.

In Section 8.1, the programme of the evaluation day is outlined. Our findings
and observations are presented in Section 8.2, interleaved with some – sometimes
tentative – conclusions we can draw from the data.

8.1 Setup

The virtual sandtray prototype was evaluated in a one-day session with two
sandtray therapists. Neither of them had any previous experience with tabletop
computers, and they had only a very high-level notion of the nature of our work.

In order to get a story that was as unbiased as possible, we asked the ther-
apists to describe their way of working before showing them any of our work.
We asked questions whenever something was unclear, but did not give away
anything about the design of our prototype, so that the answers would not be
affected by our own point of view. We took written notes, but did not videotape
this interview.

Next, we showed a program on the SMART Table that demonstrated the
use of the one-, two- and three-touch techniques described in Section 5.3. After
this, we moved on to the sandtray program and demonstrated its features and
how to use it. During all this, the therapists were encouraged to share their
thoughts and comments. This part of the session was videotaped.

The therapists were then given the opportunity to play with the application
themselves. Again, they were encouraged to think out loud, ask questions and
comment on what they were doing or trying to do. This, too, was videotaped
for later review.

After a break, we simulated a sandtray therapy session, in which the au-
thor played the role of patient. The purpose of this was to see how useful the
prototype would be in a real therapy session. This was videotaped as well.
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The day ended with a free-form discussion about the experiences and im-
pressions, and a brainstorm about possibilities for future extensions and im-
provements.

8.2 Findings

This section describes the outcome of the evaluation session with the two sand-
tray therapists. It is organized by topic. Section 8.2.1 gives some general re-
marks, Section 8.2.2 presents findings related to the displaying of the virtual
sandtray on the screen, Section 8.2.3 comments on the selection of figurines,
Section 8.2.4 evaluates the interaction techniques, and finally Section 8.2.5 dis-
cusses some possible future extensions that were suggested during the evaluation
session.

8.2.1 General

Some words used by the therapists to describe the virtual sandtray prototype
were “relaxing and pleasurable,” “attractive” and “appealing.” In its current
form, the prototype might perhaps already be usable for therapy. A negative
was the lack of sensory feedback: touch, sound and even smell. However, the
application was described as being “still quite tactile.”

An interesting point raised was that the virtual sandtray does not so much
invite to storytelling, but rather to the construction of a static scene. In that
light, it might be more related to art therapy, for example the making of a col-
lage. How to make storytelling more inviting, and whether this is even desirable,
remain open questions.

Other applications of the sandtray program were discussed, such as adapting
it for educational purposes. For example, its realistic physics simulation could
be used to teach the laws of (Newtonian) physics. The ability to easily rotate
an object and look at it from all angles could be useful when teaching geometry.

8.2.2 Display

The walls of the virtual sandtray, shown as a frame on the screen, were found
unnecessary, because the screen is already framed by the table’s edges. However,
removing the walls might disrupt the idea that the scene is underneath instead
of in the table surface. As a way to hide figurines, it was suggested to remove
the scene walls and allow the figurines to move offscreen. Maybe this could be
used to remove them permanently; if not, how to get them back remains an
open issue.

One of the therapists commented: “When looking down, I’m not as sure what
I’m looking at,” and “Camels look weird from above,” (which, incidentally, they
do). This is a clear indication that a purely top-down view might not be the
best choice, and that we should look into projections that also show figurines
partly from the side.

8.2.3 Figurines

The selection of figurines was found fairly adequate, but not as comprehensive
as the collections used in actual therapy. Two categories that were lacking were
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fences and buildings. Fences are important to deliniate areas and to create
barriers. Buildings provide shelter to the people and creatures in the story.

Another class of objects that was missing are arbitrary objects that could be
brought in by the therapist or the patient and play a more metaphorical role.
A small cardboard box could serve as a house, a stick could be used as a sword,
or a pine cone could represent a baby, covered by a handkerchief to represent a
blanket. The inability to bring such objects in could be found limiting if many
therapy sessions are performed with the same, limited collection of figurines. It
was suggested that a possibility should be added to draw or otherwise create
one’s own figurines, but this would be difficult to implement in an intuitive
fashion.

The presentation of figurines in the drawer was a problem, because once
a figurine was selected, the lack of structure made it difficult to find related
figurines. Although the therapists with whom the prototype was evaluated
normally present the figurines in their therapy sessions in an organized way,
they did comment that the lack of ordering in the virtual sandtray prototype
“stimulates more random aspects of the psyche.” Possibly a hybrid approach is
in order here, starting with a random presentation, but allowing the patient to
easily find related figurines once a few have been selected.

8.2.4 Interaction

We observed repeated attempts to move figurines with multiple fingers. As
discussed in Section 5.3.7, this resulted in an unintentional rotation along with
the translation of the figurine. This problem was later solved, as described in
the aforementioned section.

Due to the physics engine, combined with some noise in the touch input,
figurines would sometimes fly off unintentionally. Maybe a sort of speed limit
or friction could be added to the physics simulation to make its behaviour more
stable.

Creation of objects upon touching their representation in the drawer turned
out to be somewhat too sensitive. Often, more than one copy is created uninten-
tionally. A possible solution is to actually remove the figurine from the drawer
and not replacing it with a copy until after some time, or until the original has
been dragged away over a certain distance.

Sliding of drawers worked well, even when multiple fingers were used to grab
the handle, something we did not design for. Rotating and tossing the circular
figurine drawer also rarely presented a problem, except when figurines inside
the drawer were accidentally touched, resulting in unwanted creation of new
figurines. Perhaps a special area around the edge of the drawer could be added,
with a rough surface like the dial on the scale drawer, to stimulate grabbing the
drawer in a clear area.

The painting hose turned out to work very well, and there was no trouble
using its two-handed interaction method. Especially considering the possible
generalisation to an emulated desktop mouse, this is a promising finding.

On the other hand, the scaling drawer was not used often. We theorize that
this is because it does not allow for in-place scaling, but requires the figurine to
be removed from its environment, creating a psychological barrier to its use in
a story. Using a technique similar to the painting hose might be a better option
here.
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Vertical movement

Several problems were noted in relation to vertical movement of figurines. First,
with the current top-down projection, it is not clear that the object is actually
moving up or down, instead of simply changing size. This was strongly reflected
in the terminology used while discussing this action: even though people know
that the object is actually moving up and down in the scene, they often still
talk about “making it bigger” and “making it smaller”. This might partly be
blamed on the location of the object’s shadow straight underneath it, which
often causes the shadow to be partly or completely obscured. A second shadow,
cast from the side, might solve the problem partly; a projection that is not
strictly top-down could also help.

A second problem is that the ‘sticky fingers’ paradigm implicitly makes lifting
an object very sensitive. Especially when the two fingers start close together, a
small movement of the fingers will result in a large vertical motion. Doubling the
distance between the fingers will move the object twice as close to the virtual
camera, which is quite a large distance. Perhaps it is better to let go of the
stickiness of one of the fingers, but a formal user study is probably necessary to
objectively determine which is better.

A third problem is that it is possible to move a figurine in such a way that it
is invisible. For example, a figurine can be pushed down right through a drawer
from above, causing the figurine to become hidden underneath the drawer. This
can be very confusing. It might be better to keep a figurine always visible, by
forcing it to be always above everything else at its location in the scene. This
would cause ‘jumps’ when moving it over something else, break stickiness, and
make it impossible to knock objects over with other objects, so it might create
more problems than it solves.

We also observed three attempts to lift an object by touching it, then letting
go of the table surface and lifting the hand up, as if the figurine were connected
to the fingers with strings. Obviously, this action did not have the desired effect,
but this was quickly learned and adjusted for.

8.2.5 Possible extensions

The ability to paint not only on the floor, but on the figurines themselves, was
indicated as an important possible extension. This would be a better option
than providing pre-coloured figurines.

Adding cloth would provide compelling new options that could be relevant
for storytelling. In particular, the covering of figurines would have significant
psychological connotations of hiding, containment or shelter.

The ability to view the scene from ‘inside’, or from the point of view of one of
the figurines, would be very useful in therapy. It would evoke empathy with the
character through whose eyes we are looking, and would thereby be a valuable
addition not only in therapy, but also in education.

8.3 Summary

A great deal was learned from the evaluation session. Many of the problems
we expected with the display and the interaction techniques were indeed con-
firmed, such as the inability to distinguish vertical motion from resizing and the
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excessive sensitivity in vertical movement. On the other hand, techniques such
as the circular drawer and the painting hose turned out to be very intuitive and
easy to use. The overall response to the prototype was positive, and it turned
out to be likely that such an application could have practical uses in therapy.
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Chapter 9

Conclusion

We designed, developed and evaluated a virtual sandtray application in collab-
oration with sandtray experts. Much was learned and discovered during this
endeavour; the main conclusions are summarized in Section 9.1. On the other
hand, each answered question seems to spawn ten new ones that beg to be
answered; directions for future work are therefore summarized in Section 9.2.

9.1 Findings

Probably the most important result, or at least the most encouraging, is that a
virtual sandtray application similar to our prototype would definitely be useful
in therapy. This also demonstrates once more the usefulness of tabletops in gen-
eral for therapeutic purposes. It seems highly likely that other uses of tabletop
computers could also be successful, for example in art therapy.

Apart from this general finding, there are more specific ones, which will be
discussed in the following sections.

9.1.1 3D on tabletops

Beyond therapeutic purposes, this work can also serve to inform the design of
future 3D applications on tabletop systems. It provides insight into interaction
with 3D objects on tabletops and on direct-touch screens in general. More-
over, the prototype demonstrates how a physics simulation can play a role in
interaction.

There are some significant, but not unsolvable problems with the strictly top-
down projection that is currently used to show the sandtray on the screen. It
is hard to recognize objects, and difficult to distinguish vertical movement from
resizing. These are fairly general problems, and several solutions are readily
available, such as a slightly changing the viewpoint or adding extra shadows.

9.1.2 Manipulation of 3D objects

A new interaction technique was developed that allows for manipulation of 3D
objects in the full six degrees of freedom. This technique was applied to move
and rotate figurines in the sandtray, and fared well in this practical context.
Although there are some rough edges, such as overly sensitive vertical movement
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and problems manipulating narrow objects, these are minor problems that can
be worked out.

The notion of ‘sticky fingers’ was introduced and subsequently applied in
several attempts to make the fingers in the three-touch technique more sticky.
Although some of these attempts traded off too much power to maintain stick-
iness, others, such as the vertical movement, did prove successful.

9.1.3 Modes and tools

The work demonstrates how virtual tools can be used to circumvent global mode
switching, which is impossible to use on multi-user systems that do not have
the capability of distinguishing between users.

The two particular implementations of virtual tools are a mixed success. The
scale drawer works well, but may be too clumsy or too slow to use in practice.
The fact that figurines have to be removed from the sandtray might also form
a barrier for the tool’s frequent use. The paint tool, on the other hand, turned
out to work very well. It is easy to use and control, even though (or perhaps
because) two hands are needed.

The usability of the paint tool is a promising finding, because the very same
method of interaction can be used to emulate a desktop computer mouse, or
multiple mice, on a direct touch screen. More generally, it allows for touches,
which were previously all interpreted in the same way, to be assigned different
functions or actions, but without the need for a global mode switch. This might
prove to be a powerful generalization, especially as multi-touch applications
grow increasingly complex.

9.2 Future work

We divide the future work into three levels: sandtray-specific features that could
be experimented with, more general interaction techniques, and finally, other
potential applications of the sandtray prototype and similar programs.

9.2.1 Sandtray features

There are many possible extensions to the current sandtray prototype that
would be interesting to explore. The full list has already been presented in
the unimplemented features list in Section 4.3.3. We will repeat the most inter-
esting options here.

The addition of cloth and soft bodies would not only give the patient more
creative freedom, but also raises many interesting questions about interac-
tion. The current three-touch technique is not directly suited to manipulate
deformable objects, but could perhaps be modified to work with them. Another
possibility might be that springs (which cause instability in the case of rigid
bodies) are a feasible interaction technique here.

The possibility to combine objects by sticking them together allows for sig-
nificantly more freedom. For example, think of houses being constructed from
simple, elementary bricks. Again, the interaction techniques used for this kind
of object and scene assembly have not been thoroughly investigated. Similar
facts hold for the painting of objects.
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Simulated sand is technically possible to implement, and would add much
richness to the sandtray simulation. Enabling sufficiently rich interaction with
this sand, however, could prove to be a very challenging, but also very interesting
issue.

9.2.2 Interaction techniques

It would be very interesting to see how the physics-based interaction technique
by Wilson et al. [Wil08] would fare in the sandtray. However, this technique
suffers from a certain lack of precise control. In particular it is impossible to
pick objects up and move them in the vertical direction.

We therefore propose to implement a hybrid method. When a touch starts
on a figurine or other object that can be interacted with directly, it will respond
in the way described in this thesis. When a touch starts outside all objects, for
example on the sandtray floor, a proxy object in the sense of Wilson et al. could
be created.

This technique, however, would make crossing (Section 5.3.4) impossible,
thereby making small objects difficult to manipulate. It might therefore be
necessary to assign touches to an object if they do not start on the object, but
are close to it, something that can be implemented in a fairly straightforward
way by drawing the object’s edges to the pick buffer using a large line width, or
by probing the pick buffer in multiple locations around the touch point.

9.2.3 Applications

It has already been mentioned that this sandtray application has a use in sand-
tray therapy. However, because it seems to encourage scene construction rather
than storytelling, it might be more appropriate to use it as such, and modify
it to suit this task better. It would be used differently than a storytelling tool,
but have similar purposes for therapy.

The question was raised whether the sandtray could be adapted to be of use
in an educational setting. It would be interesting to investigate how this can be
done, and for what subjects it would be effective.

83



Bibliography

[Aga06] Anand Agarawala and Ravin Balakrishnan (2006). “Keepin’ it real:
pushing the desktop metaphor with physics, piles and the pen.” In
CHI ’06: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1283–1292. ACM, New York, NY, USA. ISBN
1-59593-372-7. — Cited on pages 22, 24, 41, and 60.

[Ali] “Alice: An educational software that teaches students computer pro-
gramming in a 3D environment.” Retrieved January 20, 2009, URL
http://www.alice.org/. — Cited on page 23.

[Bal99] Ravin Balakrishnan and Gordon Kurtenbach (1999). “Exploring bi-
manual camera control and object manipulation in 3D graphics inter-
faces.” In CHI ’99: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 56–62. ACM, New York, NY, USA.
ISBN 0-201-48559-1. — Cited on page 22.

[Ber98] Marina Umaschi Bers, Edith Ackermann, Justine Cassell, Beth Done-
gan, Joseph Gonzalez-Heydrich, David Ray DeMaso, Carol Strohecker,
Sarah Lualdi, Dennis Bromley and Judith Karlin (1998). “Interac-
tive storytelling environments: coping with cardiac illness at Boston’s
Children’s Hospital.” In CHI ’99: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 603–610. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA. ISBN
0-201-30987-4. — Cited on page 23.

[Bra06] Kay Bradway (2006). “What is sandplay?” In Journal of Sandplay
Therapy, vol. 15, no. 2, pp. 7–9. — Cited on page 25.

[Cao08] Xiang Cao, Andrew D. Wilson, Ravin Balakrishnan, Ken Hinckley and
Scott E. Hudson (Oct. 2008). “Shapetouch: Leveraging contact shape
on interactive surfaces.” In TABLETOP 2008: 3rd IEEE International
Workshop on Horizontal Interactive Human Computer Systems, pp.
129–136. — Cited on page 21.

[Cas99] Justine Cassell and Kimiko Ryokai (May 1999). “StoryMat: A
playspace for collaborative storytelling.” In CHI ’99: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
New York, NY, USA. — Cited on page 23.

[Cas01] Justine Cassell and Kimiko Ryokai (2001). “Making space for voice:
Technologies to support children’s fantasy and storytelling.” In Per-
sonal and Ubiquitous Computing, vol. 5, no. 3. — Cited on page 23.

84

http://www.alice.org/


[Cle09] Writser Cleveringa, Maarten van Veen, Arnout de Vries, Arnoud
de Jong and Tobias Isenberg (April 2009). “Assisting gesture inter-
action on multi-touch screens.” In Steve Seow, Dennis Wixon, Scott
MacKenzie, Giulio Jocucci, Ann Morrison and Andy Wilson (eds.),
Proceedings of the CHI 2009 Workshop on Multitouch and Surface
Computing. ACM Press, New York, NY, USA. — Cited on page 60.

[Dav08] Philip L. Davidson and Jefferson Y. Han (2008). “Extending 2D object
arrangement with pressure-sensitive layering cues.” In UIST ’08: Pro-
ceedings of the 21st annual ACM symposium on User Interface Software
and Technology, pp. 87–90. ACM, New York, NY, USA. ISBN 978-1-
59593-975-3. — Cited on page 21.

[Die01] Paul Dietz and Darren Leigh (2001). “DiamondTouch: a multi-user
touch technology.” In UIST ’01: Proceedings of the 14th annual ACM
symposium on User Interface Software and Technology, pp. 219–226.
ACM, New York, NY, USA. ISBN 1-58113-438-X. — Cited on pages 18
and 71.

[For05] Clifton Forlines, Chia Shen, Frédéric Vernier and Mike Wu (2005). “Un-
der my finger: Human factors in pushing and rotating documents across
the table.” In Human-Computer Interaction - INTERACT 2005, vol.
3585, pp. 994–997. Springer Berlin / Heidelberg. — Cited on page 20.
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Appendix A

Videos

Five videos accompany this work, each showing a particular feature of the sand-
tray prototype. The table shown in the videos is the SMART Table.

figurines.avi demonstrates how figurines can be taken out of the drawer, dragged
around with a single touch, moved and rotated with two touches, moved
up and down, and rotated in 3D using three touches.

scaling.avi shows a figurine being grown in the scaling drawer, then another
figurine being shrunk.

painting.avi shows the usage of the painting drawer. It demonstrates how the
nozzle can be moved around and how the hose follows it in a physically
accurate manner. It goes on to show how the sandtray floor can be painted,
and how the affected area can be grown and shrunk by moving the nozzle
up and down.

bowling.avi demonstrates of the physics engine. A bowling ball is taken from
the drawer, and a set of bowling pins are added programmatically. The
ball is thrown to knock over the pins. Finally, extra pins are added and
demonstrate the limitations of the physics engine.

demo.avi demonstrates all features of the sandtray prototype being used in
acting out a short prehistoric story.

Playback of the videos requires an AVI player with an XviD or compatible
codec. The videos have no sound.
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Appendix B

Listing of figurines

airliner
alarm clock
alien
ambulance
apple
armchair
astronaut
ax
baby carriage
barrel
basketball
battle robot
battleship
bear
beaver
bed
bicycle
biplane
bird
blimp
body guard
bomb
book
bowling ball
bowling pin
boy
brontosaurus
buffalo
butterfly
cactus
camel
can

cangaroo
cannon
car
cat
cauldron
cellphone
chair
chest
christmas tree
clown
coffin
computer
cone
cow
crocodile
crown
deer
desk
detective
devil
die
dog
dolphin
domino
Dracula
dragon
drum
dynamite
egg
elephant
elf
eskimo

fighter plane
fire truck
flower
flying saucer
football
fork
frog
galleon
ghost
giraffe
girl
globe
gnome
grim reaper
guitar
hammer
helicopter
horse
horseshoe
hot air balloon
hourglass
key
knife
knight
life preserver
lion
machine gun
magnet
man
missile
motorbike
octopus

palm tree
pan
pegasus
phone
piano
pickup
pirate
pistol
polar bear
policeman
professor
propellor plane
pumpkin
raccoon
race car
revolver
rhinoceros
robot
rocket
rocking horse
rose
saber
sailboat
santa
school bus
shark
shell
shovel
skeleton
snail
snake
snowman

soccer ball

sofa

soldier

space shuttle

spider

spoon

stegosaurus

submarine

Superman

syringe

table

tank

teapot

television

tiger

toboggan

toilet

trash can

tree

triceratops

tricycle

truck

turtle

tyrannosaurus

velociraptor

whale

wheelbarrow

witch

wizard

woman
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