
An Evaluation of Deferred Shading Under

Changing Conditions

Bart Postma

University of Groningen

1 Introduction

Deferred shading is a relatively new shading technique and it has gained increasing attention
the last few years. Yet, the information about its performance is often incomplete or regards a
specific application. The research presented in this paper wants to fill a number of knowledge
gaps regarding this problem.

An often quoted reference in literature about deferred shading is the presentation of
Hargreaves and Harris [5]. This presentation illustrates the basics of deferred shading, but
not more than that. In [9] and [6] it is explained how deferred shading has been implemented
in two recent computer games. Computer games, however, have many application-specific
optimizations, not suited for all applications. The information in [9] and [6], however, is
valuable for possible optimizations and pitfalls of deferred shading. An elaborate paper
about deferred shading is [4]. It explains the principles of deferred shading, presents an
implementation in OpenGL, a few very basic performance tests, and how to handle several
effects such as shadows, anti-aliasing, etc.

This paper wants to extend the research done in the above mentioned sources, by filling
a number of knowledge gaps that exists about deferred shading. Deferred shading can give a
significant performance increase, however it can also give a significant performance decrease.
The performance is highly dependable on a number of conditions. This paper presents how
well deferred shading performs when these conditions change. The tested conditions concern
the number of lights, the type of lights, the illumination model, the complexity of the scene,
and the influence range of lights. Furthermore, the obtained results are compared with the
results of traditional shading.

This paper will start with an explanation of deferred shading. This is followed with an
implementation of traditional and deferred shading, presented at a high-abstraction level.
The implementation has efficiency as a high priority, but does not perform application-
specific optimizations. The next section will explain the experiment setup and is followed by
the results. We end with a discussion of the results, future work, and conclusions.

1.1 Terminology

Throughout this paper, a number of terms are used. For a good understanding of this paper,
a brief explanation of them is presented here first.

A 3D object is constructed with surface primitives. Surface primitives are specified with
vertices, where each vertex has several geometry attributes, e.g. position, color, normal,
material properties, etc. A scene is a collection of 3D objects, or put otherwise, a scene is a

1



collection of positions, colors, normals, material properties, etc.

2 What is deferred shading

Synonyms for ‘deferred’ are ‘delayed’ or ‘postponed’. The name ‘deferred shading’ hints to
something being done later, and this is the key concept of deferred shading. With traditional
shading, the scene is rendered and directly shaded in one rendering pass. With deferred
shading, a first rendering pass renders the scene to a buffer without performing shading
computations. More concretely, attributes as position, color, normal, material properties,
etc. are rendered to a buffer. When this is done, the buffer contain the scene’s projection
observed from the current view point. In a second rendering pass, the shading computations
are performed as a 2D post-process, by using the geometry attributes stored in the buffer
from the first rendering pass. This has the advantage that shading computations are only
performed on parts of the scene that are visible in the final image.

Deferred shading shades the absolute minimum of the scene, whereas traditional shading
might shade parts of the scene which are not visible in the final image. The performance
penalty from deferred shading comes from the requirement of rendering the scene to a buffer
first and later retrieving the geometry attributes again from this buffer. It requires a very
high bandwidth between the GPU and video memory.

2.1 G-buffer

The first rendering pass of deferred shading renders the geometry attributes of the scene to
a buffer. The buffer in which these attributes are stored, is usually called the G-buffer [8].
Most illumination models require the following geometry attributes: position, color, normal,
and material properties. Therefore, these four geometry attributes have to be rendered to
the G-buffer. Figure 1 shows an example of the color, position, and normal buffer of a scene.

(a) Color buffer. (b) Normal buffer (in eye space). (c) Position buffer (in eye space).

Figure 1: Color, position, and normal buffer of a scene.

2.2 Shading

The G-buffer contains the scene’s projection observed from the current view point. The
second rendering pass performs the shading. The approach for doing this is as follows:

1. Determine the light’s influence range on the scene’s projection.

2. Retrieve the corresponding attributes from the G-buffer and perform shading.

2



The first step requires the projection of the light’s influence range. The second step is practi-
cally identical to the shading computations of traditional shading. For performance reasons,
the influence range of a light is usually restricted to a certain volume, the light volume. This
is under the assumption that the light’s influence outside this volume is negligible. To obtain
the result of step 1, we first have to construct the light volume of the light source. This light
volume is then processed, but not displayed, instead its projection is used for step 2. Or
more concretely, the generated fragments of the light volume’s projection are used for step 2
to retrieve the corresponding attributes from the G-buffer.

If we first perfrom ambient shading with an initial rendering pass. Then we can obtain
the added shading contributions of all light sources by performing the above two steps with
additive blending enabled.

2.3 Light volumes

The fact that we need the light volume to perform shading leads us to the point of determining
how to represent the light volume for various types of lights. Usually, three types of lights
are distinguished: point lights, spot lights, and directional lights, each having a characteristic
light volume.

The influence range of a point light is spherical, it is assumed that it only influences objects
that are within the volume of the sphere. A strong emitting point light will have a larger
sphere than a weak emitting point light. With deferred shading, this sphere is projected
onto the screen, but instead of displaying the sphere, we use the generated fragments to
retrieve the corresponding attributes from the G-buffer and compute the shading. That is,
we compute the distance from the light’s position to the retrieved position from the G-buffer.
If this distance is smaller than the light’s influence radius we compute the shading, otherwise
we discard the fragment. Figure 2 illustrates the process.

(a) Ambient shaded. (b) Projection of three spheres. (c) Fully shaded.

Figure 2: Using the spheres’ projections to compute the shading.

The second type of light source, is the spot light. The influence range of a spot light is
assumed to be a cone, it only influences objects that are within the volume of the cone. A
strong emitting spot light will extend further than a weak emitting spot light. Note that
a stronger emitting spot light will not make the spot beam wider, it is the height of the
cone that becomes larger. Figure 3 illustrates the process of using the cones’ projections to
compute the shading with spot lights.

A directional light does not have a location, only a direction. A directional light is
assumed to be very far away and therefore only its direction is relevant. The influence range
of a directional light affects the whole scene, therefore it is also unnecessary to perform checks
whether an object is within its influence range, this is always the case. Its influence on the
scene’s projection can be represented with a full-screen quad, because of its influences on

3



(a) Ambient shaded. (b) Projection of three cones. (c) Fully shaded.

Figure 3: Using the cones’ projections to compute the shading.

the whole scene. Figure 4 illustrates the process of using full-screen quads to compute the
shading with directional lights.

(a) Ambient shaded. (b) Full-screen quad. (c) Fully shaded.

Figure 4: Using a full-screen quad to compute the shading.

Besides point, spot and directional lights, other light sources are also possible. If we, for
example, want a light source consisting of a line, then its influence range can be considered
a bounding cylinder around this line. In principle, any type of light source is possible. The
type of light source does not change the shading computations, only the influence range of
the light source changes.

3 Implementation details

We proceed to an OpenGL implementation of both traditional and deferred shading, and
why certain decisions have been made regarding the implementation. For a fair comparison
between traditional and deferred shading we cannot have the situation where the CPU is the
bottleneck. Therefore, both shading techniques will run solely on the GPU. The CPU is only
used for setting things up, all the actual computations are performed on the GPU.

The scene and the light sources are stored in Vertex Buffer Objects (VBOs). To prevent
caching, an animation is performed with the light sources. This is done by passing the light
sources to a vertex program which performs an animation on the light positions and then
streams the results back to a second VBO (in the next pass, the second VBO is used as input
and the first one for the result, etc.).

4



3.1 Traditional shading

Figure 5 shows a schematic illustration of how traditional shading has been implemented.

fp_Shadingvp_ObjToEye

Object-space position
Object-space normal

Material

Frame
buffer

Color

vp_LightsObjToEye

Eye-space positionObject-space position

Step 2

Step 1

Step 2

Step 1

Eye-space position
Eye-space normal

Material

Lights
(VBO)

Lights
(TBO)

Scene
(VBOs)

Figure 5: Implementation of traditional shading.

Shading is performed in eye space. Therefore, the first step is transforming the animated
light positions to eye space with a vertex program. The results are stored in a Texture Buffer
Object (TBO) for later use by the fragment program performing the shading.

The second step processes the scene. The scene is passed to the vertex program
vp_ObjToEye, which transforms the vertex position with the model-view-projection matrix
and also outputs the eye-space position, eye-space normal, color, and material properties to
fragment program fp_Shading. The fragment program loops over all light positions in the
TBO, computes the shading contribution of each light and adds this to the output color (see
Listing 1 for pseudo-code of fp_Shading). In the case of spot lights, there will be a second
TBO with spot directions.

outColor = (0.0, 0.0, 0.0)

for (i = 0; i < numLights; ++i) do

lightPos = texBUF(tboLightPos , i)

if (fragment within influence of light) then

shading = computeShading ()

outColor += shading

end

end

Listing 1: Traditional shading.

3.2 Deferred shading

Figure 6 shows a schematic illustration of how deferred shading has been implemented.
Before we start, we create a Frame Buffer Object (FBO) and attach screen-sized textures

to it for each necessary geometry attribute (the G-buffer). Deferred shading consists of two
rendering passes, the first rendering pass must render the scene to the G-buffer. To do
so, we bind the FBO, everything is now rendered to its attached textures. Then the scene
is passed to vertex program vp_ObjToEye, which transforms the position with the model-
view-projection matrix and also outputs the eye-space position, eye-space normal, color,
and material properties to fragment program fp_Gbuffer. Fragment program fp_Gbuffer

5



gp_LightVolumevp_NoTransform
Lights
(VBO)

Frame
buffer

fp_Shading

Eye-space positionObject-space positionObject-space position Color

fp_Ambientvp_NoTransformFull-screen quad
(VBO)

Object-space positionObject-space position

Frame
buffer

Color

fp_Gbuffervp_ObjToEye
Scene
(VBOs)

Eye-space position
Eye-space normal

Material

Object-space position
Object-space normal

Material

G-Buffer
(FBO)

Eye-space position
Eye-space normal

Material

Step 2

Step 3 (additive blending enabled)

Step 1

Figure 6: Implementation of deferred shading.

outputs the geometry attributes in such a way that they are rendered to the correct texture
of the FBO. The G-buffer’s textures now contain the scene’s projection observed from the
current view point.

After the construction of the G-buffer, the shading is performed. Ambient shading influ-
ences the entire scene and does not depend on a light source. Fragment program fp_Ambient
receives a full-screen quad, denoting an influence on the entire projection of the scene. The
fragment program retrieves the corresponding color from the G-buffer and multiplies the
color with the ambient factor. The resulting ambient shaded scene is stored in the frame
buffer.

Next we compute the shading contributions of the lights, and add the contributions to the
ambient shaded scene by enabling additive blending. We pass the VBO containing the light
sources to the vertex program vp_NoTransform, which does not perform any computation, it
only outputs its data to the geometry program gp_LightVolume. Depending on the type of
light source, this program constructs the corresponding light volume from the light’s position
(and spot direction in the case of spot lights). That is, it constructs a sphere for point lights, a
cone for spot lights, and a full-screen quad for directional lights. gp_LightVolume applies the
model-view-projection matrix to the constructed light volume, resulting in it being projected
onto the screen and then rasterized into fragments. These fragments are received by the
fragment program fp_Shading, which uses them to retrieve the corresponding geometry
attributes from the G-buffer’s textures and compute the shading.

3.2.1 Organizing the G-buffer

A texel consists of four components, i.e. red, green, blue, and alpha. From a performance
perspective, it is better to minimize the number of G-buffer textures. Instead of having a
separate texture for each geometry attribute, we will organize the components of the G-buffer

6



textures more efficiently. In [9] a number of organizations are presented, together with their
advantages and disadvantages. For example, by encoding certain attribute components, we
can save memory. We are not limited in memory, therefore we will use an organization that
does not require encoding and decoding. The used G-buffer organization is presented in Table
1. All components are stored as 16 bit floating-point numbers, as is found in the majority of
applications using deferred shading.

Component Texture 1 Texture 2 Texture 3
Red Diffuse color Red Position X Normal X
Green Diffuse color Green Position Y Normal Y
Blue Diffuse color Blue Position Z Normal Z
Alpha Ambient factor Specular factor Shininess

Table 1: Organization of the G-buffer.

3.2.2 Optimizing the geometry program

Constructing complex objects, such as spheres and cones, in a geometry program comes at a
cost, therefore it is worthwhile to optimize this step. The geometry program gp_LightVolume
outputs a simpler light volume for a spot light and point light than a cone and sphere
respectively.

For a spot light, not a cone is constructed, but a four-sided pyramid that bounds the cone
(see Fig. 7). This requires the construction of only four triangles. The base of the pyramid
does not need to be constructed, since it is only the pyramid’s projection we are interested
in.

Figure 7: A green four-sided pyramid bounding a white cone.

For a point light, a bounding cube can be constructed around the sphere, this requires
the construction of twelve triangles. However, we can obtain the same end result with only
two triangles. This is possible because only the projection of the light volume is relevant. A
billboard (two triangles) is constructed that bounds the sphere’s projection. A billboard is
always directed towards the viewpoint, so it will bound the sphere’s projection from all view
points (see Fig. 8).

4 Experiment setup

In the experiment we want to compare the performance of deferred shading with traditional
shading and observe how they scale under changing conditions. These conditions concern

7



Figure 8: A green billboard bounding a white projected sphere.

the number of lights, the complexity of the scene, and the influence range of lights. The
experiment is performed with four well-known illumination models: Phong [7], Blinn-Phong
[1], Cook-Torrance [2], and Gooch illumination [3]. Secondly, three types of light sources
are used: spot lights, point lights with local influence, and point light with global influence.
Point lights with global influence affect the whole scene. For the sake of the animation on
the lights, we use point lights with global influence instead of directional lights. From a
performance perspective, this change is negligible. The change is that the light direction is
now determined from the object’s location and the lights’s location and distance attenutation
is performed.

The scene being used for the experiment tries to reflect the complexity level of scenes
found in graphics applications nowadays. It consists of 1.2 · 105 vertices and uses a total
of 23 textures, roughly half of the textures are of size 512 × 512 and the other half of size
1024× 1024. Figure 9 shows the scene from two view points.

Figure 9: Test scene viewed from two different view points.

A good measure for the performance of real-time applications is the frame rate. The tests
will vary one condition, while keeping the other conditions fixed, and measure the frame rate.
The results are presented with a graph for each illumination model and each type of light.
A discussion regarding the results will follow after all results have been presented.

The experiment requires us to make a number of assumptions about the properties of the
lights. The assumptions try be a reasonable reflection of what can be found in today’s graph-
ics applications. This is subjective to personal experience and view to what is reasonable. A
few tests require a number of additional assumptions, which are mentioned when they are
applied. We use the knowledge that almost all objects in the scene have an x, z-position
within a radius of 100 from the scene’s center (in object space). Secondly, the objects do not

8



exceed a height of y = 50. With this knowledge, the following assumptions are made about
the light properties:

• The x, z-positions of the lights are located within a radius of 100 from the scene’s center
and their height is uniformly distributed between 3 and 50.

• Point lights with local influence have an influence radius of size 20.

• Spot lights are directed downward and have a cut off angle of 45◦. The cut off angle is
a value between 0◦ and 90◦ and denotes how narrow the beam of a spot light is, where
a lower value means more narrow.

The tests are performed with a resolution of 1280 × 1024. The system being used is an
Intel Core 2 Duo E6550 2.33 GHz, 2 GB DDR2 RAM, and an Nvidia Geforce 8600 GT.

5 Results

5.1 Number of lights

In the first test, the number of lights are varied. This is done by starting with no lights and
increasing it to 50 lights. 50 lights will prove to be high enough to see how traditional and
deferred shading scale with the number of lights. The results are shown in Figure 10.

5.2 Scene complexity

The second test concerns the scene complexity, with respect to the number of generated
fragments. Early testing of the application revealed that its performance is bound by the
number of fragments being processed. Therefore, we choose to measure the scene complexity
in number of generated fragments instead of number of vertices. The test will start with
one 3D object in the scene and additional 3D objects are added to the scene until the scene
reaches full complexity as depicted in Figure 9.

With the ARB_occlusion_query extension in OpenGL, it is possible to determine the
number fragments generated by the scene. The extension can be used to obtain the number
of generated fragments of a scene after the depth test. By disabling depth testing, we obtain
the total number of generated fragments of a scene processed by a fragment program.

This test requires us to make an assumption about the number of lights to use. Based
on personal experience and what seems reasonable, we test with 15 spot lights, 15 point
lights with local influence, and 3 point lights with global influence. The results are presented
in Figure 11. Note that this test is more appropriate for observing the scaling of the two
shading techniques and not for comparing the frame rates with each other. This is because
the first test (comparing frame rate with number of lights) already revealed that, for example,
deferred shading is faster with 15 spot lights than traditional shading.

9



0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Phong illumination
Spot lights

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Phong illumination
Point lights with local influence

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Phong illumination
Point lights with global influence

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Blinn-Phong illumination
Spot lights

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Blinn-Phong illumination
Point lights with local influence

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Blinn-Phong illumination
Point lights with global influence

Number of lights
F

ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Cook-Torrance illumination
Spot lights

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Cook-Torrance illumination
Point lights with local influence

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Cook-Torrance illumination
Point lights with global influence

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Gooch illumination
Spot lights

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Gooch illumination
Point lights with local influence

Number of lights

F
ps

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Gooch illumination
Point lights with global influence

Number of lights

F
ps

Figure 10: Frame rate versus the number of lights. The dashed line corresponds with deferred shading
and the continuous line corresponds with traditional shading.

10



500000 1500000 2500000 3500000
0

20

40

60

80

100

120

140

Phong illumination
15 spot lights

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

50

100

150

200

Phong illumination
15 point lights with local influence

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

40

80

120

160

200

240

280

Phong illumination
3 point lights with global influence

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

20

40

60

80

100

120

140

Blinn-Phong illumination
15 spot lights

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

50

100

150

200

Blinn-Phong illumination
15 point lights with local influence

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

40

80

120

160

200

240

280

Blinn-Phong illumination
3 point lights with global influence

Number of fragments
F

ps

500000 1500000 2500000 3500000
0

20

40

60

80

100

120

140

Cook-Torrance illumination
15 spot lights

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

50

100

150

200

Cook-Torrance illumination
15 point lights with local influence

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

40

80

120

160

200

240

280

Cook-Torrance illumination
3 point lights with global influence

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

20

40

60

80

100

120

140

Gooch illumination
15 spot lights

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

50

100

150

200

Gooch illumination
15 point lights with local influence

Number of fragments

F
ps

500000 1500000 2500000 3500000
0

40

80

120

160

200

240

280

Gooch illumination
3 point lights with global influence

Number of fragments

F
ps

Figure 11: Frame rate versus the number of lights. The dashed line corresponds with deferred shading
and the continuous line corresponds with traditional shading.

11



5.3 Influence range of light source

Observing the graphs from the previous tests, we see a significant difference between lights
with local influence (spot lights and point lights with local influence) and lights with global
influence. The final test will measure the frame rate versus the influence range of a light
source. We start with a number of point lights with a small influence radius and gradually
increase their influence radius.

Initially, the point lights have a relatively small influence radius of size 10 (in object
space). We increase the influence radius in ten steps in such a way that the light’s final
influence radius affects almost all the objects in the scene. An influence radius of size 110
affects almost all objects in the scene, therefore we will add 11 to the influence radius each
step.

We make the assumption that five lights is a reasonable number of lights. The results are
shown in Figure 12. The second test (comparing frame rate with scene complexity) was more
appropriate for observing the scaling of the two shading techniques and not for comparing
the frame rates with each other. The same reason for doing that also holds for this test.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

Phong illumination
5 point lights

Size of influence radii

F
ps

0 20 40 60 80 100 120
0

10

20

30

40

50

60

Blinn-Phong illumination
5 point lights

Size of influence radii

F
ps

0 20 40 60 80 100 120
0

10

20

30

40

50

60

Cook-Torrance illumination
5 point lights

Size of influence radii

F
ps

0 20 40 60 80 100 120
0

10

20

30

40

50

60

Gooch illumination
5 point lights

Size of influence radii

F
ps

Figure 12: Frame rate versus the influence radii of five point lights. The dashed line corresponds with
deferred shading and the continuous line corresponds with traditional shading.

6 Discussion

The test in which the two shading techniques differ most, is the test which changes the
number of lights and the lights having local influence, i.e. spot lights and point lights with
local influence. The most remarkable observation here, is the relative insensitivity of deferred
shading to the number of lights compared to traditional shading. The scaling of traditional

12



shading shows an exponential decay with all illumination models and types of light. If we take
a closer look to Phong illumination and point lights with local influence, then deferred shading
shows a more or less linear decay. With the first ten lights, traditional shading’s frame rate
drops with 6.5 fps for each light, against 0.35 fps for each light with deferred shading. From
20 to 50 lights, both shading techniques show roughly a similar decay in frame rate for each
added light. However, by then traditional shading has reached a relatively low frame rate.
The reason for this scaling is that the G-buffer prevents that shading is performed on occluded
objects, and more lights means a higher probability of spending shading computations on
occluded objects. Deferred shading starts with a lower frame rate than traditional shading,
which comes from the cost of constructing the G-buffer. With less than six lights, the
cost of constructing the G-buffer does not outweigh the benefits it can give, using Phong
illumination and point lights with local influence. With spot lights and point lights with
global influence, this is three lights and seven lights respectively. Deferred shading does not
have a noticeable advantage over traditional shading with lights having a global influence.
Both shading techniques show an exponential decay, with deferred shading starting with a
lower frame rate. The global influence causes many accesses of the G-buffer, which seem to
limit deferred shading significantly.

The tests which measure frame rate with respect to the number of fragments have two
things in common, i.e. they all show a linear decay and they all have a sudden drop in
frame rate around 2.5 · 106 fragments. The linear decay is a consequence of the application
being bound by the number of fragments. So adding more fragments to the scene, lowers
the performance proportionally. The drop around 2.5 · 106 fragments can be explained by
looking more closely to when and how many objects are drawn. Around that point, a number
of objects consisting of many vertices are drawn. Although the application is bound by the
number of fragments, it seems that the number of vertices is not entirely negligible.

The tests which relate frame rate with influence radius, do not reveal unexpected results.
There is a linear decay of frame rate with the influence radius. A larger influence radius
affects more objects and therefore more fragments, this lowers the frame rate proportionally.

Finally, there is one remarkable observation seen in all tests. That is, the relative low
frame rate when performing deferred shading with the Gooch illumination model, whereas
the illumination model is not significantly more expensive than Phong. The formula for
Gooch illumination is as follows:

I = (1 − diffuse)· coolColor + diffuse · warmColor + specular · warmColor.

The term (1 − diffuse)· coolColor might yield a color with a negative RGB-component.
OpenGL clamps color components in the frame buffer between 0 and 1. This becomes a
problem with deferred shading where the frame buffer receives the shading contributions of
each light separately and alpha blending enabled. A negative shading contribution of one light
is clamped to zero, whereas a second light with a positive contribution can be added to that.
This yields a scene which is too bright. The solution is by first rendering to an intermediate
floating-point FBO and then copy the end result from the FBO to the frame buffer. This
solution requires an extra rendering pass, which explains the performance penalty. The test
system runs Linux and testing on a Windows computer with an Nvidia Geforce 8800 GTX
showed no noticeable performance penalty. It seems that graphics divers and/or graphics
card are a factor of influence.

13



7 Future work

In [9] a property regarding the scene is mentioned, which can also be of influence in the
choice between traditional and deferred shading. It is called overdraw and is defined as the
number of fragments passing the depth test divided by the screen area. Deferred shading
shades the absolute minimum of the scene, whereas traditional might shade parts that are
not visible in the final image. Visible parts pass the depth test, therefore it can be interesting
to see how both shading techniques perform and scale with scenes with an increasing amount
of overdraw. It is possible to construct a scene consisting of full-screen quads, where each
full-screen quad denotes an increase of 1 in the amount overdraw. However, performing this
test revealed results that had a number of peculiarities that are inconsistent with the other
tests and to what we would expect from both shading techniques. The scene consisting of
full-screen quads only is probably not an appropriate scene for testing. Having more realistic
scenes, each with a different amount of overdraw, would yield a better test.

What also would be interesting to know is the effect of texture compression. Texture
compression lowers the bandwidth between GPU and video memory and deferred shading
might benefit from this.

Thirdly, the current implementation uses a geometry program to construct a light volume.
With a technique called geometry instancing, it is possible to draw multiple instances of a
3D object with a single draw call. Deferred shading has multiple instances of a light volume,
so this technique might increase its performance.

8 Conclusions

From the results we can observe that both shading techniques have an ideal situation for
their usage. Traditional shading is suited well for the situation when there are not much
more than five lights and the scene complexity is relatively low. Deferred shading is a good
choice for the situation when there are many lights, the lights have a local influence, and the
scene is relatively complex.

The difficulty in choosing arises when the situation does not clearly belong to one of the
two situations above or is unknown. The results show that deferred shading is less sensitive
to the tested conditions than traditional shading. This makes deferred shading a safer choice
when the situation is unknown or not entirely clear.

From a performance perspective, it can be a good idea to use both shading techniques.
In scenes with lights having global influence and relatively few lights having local influence,
we use traditional shading. In scenes with only a few lights having global influence, we
use deferred shading. Combining the two shading techniques in the same scene may not be
beneficial, because the scene then has to be processed twice, resulting in extra rendering
passes.

The research presented in this paper focused on performance of the two shading techniques
without performing application-specific optimizations. Depending on the application, several
optimizations can be performed with both shading techniques. Some optimizations can give
a significant improvement [9] [6]. Besides performance, other reasons can also be of influence
in choosing between traditional or deferred shading. For example, ease of scene management,
how to handle certain effects such as transparency, anti-aliasing, etc.

14



References

[1] Blinn, J.F., Models of Light Reflection for Computer Synthesized Pictures, Proceedings
of SIGGRAPH ’77, p. 192-198, ACM Press, New York, USA, 1977

[2] Cook, R.L. and K.E. Torrance, A Reflectance Model for Computer Graphics, Proceedings
of SIGGRAPH ’81, p. 307-316, ACM Press, New York, USA, 1981

[3] Gooch, A, B. Gooch, P. Shirley, and E. Cohen, A Non-Photorealistic Lighting Model
For Automatic Technical Illustration, Proceedings of SIGGRAPH ’98, p. 447-452, ACM
Press, New York, USA, 1998

[4] Gruber, L., DeShade: A Deferred Shading Frame Work for Complex Lighting,
http://lux.surface.at/masterthesis/paper/Final_thesis_lukasgruber.pdf

[5] Hargreaves, S. and M. Harris, Deferred Shading, http://download.nvidia.com/
developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf

[6] Koonce, R., Deferred Shading in Tabula Rasa, GPU Gems 3, p. 429-457, Addison-Wesley
Professional, 2007

[7] Phong, B.T., Illumination for Computer Generated Pictures, Communications of the
ACM, Volume 18(6), p. 311-317, ACM Press, New York, USA, 1975

[8] Saito, T. and T. Takahashi, Comprehensible Rendering of 3-D Shapes, Proceedings of
SIGGRAPH ’90, p. 197-206, ACM Press, New York, USA, 1990

[9] Shishkovtsov, O., Deferred Shading in S.T.A.L.K.E.R., GPU Gems 2, p. 143-165,
Addison-Wesley Professional, 2005

15


