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A B S T R A C T

Large, high resolution displays and especially tabletop displays can be
used as powerful tools to support co-located collaboration of a group
of people. The differences of interaction on a large display compared
to on a common desktop computer are a fruitful field of work for re-
searchers and developers nowadays. The complexity of both the devel-
opment and the performance of applications for large displays poses
serious limitations for the required user interfaces.

This thesis shows the development and implementation of solutions
to both regain responsive interaction on high resolution displays and
to support developers build applications for such displays. Success-
ful ideas from computer graphics and selected aspects from swarm
intelligence form the basis for a different approach for designing in-
teraction. Centralized, complex user interface control is replaced by a
concept for an indirect and localized way to organize interfaces via
buffers. This novel and powerful concept is integrated into the buffer
framework, a modular software framework architecture that is built on
best practices from software engineering, such as object-oriented de-
sign patterns. This provides developers with access to a framework
that both increases the performance of applications for high resolution
displays and supports their overall development process.

Finally, the evaluation of these concepts and their implementation
shows their superior performance in comparison to an existing proto-
type application. This success emphasizes that the framework archi-
tecture presented in this thesis will be a good foundation upon which
to build future software.
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Z U S A M M E N FA S S U N G

Große, hochauflösende Anzeigegeräte – insbesondere horizontal aus-
gerichtete in Form von Tischen – bieten wertvolle Möglichkeiten zur
gemeinsamen Zusammenarbeit von mehreren Personen. Die starken
Unterschiede zwischen der Interaktion auf großen Anzeigegeräten und
der auf herkömmlichen Computern stellen Forscher und Entwickler
vor große Herausforderungen. Dadurch treten jedoch sowohl bei der
Leistung als auch bei der Entwicklung von Anwendungen für solche
Systeme Komplexitäten auf, die die Möglichkeiten der zu entwickeln-
den Benutzeroberflächen stark einschränken.

Diese Arbeit stellt die Entwicklung und Implementierung von Hilfs-
mitteln vor, mit deren Hilfe leistungsfähige Interaktion möglich ist und
die außerdem den Entwicklungsprozess von Anwendungen für große
Anzeigegeräte unterstützt. Erfolgreiche Ideen aus der Computergra-
phik und ausgewählte Konzepte der Schwarmintelligenz bilden die
Grundlage für ein neues Design von Benutzeroberflächen. Die zentra-
le und komplexe Handhabung von Benutzeroberflächen wird durch
einen indirekten und lokalen Ansatz ersetzt, der Oberflächen mit Hil-
fe von Puffern organisiert. Dieses mächtige und neuartige Konzept
wird innerhalb des Buffer Frameworks zusammengefasst. Es handelt
sich hierbei um eine modulare Software-Architektur, die von erfolg-
reichen Konzepten aus der Softwaretechnik, wie objektorientierten Ge-
staltungsmustern, unterstützt wird. Dadurch erhalten Entwickler Zu-
gang zu einem Rahmenwerk, das sowohl die Leistung von Anwen-
dungen für hochauflösende Anzeigegeräte steigert, als auch ihren Ent-
wicklungsprozess insgesamt unterstützt.

Die Evaluierung dieser Konzepte und der Vergleich ihrer Imple-
mentierung mit einer bestehenden prototypischen Anwendung zeigt
deutlich ihre überlegene Leistung. Dieser Erfolg betont noch einmal
explizit, dass die in dieser Arbeit vorgestellte Software-Architektur ei-
ne gute Grundlage für die Entwicklung zukünftiger Anwendungen
bietet.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [24]
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1I N T R O D U C T I O N

Social interaction is an important factor in both our private and work
life. Especially in many work scenarios, co-workers interact with each
other to complete their tasks [37]. However, although collaboration
makes work more satisfying and more productive [50], modern desk-
top computers do not support co-located collaboration sufficiently.
They are usually designed as they were thirty years ago for a single
person sitting in front of one or more displays, using one keyboard
and one mouse. Thus, both research and commercial interest in large
displays is increasing as these displays offer a variety of different possi-
bilities due to their characteristics, which include enabling a collective
experience of concurrent multi-user interaction and an unconstrained
movement in the perimeter of the display [18].

Figure 1. Co-located collaboration of
several people on a tabletop
display [12, 57].

Horizontally oriented large
displays—tabletop displays—are
motivated by the fact that tradi-
tional tables are a powerful and
common tool for co-located col-
laboration [39]. Digital counter-
parts could finally bridge the gap
between the electronic and the
physical world on our desktops.
Due to the size and the align-
ment of large displays, interac-
tion becomes very different com-
pared to that on desktop com-
puters. Issues such as orien-
tation arise through the unique
point of view of each user, the
size makes it sometimes hard or uncomfortable to reach objects, and
user territories as on traditional tables have to be considered as well.
This requires dedicated software featuring new interaction metaphors
and makes it inefficient just to run desktop software on these displays.

1.1 motivation

Applications for large displays need to provide responsive interaction
because the response time of an application has to be appropriate for
the users’ tasks [50, page 367]. In this case, the response time needs
to resemble that of a traditional table, thus, it has to be immediate to
fully utilize the table concept and to support co-located collaboration
best.

As the response time of interaction depends on the overall perfor-
mance of the application, it is important to increase the performance of
a system in general. Several factors affect performance and, therefore,
have to be addressed.
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2 introduction

A serious issue is the complexity of the user interface, especially
how it is organized. At the moment, the components of the interface
control the visualized content of an application in a global and active
way. Due to the organizational complexity, this affects the application
seriously, e. g., if the number of visualized objects is increased.

Figure 2. Dedicated interaction meta-
phors for a tabletop display
[21].

An additional decrease in per-
formance results from the much
higher resolution on large dis-
plays. Many more pixels than
on desktop computers have to
be controlled and this decrease
cannot be addressed entirely by
waiting for newer and better
hardware support.

Co-located collaboration can
also have an effect on the perfor-
mance as usually multiple con-
current inputs have to be pro-
cessed.

Another big issue in this re-
search community is the lack of

support for developing applications for large displays. Researchers
and developers usually build applications from scratch, e. g., each time
they design and evaluate new interaction metaphors. This binds valu-
able resources for tedious programming tasks and makes it often hard
to reuse successful solutions.

1.2 results

This thesis shows the development and implementation of solutions to
both regain responsive interaction on high resolution displays and to
support developers build applications for such displays.

Figure 3. Example application of the
buffer framework.

Successful ideas from com-
puter graphics and selected as-
pects from swarm intelligence
form the basis for a different ap-
proach for designing interaction.
Centralized, complex user inter-
face control is replaced by a con-
cept for an indirect and local-
ized way to organize interfaces
via buffers.

This novel and powerful con-
cept is integrated into a modu-
lar software framework architec-
ture that is built on best practices
from software engineering, such
as object-oriented design patterns.

This provides developers with access to a buffer framework that both
increases the performance of applications for high resolution displays
and supports their overall development process.
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Finally, the evaluation of these concepts and their implementation
shows their superior performance in comparison to an existing proto-
type application. This success emphasizes that the framework archi-
tecture presented in this thesis will be a good foundation upon which
to build future software.

1.3 organization

The thesis is structured as follows:

chapter 2 introduces the reader to large displays in general and es-
pecially tabletop displays. It shows how large displays are dif-
ferent to desktop computers and what kinds of interaction meta-
phors have been developed so far. This and the presentation of
important concepts from other research areas provide necessary
background information for the following chapters. By pointing
out and analyzing particular problems with software for large
displays, this chapter also lays the foundation for the developed
concepts of this thesis.

chapter 3 describes the developed solutions to the problems ex-
plained in the previous chapter. Starting with a solution outline,
a buffer concept is introduced and refined to show how inter-
action can be realized efficiently and in new ways using ideas
from computer graphics and swarm intelligence. Utilizing this
new concept, a software architecture is developed using impor-
tant concepts from software engineering, mainly design patterns.
The underlying ideas and modules are presented and discussed
to reveal advantages and disadvantages and to justify certain de-
sign decisions.

chapter 4 shows that the solutions presented in the preceding chap-
ters in a rather abstract way can be realized in program code.
Important details about optimizing the rendering process and
under which circumstances hardware acceleration has to be em-
ployed for buffers is discussed.

chapter 5 has a critical look at the results of the thesis and how they
were developed. For this, the work process is investigated and
test series compare a standard prototype for interaction meta-
phors with an application built on the buffer framework concern-
ing their performance. In addition, the quality of the developed
software architecture is discussed.

chapter 6 draws conclusions from the developed results and their
evaluation. A selection of open and worthwhile questions is pro-
vided to give ideas and suggestions for further research based
on the findings of this thesis. Personal remarks by the author
conclude the chapter and the thesis.





2R E L AT E D W O R K A N D A N A LY S I S

This chapter introduces the reader to large displays, especially tabletop
displays, and points out what different kinds of technology are being
researched. Furthermore, it shows why the interaction possibilities on
tables are so fundamentally different from the ones used for common
desktop computers. The motivation for this thesis’ work is developed
by an analysis of two major problems that arise with computer applica-
tions for large displays and their development. The chapter concludes
with an overview of related ideas that are important for the solutions
presented in the next chapter.

2.1 introduction to large displays

In this section, an introduction to large displays is given. It is explained
why large displays are a worthwhile area for research and where cur-
rent technological issues are. After a general overview, tabletop dis-
plays in particular are discussed and one of their promising applica-
tion areas is presented.

2.1.1 Motivation

Today’s world is full of computers in many different forms being
present in many different areas of our lives. Many—even most—work
places have become unimaginable without personal computers provid-
ing access to information and communication, e. g., via the world wide
web, or without many different kinds of domain specific programs.

Figure 4. The Alto personal
computer [65].

Since the Alto, the world’s first per-
sonal computer developed at Xerox
PARC in the 1970s, not much has
changed: usually, there is still a single
person sitting in front of the computer,
using a single mouse and keyboard to
interact with the machine [54].

However, social interaction plays an
important role in our daily life and
many kinds of work involve a group
of several people interacting with each
other, for example, by the means
of natural and man-made objects [37,
page 20]. The goals and results of cooperation can best be described
as Shneiderman does: collaboration makes work more satisfying and
more productive [50, page 479]. With decreasing costs for hardware
but increasing costs for integrating new technology and the procedures
to use it into work places [37, page 21], enhancing the interaction pos-
sibilities of groups of people gets more and more important.
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6 related work and analysis

These important insights about human working habits and the grow-
ing interest in understanding and improving these by means of com-
puters created the research area of Computer Supported Cooperative
Work (CSCW). While one major approach of CSCW sees many oppor-
tunities in remote collaboration, e. g., by networked computers, there
are other ways that were neglected in the beginning but proved to
be quite fruitful later on. One of the other approaches investigates
the rather natural way of co-located collaboration. It introduces a new
computer paradigm called Single Display Groupware (SDG) and aims
at exploring ways and related technologies that improve group work
and interaction [54]. One fast growing area of research to achieve this
goal are large interactive displays. Large displays support collaboration
of groups by enabling more fluent interaction on a large interaction
space [39].

An advantage over remote collaboration is that such computer-me-
diated communication over distances is considered to be impoverished
compared to personal and face-to-face communication [37, pages 178–
182]. On the other hand, also without technology-mediation, group
communication is different to paired communication, as issues such
as turn-taking etc. arise. This has to be reflected by the developed
technology and new social protocols for compensation are necessary.
The field of Human-Computer Interaction (HCI) researches ways to
solve these problems. It is therefore tightly linked to large displays as
it supports and enables further applications of these kinds of displays.

This section showed that collaboration is an essential part of our
lives, which is not sufficiently supported by commonly available and
used technology. In this context, large displays are a promising area of
research for they offer ways for co-located collaboration. To use them
to their full potential, other research areas such as CSCW and HCI offer
existing and develop new methods.

2.1.2 Technology

Although there are commercial products in the field of large displays,
there is still a lot of research necessary to advance the technology [28].
Research on large displays aims at improving the necessary hardware
and making it affordable in the long run. When talking about costs,
also the construction and the maintenance of the technology have to
be considered. And because potential applications of such displays are
seen in information, art, and entertainment, affordable solutions and
alternatives are big research issues before having large displays ready
for the mass-market.

Despite the on-going research, there are common attributes of the
different systems. Hachet and Guitton [18] state the characteristics of
large display systems and their effects as the following:

• Large size of the display which results in an individual point of
view for each user and which is usually different from the cam-
era point of view.

• Collective experiment as a group, in which multi-user and concur-
rent interaction takes place.

• Unconstrained movements in the perimeter of the display which is
not hindered by devices or cables.



2.1 introduction to large displays 7

• Visualization of the real environment, where co-workers, equipment,
and input devices (such as the own hands) are still visible. Other
approaches, like, virtual reality can make the user feel uncom-
fortable when disconnecting her from a well-known environ-
ment.

At the moment, a major technological limitation of large displays
is still the need for high quality imagery [6]. This is especially an
issue if users get very close to the display. A current solution to this
is generating wall-sized displays by tiling multiple projectors to form
one large, single virtual image (cf. Figure 5), as opposed to using only
a single projector with a rather limited resolution quality. Using this
insight, another characteristic can be added to be above list:

• High number of pixels from having high resolutions or from tiling
several displays of medium resolution. The number of pixels
can be significantly higher than on regular desktop computers
and eventually leads to technical issues, such as performance
problems due to the higher workload.

But there are not only common attributes: large displays vary in
several dimensions such as size, orientation, shape, etc. The orientation
dimension can be used to categorize them into two different types, as
shown in Figure 7 on page 10. Namely, these types are:

• Wall displays.

• Tabletop displays.

Nearly all commercially available displays are designed to be used
in a vertical orientation as wall displays. This usually implies a white-
board-kind of interaction, where a person is using the display for pre-
sentation purposes in front of a group. Typical interaction consists
of the presenter touching the screen and by this simulating a mouse
click, e. g., to proceed to the next slide. But as outlined above, a ma-
jor goal and advantage of large displays is their capability to facilitate
co-located group collaboration. Using such a display mainly for pre-
sentation purposes in a vertically oriented way can be unnatural and

Figure 5. Interaction on a multi-projector large-scale wall display [6].
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uncomfortable, because it neglects more natural and traditional collab-
orative possibilities, e. g., provided by tables [39].

Tabletop displays provide users with a similar appearance like that
of a traditional table while adding digital display capabilities. Because
of the importance of tabletop displays to support collaborative work
and because of their powerful possibilities for new types of interaction,
they are discussed in more detail in the next section.

Having looked at the technological aspects of large displays, it be-
came clear that the hardware is still too expensive to make the tech-
nology available for the mass-market. Although large displays share a
set of common characteristics, such as offering a collective experience
to users and offering a very high number of pixels. Large displays are
usually divided into two classes, depending on their orientation. From
these two classes, tabletop displays are considered to facilitate and to
improve co-located collaborative work.

2.1.3 Tabletop Displays

As already pointed out, a conventional way for a co-located group to
collaborate is to sit around a physical table. People communicate and
interact with each other by and with the help of objects on such a table
[39]. The usual way of organizing work in a contemporary workplace
is to divide it into interaction with the computer and into work with
actual physical objects. People are therefore moving between two dif-
ferent worlds:

• The electronic world, the computer workstation.

• The physical world, the “real” desk.

Figure 6. The Digital Desk [64].

This can pictorially be described as
“paper pushing” versus “pixel push-
ing” [64]. Each world has its own spe-
cial set of advantages and disadvan-
tages. For example, physical interac-
tions are deeply embedded into humans
and have a natural and familiar feel-
ing to them, which led to the introduc-
tion of the classical desktop metaphor.
However, this metaphor and the classi-
cal desktop computer do not effectively
support co-located, multi-user collabo-
ration [54].

These insights led Wellner [64] as one
of the first to describe the concept of
tabletop displays in 1993. His work
consisted of building the Digital Desk, a
combination of a real physical desk with
projected electronic images, as shown in
Figure 6.

There is still a lot of research to be done in this area, as several basic
things are still unknown. For example, it is still a research question



2.1 introduction to large displays 9

what the most appropriate tabletop system would be like [46]. Thus,
due to the lack of a standardized system, most researchers design and
build their own custom-made tables to investigate the HCI issues of
tables.

For this, hardware configuration ideas from tiled-projector, high res-
olution walls are borrowed and transferred into horizontal orientation.
At the University of Calgary a SMART Technologies DViT-board [58]
was transformed into a table, providing a five by four feet (about 1.52

by 1.22 meters) table with a resolution of 2,048 by 1,280 pixels (a total
of about 2.6 million pixels) [44]. More recent and specially engineered
table-prototypes are even capable of resolutions up to 2,800 by 2,100

pixels (a total of about 5.9 million pixels) on the same table size as the
one mentioned above, which is a great technological advance. Those
tables, which are used for this thesis, are shown in Figure 8.

Due to the open question of table configuration, tables can be cate-
gorized according to different criteria [44]:

• Technology/media used:

– Top-projected computer displays on traditional tables [48]
using projectors and mirrors.

– Rear-projected tabletop displays [11] also use projectors and
mirrors, but have this equipment installed beneath the table
surface.

– Self-illuminating displays [38, 53] display the screen by them-
selves.

• Input devices1 used: mice, pens, styli and direct touch, or tracked
physical devices. For tables in general, it would be a tremendous
step forward to enable the possibility of richer, multi-handed,
and multi-user input on large displays/ tabletop displays, but
this is yet another challenging research area [28].

According to Scott et al. [44], a more general classification scheme
is to divide tables into four application classes:

• Digital desks [64], which are designed to replace traditional work-
place desks by a combination of paper-based and digital media,
as shown in Figure 6.

• Workbenches [11] provide interaction with digital media via a
semi-immersive, virtual reality environment which is projected
onto a table surface.

• Drafting tables [8] are individually used digital displays to replace
drawing and drafting tables of, e. g., architects and graphic de-
signers.

• Collaboration tables [47, 53] are designed for supporting collab-
oration of co-located people. Examples for such collaboration
activities are planning, design etc.

Examples for these classes are shown in Figure 9.

1 Input device: a device that together with appropriate software transforms user data into
computer-processable data [37, page 235].
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(a) i-land Dynawall [55]. (b) MERL’s DiamondTouch table [12,
57].

Figure 7. Walls and tables.

(a) Top-projected custom-made table. (b) Rear-projected table prototype by
SMART Technologies [58].

Figure 8. Tabletop displays at the University of Calgary.

(a) Responsive workbench [11]. (b) Drafting table [8].

(c) Personal Digital Historian collabo-
rative table [47].

(d) The Pond collaborative table [53].

Figure 9. Examples for the application classes of tabletop displays.
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The application area of this thesis’ research is in the above-mentioned
and strongly related fields of Human-Computer Interaction (HCI), Sin-
gle Display Groupware (SDG), and Computer Supported Cooperative
Work (CSCW). The focus is on collaboration tables, because they have a
great potential in enabling and supporting collaborative work. There-
fore, a variety of commercial scenarios in corporate and other contexts
can be thought of, promising this field of research many useful prac-
tical applications in the future. One of these and its possible effects is
described in the following section. However, the general, underlying
concepts and ideas developed in this thesis can also be transferred to
other table types and large displays in general.

2.1.4 Computer-Augmented Tabletop Games

Games have been used by mankind for thousands of years both for en-
tertainment and education. The computer and video games2 industry
as well as its popularity as a whole have been growing steadily during
the last years. By this, computer games have become a very big global
business [66]. They have been a major drive behind technological ad-
vancements such as hardware acceleration for graphics; they also have
been applying and motivating new ideas in HCI, or making personal
computers and consoles in general more affordable and more popular;
this also led to severe cultural impacts as described by Kushner [29].

Despite the advent of the digital age and digital games, traditional
board games are still very popular and successful. This is due to a
number of advantages over computer games; however, there are also
disadvantages as mentioned by Magerkurth et al. [30, 31] and shown
in Table 1. Computer games seem just to be at the other end of the
spectrum as they offer dynamical game worlds with complex sets of
rules and multi-sensual stimulation. But usually they are lacking so-
cial interaction—at least co-located interaction—as human-to-human
interaction is mediated by a computer screen in most of the numerous
multiplayer games available.

advantages disadvantages

⊕ Strong social situations and
events by direct interaction and
both verbal and non-verbal com-
munication between players.

	 Purely physical game nature
limits the domain of possible
games.

⊕ Physical playing pieces which
feel good, could be collectibles
etc.

	 Establishes sometimes awk-
ward interaction patterns.

Table 1. Advantages and disadvantages of traditional board games.

2 In the following, the terms “computer game” and “video game” are used synonymously.
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This leads to the desire for some kind of computer game experience
that is interwoven with the real world. There are different approaches
to this being investigated [34, 35], and one of these are computer-
augmented tabletop games. These build on the success of old-fashioned
board games and modern computer games, combine emotionally in-
volving strong social situations with the capabilities of large displays,
and offer a hybrid form of entertainment and/or education. This is
achieved by using the computer for the virtual game logic, to track
the game states, to provide atmospheric visual and audio assets, or to
take an active role as a participant. The human players still preserve
their social interactions by gathering around a table and by having the
opportunity of engaging physical acts such as the rolling of dice and
the touching of game pieces [4].

Figure 10. STARS game setup [31].

An experimental system which
implements these ideas is the
STARS platform [30, 31]. It uses
an interactive table with a touch-
sensitive display for the game
board. Physical playing pieces
serve as a tangible interface sim-
ilar to a traditional board game.
An overhead camera tracks these
pieces and the players’ positions
(their hands). Wireless technol-
ogy is used to detect other game
items such as walls. The setup
avoids any classical computer interfaces like mice, keyboards etc. at
all. Figures 10 and 11 show the experimental game KnightMage during
game play and its setup.

If we look at the history of personal computers and how its evolution
is still tightly coupled with gaming requirements, the wish for a similar
development in the area of large displays and tables sounds reason-
able. This might contribute to motivating further research, building
business models based on tabletops or at least increase the public’s
awareness and acceptance of this new technology.

Figure 11. STARS’ made KnightMage during game play [30].
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2.2 tabletop interaction

As we have seen above, one research challenge for large displays and
especially tables is hardware. The goal is to provide affordable, high-
resolution displays that allow multiple concurrent input.

What is at least as important, is the need for appropriate interac-
tion metaphors. Many traditional desktop user interfaces and known
techniques are not applicable to large displays. The different types of
display and input media change how users interact with and relate
to the digital information provided, as Kurtenbach and Fitzmaurice
[28] pointed out. The challenge in this area is therefore one of design,
namely, how to design the interactions with the tabletop display [46].
Several of the interaction challenges have been identified and investi-
gated by a variety of researchers [6, 26, 44]:

• Orientation, with users having different views on table objects.

• Territoriality, as traditional tables have different spaces with spe-
cial uses associated with them.

• Other challenges include topics such as

– Remote reaching, because the interaction space might be huge
and drag-and-drop could mean to walk several meters, as
in Figure 5 on page 7 for example.

– Sharing of objects, because users need to exchange data dur-
ing collaboration.

– Space and layout management, as data may be outside of the
user’s focus and needs different layout techniques than over-
lapping windows on a regular computer desktop.

– Command input, to overcome, e. g., the lack of a keyboard.

The following sections show a selection of these challenges in more
detail and describe researched solutions to them. They have been cho-
sen due to their importance and the quality of the developed solution.
This information is used later on in this thesis to show what differ-
ent kinds of interaction metaphors have to be supported by tabletop
software.

2.2.1 Orientation

When people gather around a physical table or tabletop display for
collaboration, it is very likely most of the collaborators have a different
view on the presented objects. One of the tasks of interaction is to
handle these different views, namely, to solve the issue of the objects’
orientation.

There are different approaches to this, as shown by Kruger et al.
[26, 27]:

• Fixed orientation: For this it is assumed, that all users sit side-by-
side at the table and, thus, only one fixed orientation is necessary.

• Multiple copies: Each user has her own copy of tabletop objects.
These may then be oriented in any way the individual user likes.
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• Person-based automatic orientation: This idea orients objects to-
wards the user who has most recently interacted with the object.

• Environment-based automatic orientation: Because user positions
may not be trackable at all times, this approach orients objects
based on their position on the table or within the tabletop envi-
ronment.

• Manual orientation: User have to and can rotate each item manu-
ally and decide how it is oriented.

The problem of orientation is very difficult and so far there is no real
basis on how to inform a decision about orienting a particular object
on the tabletop display.

An important step forward was the discovery by Kruger et al. that
orientation has three distinct roles in collaboration:

1. Comprehension, to ease reading or to help doing tasks.

2. Communication independent of speech, to communicate an inten-
tion.

3. Coordination, where orientation is used as a cue for personal
spaces or the ownership of an object.

Kruger et al. developed a technique named Rotate’N Translate (RNT)
to enable a fluent change of orientation. RNT allows the user to simul-
taneously rotate and translate an object by a single fluent motion. At
the same time making it platform and technology independent (e. g.,
from special input devices). For this, a single 2d contact point is used:
together with a movement vector from there and pseudo-physics that
simulate moving the object against friction, the object is rotated and
translated at the same time. Figure 12 illustrates this further and shows
some examples of moving an object with this method.

From this can be concluded, that it is a crucial part of an interactive
tabletop display to have an interaction metaphor addressing orienta-
tion issues.

2.2.2 Territoriality

It is a natural habit for humans to do space partitioning and establish-
ing territories when working on traditional tables or tabletop displays
[45]. These territories have different purposes and may be for personal
items, for sharing objects with the whole group, or for storing some-
thing until it is needed again later. Thus, social interactions between
people working together are mediated through laying claim to a cer-
tain space. This enables a transition between personal and group work
and concurrent interaction. In addition, social interactions and tasks
can be coordinated by providing shared access to objects and making
them transferable between special spaces [36]. Such spaces have spa-
tial properties, e. g., size, shape, and location as well as functionality,
such as reserving an area or task resources.

These findings led to the idea of Storage Bins, developed by Scott
et al. [44], which was also motivated by the so-called “pile-metaphor”
[32] found on physical desktops. The underlying concept of the pile-
metaphor is the insight that users like to group items spatially to or-
ganize them. Such an organization through creating a pile of objects is
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not reflected by the common desktop metaphor of a hierarchical tree
structure.

A Storage Bin providing this functionality and reflecting the territo-
riality aspect of tables is shown in Figure 13 on and has the following
attributes:

• Container, with capabilities of adding and removing items by
users.

• Resizable, to adapt to different amounts of stored objects.

• Mobility, to move all stored objects easily around on the table.

• Shrinking of contained objects to conserve screen space.

In order to have tabletop displays with rich user interfaces that facili-
tate collaborative work, the above-mentioned different types of territo-
ries have to be supported. Borrowing ideas from traditional tables and
enhancing these with possibilities such as the shrinking of contained
objects make metaphors like the Storage Bin intuitive and natural ways
to organize work items.

2.2.3 More Challenges

Apart from the problems and solutions described in the previous sec-
tions we conclude this chain of thought with two more.

sharing and reaching: Due to the size of the display, passing
objects to other people or reaching remote objects can be hard. The
table interface should support an easy handling of these issues.

Hinrichs et al. [20] came up with the idea of Interface Currents, in-
spired by the concept of conveyor belts known from Sushi restaurants
or airports. An Interface Current consists of a continuous onward
movement of objects at a certain location with a certain speed and is
within boundaries, as shown in Figure 14.

A similar approach was developed by Shen et al. [47] with a circu-
lar display metaphor for the Personal Digital Historian to share and
display items, shown in Figure 9(c).

Such interaction metaphors become even more important as the size
of tabletop displays increases with advancing technology. Although
the main focus of these metaphors is on sharing and reaching, they
are strongly related to territoriality as they can also provide different
kinds of storage areas for the user or the group.

command input: Command menus known from desktop com-
puters can also be useful on large displays. Especially context menus
are of a high value due to the great distance a fixed menu can be away.
Guimbretière and Winograd [17] developed the idea of FlowMenu, a
special kind of context menu system suitable for large displays. Flow-
Menu offers a radial selection of menu items, with the input process
resembling shorthand writing. This enables command, text, and data
entry on a display using nothing more than a pen-based device. Fig-
ure 15 shows an example of using FlowMenu.
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(a) Movement that causes an upward
translation and counterclockwise
rotation.

(b) Upward translation without rota-
tion by touching the translation-
only area (indicated by the circle).

Figure 12. RNT examples [27]. The black dot and the black arrow depict the
user’s touchpoint and movement vector.

Figure 13. Storing images in a Storage Bin [44].

Figure 14. Interface Currents on a tabletop display [21].

(a) First-level menu, se-
lecting “Item”.

(b) Second-level menu,
selecting “Zoom”.

(c) Bottom-level menu to
select the zoom value.
The current value is
shown in center.

Figure 15. Steps of a FlowMenu context menu for zooming [17].
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2.3 technical complexity

Hardware research for large displays advances, producing displays
with higher resolutions and, thus, more pixels to display. In the re-
search branch of interaction metaphors, researchers come up with new
interaction techniques for tabletop displays. What is affected by and
affects both of these areas is the development of actual software for
large displays. The technical problems that arise when implementing
applications can be divided into two areas that are described in the
following two sections.

2.3.1 Performance

Large displays and therefore also tabletop displays visualize informa-
tion to support collaboration. Thus, they have to be considered being
extensions of interactive media from the desktop domain to other in-
put and output media.

As were have seen in examples of Section 2.2 and as Isenberg et al.
[22, 23] pointed out, there are two types of entities in interactive sys-
tems:

1. Actual visualization objects that carry the information to be com-
municated.

2. So-called control structures or interface components that guide the
behavior of the visualization objects and that are manipulated by
user interactions.

The Storage Bin solution presented in Section 2.2.2 is a good exam-
ple for this: Visualization objects could be images or textual elements.
An interface component to control such objects could then be the Stor-
age Bin [44], which stores, resizes, and relocates the stored objects.

Realizing this concept with regular methods raises the following
computational limits:

• The number of visualization objects is limited due to the steering
and monitoring by the rather complex and application-specific
interface components.

• The complexity of the interaction between the visualization ob-
jects and the interface components can become very high and
time-consuming.

• Even higher might even be the complexity between several inter-
face components when interacting.

These limitations slow down the whole system which hinders inter-
activity. It is quite a severe problem if timely user interaction is re-
quired, as users prefer shorter response times or at least the response
time should be appropriate for the users’ task [50, page 367].

Although this might be just “problematic” on regular desktop com-
puters, it is definitely a serious issue on large displays due to the huge
amount of pixels. A four by five feet tabletop display with a resolu-
tion of 2,800 by 2,100 pixel has approximately 5.9 million pixels in total.
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Compared to a relatively low amount of 1.3 million pixels on a desktop
machine (at a resolution of 1,280 by 1,024 pixels).

For example, using only one interface component and between 50

and 100 visualization objects (images) the rather intuitive implemen-
tation of the Interface Currents described in Section 2.2.3 [20] yielded
the following measurements:

• 25–30 frames per second on a 1,280 by 2,048 tabletop display.

• 5–10 frames per second on a 2,560 by 2,048 tabletop display.

The tests were conducted on tabletop displays of the Interactions Lab
at the University of Calgary using the free version of FRAPS [56].

While the framerates on the lower resolution table are still suitable
for interaction, the rates on the other one are beyond responsive in-
teraction. With improving technology offering higher resolutions, the
current implementations will probably become obsolete. A potential
solution would be to wait for computer hardware to improve, provid-
ing faster CPUs and graphics cards. However, sophisticated algorithms
and concepts in software might yield even higher gains and also in
less development time. In addition, these solutions would also profit
from the hardware accelerations later on. Thus, improving software
concepts behind the applications is a promising research area for near-
future performance improvements.

2.3.2 Application Development

The second technical difficulty is the actual process of developing ap-
plications for large displays. Software development by itself is a hard
and expensive task, costing time and money, and constitutes still a ris-
ing figure while hardware costs are dropping [52, page 2]. However,
software does not only mean computer programs but includes also
their documentation: the documentation is usually mandatory to suc-
cessfully install, use, develop, and maintain the software and must not
be undervalued.

Software development is even harder if the domain itself of the ap-
plication is not fully understood as it is usually the case with research
prototypes. This is especially true for tabletop displays where appli-
cations are built, e. g., to evaluate new interaction metaphors (cf. Sec-
tion 2.2).

In addition, there are virtually no commercial or industrial high-
end applications for tabletop displays yet and, thus, there is little to no
support in developing such programs. Any kind of support usually
consists of toolkits for highly specialized certain aspects like multiple
concurrent user input, for example, Tse and Greenberg’s SDG Toolkit
[61], or for orientable widgets [49].

Therefore, applications are usually developed from scratch, leading
to a waste of valuable resources in the “mere” process of software de-
velopment. A big issue with this are the high costs and wasted efforts
from the continuous rediscovering and reinvention of core concepts
[42]. These resources are drawn from the main task—which is usually
not software engineering in this area of research—and finally make the
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resulting custom-made applications hard to maintain, hard to reuse,
and difficult to reconstruct for other researchers [61].

At the moment, the important technique of software reuse is poorly
addressed in the field of tabletop displays research. Software reuse is
important for cost reduction but also for the improvement of produc-
tivity and does not simply emerge as a by-product of regular software
development as Sommerville [52, pages 312–318 and 327] pointed out.

Concluding from this, the lack of support for application develop-
ment for tabletop displays might have hindered past research and is
also likely to negatively affect its future.

2.4 miscellaneous concepts

This section gives an introduction to concepts of computer graphics
and software engineering that are related to this thesis. It presents an
overview of important background information, such as buffers and
design patterns. This information is used to lay the reader’s founda-
tion to understand the following chapters better.

2.4.1 Buffers

The personal computer dictionary [33] defines a “buffer” as a tempo-
rary area for storage that is usually located in RAM. Purpose of this is
to provide fast non-harddisk access by the CPU.

Buffers are heavily utilized in computer graphics, such as using
buffering for raster image display technology. There, a buffer stores
what the display controller is going to put on the screen. For this,
the necessary data is stored in a 2d array which is mapped pixel by
pixel to the screen. This array is called a bitmap (one bit per pixel) or
pixmap, if many bits per pixel are stored. To store multiple bits at a
pixel position can have different reasons:

• To provide color information. 24 bits can store about 16 million
different colors.

• To have control information, e. g., for input devices.

• To enable double buffering of two images and, thus, having two
(or multiple) buffers. One image is refreshed on the screen while
the other one is being updated.

The term “framebuffer” denotes the actual buffer memory where the
data is stored and is well-known in computer graphics [14, pages 9–15

and 166]. Advantages of this concept are fast access to the stored data
and easy application of the information to the display, for example,
by raster scan. Disadvantages include the discrete representation of
the buffer data which results in aliasing effects and complexity due to
converting graphical objects to the raster.

Probably one of the most well-known buffers is the z-buffer invented
by Catmull [9] in 1975. This buffer records depth information of an
image in a bitmap. Purpose of this approach is to simplify hidden
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surface removal and thus accelerating image rendering. For this, a z-
buffer value is associated with each pixel of the image to be rendered,
containing the smallest value for the depth z recorded so far. During
rendering, a point is only written to the framebuffer if its depth is less
than its value in the z-buffer.

Due to this rather simple buffer concept, it is independent of the ob-
ject’s representation: be it polygonal, constructive solid geometry, etc.;
which is one of its greatest advantages [63, pages 189–198]. Because of
the simple array data structure used, it is rather simple to implement,
which can be considered a great advantage for application develop-
ment. However, the main disadvantage of z-buffering is the possibly
high memory consumption which depends on how much depth infor-
mation has to be recorded, respectively, how accurate this information
has to be for good rendering results.

Yet another innovative use of the buffer concept was developed by
Saito and Takahashi [40] by introducing geometric buffers (G-buffers).
These are used to speed up the rendering of 3d shapes. For this, the
rendering process is divided into distinct steps:

1. Geometric processes: perspective projection, hidden surface re-
moval, etc.

2. Physical processes: shading, texture mapping, etc.

3. Artificial processes to enhance the image: edge enhancement, line
drawing illustrations, contour lines, hatching, etc.

Rendering acceleration is motivated by the desire to explore different
types of image enhancements (Step 3) without long rendering times
for the different images. To achieve this, G-buffers are used to store
intermediate results of the geometric rendering process (Step 1) per
pixel. Such intermediate results consist of geometric properties such
as depth or normal vector of the visible object. From this result set
stored in 2d, a variety of 3d images featuring different enhancement
techniques can be rendered by using only 2d image processing opera-
tions, thus gaining rendering speed.

As the examples show, buffers can be applied in various contexts
to improve performance and to simplify complex systems. They can
be used to store a variety of properties and enable a focus on local
data awareness as there is a mapping, e. g., between a screen position
and a certain associated buffer position. Furthermore, their simplicity
and 2d data structure support fast access to and modification of stored
information.

However, the general problems of memory consumption and dis-
cretization issues have to be considered and weighed in the application
domain.

2.4.2 Design Patterns

A good tool to design software architectures are design patterns. They
have been part of the programming folklore for many years, in terms
that they make it easier to reuse successful designs and architectures.
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However, design patterns are by no means limited to programming
but were used even earlier in many other fields such as architecture or
languages. The most basic and general definition is [43]:

A design pattern is a recurring successful solution to a common
or standard problem.

Apart from offering a solution to a problem, their greatest advantage
is providing a vocabulary for talking about particular problems.

Here, design patterns are used as object-oriented design patterns3 as
formalized and introduced to computer science by Gamma et al. [16]
in 1995. This step was heavily influenced by Alexander et al.’s [2]
ground-breaking work on pattern languages for architecture, build-
ing, and planning. Actually, Alexander gave a much more precise
definition of “design patterns”; Gabriel and Coplien [15] suggest the
following, more Alexander-conform, definition for design patterns in
software development:

Each pattern is a three-part rule, which expresses a relation be-
tween a certain context, a certain system of forces which occurs
repeatedly in that context, and a certain software configuration
which allows these forces to resolve themselves.

An important effect of design patterns is the bridging of abstractions
in object-oriented analysis and design with the specific realizations of
these, which is an advantage for implementation and maintenance of
software. Therefore, they are not mere theoretical constructs but have
practical value and impact. Schmidt et al. [43] attribute the following
to design patterns:

• The success of a solution is more important than its novelty.

• The information communicated by a pattern is clear and under-
standable.

• Good design patterns arise from practical experience and have
succeeded many times in the past.

To describe a design pattern formally, Gamma et al. [16, page 3]
define its following essential elements:

• Name, to describe a problem, its solution etc. in a word or two. It
is the basis to build a common design vocabulary, thus enhancing
communication.

• Problem, explains in what scenario to apply the pattern.

• Solution, explains the design that solves the problem. This in-
cludes relationships, responsibilities, and collaborations of used
components.

• Consequences, describe both the positive and the negative effects
of the pattern. Especially the trade-offs are very valuable for
evaluating the usage of a pattern in a certain situation. This
is important in case an alternative might be more suitable in a
scenario.

3 In the following for simplification just called “design patterns”.
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The connection to this thesis is the very strong relationship between
design patterns and frameworks. Usually, object-oriented frameworks
embody many patterns, but this is not true vice versa [16, 43]. The
formalized and clear structure of describing design patterns can be
used to document the form and the contents of frameworks.

These benefits are used in this thesis to make the software archi-
tecture better accessible and understandable by users. The following
paragraphs give a brief and informal overview of two used patterns
[16], as these are heavily utilized later on. Understanding these pat-
terns is crucial for understanding the solutions presented in Chapters 3

and 4.

composite pattern : Applications that use simple objects and more
complex objects built from the simpler ones face the problem of a
rather complicated implementation. At least, this is the case if the
objects have to be distinguished from each other by the program while
the user usually treats them identically. An example would be a dia-
gram which consists of text, geometric forms, etc. Composition resem-
bles a tree structure as shown in Figure 16.

Diagram

Line RectangleDiagram

Line Text

Figure 16. Composite tree (after [16, page 164]).

The idea of the Composite pattern is to provide one abstract class for
both simple and complex objects—for both primitives and containers.
By this, application code is able to ignore the difference between these
two types.

The resulting classes and their collaborations look as depicted in
Figure 17 and can be described as follows:

• Component, provides an unifying interface to handle composed
objects.

• Application, works with composed objects by the Component in-
terface.

• Leaf, implements the behavior for the primitive objects, which do
not have children.

• Composite, implements the behavior for components with chil-
dren and handles child-related operations.

The consequence of this idea is a class hierarchy of primitive and
complex objects, where primitives can be composed into more com-
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plex objects and these into even more complex ones. From a frame-
work point of view, it makes the integration of new components very
simple as they work automatically with existing application code and
structures due to subclassing from the abstract interface. Last but not
least, application code is easier to develop because it does not have to
care about the object type; all objects are treated the same by the appli-
cation and special cases are handled by the classes of the Composite
pattern.

To create composed objects, the Builder pattern is often used.

builder pattern : This pattern might seem rather complicated and
confusing when encountered the first time, but the power and advan-
tages it provides after understanding it are well worth the effort.

The basic idea is to create a variety of different objects (such as a
composite object) from one single object, which could be a control
object within the main application. Before we come to an example
clarifying how this pattern works, we have to look at the participating
classes and their structure (cf. Figure 18):

• Product, a complex object that is being created.

• Builder, an abstract interface with methods for creating separate
parts of the Product.

• Concrete Builder, a specific implementation of the abstract inter-
face; it returns the built Product upon request.

• Director, calls the Builder interface to construct special Products.

The UML sequence diagram shown in Figure 19 shows the general steps
of creating a Product. A little example illustrates this further:

• The Product we are interested in is a meal from a fast-food restau-
rant.

• Usually, the components of those meals are quite similar, regard-
less of where you go. This will therefore be our abstract Builder
interface:

– buildBurger()

– buildFries()

– buildSoftDrink()

– buildSundae()

• Now, a Concrete Builder is a specific restaurant and how they
make these parts of your desired meal:

– McHaroldsBuilder

– BoingBoingBurgerBuilder

– MandysBuilder

• Your mind respectively your stomach is the Director, knowing
what different kinds of meals you are interested in, depending
on how hungry you are:
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Component

operation()
add(Component)
remove(Component)
getChild(int)

Application

Leaf

operation()

Composite

operation()
add(Component)
remove(Component)
getChild(int)

children

Figure 17. Composite pattern structure (after [16, page 164]).

Builder

buildPart_A()
buildPart_B()

builder

ConcreteBuilderX

buildPart_A()
buildPart_B()
getResult()

ConcreteBuilderY

buildPart_A()
buildPart_B()
getResult()

Director

constructThis(builder)
constructThat(builder)

ProductX ProductY

Figure 18. Builder pattern structure (after [16, page 98]).

Application aConcreteBuilderX

new ConcreteBuilderX()

aDirector

new Director

constructThis(aConcreteBuilderX) buildPart_A()

buildPart_B()

getResult()

Product

Figure 19. UML sequence diagram for the Builder pattern (after [16, page 99]).
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– hungryMeal(builder)

* builder.buildBurger()

* builder.buildBurger()

* builder.buildFries()

* builder.buildSoftDrink()

* builder.buildSundae()

– snackMeal(builder)

* builder.buildFries()

* builder.buildSoftDrink()

Using this structure, you would first decide where to go for a meal
(choose the Concrete Builder). Then you would order there one of
your meal-combinations you have in mind (create the Director and
call its desired method with the Concrete Builder to build the Product).
From the meal components on your wish-list the restaurant will make
you a hopefully tasty meal (the Director calls interface methods of the
Concrete Builder to build the Product). The restaurant gives the meal
to you after it is prepared (the Concrete Builder returns the Director
and/or the calling application).

Once the pattern is implemented and setup, very few lines of code
can encapsulate powerful and complex processes to create objects.
As for our fast food example above, pseudo-code to get lunch from
McHarold’s yourself looks like this:

myLunch = me.hungryMeal(new McHaroldsBuilder);
// lunch is two burgers, fries, a soft drink, and a sundae �

Or if you send a nice friend to get you a snack from Mandy’s:

mySnack = aNiceFriend.snackMeal(new MandysBuilder);
// snack is fries and a soft drink �
Consequences of using the Builder pattern are that the internal rep-

resentation of a complex object may vary, as it can be created by differ-
ent Concrete Builders. Users also have very fine control how an object
is created, as different Director methods are possible. Thus, different
fine-tuned Products can be produced using the Builder’s interface. Fi-
nally, this results in the fact, that the code for creation is isolated from
the code that represents the actual object.

Object-oriented design patterns provide both solutions to common
problems and a vocabulary to talk about problems and designs. Their
focus lies on the success of a solution and they come from practical ex-
perience. Good patterns have succeeded many times before. Patterns
are heavily linked to software frameworks, as these usually consist of
several patterns and use patterns for their documentation. For this
thesis, two powerful patterns are particularly important.

• The Composite pattern because it provides ways to simplify ap-
plication code and allows for extensions without affecting exist-
ing code.

• The Builder pattern because it provides high flexibility and sim-
ple interfaces for creating complex objects.

In the following chapters these patterns are used to solve difficult de-
sign problems and to document them.
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2.5 chapter summary

In this chapter we have seen that large displays enable and support
co-located, collaborative work of groups. Despite the currently pre-
dominant vertically oriented displays, horizontal displays relate much
more to traditional and common working devices and have led to the
concept of tabletop displays. Interaction on large displays and espe-
cially on tables is quite different from that on desktop computers and
requires other metaphors than those already available. These meta-
phors are implemented in soft- and hardware to be evaluated.

Large displays introduce severe performance problems to the applica-
tions running on them. This is due to the much higher number of
pixels they offer, to the nature of the visualized objects and how they
are controlled by applications at the moment. An effect of this lack
in performance is the limitation of user interaction caused by the low
frame rate and busy system. The rather intuitive approaches used so
far do not address this performance problem satisfactory and make
more elaborate ideas necessary to regain responsive user interaction.

The second problem discovered is application development for tabletop
displays. The absence of adequate tools makes nearly all application
designers build their programs from scratch, thus wasting valuable
resources which could be used in a better way in other areas of their
projects.

Computer graphics and software engineering offer interesting and
important concepts such as buffers and design patterns that contribute
to solving the problems stated above.
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This chapter first gives a brief overview of this thesis’ solution to the
problems described in the previous chapter. This is followed by de-
tailed descriptions of a buffer concept and the design of a framework
architecture to build tabletop applications.

3.1 solution outline

It was shown in the previous chapter that there are severe limitations
on the research for interaction metaphors and for the development of
tabletop display applications in general. Therefore, there is a need for a
concept that speeds up the performance of tabletop applications and,
thus, enables responsive interaction. There is also the need for soft-
ware that can be used as a foundation to build tabletop applications,
as this simplifies the development process and fosters further research.
This call has also been made in the literature, e. g., by Bezerianos and
Balakrishnan [6].

According to Sommerville, the characteristics of well-engineered soft-
ware are maintainability, efficiency, and an appropriate user interface [52,
pages 4/5]. Thomas and Hunt [59] reduce the criteria for good code
even more to one single underlying quality: flexibility.

The solution proposed by this thesis is the design and the imple-
mentation of a framework to build responsive tabletop applica-
tions.

The term “framework” is used here according to Schmidt and Fayad
[42], meaning an object-oriented, reusable, and semi-complete appli-
cation that can be specialized to produce custom applications. A more
concrete explanation of the term can be found in Gamma et al. [16,
page 26], where they define it as a set of cooperating classes that make
up a reusable design for a specific class of software.

As mentioned, such a framework is usually targeted at a particular
application domain, which puts it in contrast to libraries, especially
those that provide common functionality. For this thesis, the specific
class and application domain of the proposed framework is the devel-
opment of interaction metaphors for tabletop displays.

Heavily influenced by Sommerville, his above mentioned character-
istics have to be addressed:

To address the serious performance issue, buffer ideas as described
in Section 2.4.1 are transferred to interaction issues, developed in more
detail, and incorporated into the framework to use and evaluate their
benefits.

Choosing the framework approach enables the use of the benefits
frameworks are well-known for [42]:

• modularity,

• extensibility, and

• reusability.

27
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Gamma et al. [16, page 27] go even further and see a framework’s
benefits in its focus on design reuse over code reuse. Users should be pro-
gramming to an interface, not an actual implementation. This is also
reflected by the usage suggestion: “reuse the main body of a frame-
work and write the code it calls”. This can be seen to address the issue
of maintainability and flexibility, as maintainable software must offer
the possibility to be extended and reused. In this context, design pat-
terns as introduced in Section 2.4.2 play an important role to achieve
this goal.

To address the issue of the user interface, which can be seen in this
context as the Application Programming Interface (API), we return to
Schmidt and Fayad [42] and the fundamentals of frameworks: Volatile
implementations are encapsulated behind stable interfaces. Compo-
nents are defined in a generic way, so they can be reapplied for new
applications. Furthermore, it is possible and allowed to extend stable
interfaces. This results in frameworks usually providing appropriate
user interfaces.

Of course, a framework also has its drawbacks, which are mainly
connected to its development: developing complex software is known
to be a hard process and developing frameworks is even harder. It re-
quires a wide range of skills in object-oriented analysis and design, im-
plementing, and application programming [42]. For example, reusable
software does not simply emerge as a by-product of regular software
development; it is a special task that needs extra effort to be successful
[52, page 327]. Testing the components of a framework is also hard
as testing is not possible in isolation. Therefore, framework errors are
hard to distinguish from errors in their application. Another aspect
is the integration of multiple frameworks and libraries which has to
be considered during the design phase and is crucial for reusability
and extensibility. Concerning the usage of a framework, it is also a
big issue that it requires effort to learn and understand it. Therefore,
information and documentation about how it works and how to use
it is mandatory [52, page 327], because a framework is just as good as
the people who built it and those who use it [42]. For this, we make
use of the strong relationship between framework documentation and
design patterns as described in Section 2.4.2.

To illustrate how the framework is integrated into a tabletop sys-
tem, Figure 20 depicts how such a system works. At the top, different
kinds of input are fed via the table or other hardware into to the sys-
tem, ranging from multiple touches to colored laser beams etc. At the
bottom, different interaction metaphors are shown, which are imple-
mented by the framework and its API. Both meet at the center in a
specific application that is built using the framework and that runs on
the necessary hardware.

Having these requirements and benefits of the proposed solution in
mind, the undertaking of this thesis must not be considered as just
routine software development. Difficult problems of large displays are
identified and addressed by transferring successful ideas from other
fields. Details on how to solve these problems are presented in a gen-
eral way and are eventually implemented. This implementation en-
ables researchers to benefit from the derived solutions and to reuse
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Tabletop-Interaction

Multiple-Touch Color ...

Win32 Application

Tabletop Display + PC

Currents Storage Bins Rotate’N Translate …

Framework
API

API

Figure 20. Tabletop application scheme.

and extend them for their further needs. We can, therefore, conclude
that this work can be considered as a worthwhile scientific contribu-
tion to the tabletop research community.

3.2 buffer concept

As shown in Section 2.4.1, buffers allow for the possibility to increase
performance and to simplify systems. Motivated by these findings,
this section describes a buffer concept to improve responsive interac-
tion on tabletop displays, addressing the performance issues described
in Section 2.3.1.

First, the general idea is presented to give an introduction to this
novel approach. After that, more details are added to the overall con-
cept to enhance it and to make it work better.

3.2.1 Basic Idea

The described performance problems of visualization systems are di-
rectly related to how the visualization is organized [20, 23], because
the steering and monitoring of visualization objects by interface com-
ponents1 can be very costly tasks. In this context, especially complex
interactions or operations such as access to objects or steering objects
by analytical calculations are very expensive. Eventually, this results
in bottlenecks if these approaches are scaled to a higher number of
visualization objects and interface components.

It was outlined before that the main advantage of buffers are their
fast access to data and the local awareness by mapping a position to
a certain buffer value. As seen in the example of the G-buffers on

1 See Section 2.3.1 for a definition of the terms “visualization object” and “interface com-
ponent”.



30 methodology

Bu
ffe

r W
id

th

N
um

be
r o

f 
C

ha
nn

el
s

Sp
ec

ifi
c 

V
al

ue

Bu
ffe

r H
ei

gh
t

(a
)

Bu
ff

er
an

d
at

tr
ib

ut
es

.

Si
ng

le
 

Bu
ffe

r

St
ac

k 
of

Bu
ffe

rs

(b
)

Bu
ff

er
st

ac
k.

Fi
gu

re
2
1

.S
ch

em
at

ic
bu

ff
er

co
nc

ep
ts

.



3.2 buffer concept 31

page 20, buffers can store different kinds of properties. Transferring
this to interaction on large displays, the basic idea is as follows: the
complexity of the interactive system is reduced by modeling the steer-
ing of the visualization objects by layered buffers. Buffers are used in
this concept to store properties of interface components and to make
these properties available to visualization objects. By this, a buffer pro-
vides a value (or more than one) at an object’s position, which can be of
any type such as an integer, a floating point number etc. Figure 21(a)
shows the different attributes of a single buffer. To store more than
one property, more than one buffer is necessary and a buffer stack is
introduced, as depicted in Figure 21(b).

For example, to model motion in a certain direction, a buffer can also
store vector data, stored in so-called channels: this means, at a certain
buffer position more than one value is available, e. g., an x, y, and z

direction. This addresses the issue with the expensive analytical calcu-
lations mentioned above: The buffer just stores previously-computed,
discretized values which represent, e. g., motion of objects. Then, ex-
pensive calculations are only necessary when creating or modifying
the whole buffer with the specific values and not at every movement
step. This is even true for frequent and dynamic changes, as most in-
teractions not necessarily affect a whole buffer but only parts of it that
have to be modified.

By this, the visualization objects are no longer directly controlled by
the interface components but interact with the saved values of each
buffer in the stack. To achieve the complex behavior of the visualiza-
tion objects that before was achieved by their complex interaction with
the interface components, ideas borrowed from swarm intelligence [7]
are used. Now, each visualization object acts as a separate entity with
a local awareness, namely, of the values throughout the buffer stack at
its current position; these are also used by the visualization object for
making local decisions (cf. Figure 22). As in swarm intelligence con-
cepts, a visualization object is limited to its own domain and it is not
aware of the other objects that are also influenced by the underlying
buffers (the swarm as a whole).

Similar ideas to use self-organizing systems in connection with data
stored on 2d grids were previously used by other researchers as well:

• Fall and Fall [13] developed the SELES system to simulate land-
scape dynamics. Landscape structures are represented in this
system by layers of grids which consist of fixed-size square cells.
These cells store values about vegetation coverage, topography
etc. By applying probabilistic disturbances to them, changes to
the landscape over time are modeled.

• Baker et al. [3] designed their system GeneVis for simulating and
visualizing genetic regulation networks in real-time. The simu-
lation environment is a 2d grid representing a symbolic view on
a biological cell. These grids are used to control the resolution of
the simulation, to track the positions of the proteins and genes
involved, and to determine reactions between them.

• Schlechtweg et al. [41] developed a system to facilitate the ren-
dering process of stroke-based non-photorealistic images. Be-
havior-based, autonomous agents—called RenderBots—are simu-
lated on the source image and on G-Buffers (cf. Section 2.4.1) to
render individual strokes of the result image.
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These approaches aim at improving the simulation and visualization
of biological processes or at rendering images in certain styles. Thus,
they differ fundamentally from the approach taken in this thesis, which
is to realize responsive interaction of a user interface.

It is important to understand that the buffers in this concept do not
contain any logic or algorithmic information but numerical or Boolean
values. By this approach, logic is transferred from the interface compo-
nents to the visualization objects (cf. Figure 22(b)). Thus, the interface
components are relieved of the complex administration and steering
tasks and the swarm intelligence concept is utilized. The objects read
their locally aware values from the respective buffer location, process
them, and decide how to react. Therefore, a certain buffer usually
serves a special purpose within the stack, e. g., one buffer could be
used for object size, another for orientation, yet another for color, and
so on; Figure 23 shows examples for these different uses. However, as
mentioned before, the object itself decides what to do with this infor-
mation, because the information processing is done locally, and it is
possible to think of an object that does not use buffer data at all or that
uses a size buffer for other processing than size as well. The role of
the interface components is to modify the buffers. While the visualiza-
tion objects read and react, the interface components are manipulated
by the user and, in consequence, write to the affected buffers in the
stack. By this they eventually affect the objects. See Figure 22(b) for a
schematic visualization of this concept.

The assumption of this buffer-centered interaction approach is that
it decreases the overhead caused by the interface components and in-
creases the number of visualization objects while maintaining respon-
sive interaction. An early prototype implementing a rough buffer con-
cept achieved slightly higher frame rates than those noted for the In-
terface Current application in Section 2.3.1 but displayed 1,000 objects,
which is a performance gain by one order of magnitude. Figure 24

shows the visual difference between about 100 and 1,000 visualization
objects.

(a) “Original” Interface Current [21]. (b) Buffer Interface Current Prototype [23].

Figure 24. Interface Currents with different numbers of visualization objects.

From this follows that there are essentially three factors why the
described buffer concept improves the performance of a visualization.
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First, the elements of the visualization only have local awareness; there-
fore they have fast access to crucial data and are not burdened with
unnecessary information. Second, information is provided in a dis-
cretized way, thus, recurrent time consuming calculations for analytical
representations are avoided. Third, information is processed locally in
the visualization objects, providing local decision-making on how and
when to use retrieved information.

Nevertheless, these are just the basics of applying buffers to interac-
tion problems in tabletop applications. Further details are addressed
in the next section.

3.2.2 Details and Issues

To fully benefit from the buffer approach, several important details
have to be developed. These details affect performance and the simple
application of buffers for interaction purposes.

As mentioned above, buffers are used to represent steering data and
by that control objects. A difficult question in this context is where and
how to store these buffers. Basically, there are two alternatives that are
discussed in the following:

1. Using a big central buffer stack that is relative to the screen or
window size.

2. Using several smaller buffer stacks—one for each interface com-
ponent, relative to its bounding box.

Each option offers different advantages and disadvantages which have
to be weighed carefully. The biggest advantage of the central stack is
its easy connection scheme for all interface components and visualiza-
tion objects. Everything is permanently connected to the whole buffer
stack and decides what to do with it (as described in the previous sec-
tion). However, this also results in one of the biggest disadvantages of
this idea: it is extremely difficult, if not impossible, to have multiple
interface components working independently of each other. Possible
solutions to this problem would require high computational efforts
for numerical combination schemes for the buffer data or extremely
memory consuming extensions of the buffer stack. A similar problem
is that the stack size would grow for each new attribute that is needed
by an interface component or visualization object. In addition, if cer-
tain attributes (and, therefore, their corresponding buffers in the stack)
would not be used often, huge areas of memory would be wasted. The
memory consumption should not be underestimated, considering the
high resolutions for which this approach is developed for. A single
4 byte buffer at the table resolution of 2,800 by 2,100 pixels uses more
than 20 megabytes of space. An important aspect to consider in this
context is that buffer access is fast, as long as we have the buffers in
the fast memory. As soon as we exceed the capacity of this type of
memory, paging will severely affect any buffer related operations.

In contrast to this, the second approach requires less memory be-
cause each interface component or visualization object has its own
buffer stack just in its needed size. This also allows interface compo-
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nents to be completely independent of each other, while leaving open
the option of combining different buffers later on.

. . .

Visualization Objects

Interface Components
(with own local buffer stacks)

. . .

. . .

Global buffer stack

Figure 25. Global buffers, local buffer stacks, and
several visualization objects on top.

Another advantage
is that the buffer stacks
are independent from
the window or screen
size. This allows for
accessing these buf-
fers even from out-
side of the screen; it
is very useful when
interface components
are moved partially or
completely off screen
but the contained ob-
jects are still mov-
ing. A local buf-
fer stack also enables
other uses of buffers
such as having a but-
ton buffer where cer-
tain buffer areas rep-
resent buttons and are
linked to functional-
ity.2 However, this makes a rather sophisticated connection scheme
necessary. This scheme is required to get the connections right be-
tween steering and steered components, as a wide variety of different
buffer types might be involved. On the other hand, this allows for a
high flexibility and extensibility as new buffer types and new interface
components using these can be added on top of the existing ones.

Being aware of these characteristics of the different approaches, a
combination of both is chosen for this thesis: In general, each interface
component has its own buffer stack and profits from the advantages
of this. These buffers are called local buffers. In addition, global buffers
relative to the screen size support the communication between differ-
ent interface components and also visualization objects. They might
be useful for tasks such as picking and dropping which is discussed
later on.

The following paragraphs explain important details that round up
the concept.

generic connection scheme : As mentioned above, supporting
any number and any kind of buffers requires a generic way to make
these buffers available for visualization components that want to be
steered by them. To achieve this, every interface component and visu-
alization object divides its buffers into two different categories:

1. Active Buffers: From the point of view, e. g., of an interface com-
ponent, these are the buffers it creates, initializes, and modifies
to control others. These buffers constitute the local buffer stack.

2 This concept is described in more detail later on.
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2. Passive Buffers: From the point of view, e. g., of a visualization
object, these are the buffers it looks into for information on how
to behave. Usually, these are references to active buffers of the
interface component it is connected to.

These two categories are completely independent of each other within
one component or object. To allow a simple connection, every used
buffer is labeled with a specific user-defined type, for example, size
or orientation. Applying the procedure depicted in Figure 27, this
together with the two categories is the key to generic connection: an
interface component features a set of buffer types for which it provides
buffer data.

Visualization Object
(= child)

Interface Component
(= parent)

. . .

Active 
Buffers

Passive 
Buffers

Figure 26. Active and passive buffers.

Upon connection, a
visualization object is
only connected to buf-
fers that it needs and
which are provided by
the steering interface
component. The inter-
nal processing is then
only done with the
available information.

The greatest advan-
tage of this approach is that new buffer types can easily be added to
the existing ones without affecting existing components or objects as
connection and disconnection is completely automatized.

buffer transformations : Due to the local aspect of local buffer
stacks, these stacks are tightly coupled to the geometric representation
of the interface components. For initialization or modification pur-
poses, components write data into their buffer stack and in many cases
this data depends on the actual shape of the component. An example
for this would be the previously explained Interface Currents: their
current-like shape would be reflected, e. g., by the underlying orienta-
tion buffer that always orients contained objects to the outside of the
Interface Current. In this context, we might also call this a special ren-
der method, as information is rendered into the local buffer stack. How-
ever, interface components as well as visualization objects are subject
to many interactions by the user. Many of these interactions influence
the geometric representation and, therefore, also the local buffer stack.
In particular, rotation and resizing are the most critical operations which
have to be discussed in greater detail.

Rotation can either be dealt with by rotating the whole buffer stack
or by transforming the coordinates on the geometry into local (not-
rotated) coordinates within the object whenever necessary, e. g., for
access. While a rotation of the whole buffer stack is not feasible in an
efficient way, the coordinate transformation provides a fast and easy
way to rotate the geometry and to leave the buffers untouched. Fig-
ure 28 provides a schematic overview of the different coordinate sys-
tems that are necessary to handle the transformations.
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To transform global screen coordinates into local component coordi-
nates, the following matrix product is applied:

localx

localy

1

 =


1 0 baseWidth

2

0 1
baseHeight

2

0 0 1




cos −θ − sin −θ 0

sin −θ cos −θ 0

0 0 1




1 0 −centerx

0 1 −centery

0 0 1




globalx

globaly

1

 .

Input for this transformation are the global coordinates globalx and
globaly. Output are the respective local coordinates relative to the
bottom left corner of the component’s or object’s bounding box. The
parameters baseWidth and baseHeight provide the base dimensions of
this bounding box and the current rotation is provided by the angle θ,
where the center of the rotation lies at the object’s center.

The second critical operation mentioned above is resizing. Basically,
there are two different ways to address this problem:

1. Adjust the size of the buffer stack.

2. Provide mapped access to the buffer and keep the original size.

The first approach offers two alternatives on how to actually adjust the
size. Either all old buffers are deleted, new buffers according to the up-
dated size parameters are created, and the geometry is rendered into
these buffers accordingly. A different approach would be to enlarge or
shrink the existing buffers and to interpolate their contents according
to special interpolating functions. For this thesis, the first approach is
chosen for simplicity and reusability reasons. All functionality that is
required to delete, create, and to render the local buffer stack is already
in place due to the general buffer concept as described above. Thus, all
this functionality can be reused to perform this task. The only reason
to provide the extra functionality of the interpolating approach could
be a gain in performance, which is not given: interpolating between
all the buffer cells is very likely to cause a high computational effort
and might also result in numerical imprecision.

The second approach of mapping the actual geometric size onto the
buffer size is the most simple and fastest way to address the resize
problem. Using the following equation to transform local coordinates
into coordinates on the buffer grid bufferx

buffery

 =

 localx ×
bufferWidth
baseWidth

localy ×
bufferHeight
baseHeight

 ,

it becomes obvious that buffer size and geometrical size are indepen-
dent from each other and even raises the general question of how big
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buffers have to be. As this thesis deals with buffers for interaction, this
question cannot be answered definitely. Various factors influence the
answer: the general resolution of the display, the user’s subjective im-
pressions and expectations on how the interface will react, and prob-
ably most important, the input resolution of the used input device.
Therefore, this thesis tries not answer this question but the presented
concept offers flexible and simple ways how to adjust to the differ-
ent needs. For this, the two size-related procedures mentioned above
can be used: If necessary for highest precision and if computational
costs are not too important, the buffer size can be adjusted to equal
the geometric size of an object. It could even be used the opposite way
as any desired ratio between geometry and buffer stack can be estab-
lished. No matter how this ratio is, the simple procedure of coordinate
mapping can always be employed to translate a coordinate from the
local geometry system to a buffer coordinate. Thus, either procedure
or a combination of both can be used, depending on the context and
requirements.

buffer access : Retrieving information from the buffers can be done
in different ways depending on the context.

Square for coverage 
of neighboring cells

Access location

Buffer 
cell

Figure 29. Weighed access to a buffer.

The usual and most
simple access is to ac-
cess each discrete buf-
fer cell directly by
specifying its unique
position. This is
important and useful
to avoid ambiguities,
e. g., if retrieving a
certain id from an id
buffer. However, if
a buffer is accessed
from arbitrary posi-
tions on and off the
buffer grid, a different technique is more appropriate. For example,
if a smooth motion has to be performed by a visualization object that
reads buffer data from its current position, this could not be achieved
well by just the direct cell access. Instead, four cells are considered:
the one the current position is mapped to and the three being closest
to this one. The contribution of each cell is calculated by placing a
square with the area of 1 around the current position and calculating
the coverage of each cell. The retrieved value can then be calculated by
weighing the cell values with their coverage and adding these up. This
approach makes smooth transitions between cells possible and should
be used, wherever continuous access to buffer data is needed, such as
for the motion example above. The disadvantages for this approach
are the higher access costs due to the interpolation computations and
numerical errors that arise with the used data types. Section 6.2 on
future work outlines a possibility how to give developers more flex-
ibility for the used interpolation method which both determines the
computational cost and the quality of the results.



40 methodology

As was shown, several issues arise when looking at the buffer con-
cept in more detail. Although the concept can be partially considered
a space-for-time acceleration technique [5, Appendix 4], space must
not be wasted. Therefore, the ideas of global and local buffer stacks were
introduced. To realize this advantage and to allow for the uncompli-
cated extension of the types of buffers, a generic connection scheme was
devised. This scheme is based on the concept of active and passive buf-
fers and clearly divides between buffers that are used to steer other
objects and buffers that are used to gather data for an object’s own
behavior.

Transformations on the geometric representations of interface com-
ponents and visualization objects raised the question how this affects
the underlying buffer structures. Transforming relevant coordinates
into the required space was shown as the most efficient solution in
the context of responsive interaction. This also led to the important
question which size the buffer stack should have relative to the geom-
etry. This question was deliberately not answered, as the answer is de-
pending on many different factors. Instead, two different concepts—
coordinate mapping and a generic buffer resize process—were pre-
sented. Depending on the factors and the context, a suitable solution
can be selected. The solutions are also not mutually exclusive but a
combination or an easy transition from one to other is possible.

3.3 framework architecture

As pointed out before, developing applications for tabletop displays
is hard due to several different factors. Support for this task is in
most cases non-existent. This section introduces an object-oriented
framework—the “buffer framework”—that employs the previously de-
vised buffer concept and that is specially designed to aid the building
of tabletop applications. These two benefits combined enable devel-
opers to produce applications that feature responsive interaction with
less effort on the software engineering side. This leaves more resources
for their actual tasks such as designing new interaction metaphors.

First, the main setup of the framework and the motivation for sev-
eral design decisions are explained. In addition, high-level interde-
pendencies between the framework’s modules are revealed. Second,
the modules and their interfaces are discussed to show their capabil-
ities to handle general as well as special problems. These sections do
not describe implementation-specific details but the overall design of
the framework architecture. The way to present this information is
top-down to provide the reader first with the general ideas which are
fleshed out more and more as the text proceeds.

3.3.1 Main Layout

The buffer framework is especially designed to support the building of
tabletop applications, addressing the issues of performance and soft-
ware reusability as outlined before.

It is not an application by itself but a major part of one. This allows
the framework to focus on what it is strong at: enabling responsive
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interaction. At the same time, this approach allows for including other
frameworks and toolkits in the application as well. Thus, the developer
is not limited concerning which foundations to build the application
on or how to get input into the buffer framework, as these parts of the
application are completely exchangeable.

Application
Code

Buffer
Framework

Other Toolkits
and Frameworks

Input
Toolkit

Figure 30. Typical setup of a tabletop application.

By this, the buffer
framework avoids com-
petition with top-notch
software in these ar-
eas and leaves room
for them to be in-
tegrated; developers
can pick their favorite
or what is best suited
for a task.

A typical setup of
this kind consists of
the following: At the
center is the appli-
cation code, that in-
cludes the specific logic
of the application. The
application is typically
built on top of a framework or toolkit that handles all window and op-
erating system-related things (shown at the bottom). For tabletop dis-
plays, multi-user interaction and therefore, multi-user input is of great
importance. For this, usually special toolkits are provided, e. g., by the
table manufacturer. This kind of toolkit has also to be integrated into
the application code to get access to the multiple user data. Finally, the
buffer framework is hooked up to the application, providing a dedi-
cated interface that gathers all relevant data to represent the respective
interactions and visualizations.

To achieve this setup, the framework has to provide a flexible and
yet easy-to-use interface towards the application to grant access to all
relevant data and functionality. The approach to tackle this is heav-
ily influenced by Thomas and Hunt’s object-oriented design technique
“DRY, shy, and tell the other guy” [59, 60]. While this is a rather un-
common name for a paradigm, it contains important insights on how
to successfully design object-oriented architectures. In the following,
these three aspects and their effect on the buffer framework are ex-
plained.

• Don’t Repeat Yourself (DRY): This idea deals with the way infor-
mation is represented within an architecture. To quote Hunt and
Thomas:

“Every piece of knowledge must have a single, unambiguous,
and authoritative representation within a system.”

The presented framework architecture reflects this idea by hav-
ing a framework core that takes care of the creation, destruction,
and general organization of all relevant visualization and buffer
data. It also takes care of the interrelationships between all par-
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ticipating entities. There are different ways to access this infor-
mation but eventually all requests end up in the framework core,
where the single, unambiguous, and authoritative representation
of knowledge lies. Figure 31 shows the three main modules of
the buffer framework.

Framework Core
(Visualization Control)

Buffers Visualization Content

Figure 31. The main modules of the buffer framework (schematic view).

• Shy: This aspect refers to the different kinds of coupling mod-
ules of an architecture. Unnecessary coupling must be avoided
to make the architecture more robust, better maintainable, and
easier to extend. In a “shy” design, internals are not revealed to
“strangers” and modules are not to nosy about other modules’
internals. A shy architecture also does not heavily rely on inter-
nal hierarchies of other modules. Daisy-chaining of commands
must be avoided, as such a design easily breaks when things
change. A very fragile example would be this:

getOrder().getCustomer().getAddress().getState()

This thesis’ solution addresses these issues by providing simple
data and input methods to access only the required information
and functionality. The framework architecture makes no assump-
tions about the application data but relies on and processes only
the data it is being provided.

To further emphasize the decoupling of the framework’s mod-
ules, a concept named orthogonality [60, pages 34–43] is used. The
basic idea is: if one module in an architecture changes, it does
not affect others. Thus, it aims at eliminating effects between
unrelated things and tries to avoid designs that rely on the prop-
erties of things which might be subject to change and which are
therefore not under control, such as the command chain above.
Having separate, unifying interfaces for each of the three frame-
work modules, the following benefits result:

– A standardized interface for the core, the visualization con-
trol, offers the possibility to have different kinds of func-
tionality or contents behind these interfaces without affect-
ing the application design. Practical advantages of this ap-
proach lie in changing the whole visualization at run time
and still using the same application code. Other advantages
of this were discussed above.
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– A unifying interface for all visualization content (which will
eventually be interface components and visualization ob-
jects) allows for automated processing of these by the visu-
alization control. Furthermore, new content can be added
later on without affecting existing code of the core, the ap-
plication, or other content.

– Having the buffers also separate and detached from the rest
of the framework, buffer internals behind the interfaces can
be changed and optimized without affecting modules that
use the buffers. However, such changes might affect the
visual appearance, e. g., if internal calculations for interpo-
lating buffer positions are changed.

• Tell the other guy: The idea behind this concept is a service-
oriented, operation-centric viewpoint towards code that is call-
ing a method. Most of the framework’s interfaces are designed
to take orders from calling code, e. g., from the application and
to do what is requested. This allows the application to send a
message to the interface to do something and not to care about
how this request is actually executed. It is very different to the
approach that the application code asks for data and does the
processing itself. The great benefit for an architecture is that it
is less vulnerable to changes, as the way of execution behind the
stable interfaces might change, without the calling code noticing
or even caring about this change. (This is strongly connected to
the “shy” concept described above.)

To bring these ideas together in the buffer framework, the design
is mainly built on having a framework core, the visualization control,
that offers methods for common tasks. Application code calls these
methods to access functionality without caring how they are actually
defined. The core itself handles parts of these calls but, in general,
functionality is divided between the different modules of the frame-
work. This allows for decoupling of different tasks and exchanging
or extending existing methods without the need to change the calling
code.

Concluding from this, the usage of the buffer framework is, there-
fore, in general twofold (cf. Figure 32):

1. On the application side the developer has to decide how to use
the provided interfaces best for her needs and how to build an
application from this.

2. On the content side the developer has the possibility to design
new interface components and visualization objects by imple-
menting the required interfaces. Thus, the new content can be
handled automatically by the existing framework. The content
side offers the additional possibility of introducing new types of
buffers or to use buffers in new and different ways. (It is also
possible to introduce content that completely ignores all kinds of
buffers as mentioned before.)
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Framework Core
(Visualization Control)

Buffers

Visualization Content

Application Code

Figure 32. Two ends to use and to extend the buffer framework. The core
usually serves as some kind of black box.

Strictly speaking, there is also a third way, namely to extend the frame-
work’s interfaces that are provided by the different modules. This op-
tion should be used carefully and extensions must always consider
how existing code and the overall design of the framework is affected.

To realize the discussed characteristics of the buffer framework, de-
sign patterns are employed: the Builder pattern and the Composite
pattern, as introduced in Section 2.4.2. The schematic architecture us-
ing these patterns looks as depicted in Figure 33. The next section
gives detailed information on the internal design of the modules and
how the design patterns are adapted to the requirements of the buffer
framework.

Specific Application
Visualization

Control

Builder Pattern

Composite 
Pattern

Buffers

Figure 33. Modules and design patterns of the buffer framework.

3.3.2 Modules and their Interfaces

In the previous section, a rough description of the modules was given
and the main design ideas were discussed. This section gives more de-
tails about the modules’ capabilities and how important aspects of the
interfaces look like. The intention behind this is to illustrate the inter-
nal structure of the framework, where special benefits and drawbacks
are, and what parts are renderer-specific. This leads to an important
aspect of the framework: the integration of rendering APIs. As the
topic of this thesis deals in many ways with visualizations, support
from the available high-class rendering APIs is required. The buffer
framework deals with this issue by providing different layers within
its architecture. Figure 34 shows an overview of the layers and what
classes they contain.3

3 Abstract classes are indicated UML-like by italicized names and renderer-specific classes
are labeled with an “R” at the end of their name.
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TabletopVisualization VisualizationComponent

VisualizationComponentR

BufferTemplate
CLASS

VisualizationBuilder

VisualizationBuilderR TabletopVisualizationR

Base Layer

Renderer Layer

Content Layer

SimpleStorageBinR SimpleImageR SimpleCurrentR

Figure 34. Layers of the buffer framework.

The top layer of these provides abstract base classes for all modules
that are directly involved in the visualization part, namely the core
and the content. The buffers are renderer-independent as they are de-
coupled from the visualization and provide the math and functionality
behind it.

Functionality is implemented as high as possible in the class hier-
archy to allow for general handling of problems and to avoid code
duplication. All renderer-specific elements have clearly defined inter-
faces defined at the abstract base. These interfaces have to be imple-
mented for the used rendering API. If other, more specialized code
is required deeper down the class hierarchy, the object-oriented con-
cept of dynamic binding still enables the developer to override certain
methods and to have the desired functionality for her objects.

The following describes each module, its interface, and utilized de-
sign patterns.

The Visualization Content Module with the Composite Pattern

As explained in greater detail before, a tabletop application consists of
interface components and visualization objects. Interface components
contain and control visualization objects, which usually are the main
carriers of information. However, user interaction with both is com-
monly quite similar. For example, on traditional tables users pile and
group items, and treat the resulting piles similar to regular items by
moving and grouping for example [32]. Some interaction metaphors
developed so far reflect this best practice successfully [44]. As shown
in Section 2.4.2, the Composite pattern supports these ideas by simpli-
fying the underlying software architecture. For this, one abstract base
for both interface components and visualization objects is designed,
called

VisualizationComponent.

This allows for general treatment of both types by other code. While
the code does no longer care about the differences between these two,
the developer still does. The Composite pattern, therefore, offers a
special terminology to differentiate (cf. Section 2.4.2):
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• Everything is now a Component, and this expression is used when-
ever it does not matter what kind of Component is being dealt
with.

• A Component becomes a Composite if it can contain other Com-
ponents.

• A Component that cannot contain anything else is called a Leaf.

Figure 35 shows an example for Composites and Leaves for tabletop
interaction metaphors by presenting them in a tree structure.

Interface Current

Image Image Storage Bin

Image ImageStorage Bin

Image Image

Figure 35. Composite tree of interaction metaphors.

Having defined this communication base for the developer, it is
fairly easy to decide of what kind a new Component has to be and
which parts of the interface have to be considered. However, all visual-
ization content has to be derived from the abstract base Visualization-
Component or from one of its children. This enables the compatibility
with the framework and allows the developer to make use of the au-
tomatic processing capabilities.

From a software engineering point of view, having the same base for
both Composites and Leaves raises the question where to define the
functionality for the Composites as this is not needed by the Leaves.
According to Gamma et al. [16, pages 167–169] there are two possibil-
ities:

• Compressed: The base contains only definitions for those meth-
ods that are used by all Components. Other methods will be
implemented by the respective subclasses.

• Transparency: All possible functionality is included in the base,
although it might not be used by all Components.

For the buffer framework the transparency approach is chosen. Rea-
sons for this decision are the following:

• The clarity of the interface is valued much higher than its space
consumption. This makes the framework easier to understand
and to document as fewer special cases have to be considered by
developers.



3.3 framework architecture 47

• Reuse of the design and the code is much easier because default
definitions of all functionality are provided right at the base of
the class hierarchy and do not have to be reimplemented at child
level. This is especially useful for the big and sophisticated Com-
posite methods which constitute important foundations of the
framework.

After clarifying these important design decisions, a concise overview
of the interface is given. This overview is structured into different
parts which describe the general attributes, the default functionality,
the abstract part, and the renderer-specific part of a base class.

general: A Component has several important attributes that are
crucial for its behavior.

• Reference to the visualization control: To access buffer creation func-
tionality and other important concepts that are only available
through the core, each Component has to know of which visual-
ization it is part.

• Unique id: For identification purposes that enable fast and unam-
biguous access, each Component is assigned an unique id by the
visualization control.

• Base width and base height: This is the size of the Component in
pixels. It will not be changed directly but scaled with a special
radius for each axis. This enables resizing via transformation
methods but still allows access to pixel values without recalcula-
tion. Working on specific and constant base values also provides
some kind of protection against numerical errors that might after
numerous changes.

• Position: The position determines where the center of the object
is (with regard to the base sizes mentioned above).

• Rotate’N Translate (RNT) capability: General powerful interaction
concepts such as RNT—which was introduced in Section 2.2.1—
are not implemented within single Components but are triggered
via an attribute and handled by one central implementation in
the framework core.

• Children/parent information: If a Component is a Composite, it has
knowledge about all its children by storing their ids. Regardless
of the type of Component, a reference to the parent is stored, if
existing. Thus, a Component can only be child of one parent at
the moment.

default interface : This constitutes a selection of important func-
tionality defined at the abstract base of the class hierarchy. Thus, it is
available by default to all derived Components.

• Buffer stacks: Access to active and passive buffers—as introduced
in Section 3.2.2—for manipulation and retrieval is provided. For
identification purposes of the different buffers, tags are assigned.
These are also the foundation of the generic connection scheme
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that was described earlier. Although the developer is free to
choose whatever buffer tag she likes, it is highly recommended
to use a consistent set of tags that denotes both function and type
of the buffer.

• Coordinate transformations: To achieve the switches between the
different types of coordinates that where introduced in Figure 28,
respective functionality is provided.

• Children administration: The rather complex task of adding a child
to or removing it from a Composite is completely automatized.
Thus, the developer has not to take care of this herself and can
use the available methods. Figure 36(c) shows how this process
works in detail and what steps are taken.

abstract interface: The abstract part of the interface enables
the developer to create her own customized Components. Depending
on what kind of Component is developed (Composite or Leaf), differ-
ent sets of methods can be defined. The following gives an outline of
the possibilities.

• The most important part of the abstract interface is the one that
essentially puts the smarts into a Component and which is, there-
fore, used to animate it. This method does the buffer lookup in
the linked passive buffers and processes the retrieved values to
guide its behavior. By defining it, the developer shapes the user
interface.

• To differentiate easily between Composites and Leaves at run-
time, a special method is used. By default, this method returns
nothing, making everything a Leaf to the outside. Composites
redefine this method to return themselves and to indicate that
they are a Composite. This is particularly useful to make safety
checks, e. g., before adding a child, so a Leaf is not able to call this
method. It is also useful to include additional functionality into
methods that is only executed if the calling object is a Composite.

• Active buffer setup: The active buffers are a little more complex
to setup than the passive ones because they are not only links
but contain important data. Actually, these methods require a
different way of thinking and programming because steering in-
formation is provided in a localized and discretized way. This
is rather unusual compared to the “common”, mostly analytical
and global approach. Handling a Component’s active buffers is
twofold:

– Creation: Developers have to build the needed buffers via
the core and assign tags to them for lookup and connection.

– Content: The most sophisticated part of a Component with
active buffers is their content, the steering information. This
means to fill the active buffers with actual values that can
be used by connected Components.
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As mentioned in the description of the buffer concept, this func-
tionality is used for more than initializations. It provides also the
functionality to resize and recreate the local buffer stack dynam-
ically at run-time.

• Button buffer interaction: A very powerful concept is the possi-
bility of associating functionality with a local buffer. The idea
behind this is to have a special local buffer: a “button buffer”.
This buffer serves as an active buffer that stores button values at
certain positions of a Component. Upon interaction, the value
of the touched location can be retrieved and functionality asso-
ciated with this value (and, therefore, also this location) is ex-
ecuted. Examples for this would the possibility to destroy the
Component, to dynamically resize it, or to trigger the creation
of new Components. For a generic handling of this interaction
capability of the framework, two abstract methods are declared
that can be defined by developers to give their Components the
desired functionality.

– To achieve this, a special method is called each time a Com-
ponent is touched. Redefining it might evaluate the buffer
value of the local touch position, execute certain code, or to
store the value for processing in the following method. If
the method returns nothing, interaction proceeds as usual,
otherwise it stops after executing the button code.

– Another special method is called after the user releases a
Component. This is useful in combination with the previ-
ous method to execute special code just after the user fin-
ished interaction. About the return value the same as above
applies.

These methods are directly integrated into the two main interac-
tion methods of the core, which are described in the following
section on the framework core module. Figures 36(a) and (b)
show where and how the methods above influence interaction
with a Component.

renderer-specific interface : The preceding functionality is in-
dependent from the Component’s shape and geometry. To actually
render its visual appearance, a specific rendering API has to be used.
This part of the interface provides the developer with certain meth-
ods that can be defined using the special rendering API. Examples for
this would be the geometry setup or the local render functionality of a
Component.

The Buffer Module

This module is completely independent from any rendering API and
can be used right away.

general: Important attributes are the following ones.

• Data type: This determines of what kind the buffer contents are.
At the moment, this is the same for all cells of the buffer.
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• Number of channels: This specifies how many layers of cells there
are (cf. Figure 21 on page 30).

• Width and height: The number of rows and columns the buffer
has, which has the greatest influence on how much memory will
be needed for the buffer.

default interface: The buffer interface is quite simple as there
usually are not many different operations on a buffer.

• Direct access to a discrete buffer cell is provided, returning the
value stored at that position. Direct access can also be used to
set a value at a certain position.

• Interpolated access to buffer data can be very useful for certain ap-
plications. For this, values are weighed as described on page 39.

These methods exist in different variants, as there might be multiple
channels defined which a developer then also wants to access. Buffer
creation for special types is not done via the buffer interface but the
framework core is used for simplicity reasons.

The Framework Core Module

The framework core provides a number of important methods as it is
the main communication interface with the outside, such as the appli-
cation and the Builder pattern.

general: The following attributes are administered by the core.

• Global buffer stack: The global buffer stack is created and stored
in the core. All access to it can only be done via special methods
that can vary for each buffer in the stack.

• Ids of all existing Components: As the core creates and destroys
every Component of the visualization, it stores all their ids for
fast access.

• Multiple-user data during interaction: While users interact with
the application, the core stores certain information for each user,
such as the currently active Component, device positions etc.

default interface: Most important methods of the core are in-
dependent from the rendering API and can, therefore, be provided
right at the base.

• Methods to create every available buffer type are provided. Via the
core reference of each Component they can access these methods
to create their own local buffer stack.

• Device input: To feed input data into the framework from the ap-
plication, so far three methods can be used: pressing, releasing,
and moving an input device. By providing the id of the interac-
tion user, this data can be associated with the internal attributes
and further processed.
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• Methods for the actual interaction processing: This can be done in
two steps if needed by the application. First, if the input device
is pressed or the table surface touched, the Component under
the touch position is processed. For this, a method that handles
interaction with a single Component is provided, that does all
necessary processing, if a Component was picked. This includes
RNT capabilities as well as checking if a local buffer value requires
any special code to be executed (see above in the Component
section). Figure 36(a) gives an overview of what happens during
this process.

Second, certain interactions may require special actions if a Com-
ponent is released. For this purpose, a method that handles a
released Component is provided which processes the location
where a Component is dropped. This might be to place a Com-
ponent in a Storage Bin, for example, or to notice that a release
happened over a certain local buffer value as mentioned before.
Figure 36(b) shows what the steps of this process are.

renderer-specific interface: For a specific rendering API, a
set of methods has to be defined to provide the required functionality.

• Renderer setup: For an optimized and specialized setup of the ren-
derer, a special initialization method can be defined. To allow for
more flexibility at the creation time of the visualization, several
flags are provided which can be evaluated in this method. Ex-
amples for such flags would be settings for texture compression,
mipmapping, linear filtering etc.

• To load textures that will be used for decoration or to provide
information, the loading capabilities of the renderer have to be
made available to the framework. This might also make the
definition of other methods necessary, methods to determine a
certain texture format and texture parameters of the underlying
hardware.

• Component creation is also renderer-dependent, as was explained
before. Thus, all methods to actually create specific Components
have to be provided, e. g., for the Builder pattern.

Visualization Creation via the Builder Pattern

Setting up the visualization with all needed content is a rather com-
plex compilation of many different objects. To simplify and to encap-
sulate this process for better reusability, the Builder design pattern is
employed. As described in Section 2.4.2, the Builder pattern usually
consists of three to four parts. The desired product is the visualization
itself, represented by the framework core. It is built and assembled by
the Builder or its specific implementation, respectively.

Basically, the Builder provides an interface to build separate parts
of the visualization. In the simplest case, this would be just an image
Component or a single Interface Current. The true power of this de-
sign pattern lies beyond these simple tasks. To easily create more com-
plex visualization content, the Builder provides functionality to build
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combinations of Components, e. g., an Interface Current containing a
certain number of images. Other complex tasks include the autom-
atized loading of a number of textures from a specified location and
other Component combinations.

So far, the buffer framework provides useful methods for the cre-
ation of common content, such as building image Components, Stor-
age Bins, Interface Currents, and various combinations of these. Hav-
ing easy creation methods for complex content is only the first step, as
it is only one part of a complete visualization. The Build Director takes
this idea one step further and provides an interface to different sets of
calls to the Builder interface. Thus, it allows for creating predefined vi-
sualization content with a single method call. This is especially useful
if there are recurrent setups of content or if a change between differ-
ent contents is needed at run-time. The Build Director is usually part
of the application or inherited into it. There, it allows to change the
whole visualization and all of its content with a single method when-
ever required. It also supports the easy setup of visualization content
at compile time by just changing the sequence of calls to the Builder
interface.

To easily use new Components with the framework, new Com-
ponents should be accessible via the Builder interface and added to
it. Figure 37 shows a typical process how the visualization setup is
chained through the different layers of the Builder pattern and ends
up in the framework core.

Build Director
assembles arbitrary content

Builder
creates combinations of 

Components

Tabletop Visualization
creates single Components

Visualization Components
are the content

Figure 37. Chain of command in the Builder design pattern.

This section showed that the buffer framework is based on a hi-
erarchical class structure with different layers. Abstract base classes
provide general solutions to common problems within the framework.
They also provide developers with clearly defined interfaces to realize
new Components. As support from rendering APIs is necessary for
visualization purposes, well defined parts of the base classes have to
be implemented for a specific rendering API.

To simplify the code for handling visualization content, the Compos-
ite pattern is utilized. This makes it possible to build any content on
the same base class but at the same time to easily differentiate between
simple and complex content.

For the setup of the visualization the Builder pattern is used to pro-
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Figure 38. Schematic UML diagram of the framework setup.

vide methods for content creation in different types of granularity.
The final layout of the framework and how it links to an application

is shown in Figure 38. For simplicity reasons, this figure neglects the
representation of the different layers and subclasses.

After this high-level overview, Chapter 4 shows selected details of
the implementation and how these affect the performance of applica-
tions built with the buffer framework.

3.4 chapter summary

In this chapter it was shown that the design and implementation of
a buffer framework addresses two important issues in the research of
large displays. The rest of the chapter was divided into the two parts
of the solution to these issues.

First, a buffer concept for interaction was developed which transfers
successful ideas from computer graphics and selected aspects from
swarm intelligence to the area of interaction. The main ideas of this
concept were local awareness, pre-computed and discretized availabil-
ity of information, and local processing of this information. Further
development of this concept made the introduction of global and lo-
cal buffers stacks necessary and lead to the idea of active and passive
buffers to enable a generic connection scheme for buffers.

Second, a framework architecture was developed that incorporated
the buffer concept for significant performance gains and which ad-
dressed the general software issues modularity, extensibility, and reusa-
bility. To achieve these challenging goals, techniques from object-
oriented analysis and design such as decoupling, centralized knowl-
edge, and operation-centric view were used. Another important foun-
dation of the framework that contributed to these goals were design
patterns, namely, the Composite and the Builder pattern.

Combined, these two parts provide a powerful key to an easier de-
velopment process of responsive applications for high resolution dis-
plays.
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After the abstract and general descriptions of the buffer concept and
the framework architecture in the preceding chapter, this chapter shows
and discusses selected details of the implementation. Used technology
as well as utilized techniques and important code subtleties are ex-
plained to close the gap between the abstract and the specific.

4.1 realization of the framework architecture

This section discusses the technology and procedures that were used
to build the buffer framework.

4.1.1 Technology

The goal for the implementation of the architecture devised in Chap-
ter 3 and its underlying buffer concept was to go beyond a mere proof-
of-concept. Specifically, it is designed to provide researchers with a
reusable and extensible software architecture to explore new ways of
interaction on large displays easier. Therefore, the technology to im-
plement and to realize this goal had to be chosen carefully. The high
performance requirements led to choosing C++ as the programming
language, but alternatives such as C# or Java were considered as well.
Although the latter provide an automatic memory management and
are, therefore, generally easier to use, current versions still lack the
high performance capabilities and the flexibility of well-used C++.1

For the internal organization of the framework data structures from
the Standard Template Library (STL) are used. These offer advantages
as being widely available and being subject to strict complexity speci-
fications.

The abstract base layer of the buffer framework (cf. Figure 34) can
be and was, therefore, implemented in a general, operating system-
independent way. For the implementation of renderer-specific parts
the OpenGL API was used. It is freely available, widely accepted, well
understood and offers high performance.

Due to the used display hardware, the available drivers, and toolkits
such as the SMART SDK, Microsoft Windows with Visual Studio .NET
2003 was used as the development environment. To achieve the setup
explained in Section 3.3.1, the whole framework is encapsulated into
a Dynamic Link Library (DLL) and this DLL can be used to access the
framework functionality. Section 4.2.3 shows a simple and specific
example in C++ that makes use of the provided functionality.

Figure 39 shows an overview of the different technologies used to
build the buffer framework and how it fits together with other technol-
ogy used to build tabletop applications. On the left are the different

1 A detailed comparison of modern programming languages is far beyond the scope of
this thesis. The rough discussion given here is used to give reasons for the choice made
and to point out advantages of this choice.
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Win32
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Figure 39. Technology overview for a tabletop application.

technology layers of the buffer framework, ranging from standard C++
to a Microsoft Windows DLL. The right side and the bottom show other
toolkits that provide special functionality for an application: there is
the SMART SDK for the two-touch input and Trolltech’s Qt library to
build the application on. All together works seamlessly as an applica-
tion for tabletop displays.

4.1.2 Development Approach

Designing and implementing reusable and extensible software in a
very limited time frame is a difficult task that requires sophisticated
development techniques.

The estimating and planning process was done according to Thomas
and Hunt [60, pages 64–70] and is also reflected by the thesis’ organi-
zation:

1. Understand what is asked (Chapter 2).

2. Build the model and break the model into pieces (Chapter 3).

→ From this followed the work estimation for the implementation.
The schedule was iterated with the progress of the code.

The implementation followed an incremental development scheme ac-
cording to Agile Development paradigms [1], or as this is called by
Thomas and Hunt [60, pages 48–52]: Tracer Bullets. The underlying
idea is that a project is never finished, functionality might have to
be added, and requirements change often during the implementation.
This approach fits for this thesis, as the work on the buffer framework
is not finished with the thesis but just started.

To achieve this incremental approach, a basic structure—the main
layout of the architecture—was designed and built to work in. This
code skeleton was then fleshed out more and more as functionality
was added. Essentially, this yields two major advantages:

1. There is always an integration platform (the main architecture)
to integrate new ideas, to experiment with new features, and to
test the effects of new code.

2. There is running code at all stages of the project.
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In addition, this gives the developer a better feeling for the progress of
the project.

It is very important to distinguish the Tracer Bullets approach from
developing a prototype. While a Tracer Bullet is designed to grow to a
full product during the development process, prototypes are intended
to be thrown away. Therefore, prototypes usually ignore important
aspects such as

• correctness,

• completeness,

• robustness, and

• style

which are essential for good software [60, pages 53–56].

The utilized techniques enabled a development process that was
flexible enough to adapt to new requirements and to solve unforeseen
problems. Having running software at all stages also for demonstra-
tion purposes proved very useful to discuss the state of the project
and to adapt the schedule. Therefore, Tracer Bullets and Agile meth-
ods can be seen as a major contribution to the implementation of the
buffer framework.

4.2 rendering specialties

As pointed out before, applications for large displays deal mainly with
visualizing data and interfaces. Thus, rendering takes a major role in
the implementation of systems for large displays.

This section discusses a selection of special problems that arose dur-
ing the implementation process and their solutions. First, the interrela-
tion between rendering and responsive interaction is shown and a so-
lution to resulting problems is presented. Second, optimizations to the
render loop2 of an application using the buffer framework show the
specific impact of well-written code on the performance of an applica-
tion. The section concludes with the effect of certain data structures
on the internal organization of the framework which is an important
factor for the framework’s performance.

4.2.1 The Picking Problem

The buffers of the buffer framework are stored in RAM and calcula-
tions and operations on them are done on the CPU. This is due to the
possibly very high memory requirements and the rather simple oper-
ations needed for interaction tasks with the buffer framework, namely,
retrieval and writing of data from or to buffer cells.

So far, this works fine for the needs of a Component’s local buffer
stack. For other requirements, such as the picking3 of Components by
the user, the following would be necessary:

2 A “render loop” is to be understood as that method of a program which is called for
each frame. It is typically used to draw the visual content on the screen.

3 In this thesis, the term “picking” refers to the process of finding out which Component
is under a screen location touched by a user.
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1. A global buffer to store the ids of Components in their covered
areas is required. User interaction with a certain location would
then be forwarded to this id buffer, the stored id (or none, if no
Component is present there) would be retrieved, and interaction
with the associated Component would be processed.

2. Every Component would need a special render method to trans-
form its geometric representation into a rasterized id buffer rep-
resentation, as users usually expect to interact with what they
see, at least for the picking process. Figure 40 shows a schematic
view of the different stages of this process and how the different
representations could look like.
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Figure 40. The different steps of the picking process done via a global id buffer.

The most critical factors of this process are

• the size of the geometry,

• the complexity of the geometry, and

• the size of the global id buffer.

Thus, it is even for a rather simple Component, e. g., like the simple
Interface Current depicted in Figure 40, very costly to calculate and
write the required values. Definitely, it cannot be done every frame
as the computational costs are too high. There are even additional
complexities such as removing the previous footprint of a Component
from the id buffer and synchronizing this removal with other users’
interactions. Test implementations revealed that the costs are even
too high if the rendering into the id buffer is only done when user
interaction with a Component is finished, i. e., when a Component is
dropped.

This shows that the implementation of the buffer concept using RAM
and doing operations on the CPU is suitable for its core tasks for which
it was designed. This technology is the right choice if only small por-
tions of the buffers are changed at a time, if pre-computed data can
be used, or if only simple operations are required. Responsive inter-
action cannot be maintained by this approach for intense and complex
calculations which affect large areas of one or even more buffers, e. g.,
as needed for the picking of Components.

The next section shows a solution to this special problem with the
help of hardware.
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4.2.2 A Framebuffer Solution

As was shown in the preceding section, special cases of the buffer con-
cept cannot be realized efficiently in software. To solve this problem
and to implement an efficient picking mechanism for Components,
picking is done by grabbing colors directly from the framebuffer. The
details of this approach are as follows:

1. Every Component has a unique color attribute which is calcu-
lated from its unique id.

2. This color is not visible to the user as it is hidden under textures
or decoration colors.

3. Rendering for picking is done separately in a first render pass
and it puts the colors into the backbuffer of the framebuffer at
their respective positions. During interaction, the color under
the touched location is retrieved from the backbuffer, the Com-
ponent’s id is calculated from the color, and interaction with this
Component can be processed. After this, the rendering for the
visualization is done, the buffer-flip of the double buffering hap-
pens and, therefore, the user does not see the extra rendering
step for the color picking.

Figure 41 shows an example for the different results of the two render-
ing types.

(a) Regular rendering with textures and
decorative colors.

(b) Rendering for picking with an unique
color for each Component. (Neigh-
boring colors are hard to distinguish
by the human eye.)

Figure 41. Examples for the two different rendering types.

The biggest disadvantage of requiring an unique color is the limita-
tion to the number of available different colors. These are for the RGB
space

2563 = 224 = 16, 777, 216 different colors.

While this is a theoretical limit, it is not a limitation that might be
encountered in practical applications soon (cf. Section 5.2.1).
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However, there are other picking schemes4 available and possible,
e. g., the name stack in OpenGL [51, Chapter 13]. But color picking is
a good choice to keep the interfaces of the buffer framework renderer-
independent.

To sum this up, the color picking technique overcomes the perfor-
mance problem of frequently rendering into global buffers by grab-
bing relevant information directly from the framebuffer. It couples id
information with color information via simple calculations and, thus,
provides a fast and easy way to identify a Component, which is an
important feature for realizing responsive interaction.

4.2.3 The Render Loop

The buffer framework is no application by itself but it provides an
interface to render and to process visualization and interaction content.

To achieve the color picking scheme presented in the preceding sec-
tion, the rendering process of an application using the buffer frame-
work has to be adapted. This is done by calling special framework
methods at the right time, as rendering too much and too often will
reduce the application’s performance drastically. Unfortunately, this
cannot be done automatically by the framework, as the developer
needs to maintain full control over her render loop for a maximum
of flexibility. However, the framework provides all necessary informa-
tion and simple methods to implement a highly optimized render loop
for an application.

The most important and framework-relevant parts of an example
render loop are schematically shown in Figure 42. In addition, List-
ing 1 shows C++ code from the render loop of the example application
that was developed to test and demonstrate the buffer framework.

The information the framework provides is essential to reduce the
number of times very costly methods are called. As both picking and
dropping a Component require an additional rendering step to get the
needed color information from the framebuffer, this additional ren-
dering should only be done if there is actually picking or dropping in
progress. Therefore, important information whether picking is occur-
ring or not is provided by the method getIsPicking(userId), which
is called in line 20 of Listing 1 for example. A Boolean true is only re-
turned if the user touches something. Any following interaction such
as dragging the already picked Component does not trigger the extra
rendering and other expensive operations such as glReadPixels().

It is important to note that a user is either picking or dropping a
Component in the same iteration of the render loop, she cannot do
both at the same time. Thus, the extra rendering for the color picking
is done once per iteration at most. However, input might become a
critical factor if many users are picking concurrently with multiple
input devices per user, as this requires many iterations of the for loop
(cf. line 7) or even nested for loops. At the moment, this is not a
practical limitation due to the available hard- and software. How this
affects both performance and the general interaction setup around a
tabletop display might be an interesting research question for the near
as well as the far future.

4 It has to be noted that this color picking scheme was not invented in this thesis but it is
a commonly used technique in graphics programming [51, page 602].
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Figure 42. Flowchart of important parts of the render loop.
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Listing 1. Important parts of the render loop

1 void QTTabletopWidgetGL::paintGL()
2 {
3

4 // ...
5

6 // iterate over all users
7 for (unsigned int i = 0; i < NUMBER_OF_USERS; ++i)
8 {
9

10 // ...
11

12 GLubyte pixelColor[3] = {0,0,0};
13

14 // Picking
15 // do we really need to draw?
16 if (getVis()->checkDoDrawingForUser(i))
17 {
18 // this is important to do the expensive
19 // operations not too often
20 if (getVis()->getIsPicking(i))
21 {
22 glPushAttrib(GL_ALL_ATTRIB_BITS);
23 // render without the textures and only where the input is
24 glDisable(GL_TEXTURE_2D);
25 // important so we won’t see the other Components
26 // moving without textures
27 glScissor(getVis()->getPosXToPaint(i),
28 getVis()->getPosYToPaint(i), 1, 1);
29 glEnable(GL_SCISSOR_TEST);
30 // render objects for picking
31 getVis()->renderAllComponentsForPicking();
32 // finishing the rendering first is important on quite fast
33 // machines, otherwise we read wrong data from the input
34 glFinish();
35 // find pixel under mouse pointer
36 glReadPixels(getVis()->getPosXToPaint(i),
37 getVis()->getPosYToPaint(i),
38 1, 1, GL_RGB, GL_UNSIGNED_BYTE, pixelColor);
39 glPopAttrib();
40 }
41 // cf. Figure 36(a) on page 48
42 getVis()->processSingleComponent(i, pixelColor);
43 } // end of picking
44

45 // Dropping part here (omitted for simplicity)
46

47 } // end of user iteration
48

49 // do the real rendering (not for picking etc.) here
50

51 // ...
52

53 } // end of paintGL() �
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4.2.4 Internal Organization

To achieve responsive interaction and efficient rendering as discussed
before, the data structures to organize the information within the frame-
work have to be chosen carefully. This section briefly discusses the
tasks information has to be organized for and why certain data struc-
tures are used in the framework implementation.

component storage: The framework core has the single, unam-
biguous, and authoritative representation of all visualization content,
the Components. Every Component is identified by its unique id,
which suggests an organization of all Components in an array or vec-
tor due to the cheap O(1) costs.5 However, as Components can be
deleted by user interaction and the ids of deleted Components can be
reused by new Components, the difficult and expensive remove oper-
ations on arrays or vectors make these data structures not suitable for
this task. This leads to using a STL map, where values can be accessed
by unique keys, here the unique Component id. Due to the internal
tree representation of the data, the crucial operations insertion, lookup,
and removal can all be done in O(log n) time.

rendering order: Although the order of the Components does
not matter for the internal representation, it is very important for the
rendering process. Components have to be displayed according to user
interaction, e. g., the currently active Component should be rendered
over the other ones for intuitive interaction. The STL map used for the
Component storage orders the stored data according to the keys. Thus,
because of the decoupling of the storage from the rendering order, a
separate data structure is used. The required data structure for this
should provide easy access to its front or end and removing a Compo-
nent anywhere should be possible as well. This leads to using a linked
list with expensive Component removal in O(n) time but very fast in-
sertions in O(1) due to the use of a special case: we insert always at the
front of the render list. Rendering works then by iterating through the
list from back to front and rendering each Component. Whenever in-
teraction with a Component occurs, it is removed from the render list
and put at its front to be rendered on top of all the other Components.
This enables a local optimization for the lookup as recently touched
Components are rather close to the head of the list, not requiring a
full iteration through the whole list. Thus, the O(n) worst case is only
likely for seldom touched Components or if the number of users is
close to the number of Components.

We have seen that the internal storage of all Components is a dif-
ferent concept than their order for rendering. Thus, different data
structures have to be utilized to take advantage of the respective re-
quirements. In this context, optimizations for special cases help to
reduce the native disadvantages of certain data structures such as lists
and, therefore, contribute to improving the overall performance of the
buffer framework and applications built with it.

5 O-notation provides information about an asymptotic upper bound and is used in this
thesis according to Knuth as well as Cormen et al. [10, 25]: O(f(n)) denotes the set of
all g(n) such that there exist positive constants c and n0 with 0 6 |g(n)| 6 cf(n)
for all n > n0. For example, an algorithm with a running time of O(n) on a number
of inputs n has a worst case running time of order n. However, no information about
the lower bound is implied.
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4.3 chapter summary

In this chapter, technology and techniques to implement the concept
devised in Chapter 3 were presented. It was shown how these help
to achieve framework design goals such as reusability and extensibil-
ity. The utilization of an incremental development process supported
and emphasized the underlying framework concept, namely, that the
buffer framework is not finished with this thesis but just started.

Complex calculations that affect large areas of one or even more
buffers were identified as a bottleneck for responsive interaction, in
particular for the picking of Components. A solution to this particular
problem with the help of graphics hardware was explained in detail
and implemented.

The chapter concluded with the detailed description of the frame-
work’s capabilities to optimize an application’s render loop and with
a critical view at the data structures used for the internal organization
of the framework core.



5E VA L U AT I O N

This chapter contains a critical evaluation of what has been achieved
in this thesis. First, the process that was used to reach the goals of
the thesis is examined and evaluated. Second, the devised results are
presented and compared to other significant work in this area of re-
search. This includes mainly performance benchmarking to measure
the responsive interaction capabilities of the implemented concept but
also the quality of the software engineering regarding reusability and
extensibility.

5.1 work process

The greatest challenge of this thesis was that there are not many pub-
lications on the topic of responsive interaction on large displays. This
is mostly due to technological reasons, as the size of displays has been
increasing faster than their resolution.

The start of this thesis’ research was, therefore, a close look at the
available prototypes for interaction metaphors on different tables and
resolutions. Software that is running smoothly on lower resolution ta-
bles severely lacks responsive interaction when it is run on the table
prototype at the University of Calgary which resolution is one of the
highest in the world at the moment. The investigation of the different
parts of these applications led to knowledge about their typical bot-
tlenecks. Intensive studies of the current tabletop research as well as
of other fields with similar problems led to the discovery of success-
ful and already well-understood techniques. These techniques were
adapted and further elaborated to suit the needs of interaction meta-
phors.

On the other hand, the study of existing prototypes and publications
about them surfaced yet another seldom researched area within the
tabletop community. This led to the idea of designing modular sup-
port for building applications, a foundation which is taken for granted
in many other fields. Due to their completely different interaction
requirements—which were shown by researchers over years—the soft-
ware for tabletop displays has to be different from that for regular
desktop environments, featuring different interaction metaphors. To
achieve this goal, best practices from a variety of fields, especially soft-
ware engineering, were gathered and adapted to the requirements of
of high resolution displays.

The next logical conclusion was to combine these two rather sep-
arate concepts. This can be considered the major research contribu-
tion of this thesis, as it makes higher performance easier accessible
by integrating it into an optimized development process. Agile meth-
ods were used to realize this combination—this served the purpose
of demonstrating the power and versatility of the devised concepts
on existing large displays and to make it publicly available to the re-
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search community later on. As frameworks cannot be presented and
tested by themselves, an example application was built on top of the
framework. This example transferred several important table interac-
tion metaphors from their prototypes into the buffer framework and
showed how they can be realized efficiently. The results of these trans-
fers and comparisons between the framework and an important pro-
totype are presented and discussed in the next section.

To sum up the general process of this thesis, research and ideas were
always oriented towards the urgent needs of the research area and how
these could be satisfied using best practices and successful solutions
from other fields.

5.2 results

As the concept was divided into two distinct parts—the buffer concept
for performance gain and the framework architecture to support the
application development process—the evaluation of the results has to
reflect this division as well. Thus, the performance of the buffer con-
cept is compared to that of a previous approach and the extension and
reusability capabilities of the framework are critically evaluated.

5.2.1 Performance

To measure the performance of a typical application built with the buf-
fer framework, test series were conducted. As responsive interaction
is one of the main goals of the framework, frames per second (fps) were
chosen as the metric to measure performance. This is due to the fact
that the quality of responsive interaction depends on how fast visual-
ization content can be displayed on the screen.

For orientation and quality purposes the measurements are com-
pared to those that can be achieved with a common, but complex
tabletop application prototype. The demo application for Interface
Currents [20, 21] was chosen for this comparison, as this application
uses comparable types of interface components and visualization ob-
jects.

The factors that influence the performance of the applications are
the following:

• Resolution of the display: The tests are conducted on two different
high resolution tabletop displays with 2,048 by 1,280 and 2,800

by 2,100 pixels, respectively. Due to hardware issues the latter
table could not be used at its full resolution with hardware accel-
eration. Therefore, the next available lower resolution was used
for these tests, which is 2,560 by 2,048.

• Used texture memory: The visualization objects are textured with
images. For the test series the used texture memory is about
equal for both applications and depends on the number of ob-
jects. The total amount of used memory varies between 10 and
about 100 megabytes of uncompressed textures. For further com-
parison, the size of the used visualization objects is about the
same with a side length between 80 and 120 pixels.



5.2 results 67

• Number of visualized objects: The most critical factor for respon-
sive interaction is how many objects have to be displayed and
animated on the display. This factor is varied to see its influence
on the performance.

Concerning the sampling procedure of the framerate, the benchmark-
ing function of the freely available tool FRAPS [56] is used. For a given
time frame—here 5 minutes—the tool records the measured frame
rates per second and calculates the average value. As we deal here
with constant outputs and not random variables, techniques known
from simulation such as confidence intervals are not required.

The hardware setup for the machines that run the tables is as fol-
lows:

• 2,048 by 1,280 table: Running Windows XP with 2 gigabytes RAM
and an Intel Xeon 2.8 gigahertz CPU. NVIDIA Quadro4 700GL graph-
ics hardware with VSYNC1 turned off.

• 2,560 by 2,048 table: Running Windows XP with 512 megabytes
RAM and an Intel Xeon 1.4 gigahertz CPU. Matrox QID Pro graph-
ics hardware with VSYNC enabled, as it could not be disabled due
to driver issues.2

The test itself is split into two parts. One varies the number of visu-
alized objects and compares how these changes influence the framerate
on the different display resolutions. The second part aims at keeping
the framerate constant and comparing the different numbers of visual-
ized objects the two applications can handle on the given resolutions.

variable framerate: This test series aims at comparing the per-
formance of the two applications when the number of visualized ob-
jects increases. About 20 frames per second can be seen as the lower
limit for responsive interaction in this context. A benchmark is the
number of objects that makes each application lose its capability of
responsive interaction. It is also important to see how the different
resolutions affect the performance. Table 2 and Figure 43 show the
results for this series.

fixed framerate : For a different kind of comparison, this test se-
ries uses a base framerate, which is the framerate the common appli-
cation with the Interface Currents can achieve with 100 or 25 objects,
respectively. For the buffer framework application, the number of ob-
jects is increased until its framerate reaches the base framerate. Table 3

shows the results for this series.

1 VSYNC is a setting for the graphics hardware that limits framebuffer swaps to the dis-
play’s refresh rate. This results in an artificial upper limit to the framerate and is usually
used to avoid visual artifacts.

2 The latest certified driver from Matrox with support for quad stretched (1.10.01.002 SE)
did not work for both applications. An older, unified driver version (2.01.00.081 SE)
enabled the setup that is described above.

http://www.matrox.com/mga/support/drivers/certified/home.cfm
http://www.matrox.com/mga/support/drivers/unified/home.cfm
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resolution objects currents framework

2,048 by 1,280 50 38.470 fps 158.933 fps

2,048 by 1,280 100 23.913 fps 134.436 fps

2,048 by 1,280 200 12.433 fps 104.996 fps

2,048 by 1,280 300 8.480 fps 85.676 fps

2,048 by 1,280 400 6.673 fps 71.610 fps

2,048 by 1,280 500 5.460 fps 60.603 fps

2,048 by 1,280 1,000 — 31.763 fps

2,560 by 2,048 50 13.273 fps 31.822 fps

2,560 by 2,048 100 7.489 fps 29.866 fps

2,560 by 2,048 200 4.104 fps 19.960 fps

2,560 by 2,048 300 2.856 fps 19.933 fps

2,560 by 2,048 400 — 14.990 fps

2,560 by 2,048 500 — 14.803 fps

2,560 by 2,048 1,000 — 8.540 fps

Table 2. Results for the test series with a variable framerate and an increasing
number of objects.

resolution framerate currents framework

2,048 by 1,280 ≈24 fps 100 objects 1,400 objects

2,560 by 2,048 ≈20 fps 25 objects 300 objects

Table 3. Results for the test series with a fixed base framerate and a variable
number of objects.
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Figure 43. Graph for the results of the test series with a variable framerate and
an increasing number of objects.

discussion: As the comparison shows, both display resolutions
and the underlying hardware heavily affect the performance. It also
shows that scaling an tabletop application means increasing the num-
ber of displayed objects, which in return decreases performance sig-
nificantly.

But what the comparisons most clearly show is that the traditional
application with the Interface Currents does not scale very well and
adding objects is reflected immediately by the framerate. On the other
hand, the application built with the buffer framework is rather resis-
tant against additions of Components, starting at very high framerates
which are declining slowly as the number of Components increases.
As VSYNC could not be disabled for the test series on the higher res-
olution table, the artificially limited results might differ from the real
values. This is indicated by the resulting stair shape of the •-plot in
Figure 43. It is possible that at these values get somehow normalized
to fractions of 60 Hz due to VSYNC. Therefore, at least the first value is
very likely to be higher than the measured framerate. However, this
does not affect the overall results of the tests.

Both test series show that the increase in objects while maintain-
ing a responsive framerate is about one order of magnitude
higher for the buffer framework.

More and different tests showed that the rendering hardware is also
a factor in these benchmarks. Adding little geometrical details to the
scaled number of objects, such as an additional borderline around
them, had a severe impact on the framerate of about the factor 2 to 3.
But to clearly verify these highly complex interdependencies is beyond
the scope of this thesis. However, it follows from these findings that
keeping the hardware for high resolution displays up-to-date is impor-
tant to maintain performance or to even get an additional increase.
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To conclude this section it can be stated that the benchmarking tests
conducted with the buffer framework revealed two important insights.
First, the new and elaborated concept of using buffers for interaction
together with a sophisticated software architecture resulted in a sig-
nificant performance increase of about one order of magnitude. Sec-
ond, using high performance graphics hardware addresses rendering-
related issues that arise with a high number of objects and helps, there-
fore, to stabilize performance.

5.2.2 Software Architecture

There are many different factors to evaluate the quality of the devel-
oped software architecture. For this evaluation the benefits of object-
oriented frameworks as outlined in Section 3.1 are used as a guideline
and it is checked to what extend they were achieved.

modularity: The buffer framework features a variety of different
modules. These modules are decoupled from each other and provide
solutions for different aspects of the visualization such as creation,
organization, content, and access to buffered information. In addition,
these modules’ base functionality is independent from any rendering
API and, thus, not limited to a particular one.

reusability: Having different specific layers within the architec-
ture enables both code and design reuse on different levels. Core func-
tionality can be reused to support other rendering APIs, whereas spe-
cific implementations can be reused to realize new interaction meta-
phors. Both types were shown in this thesis by providing implemen-
tations for OpenGL and various interaction metaphors. To fully access
these possibilities, a thorough understanding of the buffer framework,
its API, and the underlying design patterns is necessary. However, this
can be seen as a minor drawback as these require time and effort to be
learned.

extensibility: Apart from the already realized extensions, there
are several other in development at the moment. Researchers are al-
ready extending the available interaction metaphors of the framework
to make them more powerful and easier to configure (cf. Figure 44).
Furthermore, there is a buffer-based Air Hockey game for tabletop dis-
plays in preparation as well as work towards using the buffer frame-
work for non-photorealistic rendering applications.

drawbacks: There are also drawbacks that arise with the architec-
ture and with frameworks in general.

By definition, a framework provides a generic solution to a common
set of problems via design reuse. This makes a framework solution
always less versatile and configurable than a dedicated and specialized
application that is targeted at one particular problem.

Another drawback lies in the buffers themselves at the moment. The
idea to provide buffered information for local processing is fairly new
in the field of interaction. Experiences with other developers so far
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Figure 44. Interface Currents realized with the buffer framework: a simple one
on the right and a more complex one on the left, featuring control
points for splines.

have shown that the buffer concept requires some time to be grasped
and to understand its power. Therefore, it is usually difficult for the
buffer novice to come up with the right algorithms to fill the active
buffers of a Component. These difficulties arise especially, if highly
mathematical concepts, e. g., such as vector fields for the buffers of
an Interface Current are required. Ideas to approach this problem are
outlined in Section 6.2 as future work.

In total, the software architecture meets the set goals and provides
the benefits frameworks are generally known for. Concerning the
drawbacks, they are for the one part initial problems that are com-
mon for novel techniques and they will be eventually resolved with
future refinements of the software. For the other part, the problems
are known issues of generic approaches and constitute the price that
has to be paid for design and code reuse.
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This chapter sums up the results of the thesis and discusses differ-
ent aspects of the work. Furthermore, it provides a concise statement
about the meaning of both the results and the process that was used
to achieve them. An outlook at future work provides several points
to continue and to improve the work that was started with this the-
sis. The chapter and the thesis conclude with personal remarks by its
author.

6.1 conclusion

The goal of this thesis was to find a solution to the performance prob-
lems that arise on high resolution displays, especially with complex
interfaces featuring many visual objects. To make this solution avail-
able to application developers and, furthermore, to support the process
of building applications for large displays, a software framework had
to be designed.

These goals were motivated by the growing interest in and the po-
tential of large displays, especially tabletop displays. Such displays
support co-located group collaboration much better than regular desk-
top computers. However, because of their characteristics, special inter-
action metaphors that address orientation, reach, territories etc. have
to be provided for using such displays to their full potential. As the
analysis part of the thesis showed, the way such interfaces are orga-
nized as well the huge amount of pixels seriously affect the perfor-
mance of applications on large displays, thus, hindering responsive
interaction. In addition, it was discovered that there is limited to no
software support available to help developers build such specialized
applications. This can be seen as a major obstacle to research as re-
searchers have to spend much time on from-the-scratch programming
which might later on be missing for their main work.

These findings led to the formal and rather abstract definition of the
buffer concept. This concept is built on ideas borrowed from computer
graphics and on selected aspects of swarm intelligence. It features
three important advantages:

1. Information is pre-computed and discretized, thus, expensive
calculations at run-time are avoided.

2. Local awareness of the objects on the screen gives them fast ac-
cess to necessary information.

3. Local processing of the gathered information avoids expensive
communication schemes and offers new ways of flexibility.

These features reduce the complexity of the interface’s underlying
structure. Looking at this concept closer made some refinements nec-
essary. These refinements introduced important concepts such as local
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buffer stacks, a generic connection scheme, and coordinate transfor-
mations which added to the advantages of the basic idea.

This complexity-reducing and, thus, performance-increasing con-
cept was then integrated into the design of a framework architecture
which would simplify the development process of tabletop applica-
tions: the buffer framework. The architecture is built on a modular de-
sign which enables the authoritative representation of knowledge at
a single point within the system. Furthermore, the modules are de-
coupled from each other to clearly separate unrelated things and to
minimize side-effects. To achieve important goals such as reusability
and extensibility, object-oriented design patterns were employed. In
addition, the whole architecture was divided into different abstraction
layers to create a base for different rendering APIs while not being lim-
ited to a particular one.

An implementation of the abstract base and building on that, for the
OpenGL rendering API, realized the two parts of the concept. This led
to the discovery of important insights about using software or hard-
ware for buffer operations. The implementation part was concluded
with different optimization possibilities for the buffer framework and
applications built with it.

The evaluation chapter had a critical look at three important aspects
of this thesis:

1. Work Process: Despite the novelty of the researched issues, the
whole process that led to the devised concepts and its results
was at all stages aimed at using and adapting successful ideas
from other fields to fulfill the requirements of tabletop research.
The process in general can, therefore, be seen as very well suited
to solve the discovered problems.

2. Performance: Important results about the actual performance of
the implementation were gathered by carefully designed and
conducted test series. Comparing these results to a current state-
of-the-art prototype showed that applications built with the buf-
fer framework can handle an increase of objects of about one or-
der of magnitude and still maintain responsive interaction. Fur-
thermore, important insights how graphics hardware influences
this metric were extracted from the tests. In total, this makes
the buffer framework a powerful tool to realize responsive in-
teraction on high resolution displays, handling large amounts of
objects.

3. Software Architecture: An investigation of the buffer framework
regarding the usual framework benefits revealed that modularity,
extensibility, and reusability were well considered in the design
of the architecture and are based on the requirements of table-
top applications. Drawbacks related to frameworks in general
and to the novelty of the buffer concept were discussed as well.
However, in a rapidly evolving and highly dynamic field such as
tabletop interaction, requirements are likely to change and may
not be met by the buffer framework in the future. It is a serious
start to improve performance and application development on
high resolution displays, but future requirements could only be
roughly estimated and considered in the design process.
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To sum up the evaluation, the results meet and even exceed the goals
that were identified during the analysis, despite some minor draw-
backs.

It is also important to point out that the implementation of the buf-
fer framework is not just a proof-of-concept or a prototype, it is more.
It seriously aims at providing generic support for developing applica-
tions for high resolution displays. At all times, the whole design and
development process was oriented towards one attribute of the result:
being a well-designed foundation for future work. As the results and
the extensions in progress show, the work is not finished with this
thesis. It has just begun. The next section presents various ideas and
possibilities to reuse the buffer framework’s advantages and to take
its concept further. This kind of solution—which lays the foundation
for such a variety of future research—is the main contribution of this
thesis.

6.2 future work

The buffer framework was designed and implemented with reusability
and extensibility in mind, and Section 5.2.2 showed that this goal was
achieved. As there are already extensions and reuses of the framework
in development, this is the main area of future work for this thesis.
A good idea is to extend the library of interaction metaphors and to
make the existing ones richer and more comfortable to use. In this
context, extensions to new research questions such as 2.5d or 3d for
tabletop interaction metaphors like Interface Currents or RNT are likely
to be investigated using the buffer framework in the near future. These
would carry on research done by Hancock et al. [19].

To achieve a more comfortable use of the framework also for non-
expert programmers, higher level programming languages such as C#
might be considered. It should be investigated whether the interfaces
and certain layers of the buffer framework can be made available via
a wrapper class for C# [16, pages 139/175]. Potential issues of this
approach are the effort needed to realize the wrapper, how easily the
wrapper can be adapted afterwards to changes of the underlying code,
and most of all: how the use of both a wrapper and a higher level
language affects the performance of resulting applications.

As briefly indicated in Section 3.3.1, the buffer framework allows to
be used together with different kinds of input toolkits, e. g., the SMART
Board Software Development Kit (SDK) for the DViT. Recent research
by Tse et al. on richer input possibilities for multi-user tabletop dis-
plays showed some impressive improvements and many useful ideas
[62]. Combining the features of such a toolkit with the performance ca-
pabilities of the buffer framework could be a tremendous step forward
towards powerful applications for tabletop displays. Issues to consider
are the compatibility between such toolkits and the buffer framework
as well as the impact on the overall performance due to intensive input
pre-processing.

Concerning the buffer implementation, the Strategy pattern [16, page
315–323] might be useful. By this, different interpolation techniques
could be provided for accessing a buffer off its regular grid. These
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would allow the developer to choose between different types of quality
and speed.

Another interesting area of work would be a more detailed inves-
tigation of the impact of graphics hardware on tabletop applications.
Especially research on the advantages and disadvantages of using the
graphics hardware for all buffer operations—or just a subset—could
shed some light on further optimization possibilities of the buffer con-
cept implementation.

Section 5.2.2 mentioned difficulties concerning the filling of buffers
with the correct content. An idea to address this issue would be to gen-
erate buffer content from graphical input by providing special bitmaps
that can be converted into buffer values. An example could be height
maps that are loaded during initialization and which are then con-
verted to fit into the required buffers. A possible next step of this idea
could be a graphical authoring tool to create such bitmaps easily. Al-
though such approaches might be of a limited use, they would help
developers lacking a deeper mathematical understanding to get a bet-
ter idea about how the buffer concept works and how it can be applied
to realize interaction.

As this section shows, there are many different ways of reusing,
extending, and improving the concept and implementation developed
in this thesis. Thus, the design goals were clearly achieved or even
exceeded. This emphasizes once more that the contributions presented
in this thesis will be a good foundation upon which to build future
software for tabletop display research. This is also reflected by the fact
that the buffer framework is now maintained and extended by other
researchers at the Interactions Laboratory of the University of Calgary.
The latest version and updated information is publicly available via
the lab’s cookbook:

http://grouplab.cpsc.ucalgary.ca/cookbook/

Please note that license and copyright restrictions may apply.

6.3 personal remarks

Writing this thesis about a—for me—completely new topic and in
an unknown environment was a big challenge. But due to the very
friendly atmosphere in the Interactions Laboratory, I could adjust quick-
ly to my tasks. Many group meetings and personal talks to the other
researchers there helped me to understand the bigger picture of the on-
going research. One of the most important results of this is to have the
buffer framework cooperate with input toolkits—a very crucial feature
I might have excluded if I had not had many discussions with Edward
Tse about the interaction between visualization and input software.

Having frequently external visitors from industry and the govern-
ment in the laboratory for demonstrations was a new and exciting
experience. It provided me with additional feedback and motivation
as I could see to which applications my work might grow in the future.

After finishing most of the work in Canada, my supervisors helped
me with a nearly seamless transition back to Magdeburg, where I
could complete the thesis.

http://grouplab.cpsc.ucalgary.ca/cookbook/
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contents of the accompanying dvd

The DVD attached to this thesis includes all relevant information and
software. The contents are structured as follows:

• bin/ features an executable example application of the buffer
framework for the Windows operating system.

• code/ includes the source code and project files to compile the
framework and the example application.

• latex/ provides the LATEX sources and graphics for this thesis.

• movies/ has demos of the example application in MPEG format.

• slides/ includes the slides and videos of the thesis’ defense.

• software/ contains a selection of useful and necessary software
for the creation and evaluation of the framework.

compiling the source code

The buffer framework was developed and tested using Microsoft Win-
dows XP and Visual Studio .NET 2003. It is likely to compile, work,
and run on other configurations, but the following setup can only be
guaranteed for the development configuration:

• Install Visual Studio .NET 2003

• Install Qt 3.2.0 Educational. It is needed to build the exam-
ple application. At the moment, it is also needed within the
file TabletopVisGL.cpp to provide texture loading via qimage.h.
This could easily be changed later on, if required.

– Make sure to enable the integrating options “Microsoft Vi-
sual C++ .NET” and “Install .NET AddIn”.

– Also enable the option “Set QTDIR”.

• Optional: Install SMART Board Software.

• Open the solution UofCTabletopFramework.sln.

• Build and run the solution. Note: If you have SMART Board Soft-
ware installed and a firewall running it might notify you that the
example application is trying to access the SMART Board. Un-
less you are actually using a SMART board and want to have two
touches available, it does not matter whether you grant access or
not.

• For fine tuning of the example without recompilation the file
config.xml is available in the respective folder (Debug or Release).
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