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ABSTRACT

This dissertation presents a suite of scientific visual analytics systems that tightly

couple large-scale computational modeling—including both AI-powered inference

and traditional molecular simulations—with interactive, scalable visualization. By

enabling experts to directly explore, interpret, and refine complex macromolecular

data generated from intensive computation, these systems bridge the persistent

“non-optimizable gap” that automation alone cannot overcome. This integrative

approach empowers more effective human–machine collaboration, accelerates

scientific discovery, and addresses challenges that demand nuanced human insight

in molecular science.

Three core contributions anchor this work: DiffFit, a visually-guided, differen-

tiable fitting framework that unites automated optimization with expert-driven

inspection for assembling protein structures into cryo-EM volumes; ProteinCraft,

an integrative visualization system that combines structural, interaction, and

multivariate attribute visualization to accelerate and rationalize AI-driven protein

binder discovery; and SynopFrame, a synchronized multiscale framework for ana-

lyzing dynamic DNA nanotechnology simulations, revealing temporal and spatial

patterns that traditional methods often miss.

By orchestrating advances in information visualization, graph analytics, and

molecular rendering, these systems bridge structural, functional, and temporal

scales, empowering users to filter, compare, and iteratively refine molecular designs

with greater accuracy and efficiency. Through comprehensive use cases and expert

evaluations, this dissertation demonstrates that integrative visual analytics not

only improves the involved workflows’ efficiencies but also transforms the process

of exploration, validation, and interpretation in complex macromolecular systems.

Ultimately, this work establishes visual analytics as a critical mediator in the

AI era, enabling scientists to overcome the limitations of both black-box AI and
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manual analysis, and accelerating the translation of computational advances into

impactful scientific and biomedical discoveries.
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PERSONAL STATEMENT

The Power of Seeing

Ever since my earliest days in school, I discovered a simple truth: if I could picture

what I was reading in a textbook, I could understand it; if I could not, the words

remained impenetrable. In the pages of biology books, vivid “movies” would

form almost effortlessly in my mind—double helix Deoxyribonucleic Acid (DNA)

unwinding for transcription, ribosomes attaching to messenger RNA (mRNA)

to initiate translation, amino acids linking together and folding into functional

proteins. When a concept could be imagined and visualized, comprehension often

arrived in an instant, as if the invisible had suddenly become tangible.

Over time, this intuition crystallized into a conviction: great visualization

is not merely a tool for communication, but a catalyst for discovery. It is an

accelerant that transforms abstract concepts and data into “aha!” moments, not

only for established scientists but also for students, educators, and anyone curious

about the natural world. I have come to believe that the most profound insights

and the most effective learning often arrive the moment we are able to see them.

This conviction was reinforced and deepened by my exposure to the work of

Richard Feynman,1 whose talent for explaining intricate science has long inspired

me. In the BBC series Fun to Imagine,2 Feynman confronts the fundamental

limits of explanation through what I like to call his “alien challenge.” When asked

why magnets repel,3 he unpacks the question by imagining how to explain it to

someone completely unfamiliar with our world. His reasoning, which progresses

1en.wikipedia.org/wiki/Richard Feynman
2The official record on BBC is at bbc.co.uk/programmes/p0198zc1. One full video record

on the Internet is at youtu.be/nYg6jzotiAc.
3It starts at 14:53 in the full video. This section is also available as a 7.5-minute standalone

video at youtu.be/Q1lL-hXO27Q.

https://en.wikipedia.org/wiki/Richard_Feynman
https://www.bbc.co.uk/programmes/p0198zc1
https://youtu.be/nYg6jzotiAc
https://youtu.be/Q1lL-hXO27Q
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from the mundane (“Aunt Minnie is in the hospital”) to the deepest laws of

physics, reveals a profound insight: we can only take things for granted because

we live and interact within a world we can see and touch. In contrast, when faced

with phenomena outside our lived experience—when we are, so to speak, “aliens”

to a new scale or domain—imagination and visualization become our only bridges

to understanding.

This realization, more than anything else, has shaped my academic journey

and career. Years later, during an open house event, I encountered the atomic

model of human immunodeficiency virus (HIV) presented by my future PhD

supervisor, Prof. Ivan Viola. According to my friends who told me later, I stood

transfixed before that exhibit far longer than at any other display—unaware of the

time passing. The impact was immediate and profound. In that moment of seeing,

my path became clear: I knew I wanted to pursue my PhD under his guidance,

driven by the conviction that seeing leads to understanding and that visualization

is not merely a supplement to science, but an indispensable foundation for insight

and discovery.
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Chapter 1

Introduction

1.1 My PhD Journey

Guided by a belief in the “power of seeing”, I transitioned from a bioscience

master’s program into computer science for scientific visualization. To contribute

meaningfully, I effectively completed a computer-science master’s curriculum while

learning to connect biological questions with visualization methods. Throughout,

I sought to bridge communities—biologists, computer scientists, and visualization

researchers.

Early in my PhD, I helped build one of the first atomistic models of SARS-

CoV-2,1 introducing me to the mesoscale and to collaborations across modeling,

structural biology, and art. Our follow-up visualization of the SARS-CoV-2 life

cycle won the Computer Graphics Forum cover contest.2 Mentoring high-school

interns who modeled T4,3 chloroplasts,4 thylakoids,5 and more deepened my

interest in education and produced assets later used in VOICE [46].

SynopSpace—a conceptual space for DNA visualization—spanned much of

my PhD and seeded ideas that recur in later systems. Through collaborations

on inverse procedural modeling, I encountered differentiable compositing [85] and

adapted it to cryo-EM fitting (DiffFit). Finally, ProteinCraft unified multivariate

attributes and 3D structure to support AI-driven binder design. Together, these

projects form the backbone of this dissertation.

1nanovis.org/SARS-CoV-2-model.html
2vcg.isti.cnr.it/cgf/winner.php?year=2021,

cg.tuwien.ac.at/news/2021-01-07-Nanographics-wins-CGF-Cover-Contest
3nanovis.org/T4-model.html
4nanovis.org/Chloroplast-model.html
5nanovis.org/Thylakoid-model.html

https://www.nanovis.org/SARS-CoV-2-model.html
https://vcg.isti.cnr.it/cgf/winner.php?year=2021
https://www.cg.tuwien.ac.at/news/2021-01-07-Nanographics-wins-CGF-Cover-Contest
https://www.nanovis.org/T4-model.html
https://www.nanovis.org/Chloroplast-model.html
https://www.nanovis.org/Thylakoid-model.html
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Figure 1.1: Automation spectrum and the non-optimizable gap. Toward the fully
automatic end, a single smooth optimum can be reached by standard optimization.
Moving left, multiple plausible minima require human judgment and selection.
Further left, narrow basins and rough paths make robust initialization essential.
At the other end, heavy human intervention is needed for open-ended questions
without a single, fixed objective. Visual analytics helps humans steer algorithms
and evaluate outcomes across this spectrum.

1.2 Research Overview and Research Question

Many problems in macromolecular science sit between automation and expert

reasoning. I refer to this persistent region as the non-optimizable gap: the residual

distance between what algorithms can deliver—given available objectives, priors,

and data—and the scientific insight required to decide, refine, or explain results.

In this gap, objectives are incomplete or multi-faceted, landscapes are rough with

many acceptable minima, or the task itself is open-ended and context dependent.

Visualization is therefore not an afterthought but the interface that enables

human–AI teaming to bridge this gap [72].

Research question. How can scientific visual analytics systems be designed

to tightly couple automated modeling with interactive visualization so that experts

can steer, audit, and refine computation—thereby bridging the non-optimizable

gap (Figure 1.1) across diverse macromolecular problems?

1.3 Technical Motivation: The Non-Optimizable Gap

Recent advances in AI and large-scale modeling have transformed macromolecular

research, from structure prediction and generative design to mesoscale simulation.

Yet these capabilities expose a region where automation alone is insufficient:

objectives are ill-specified or competing, landscapes are non-convex with many
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acceptable solutions, and data can be noisy or incomplete. In this non-optimizable

gap (Figure 1.1), expert knowledge is essential to set context, impose constraints,

adjudicate among alternatives, and ultimately extract meaning from large compu-

tational ensembles.

Three archetypal manifestations of the gap motivate the systems developed

in this dissertation: (i) Multiple good minima—e.g., situations where several

viable solutions coexist, as in selecting the fitting result from DiffFit; (ii) Narrow

basins and rough paths—e.g., scenarios where reaching a workable region

requires laborious manual intervention, as in cryo-EM model fitting prior to DiffFit

and in the protein design workflows; and (iii) Open-ended questions—e.g.,

contexts where no single fixed objective exists, such as diagnosing failed DNA

nanostructure assembly or exploring conformational switching.

How the three systems bridge the gap

DiffFit (from narrow basins & rough paths to decision making among

multiple solution candidates). Before DiffFit, users manually rotated and

roughly positioned subunits inside cryo-EM volumes to reach a basin where local

refiners succeed. DiffFit replaces this manual coarse step with visually guided,

differentiable optimization on GPUs, robust initialization sampling, and loss

formulations that make difficult basins reachable. The expert remains in the loop

where it matters most—evaluating and selecting among high-quality fits—thus

shifting human effort from low-level manipulation to high-level judgment.

ProteinCraft (navigate through narrow basins & rough paths). In

protein binder design, there is no single global objective that guarantees stability

and affinity. ProteinCraft links multivariate attributes, residue–residue interac-

tions, and 3D structures so experts can focus computation on promising regions of

the landscape by selecting promising candidates, performing local “jittering,” and

iteratively redesigning the structure. Visual analytics thus moves the algorithmic

focus from a rough landscape to the sweet spot of a good minimum by steering
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which candidates to expand and which evidence to trust.

SynopFrame (open-ended questions). When a DNA design fails to

assemble or toggles between conformations, there is no single target pose or scalar

objective. SynopFrame provides a visualization space—an array of synchronized,

gradually abstracted views across granularity, visual idiom, and layout axes—that

supports exploratory analysis, hypothesis formation, and localization of failure

modes in large, heterogeneous simulations.

1.4 Scope and Contributions

The central vision of this dissertation is to advance the field of scientific visual

analytics by developing integrative visualization systems that bridge the “non-

optimizable gap” in contemporary macromolecular research. This gap arises wher-

ever computational modeling and AI-driven inference reach their limits—where

expert intuition, interactive exploration, and visual reasoning become indispens-

able for meaningful scientific progress.

The scope of my research lies at the intersection of structural biology, compu-

tational protein design, DNA nanotechnology, data visualization in general, and

specifically molecular visualization. The technical solutions that I develop in this

dissertation respond to the challenges of interpreting large-scale, heterogeneous,

and high-dimensional molecular data that resist full automation. Throughout, the

focus remains on empowering scientists to explore, validate, and refine complex

molecular systems—combining the strengths of automated computation with

human insight and creativity.

This dissertation integrates results from the following core research publica-

tions:

• D. Luo, Z. Alsuwaykit, D. Khan, O. Strnad, T. Isenberg, and I. Viola,

“DiffFit: Visually-guided differentiable fitting of molecule structures to a

cryo-em map,” IEEE Transactions on Visualization and Computer Graphics,

vol. 31, no. 1, pp. 558–568, 2025.
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The early development of this work was presented as a spotlight at the

ICML 2024 Workshop on Differentiable Almost Everything. After journal

publication, an extended version of DiffFit was also presented at the 2nd

IAS Symposium on Biological Cryo-EM 2025 (Hong Kong), where it was

awarded Best Short Talk.

• D. Luo, C. Feinauer, L. Song, T. Isenberg, and I. Viola, “ProteinCraft:

Integrative Visualization of Protein Attributes and Residue Interactions in

the AI Era,” In preparation.

• D. Luo, A. Kouyoumdjian, O. Strnad, H. Miao, I. Barisic, T. Isenberg,

and I. Viola, “SynopFrame: Multiscale time-dependent visual abstraction

framework for analyzing DNA nanotechnology simulations,” Computers &

Graphics, in revision.

The visuals developed for SynopFrame were recognized with second place in

the DESIGN X BIOINFORMATICS student competition.6

Core Contributions

The principal contributions of this dissertation are:

1. A visually-guided, differentiable fitting framework (DiffFit) for

cryo-EM model assembly.

DiffFit integrates a novel gradient-based optimization algorithm on GPU

with interactive, expert-driven inspection to accelerate and improve the

accuracy of fitting protein subunits into experimental cryo-EM volumes.

The approach introduces several technical innovations, including a prepro-

cessing technique that generates an array of smoothed volumes, an efficient

initialization sampling strategy, a negative space formulation, and a robust

loss function. Combined with human-in-the-loop evaluation and seamless

integration with established molecular visualization tools, DiffFit reduces

6https://cellmicrocosmos.org/conferences/DesXBioInf2022/winners/
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manual effort while enhancing both speed and reliability of structural fitting

workflows. The open-source plugin we implemented for ChimeraX has been

downloaded more than 1,800 times,7 reflecting its broad adoption by the

structural biology community.

2. An integrative visual analytics system (ProteinCraft) for AI-driven

protein binder design.

ProteinCraft enables researchers to analyze, filter, and refine large pools of

AI-generated binder designs through coordinated 2D/3D visualization, novel

encodings for residue interactions, and multi-level selection and ranking. By

linking structure, sequence, and functional attributes, ProteinCraft makes

the generative process more transparent and guides the identification of

high-affinity designs, significantly improving the in-silico success rate.

3. A multiscale, time-dependent abstraction framework (SynopFrame)

for DNA nanotechnology simulations.

SynopFrame addresses the challenge of analyzing complex, dynamic simu-

lation data by organizing representations along structural, schematic, and

temporal axes. The dashboard system facilitates synchronized, multi-view

analysis of design flaws and conformational changes, empowering experts to

detect failure modes and interpret molecular dynamics at scale.

1.5 Authorship Statement

All manuscripts and systems presented in this dissertation were developed dur-

ing my PhD research at King Abdullah University of Science and Technology

(KAUST), under the supervision of Professor Ivan Viola and co-supervision of Dr.

Tobias Isenberg. I am the primary contributor and first author for each of the

core works described herein. Viola and Isenberg provided ongoing supervision

and support, contributed to high-level research vision, and assisted in manuscript

review and refinement.
7As of July 2025: https://cxtoolshed.rbvi.ucsf.edu/apps/difffit
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DiffFit: This project originated from an inverse procedural modeling initiative

at the mesoscale, which was co-conceived by Ivan Viola and myself. In the

early exploratory phase, together with Zainab Alsuwaykit and Dawar Khan, we

investigated large cryo-EM datasets of axonemes. Viola then introduced me

to a key reference on differentiable compositing algorithms from the computer

graphics community [85]. With his guidance, I studied the algorithm in detail and

quickly recognized its potential for repurposing in the context of fitting protein

structures into cryo-EM volumes. I subsequently developed the core differentiable

optimization algorithm. Ondřej Strnad contributed to the development of the

ChimeraX plugin. Alsuwaykit and Khan were responsible for the related work

review and manuscript writing for that section. I authored the remainder of the

paper, with Viola providing guidance on the mathematical formalism, and Tobias

Isenberg offering careful revision and editorial input throughout the manuscript.

ProteinCraft: This project originated when Le Song, who leads a research

team and company developing generative AI models for protein design, approached

our group for collaboration. I explored state-of-the-art protein binder design

methods and formulated the research concept through meetings and feedback with

Christoph Feinauer, Song, and Viola. I then implemented the visualization system,

integrating Tulip [6] and ChimeraX [80], and evaluated the approach by designing

binders on benchmark datasets. I authored the full manuscript, with Isenberg

providing careful revision and editorial feedback throughout. Viola oversaw the

entire project.

SynopFrame: This project originated from a visit by Ivan Barǐsić to KAUST.

In early discussions with Viola, Barǐsić, Haichao Miao, and myself, we explored

multiple directions, including constructing a DNA nanostructure database, visual-

izing assembly processes, and developing different structural views for the dynamic

behaviors of DNA nanostructures. Alexandre Kouyoumdjian and Ondřej Strnad

assisted in creating the initial prototype demo visuals. I subsequently proposed

the visualization space concept to integrate these ideas and later implemented
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all views and interactions in Houdini,8 focusing on the visualization of molecular

dynamics trajectories of DNA nanostructures. Kouyoumdjian contributed to the

initial draft, specifically refining the introduction, related work, and parts of the

methods section. Miao wrote the segment on abstraction spaces in visualization

within the related work. I authored the remainder of the manuscript, with ex-

tensive revision and editorial feedback from Isenberg. Both Viola and Isenberg

contributed to the restructuring and revision of the paper for resubmission. Viola

oversaw the entire project.

1.6 Dissertation Structure

This dissertation is organized into three main parts. In the first part, I provide an

overview of the research motivation, technical background, and the broader scien-

tific context. I introduce the concept of the non-optimizable gap in macromolecular

science and outline the scope, contributions, and structure of the thesis.

In the second part, I present three core research works, each as a dedicated

chapter. These chapters are based on my original manuscripts—DiffFit [61],

ProteinCraft, and SynopFrame—which I have adapted and slightly modified for

narrative coherence and thematic consistency. I introduce and contextualize

each chapter to highlight its relevance to the overarching theme of bridging the

non-optimizable gap through scientific visual analytics.

In the final part, I synthesize key lessons and cross-cutting themes from the

three systems, reflecting on the broader impact of visual analytics in enabling

human–AI collaboration and accelerating discovery in molecular science. I conclude

the dissertation with perspectives on future directions and the evolving role of

visualization in computational biology.

8https://www.sidefx.com/



Chapter 2

Background

To provide the necessary context for the systems and applications explored in this

dissertation, I review in this chapter the scientific and technical foundations of

three domains central to my research: structural biology and cryo-EM, protein

binder design, and DNA nanotechnology. Each section offers a concise background

tailored to the workflows and challenges addressed by the visual analytics systems

developed in subsequent chapters.

2.1 Structural Biology and Cryo-EM

We begin with an overview of structural biology and cryo-EM, which underpin

much of the experimental data and modeling challenges addressed by the DiffFit

system. Structural biology employs various techniques to understand how atoms

are arranged in macromolecular complexes, ranging from 60 kDa (i. e., 4,472

atoms; PDB 6NBD [41]) to 50,000 kDa (3,163,608 atoms; PDB 8J07 [120]). These

techniques are essential for the study of processes in living cells—cryogenic electron

microscopy (cryo-EM) being a particularly powerful one [8, 63, 58]. With cryo-

EM, bioscientists can capture images of flash-frozen biological specimens using an

electron microscope, preserving their natural structure without the interference of

staining or fixing [21], which would otherwise interfere with the sample. These

images are then used to construct cryo-EM 3D volumes or maps using the single

particle method, which aligns thousands of projections from structurally identical

molecular instances into a single map using the Fourier slice-projection theorem.

This map represents the electron density of the sample, which can be used to infer

the atom positions within the molecule.

https://doi.org/10.2210/pdb6NBD/pdb
https://doi.org/10.2210/pdb8J07/pdb
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Subsequently, the bioscientists need to build accurate atomistic or molecular

models that match the electron density map obtained from the cryo-EM process

to gain insight into molecular function and interactions. This process involves

mapping or fitting known sub-molecules into their corresponding positions within

the map. The objective is to achieve an optimal correspondence between the model

and the experimental or simulated volume, revealing the organization of molecules

in 3D space, including single molecules, complexes, and the placement of small

molecules and ligands into binding sites. Molecular models are available in the

Protein Data Bank (PDB, rcsb.org), accessible in various formats such as PDB,

Crystallographic Information File (CIF), and mmCIF (macromolecular CIF). As

of now, the fitting is typically achieved through manual placement, alignment,

and comparison with the density maps. The manual nature of this process makes

it time-consuming and tedious, and can only be performed by expert biologists.

To address this challenge, numerous approaches have been developed to automate

the fitting process, which largely focus on image registration as the foundation

and explore methods to streamline 3D model construction, as I review in the next

chapter.

2.2 Protein Binder Design

Next, we turn to the scientific foundations of protein binder design, a rapidly

advancing field at the intersection of molecular biology and artificial intelligence

that motivated the development of ProteinCraft. Proteins—vital building blocks

of life—are chains of amino acids that fold into intricate three-dimensional shapes,

and this structure underpins their diverse functions such as catalyzing reactions

or mediating molecular recognition. Protein “binders” are specialized proteins

engineered to bind specific targets with high affinity; the goal of binder design is

to identify a sequence that folds stably and then binds to the target molecule via

non-covalent interactions (such as hydrogen bonds, pi stacking, and electrostatic

contacts). Historically, researchers have relied on labor-intensive, large-scale

https://www.rcsb.org/


23

experimental screening of carefully crafted libraries to discover such binders [20].

Recently, AI-driven pipelines have dramatically accelerated the design process:

RFdiffusion [124] can generate de novo binder backbones for a given target surface,

ProteinMPNN [22] fills in these backbones with plausible amino acid sequences,

and AlphaFold2 initial guess (AF2ig) [11] rapidly evaluates whether the proposed

binder indeed adopts its intended structure—assessing both stability and binding

affinity. Despite these individual advances, however, current best practices often

require the generation of thousands of initial candidates, only a small fraction

of which pass in-silico filtering, which then are subject to in-vitro experimental

validation, and the entire workflow remains a “black box.” We thus need more

controllable (i.e., interactive and visual) methods to fully unlock the potential of

computational binder design.

2.3 DNA Nanotechnology

We introduce DNA nanotechnology—especially DNA origami—as the domain

underpinning SynopFrame’s simulation and visualization challenges. Here, DNA

is used as a programmable construction material: designed sequences self-assemble

via Watson–Crick base pairing and hydrogen bonding to form targeted 3D shapes at

the nanoscale [31, 96]. Three main paradigms exist—DNA origami, single-stranded

tiles, and multi-stranded tiles [121]. We focus on DNA origami because a long

scaffold folded by many short staples yields the richest structural complexity and

the most demanding visualization tasks. (Most techniques described here transfer

to the other two paradigms.) A brief overview of the design and the simulation

models we use appears in section B.2.

As illustrated in Figure 2.1, DNA uses four nucleotides (A, T, C, G). Syn-

thetic strands with specified sequences and directionality are assembled so that

complementary segments pair to form helices. DNA origami exploits this pro-

grammability: the scaffold provides continuity while staples bridge distant scaffold

regions and introduce crossovers that define global geometry. These primitives pro-
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Figure 2.1: Conceptual build-up of DNA origami: (a) a nucleotide (image cz);
(b) covalently linked nucleotides form a strand; (c) polyline abstraction; (d)
complementary strands hybridize into a double helix (A–T with two, C–G with
three H-bonds); (e) a long scaffold (black) is folded by short staples (green); (f) the
designed 3D shape emerges with crossovers connecting helices (purple). Staples
are synthesized as linear strands and become “staples” upon hybridization.

duce large, multi-scale structures and dynamic behaviors—precisely the conditions

that motivate SynopFrame’s multilevel abstractions and time-linked analysis.

https://commons.wikimedia.org/wiki/File:DAMP chemical structure.svg


Chapter 3

State of the Art

Macromolecular science has undergone a rapid transformation with advances

in structural biology, artificial intelligence, and visualization. High-throughput

experimental methods, large-scale computational modeling, and deep learning

have enabled unprecedented insight into molecular structure and function. Yet,

as data grows in scale and complexity, new bottlenecks have emerged—what

I term the non-optimizable gap—where automation alone cannot fully resolve

scientific challenges, and human expertise, intuition, and visualization become

indispensable.

In this chapter, I survey the relevant state of the art across the domains that

relate to this dissertation: macromolecular structure determination, scientific

visual analytics, AI-driven protein design, and DNA nanotechnology. I place the

focus on the interplay between automation and interactive analysis, the evolution

of integrative tools, and the persistent challenges that motivate the research

presented in this dissertation.

3.1 Structural Biology: From Experimental Determination

to Integrative Modeling

Structural biology aims to elucidate the atomic arrangements of biomolecules,

a foundation for understanding biological processes and enabling therapeutic

innovation. Traditional approaches such as X-ray crystallography [14] and NMR

spectroscopy [119] have yielded high-resolution models, but face limitations for

large or heterogeneous assemblies [9]. The advent of cryo-EM has revolutionized

the field, enabling imaging of biomolecular complexes in near-native states at high
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and even atomic resolution [71, 8]. Single particle cryo-EM reconstructs 3D electron

density maps from thousands of 2D projections, making possible the study of

large and dynamic assemblies previously inaccessible to crystallography. A critical

challenge following map reconstruction is the fitting of known or predicted atomic

models into the density, achieving complete structural interpretation. To automate

and improve the accuracy of model fitting in cryo-EM maps, researchers have

drawn on advances in image registration, computer graphics, and optimization.

Below, I review key methods from these areas and discuss how they inform our

approach in DiffFit.

Image registration and geometric fitting

The fitting of 3D structures into captured or simulated volumes relates to the

problem of image registration in image processing. It entails aligning two images,

originating from the same or from different modalities, within a shared reference

frame [42, 33]. This process involves feature extraction, determining transfor-

mations, and assessing accuracy through metrics. Scale-invariant features from

images [59], for example, can facilitate matching across a diverse set of views,

despite significant distortions or variations. This process involves detecting in-

variant keypoints using the difference-of-Gaussian function, determining locations

and scales, assigning directions based on local gradients, and measuring gradients

within selected scales around each keypoint. Extracted features are stored in a

database, to make it possible for them to be matched with new images using fast

nearest-neighbor algorithms, with applications including object recognition.

Among the many applications of the process, physicians rely on various

imaging modalities to diagnose patients, each capturing images with differing

orientation. Image registration addresses this variability by aligning images within

a unified frame by optimizing parameters like orientation and translation. Medical

image registration is an active research area which encompasses diverse methods,

including techniques based on cross-correlation [26, 64] and mutual information
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[82, 66, 109, 51]. Shang et al. [99], for example, introduced a method for medical

image registration using principal component analysis (PCA) neural networks to

extract feature images and compute rotation angles and translation parameters

by aligning the first principal directions and centroids in a simple and efficient

way. For complex spatial transformations, another recent approach [4] uses Kernel

PCA and Teaching-Learning-based optimization (TLBO) for multi-modal image

registration. In our case, similar to these methods, transformations and alignments

have to be determined to fit the atomistic model into a volumetric map. We can

thus also use optimization techniques in cryo-EM map fitting to refine the fit and

optimize parameters such as orientation and translation—which we demonstrate

in our work. The major difference to image registration is that, in our workflow,

we fit two different data representations, where one is a sub-part of the whole that

is potentially present at multiple locations in the target volume.

Model-to-data fitting, which is necessary for cryo-EM data, has also been

investigated in depth in computer graphics and pattern recognition [85, 49], with

applications in architectural geometry, virtual and augmented reality, robotics,

and various other fields [30, 97, 54, 127]—in addition to structural biology. The

key challenges in geometric fitting include accuracy, efficiency, robustness, and

usability of the fitting module [97, 54]. Structural biology, in contrast, has special

challenges such as noisy data, non-geometric shapes, and large data sizes so that

geometric fitting methods are not directly applicable.

Yet our DiffFit algorithm still relates to techniques from computer graphics

and pattern analysis. The differentiable compositing technique proposed by Reddy

et al. [85], in particular, offers valuable insights into addressing fitting challenges

as well as manipulating and understanding image patterns. With differentiable

compositing we can handle patterns effectively, outperforming state-of-the-art

alternatives in pattern manipulation [131, 98]. Reddy et al.’s method [85] discovers

complex patterns by aligning elements with their own position and rotation, and

facilitates refinement based on similarity to the target for precise adjustment. In
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addition, Reddy et al. use a multi-resolution pyramid—relevant for handling the

multi-resolution volumetric data in our domain. Their method [85], however, is

restricted to certain pattern types, requires manual element marking, and may not

always find the best solution, leading to orientation errors and missed elements.

Nevertheless, we built our solution on top of their differentiable compositing.

Another approach, spline surface fitting [97], enhances the smoothness in

aircraft engine geometry reconstruction by concurrently approximating point and

normal data, ensuring boundary smoothness and optimal convergence, while ex-

ploring the effects of norm-like functions on error measurement. A further recently

proposed adaptive spline surface fitting method [54], supported by empirical evi-

dence, employs surface meshes for high-precision CAD applications. The reliance

on control meshes of this approach, however, limits its applicability to irregular

topologies and compromise the preservation of sharp features. All these methods

have common objectives and tasks such as similarity measures, pattern matching,

fitting, and geometric transformations; they thus can serve as a motivation and

starting point toward our goals in structural biology. Structural biology data,

however, often consists of large, complex structures without regular shapes such

as CAD models or easy representations in geometric meshes with smooth surfaces

so the aforementioned methods are not directly applicable to our data.

Fitting in structural biology

Existing fitting methods for structural biology can broadly be categorized into

manual, semi-automated, and automated approaches, each with its own advantages

and challenges when used for aligning molecular models with cryo-EM density

maps. Manual or semi-automated methods naturally involve human intervention,

yet they provide control and precision—which is particularly beneficial in the

structural analysis of complex datasets or when specific adjustments are needed

for accuracy. For example, UCSF ChimeraX [79], a popular tool for molecular

manipulation and visualization, includes the fitmap technique [36]. It suggests
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multiple possible placements of the atomistic model on the density map and

then asks the user to make the final decision. The fitting process alternates

between rigid-body rotation and gradient descent translation, maximizing the

alignment between the atomic model and the density data by optimizing the

sum of density values. Similarly, MarkovFit [3] is another technique that is often

used for placing atomic-level protein structures within cryo-EM maps of moderate

to low resolutions. It uses fast Fourier transform (FFT) for the conformational

exploration and Markov random fields (MRF) for efficient representation of subunit

interactions. Its use of Markov random fields also facilitates the probabilistic

assessment of the fitted models. The complexity of modern structural datasets has

also motivated researchers to explore integrative modeling, [84] combining multiple

data types (e.g., cryo-EM, cross-linking, mass spectrometry) with expert-guided

refinement. Nonetheless, all of these manual or semi-automatic approaches are

time-consuming and require a significant level of expertise.

To tackle this challenge and to automate the fitting process, researchers have

developed methods that rely on deep learning (DL) [125, 108, 123]. A2-Net by

Xu et al. [125], for example, uses DL to accurately determine amino acids within

a 3D cryo-EM density volume. It employs a sequence-guided Monte Carlo Tree

Search (MCTS) to traverse candidate amino acids, considering the sequential

nature of amino acids in a protein. The authors divide the problem of molecular

structure determination into three subproblems: amino acid detection in the

density volumes, assignment of atomic coordinates to determine the position of

each amino acid, and main chain threading to resolve the sequential order of amino

acids that form each protein chain. A remarkable speed improvement was also

demonstrated by Xu et al., being 100× faster to find solutions at runtime than

existing methods [32, 122], and achieving a high accuracy of 89.8%. In addition,

they introduced the A2 dataset with 250,000 amino acids in 1,713 cryo-EM density

volumes, with a resolution of 3 A◦, pioneering automated molecular structure

determination training benchmarks.
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Another recent method by Mallet et al., CrAI, uses machine learning (ML) to

find antibodies in cryo-EM densities [65]. The authors formulate the objective as

an object detection problem, using the structural properties of Fabs (Fragment

antigen-binding) and VHHs (single-domain antibodies). Furthermore, DeepTracer

[81] is a fully automated DL-based method designed to determine the all-atom

structure of a protein complex using its high-resolution cryo-EM map and amino

acid sequence. This method employs a customized deep convolutional neural

network primarily for the precise prediction of protein structure, including the

locations of amino acids, backbone, secondary structure positions, and amino acid

types. The reprocessed cryo-EM maps are the input to the neural network, which

transforms the output into a protein structure. Despite yielding accurate outcomes,

the resulting atomistic structures may exhibit geometric issues, local fit-to-map

discrepancies, misplaced side chains, or errors in tracing and/or connectivity. All

DL-based techniques require a substantial amount of time for training (as opposed

to their runtime performance) and rely on large training datasets of cryo-EM

volumes and manually fitted sub-molecules—which is why we do not resort to DL

approaches.

An alternative to DL is map-to-map alignment, which is used to accurately

align 2D or 3D maps to facilitate comparison and analysis of spatial structures or

features within the maps. CryoAlign [39] is a cryo-EM density map alignment

method that achieves a fast, accurate, and robust comparison of two density maps

based on local spatial feature descriptors. This approach involves sampling the

density map to generate a point cloud representation and extracting key points

by clustering based on local properties. CryoAlign then calculates local feature

descriptors to capture structural characteristics, reducing the number of points

considered and improving efficiency. By employing a mutual feature-matching

strategy, CryoAlign establishes correspondences between keypoints in different

maps and uses iterative refinement to enhance alignment. A combination of

fast rotational matching search based on spherical harmonics and translational
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scans [35] yields accurate fitting results in seconds or up to a few minutes. This

ADP EM approach is particularly reliable in fitting X-ray crystal structures to

low-resolution density maps, with reduced docking times and while maintaining a

thorough 6D exploration with fine rotational sampling steps to find valid docking

solutions.

In our work, we design a differentiable optimization method for fitting atomistic

structures into volumetric data, with the goal of precise fitting with fast-enough

computation to be applicable in semi-automatic fitting in the standard tool

ChimeraX. For this purpose, we make use of the PyTorch capabilities for GPU

parallel computing, trilinear interpolation sampling in volumetric data, and auto

differentiation.

3.2 AI-Driven Protein Design: Generative Models and

Human-AI Teaming

Recent breakthroughs in deep learning have revolutionized protein structure

prediction and design, making it possible to generate large libraries of candidate

backbones, sequences, and predicted structures with unprecedented speed [47, 1, 7,

124, 22, 128, 11]. These automated pipelines, which combine backbone generation,

sequence design, structure prediction, and property evaluation, are now standard.

However, despite these advances, high-affinity or functional binders remain rare,

and efficiently identifying promising candidates among thousands remains a major

bottleneck. Next, I review related work spanning protein design visualization,

graph-based analysis, human–AI teaming, and integrative visualization platforms

that seek to address these emerging needs, but which still leave important gaps

that this dissertation aims to fill.

Protein design visualization

High-fidelity 3D visualization of protein structures is key to effective structural

biology analyses. Established tools such as ChimeraX [80] and PyMol [93] provide
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users with high-quality rendering, real-time interaction, and integrated analytical

algorithms, making them the domain’s go-to choices. InVADo [94] augments

large-scale molecular docking workflows through an interactive visual analysis

approach that integrates multiple 2D and 3D views for filtering and spatial

clustering of docking results. A similar emphasis on user-centric design is apparent

in visual support systems for loop grafting [74], which link 2D representations with

3D protein views to streamline engineering decisions. Falk et al. [30] proposed

a unified framework that merges 2D heatmaps, 3D molecular visualizations,

and interactive statistical views to enable comprehensive iterative assessment

of cryo-EM models. Elfin UI [126] addresses larger protein architectures using

modular building blocks for CAD-style design, and Atligator Web [57] addresses

protein–peptide interactions by providing a web-based interface that simplifies

motif extraction and design. Drawing on these advances, we integrated multiple

2D views with the ChimeraX 3D visualization to create an AI-driven protein

design tool for domain experts.

Graph visualization

Representing complex residue-level interactions as networks or hypergraphs is

a powerful way to reveal structural and functional patterns, as exemplified by

RING [24]. Bipartite graphs [5] are particularly useful for clarifying relationships

between distinct biological entities by restricting edges to occur only across two

disjoint node sets, and they have been extensively applied—from ecological and

biomolecular to epidemiological networks [78]. Beyond node-link representations,

line-based multi-attribute visualizations such as slope graphs [110] and parallel

coordinates [45] support comparative analysis of multiple attributes, with slope

graphs emphasizing rank-based comparisons and parallel coordinates mapping

actual attribute values onto continuous axes. Tools such as LineUp [37] build on

these concepts to facilitate the interactive combination, refinement, and comparison

of heterogeneous attributes for ranking items. Frameworks such as Tulip [6]



33

offer comprehensive support for various graph layouts and parallel coordinate

views, providing a robust environment for both exploratory analysis and scalable

rendering of large biological datasets. Accordingly, we implement several bipartite

graphs and a parallel-coordinate views in Tulip for our own tool, ProteinCraft.

Human-AI teaming

Human-AI teaming approaches [72] stress the importance of closely coupling expert

knowledge with advanced computational systems. Hong et al. [43], for instance,

introduce a visualization platform enabling biologists to compare, validate, and

refine predictions from multiple machine learning models in embryonic cell lineage

tasks, illustrating how users with limited AI expertise can still effectively perform

domain tasks through human-AI collaboration. In another example, Zhao et

al. [129] describe a human-in-the-loop framework that combines active learning

and visualization to identify critical “visual concepts” for post-hoc analysis and

targeted refinement of complex neural networks. From the machine learning

perspective, Mosqueira-Rey et al. [70] survey the spectrum of interactive paradigms,

including active learning, machine teaching, and explainable AI—emphasizing the

importance of who controls the learning process. In “AI-in-the-loop” [19], the focus

shifts to emphasizing human agency and responsibility in biomedical analytics,

reframing conventional “human-in-the-loop” systems. Moreover, Rogers et al. [86]

underscore that what should be automated is the real essential question, rather

than merely what can be automated, echoing prior observations by Schetinger et al.

[91]. Building on these insights, with ProteinCraft, we adopt a human-AI teaming

paradigm in which domain experts iteratively select and integrate promising

generative AI outputs for subsequent prompting, ensuring expert oversight and

steering throughout the modeling process.



34

Integrative Visualization Platforms

Modern visual analytics seeks to bridge the gap between computational analysis

and interactive visualization, enabling scientists to interpret complex data through

coordinated multiple views. Systems like Tulip [6] and Vitessce [48] exemplify

this approach, supporting data filtering, ranking, and the linking of abstract and

spatial representations. However, most visual analytics tools in molecular science

remain specialized and non-extensible. Aforementioned widely used 3D structure

viewers such as ChimeraX [80, 36], PyMOL [93], and VMD [44] provide powerful

rendering and manipulation capabilities, but are not designed to handle the large,

multivariate datasets produced by AI-driven protein design workflows—including

predicted metrics, interaction networks, and 3D structures. Although RING [24]

enables the computation and visualization of residue interactions, such tools remain

fragmented and lack integrated analytics for comprehensive filtering, ranking,

and iterative exploration of multiple protein structures. Consequently, expert-

guided, human-in-the-loop analysis remains an unmet need for diagnosing failure

modes and steering the design process—a persistent challenge I refer to as the

non-optimizable gap. To address these challenges, I integrate Tulip and ChimeraX,

combining their strengths to create a unified platform for visual analytics in

AI-driven protein design.

3.3 DNA Nanotechnology and Molecular Dynamics Visu-

alization

DNA nanotechnology leverages programmable DNA interactions to construct

sophisticated 2D and 3D nanostructures [95, 96, 87]. Tools such as caDNAno [27],

Adenita [23], and CATANA [55] streamline the design process, but typically yield

static representations. To study the folding and dynamics of these structures,

molecular dynamics simulation (MDS) systems such as oxDNA [104] and its

associated viewer, oxView [83], are widely used. However, these tools struggle

with visual clutter, disconnects between design and simulation, and lack of multi-
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representational or temporal analysis. To mitigate these limitations, Miao et al.

proposed abstraction spaces [68] to organize DNA representations across levels

of granularity and layout, helping domain scientists to alleviate visual clutter,

though focusing on static structures. However, the field still lacks robust, scalable

visual analytics platforms that can provide multi-view, multi-scale, and time-

synchronized exploration of dynamic and large-scale DNA nanotechnology data.

Tools that enable users to trace assembly pathways, compare simulations, and

systematically diagnose failures remain highly sought after.

Molecular dynamics visualization

To visualize the dynamic behavior of molecules, it is important to represent the

trajectories resulting from the molecular dynamics simulation. Early work on

MDS resulted in the VMD tool [44] that simulates and visualizes molecular dy-

namics for proteins and nucleic acids. Byška et al. [18] visualized protein tunnels

by representing the path of each amino acid in the tunnel and aggregating the

trajectories into profiles. Kolesár et al. [53] proposed a three-level system for

illustrating the process of polymerization, coupling together an L-system with

agent-based simulation and quantitative simulation techniques. Later, Kolesár

et al. [52] proposed a way to rectify the simulated data to allow for comparative

visualization of a cohort. A more general approach to particle-based spatiotem-

poral data visualization was proposed by Pálenik et al. [77], which enables rapid

identification of patterns by simultaneously exploring temporal and spatial scales.

VIA-MD [102] also focuses on large-scale MDS data visualization and exploration

that links the dynamic 3D geometry to statistical analysis of the data to allow

users to identify patterns. Recently, Ulbrich et al. [111] represented the MDS data

as a node-based dataflow, sMolBoxes, to allow experts to analyze it while still

being able to explore the 3D structure.

Many of these methods focus on aggregating the trajectory in some way,

whereas for DNA-nano MDS it is essential to legibly reveal the simulating target
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frame by frame. While event analysis that supports frame-by-frame analysis at

various granularity levels has been realized in MD simulations in the past (e. g.,

[102, 111]), for the DNA-nano application we handle phenomena where pervasive

small-scale events (H-bond formation) can happen everywhere in the simulation

target and can lead to higher-scale events (forming and deforming of the local

helix all the way up to the whole assembly)—while also supporting the traditional

construction, analysis, and editing of the DNA-nano assemblies in ways that are

familiar to the experts. They need to link the dynamics simulation with their

envisioned 3D structure and the staple-based folding during construction. In a

way our work is thus akin to other applications of MDS in specific domains [15].

DNA nanotechnology modeling and visualization

Several computer-aided design tools have been developed for DNA nanotechnology.

Adenita [23], caDNAno [27], Vivern [56], CATANA [55], and oxView [83] are

five examples, sampling the spectrum of available tools. Adenita lets the user

design a DNA structure in multiple abstract levels in 3D in a user-friendly and

intuitive manner. caDNAno uses parallel nucleic acid helix strands as placeholders

and then lets users select active strands and edit the connections between them.

The tool’s visual interface enforces all editing to be done in 2D, which facilitates

easy interactions but hinders the mental understanding of the structure in 3D.

Vivern is a VR application designed to enhance the design and analysis of DNA

origami nanostructures, offering advanced visualization tools and demonstrating

improved capabilities over traditional desktop applications. CATANA and OxView

offer design functionality in a web browser. CATANA uses a “novel Unified

Nanotechnology Format” and facilitates easy MDS export but does not support

MDS trajectory visualization. OxView’s interface supports the visualization of

dynamic simulations. It can render many nucleotides in 3D in a browser, but its

lack of abstract views for different scales hinders users to identify and understand

relevant simulation events buried in vast amounts of data, with erratic dynamic
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behavior and visual occlusion. The handy abstractions used in the designing

environment are fully disconnected from the trajectory representations. We aim

to bridge this gap by leveraging the advantages of existing abstract views for

dynamic scenarios.

Abstraction spaces in visualization

Previous research has shown the usefulness of organizing related visual rep-

resentations as conceptual spaces, which Viola and Isenberg call abstraction

spaces [116, 117]. For molecular visualization, Zwan et al. [113] and Lueks et

al. [60] proposed a multidimensional space that organizes the visualization along

axes such as structure, illustrativeness, and spatial perception. In contrast, Mo-

hammed et al. [69] and Miao et al. [67] use their abstraction spaces as interactive

panels that allow users to smoothly transition from one representation to another.

While the former authors assign an axis for each structure of interest, the latter

propose a more general approach that organizes representations along aspects

of interest such as layout and scale. In addition to the mere organization of

representations by means of abstraction spaces, the power of animated transitions

between different representations—as made possible through the spaces—has been

established by Heer and Robertson [40]. We build upon this general foundation by

incorporating the MDS data into the concept of abstraction spaces. In particular,

we generalize Miao et al.’s [67] space by incorporating the concept of idiom, which

is essential for conceptualizing the design, as well as by designing an interaction

framework that incorporates the dynamic character of DNA-nano structures by

allowing experts to explore MDS data while they also study the spatial design.

3.4 Summary and Research Gaps

Despite remarkable progress in structural biology, visualization, and AI-driven

protein design and DNA nanostructure design, persistent gaps remain:

• Fragmented toolchains: Researchers rely on specialized, disconnected
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software for modeling, visualization, and analysis, limiting efficiency and

integration.

• Scalability challenges: Most tools cannot handle the scale, heterogeneity,

and high dimensionality of datasets produced by modern AI and simulation

workflows.

• Limited human–AI collaboration: Key scientific decisions require hu-

man expertise and contextual judgment, yet current tools rarely support

transparent, interactive workflows.

This dissertation addresses these challenges by developing a suite of visual

analytics systems—DiffFit, ProteinCraft, and SynopFrame—that tightly integrate

automated modeling, AI-driven inference, and interactive visualization. Together,

with these systems, I demonstrate how integrative visual analytics can bridge

the non-optimizable gap, enabling more effective human–machine collaboration

and accelerating discovery in macromolecular science. In the following chapters, I

introduce each of these systems in detail.



Chapter 4

DiffFit: Visually-Guided Differentiable Fitting of Molecule

Structures to a Cryo-EM Map

Scientific discovery often advances when tools or ideas from one domain are

reimagined for another. After a long and challenging period in my PhD—marked

by repeated rejections of my first paper—I found myself leading a project on inverse

procedural modeling at the mesoscale, with a focus on finding the modeling route

given the final molecular architecture. During the exploring phase, I encountered

a differentiable algorithm from the computer graphics community, originally

developed for compositing bitmap images from elemental patches [85]. It was

then that I recognized a unique opportunity: this graphics algorithm, devised

for an entirely different context, could be adapted to address one of the central,

unresolved challenges in structural biology—accurately fitting atomic models into

cryo-EM volumes.

As defined in Chapter 1, cryo-EM fitting exemplifies the non-optimizable gap:

the score landscape over the 6D pose space (three rotations + three translations) is

rugged, with many local optima and narrow basins. Traditional pipelines therefore

rely on experts to manually place subunits near a plausible pose before local

optimizers can converge—creating a brittle, time-consuming bottleneck at the

interface between automation and judgment. DiffFit targets precisely this slice of

the gap by replacing manual coarse placement with differentiable, visually guided

global-to-local optimization and robust initialization; the system then clusters

and ranks candidate fits so experts can concentrate on verification and selection.

In effect, DiffFit shifts human effort from low-level manipulation to high-level

assessment and enables scalable assembly of large complexes.
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With this cross-disciplinary insight, born from a confluence of persistence and

serendipity, together with my collaborators, we developed DiffFit, leading to a

dramatic improvement in the efficiency and accuracy of fitting protein structures

into reconstructed cryo-EM maps, effectively eliminating the need for tedious

manual alignment and opening the door to scalable, high-throughput structural

modeling. I now present DiffFit mainly as it appears in the publication [61], with

slight modifications to fit the dissertation.

4.1 Introduction

As humans we have been striving for centuries or even millennia to understand,

as Faust stated, “was die Welt im Innersten zusammenhält [what binds the world,

and guides its course]” [118]. Among other directions of scientific inquiry, this

quest applies to the inner workings of the biological world, particularly to how

biological processes at tiny scales work and how they keep us alive. In the field

of structural biology, researchers have traditionally relied on techniques such as

X-ray crystallography or nuclear magnetic resonance spectroscopy to understand

the actual molecular composition of cells and organelles—yet with the limitation

that these could only provide (still impressive and highly useful) estimates or

manually constructed models of the structure of actual biological samples (e.g.,

[94, 112, 56, 103, 73, 28]). The recent cryo-EM approach [71], however, enables

researchers to visualize biomolecules in actual samples at near-atomic resolution.

In addition, over decades, the Protein Data Bank (PDB) initiative has collected

thousands of molecular models of the building blocks of cells or organelles studied

in structural biology. Researchers are thus on the brink of assembling the molecular

composition of actual samples at the ground-truth level.

To achieve this type of assembly, researchers do not only need to interactively

visualize molecular data, for which tools [101] exist, but also to faithfully place

3D models of known molecular building blocks, such as those from PDB data and

the AlphaFold predicted library [47], into the captured cryo-EM datasets. Thus

https://en.wikipedia.org/wiki/Faust


41

far, the fitting process involves a substantial time commitment and numerous

manual interventions by domain experts, rendering this process ineffective. The

complexity and size of the involved molecules, combined with the variability

and noise inherent in cryo-EM data, pose substantial obstacles. In contrast, a

fully automatic process is also not ideal because the existence of local minima

(wrong placement of compositing proteins) requires domain experts to verify each

placement using their knowledge and experience. Fully automated methods are

currently far from feasible. Instead, an optimal balance between user interaction

and automation is required.

For this purpose, we developed DiffFit, an automated differentiable fitting al-

gorithm coupled with visual inspection and decision-making, designed to optimize

alignment between protein structures and experimental reconstructions of volumes

(i. e., cryo-EM maps). Our technique works in one-to-one and many-to-one fitting

scenarios, in which multiple protein subunit structures are precisely aligned with a

single, large, experimentally reconstructed volume. The DiffFit method is iterative

and gradually introduces the source protein structures into the target volumes to

assemble the composition of the molecular subunits step by step. By employing

advanced strategies such as volume filtering, multiresolution volumes, and negative

space utilization we constructed a loss function to quantify the fitting accuracy

during the iterations and for the final decision-making. This loss function helps us

to iteratively reduce the differences between the two representations—volumetric

and atomistic—until we achieve the desired fit. Our visually-guided fitting pro-

cedure eliminates the need for domain experts to manually place structures as

they assemble the protein structures into the cryo-EM map. It thus significantly

accelerates the process into a manageable interactive procedure, delivering precise

results for visualizing and analyzing complex, real-world protein structures, ul-

timately facilitating large-scale structural modeling initiatives. In summary, we

contribute:

• a differentiable fitting algorithm designed to fit multiple molecular subunits
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Figure 4.1: DiffFit workflow. The target cryo-EM volume and the structures to
be fit on the very left serve as inputs, which are passed into the novel volume
processing, followed by the differentiable fitting algorithm. The fitting results
are then clustered and inspected by the expert. The expert may zero out voxels
corresponding to the placed structures and feed the map back iteratively as input
for a new fitting, round until the compositing is done.

to a single reconstructed cryo-EM volume;

• a human-in-the-loop strategy providing visual inspection and decision-

making in an iterative structure assembly cycle;

• a novel loss function and data processing that calculates new updates in

each iteration to expedite algorithm convergence and quantify the fitting

accuracy; and

• three use-case scenarios of fitting one or multiple known subunits or identi-

fying yet unknown subunits as part of the molecular assembly.

4.2 Method

We begin to describe our approach by explaining our process of differentiable

structure fitting, before we show how it can be used for visually-guided fitting.

After discussing these conceptual aspects, we also briefly discuss implementation

details.

Differentiable structure fitting

Given a cryo-EM map, the domain practitioners—bioscientists—do not know the

precise location and orientation parameters that govern where and how a protein’s

sub-structures fit together. For some regions in the map, the bioscientists may
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not even know which protein subunits are supposed to be present. Our goal is to

develop a new approach that addresses both of these domain tasks. For certain

protein subunits, bioscientist are highly confident about their presence in the

map. In such cases, our technique will aid in the identification of their respective

placement parameters. Second, for the regions with unknown protein subunits,

the task of our technique is to identify potential protein subunit candidates from

a large database that best fit the cryo-EM map region.

Inspiration and approach overview

We base our approach on the previously mentioned 2D differentiable compositing

approach by Reddy et al. [85], which discovers pattern structure from wallpaper-

like textures containing repetitive patterns made out of elementary patches. We

first review their approach, before we describe how we build up our solution on

top of their technique. In their case, given a 2D image, which is a composite of

multiple small element patches, the task is to identify the number of occurrences

of each patch and the placement parameters for each existing patch. The parame-

ters include the type of patch out of several known patches as well as position,

orientation, and depth. Their solution distributes tens to hundreds of patches

in the image and uses the differentiable optimization methodology to translate

and reorient patters such that they correspond to the appearance of the patterns

in the input wallpaper image. Each single instance Ei (out of total number of ω

instances) of a pattern is stored in a layer Ji for each patch instance by sampling

from that patch, with the translation, rotation, and patch-pattern type probability

taken into account:

Ji(x) = ft (x, Ei) =
o∑

j=1

et
j
i∑o

k=1 e
tki
hj

(
R−1

θi
(x− ci)

)
(4.1)

where ft (x, Ei) is a differentiable function using the expected value over patch-

pattern type probabilities stored in a tuple t representing all o patch patterns;

softmax et
j
i/
∑o

k=1 e
tki over type logits define the patch-pattern type probabilities;
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hj is the image patch sampler function; x is the image location; ci is center

location of patch element Ei; and R−1
θi

is the inverse of a 2× 2 matrix rotation

with angle θi.

The solution image results from compositing of all instances together using fc

compositing function so that each known patch-pattern type is present multiple

times with various positional parameters. Patches can overlap other patches,

which leads to partial or full occlusion of a certain pattern. This is characterized

by vi(x), v ∈ {0, 1}, which is the visibility of layer i at image location x:

I(x) = fc ({Ji(x)}i) =
ω∑

i=0

Ji(x)vi(x) (4.2)

This solution image is compared with the input image in an optimization, where

the parameters of all patch instances are updated in every iteration. The solution

image then becomes increasingly similar to the input image. Reddy et al. define

the L2 distance loss Ld for the optimizer as:

Ld(A, I) =
1

P

P∑
p=1

∥A (xp)− I (xp)∥22 (4.3)

where the sum is over the number of all pixels P in the image. A is the input

image and I is the composited solution image. The optimal elements E∗ are then

found by minimizing loss Ld over the entire set of elements E = {E0, .., Eω} :

E∗ = argmin
E

Ld(A, fc(E)). (4.4)

Reddy et al.’s patch-pattern fitting problem is similar to ours in the sense that

in both cases we are compositing element instances into a scene. But Reddy et al.’s

differentiable compositing approach cannot be directly applied to the structural

biology domain to solve the protein fitting problem for the following reasons:

1. the pattern image and element patches are defined in 2D with layers, while

the cryo-EM map and protein subunits are defined in 3D;
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(a) (b) (c) (d) (e) (f)

Figure 4.2: Clustering and filtering: (a) target volume, (b) atom coordinates of
the source structure, (c) positions of 1000 fit results (the dots are clustered, hiding
the number of results), (d) 1000 instances of the structure, (e) positions of 1000
fit results with a transparency level set based on an exponential scaling of the
sum of sampled density metric (two clusters stand out, as in the zoom-in insets),
and (f) instances of the structure at those two clusters.

2. the pattern image and element patches are of the same representation, i.e.,

2D grid data, while the cryo-EM map and protein subunits are of different

representations—one is a 3D volume while the other is a set of atom coordinates

that can be regarded as a point cloud;

3. the instance patches in differentiable compositing are all of the same size, while

the protein subunits differ in numbers of atoms;

4. differentiable compositing expects the patches to overlap, while protein subunits

do not spatially overlap; and

5. forming 1000 layers of 2D images is possible to fit into the current graphics

processing unit (GPU) memory while forming 1000 3D volumes is prohibitive

with the currently available GPU memory.

Initially, we attempted to align our problem better with differentiable compositing

by first simulating a cryo-EM map from the atomistic point cloud of the protein

model and then fitting the simulated map to a target map. That way the

representational discrepancy (see reason (2) above) is eliminated. That approach,

however, was only successful for trivial cases, while for real-world scenarios it

frequently fell into local minima. To illustrate this point, we provide several

exemplary volume-only based molecular fitting videos for interested readers in

our supplementary material at osf.io/5tx4q.

Driven by the successful fitting cases from many experiments, we gradually

https://osf.io/5tx4q/
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built several novel strategies on top of the differentiable compositing that effectively

address the problem of molecular structure fitting. Most notably, we address the

substantially higher complexity of our scenario based on the knowledge, experience,

and deep insight of the target audience: the bioscientists. Our solution is thus

based on a human-in-the-loop strategy and we propose a fast and robust visual

analytics approach, DiffFit, with two main steps: (1) an automated excessive

molecular fitting and (2) a visual inspection and filtering of the fitted results by

the bioscientists. Both consecutive steps are building blocks of a visual analytics

feedback loop, in which multiple proteins are iteratively composited to fit the

underlying cryo-EM volume.

We schematically present our DiffFit workflow in Figure 4.1. First, we seed

an excess amount of all compositing molecules in the volume scene. If this

simultaneous fitting all molecules exceeds the available GPU memory, we sort

the molecules by atom count and partition them into batches. Then, we fit the

batches of molecules within several iterations in descending atom-count order.

This fitting relies on a novel loss function that calculates the average density value

from the densities that we sample for each atom. The differentiable property of

our fitting scenario allows us to optimize based on gradient-descent. In addition,

we associate each fit with a numerical value that characterizes the fit quality. For

this purpose, we create a simulated cryo-EM map of each fitted molecule and

calculate the correlation of the simulated densities using the real cryo-EM map

densities. Then, we collect the fitting results and cluster them based on positional

and orientational parameters. For each cluster, we select one representative fit—

the fit with the highest correlation value. Then, we sort the clusters by their

representative correlations and interactively visualize them in ChimeraX to allow

the bioscientists to inspect the solutions. Once they verify a given molecular

placement, we disable molecule placements in the respective regions in the following

iterations by setting the voxels covered by the molecular fit in the cryo-EM map

volume to zero. We thus gradually erase the successful placements from the map,
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forcing the following placements to search for a fit in non-zero volume locations.

Once the feedback update in the map is completed, we perform the next fitting

iteration with another molecular structure. We repeat this workflow pattern until

the map has nearly all voxels zeroed out, and the entire sub-unit placement of

the complex molecular structure is complete. Below we introduce the details of

DiffFit, in the following order: (1) sample one coordinate, (2) fit one placement

of one molecule, (3) fit multiple placements of one molecule, and (4) fit multiple

placements of multiple molecules.

Sampling of one coordinate

Because our task is to determine the optimal alignment of an atomistic molecular

structure to the reconstructed cryo-EM volume map, we determine the optimal fit

characterized by two rigid-body transformation parameters: a translational offset

p and a rotation. We represent the rotation by a quaternion q or its corresponding

rotation matrix Mq. The position xi corresponds to the center point of an atom i

in the molecular subunit. To calculate the fit, we transform every atom position

in one subunit according to the rotation and translational offset:

T (xi) = Mq · xi + p.

We sample a density value D of the atom to be placed at position T (xi) from

a scalar volume V using trilinear interpolation as follows:

D(T (xi)) = S(T (xi), V ).

Placement of one molecule (or one subunit)

We formulate an initial loss function L to determine the best p and q parameters.

This function gives us the minimum negative average density per atom for a

molecular subunit with N atoms that form the set Xm of all atom center points
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Figure 4.3: Visual browser based on ChimeraX. The target volume on the middle
is overlaid with a fitted molecule corresponding to the selected fit result in the
table on the left (clustered fits, each row is the representative placement with
the highest correlation from that cluster). After inspection, users can save the
placement and then select “Simulate volume” and “Zero density” to zero out the
corresponding voxels from the target volume.

T(xi) ∈ Xm for a particular molecular subunit m:

L(p,q,Xm, V ) = −

(
1

N

N∑
i

D(T (xi))

)
= − 1

N

N∑
i

S(Mq · xi + p, V ). (4.5)

We rely on the calculation of the gradient of the differentiable formulation and

use it with the Adam optimizer [50] for the optimization. Although the Adam

optimizer is known for robustness with respect to local minima, our initial loss

function formulation frequently leads to a local minimum (i.e., a place that is not

an optimal placement for the molecule in the map but from which the optimizer

cannot find a better solution in the parameter-space neighborhood). Such local

minima are a common and severe problem that also manifests in the functionality

of the most commonly used tools for molecular subunit fitting (e.g., the fit-in-map

feature in ChimeraX). We thus introduce several strategies to form a novel loss

function , making DiffFit more robust.

The first strategy that we found to substantially contribute to a good fitting

performance is filtering the input cryo-EM map volume V . For this purpose
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we clamp the volume values based on a user-specified minimal threshold and a

minimum size of connected voxels that form a cluster. We also detect all voxels

with a density value less than a given threshold and set them to zero. The size of

the connected voxel cluster after thresholding must be greater than the cluster

size hyperparameter. Otherwise, we set all the voxels in that cluster to zero. This

step leads to the filtered volume VF and ensures that only relevant volume regions

are considered for fitting, improving the focus and efficiency of the algorithm.

Then, we normalize the filtered values to [0, 1]—a typical practice in learning

and optimization approaches—, which leads to a volume V̂F that turns out to be

essential for controlling the magnitude of the calculations that lead to the loss

function and hence the settings of the hyperparameters in the workflow.

To accommodate the inherent noise and variability in biological datasets, we

apply a series of convolution iterations to the target volume, and capture each

smoothing result as a separate volume. This iterative convolutional smoothing

leads to an array of volumes, and we use each of these volumes in the fitting

process. This multi-resolution approach enhances the robustness of the fitting

process by mitigating the impact of noise and data irregularities. Empirically,

we found that a 3-element array of increasingly smoothed volumes performs well,

iteratively filtered with a Gaussian smoothing kernel. We expose the size of this

array as a hyperparameter to allow users to control it. We experimented with

Laplacian smoothing as well, which led to unsatisfactory performance. We denote

the non-smoothed volume as V̂ G0
F and express the recurrent formulation of the

iterative convolution smoothing as:

V̂ Gn
F = V̂

Gn−1

F ∗Gn.

A third adaptation we apply to the initial fitting process is a stricter penal-

ization of a mismatch. If an atom center is placed in the cryo-EM map volume

but outside the extent of the molecular target structure (i.e., outside of the tar-

get footprint), the target density would normally be zero. To discourage such
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misalignment even further, we assign these regions a negative value. After

smoothing, for voxels with a density value of zero, we replace the zero with a

negative value. We experimented with varying the negative values or creating

a smooth gradient of negative values. We noticed that a constant value of −0.5

outside the molecular footprint in the map performs well. We expose this value

as a tunable hyperparameter. We denote the resulting volume as V̂ Gn
F−c

, where −c

is the negative constant value. Finally, we update the loss function formulation

with a volume smoothed after j iterations as:

L(p,q,Xm, V̂
Gj

F−c
).

We weigh each fit with a multiresolution volume array element wj for n

resolutions, and sum up all the multiresolution components to form the final loss

function for one p and q pair:

Lm([p,q]) =
n∑

j=1

wj · L(p,q,Xm, V̂
Gj

F−c
). (4.6)

To start the optimization, we need to initialize the position offset p and the

rotation quaternion q. For orientations, we draw Nq i.i.d. samples Haar-uniformly

on SO(3) using the unit-quaternion method of Shoemake [100]. Concretely, for

u1, u2, u3 ∼ U [0, 1],

q(u1, u2, u3)
⊺ =

(√
1− u1 sin(2πu2),

√
1− u1 cos(2πu2),

√
u1 sin(2πu3),

√
u1 cos(2πu3)

)
.

(4.7)

See also our implementation.1) Instead of uniformly sampling positions from the

volume bounding box (as in ChimeraX), we uniformly sample Np positions from

the positive voxels in the filtered and normalized volume V̂F−c . This enveloped

sampling based initialization increases the success rate by a factor of two by

searching from Nq ·Np initial placements, compared to the traditional initialization

1GitHub: DiffFit/src/DiffAtomComp.py

https://github.com/nanovis/DiffFit/blob/0a435cb6adf80495c9366be31de203619e656f0e/src/DiffAtomComp.py#L60C1-L84C23
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in ChimeraX.

Fitting multiple placements of one molecule

To look for fits for multiple copies of a single molecule m, we then take advantage

of GPU parallelization and optimize all Nq · Np pairs of [p,q] of the molecule

with atoms Xm altogether in one single loss function:

Lpar(m) =

Nq·Np∑
k=1

Lm([pk,qk]). (4.8)

Fitting multiple placements of multiple molecules

Finally, all subunit molecules have different numbers of atoms; it is thus not easy

to parallelize the treatment of multiple molecules without overhead on the array

padding of zeros. Usually, the Nq · Np initial placements of Xm atoms would

result in a total number of sampling operations higher than the total number of

GPU threads; therefore, we process different subunits molecules sequentially in a

for loop and form an overall loss function for M molecules as follows:

Lall =
M∑
l=1

Lpar(l). (4.9)

Quantify the fit quality

By sampling in the simulated volume from the molecule, we can get a weight for

each atom coordinate as W (x) = S(x, Vsim). Then, for all atoms in a molecule,

we can form two vectors, a sampled density vector D = [D(x1), D(x2), ..., D(xN )]

from the target volume and a weight vector W = [W (x1),W (x2), ...,W (xN )] from

the simulated volume. Then, we can calculate three alignment metrics, the mean

overlap µ, correlation ρ, and the correlation about the mean ρµ as:

µ =
D ·W
N

,
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ρ =
D ·W
|D||W|

, and

ρµ =
(D−Dµ) · (W −Wµ)

|D−Dµ||W −Wµ|
,

where the subtraction operator represents subtracting the scalar average densities

Dµ and Wµ from each component of the sampled density vectors. We use these

quality metrics during the interactive assessment by the bioscientist in ChimeraX

that we describe next.

Visually-guided fitting

A critical aspect of the post-processing of DiffFit involves the clustering and

sorting of the fitting results to facilitate user-guided selection and refinement.

After the optimization phase, the algorithm generates a vast array of potential

fits, characterized by their translation and rotation parameters. To manage this

abundance of data and facilitate efficient result exploration, we apply a clustering

algorithm to group the fitting results based on their spatial and orientational

similarity (Figure 4.2(c), (e)).

Each cluster represents a set of closely related fits, suggesting a consensus

among them regarding the position and orientation of the fitted structure in

the target volume. We sort these clusters based on a defined metric, such as

the overall density overlap or correlation coefficient we just discussed, ensuring

that the most promising fits are prioritized for user review. This hierarchical

organization allows researchers to quickly identify the most accurate and relevant

fitting results, streamlining the analysis process.

To further assist the experts in exploring the fitting results, we created an

interactive visual browser as a comprehensive visualization tool to present the

sorted clusters in a user-friendly format (Figure 4.3). In the browser we display

key metrics for each cluster, including the average correlation coefficient, the
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Figure 4.4: Interactive visual fit assessment tools we implemented in ChimeraX.
Left: visualization of the best fit of the selected cluster of fits in the context of the
cryo-EM volume map; right: abstracted summary of all clusters, in which each
sphere represents the center of the molecule placement and the color represents
the quality of the fit. Both views are interactive and move in sync, just being
offset from each other in the screen’s x-direction (as they both represent the same
spatial 3D space).

density overlap, and the consensus error measures, which provide a quick overview

of the quality and relevance of each cluster. The browser also allows the biologists

to select a cluster and visually inspect the fitting results within the 3D context

of the target volume. This interactive exploration is crucial for assessing the fit

quality in complex cryo-EM map regions, where subtle differences in position or

orientation could substantially impact the biological interpretation of the results.

To help the experts to gain a spatial overview of the fitting result in the

tabular data (Figure 4.3), we further provide means to visualize the clusters in

the viewport (Figure 4.4). First, we display the representative molecule of each

cluster of fits in the context of the cryo-EM volume map, as we show in Figure 4.4

on the left. The displayed fit can be controlled by selecting one from the list of fits.

To also provide the experts with a visual summary of all fits, we also abstractly

represent each fit cluster with the help of a sphere that we place at the center

of the cluster’s representative molecule as it is transformed by the fit shift and

rotation (Figure 4.4, right). We assign each sphere a color based on the clusters’
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average density order and the experts can also use the spheres to select a different

fit to be shown in the context of the cryo-EM volume map.

An innovative feature of our approach is the ability to refine the fitting process

iteratively by selectively excluding already placed molecules densities. Once a

bioscientist selects a cluster and verifies its fit (or multiple fits) as accurate, we can

zero out the corresponding density in the target volume, thus effectively removing

the respective volume region from further consideration in the following part of

the fitting process. For this purpose we, first, use the fit structure to simulate

a map; then we use the voxel positions from the original map to sample the

density values from the simulated map. If the sampled density is higher than a

user-specified threshold, we set the original voxel’s density to zero. By default we

use a threshold of 0, which usually delivers good results. This step is crucial for

complex volumes containing multiple closely situated structures, as it prevents

the algorithm from repeatedly fitting structures to the same volume region and

reduces false positives when fitting the remaining region.

By thus iteratively fitting and zeroing out densities, users can progressively

shrink the target volume, isolating and identifying individual structures in dense or

complex datasets. This iterative refinement ensures that the fitting process is not

only guided by the algorithm’s optimization but also by the expert’s knowledge and

visual assessment, ultimately leading to more accurate and biologically meaningful

results.

Our resulting visually-guided fitting framework enhances the DiffFit algorithm

by integrating clustering, sorting, and interactive exploration tools. These features

enable users to efficiently filter through large datasets of fitting results, identify

the most promising fits, and iteratively refine the fitting process based on a

visual assessment. The combination of automated optimization with user-guided

inspection and filtering addresses the challenge of accurately fitting molecular

subunit structures within volumetric data.
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(a) Source structure. (b) Target map. (c) Fitting result.

Figure 4.5: Fitting a single structure for 6WTI.

4.3 Implementation

We utilized PyTorch for the DiffFit algorithm implementation, capitalizing on

its dynamic computational graph, automatic differentiation, and GPU accel-

eration to estimate positional offset and rotational quaternion parameters ef-

ficiently. Specifically, we employed torch.nn.Conv3d for Gaussian smoothing

and torch.nn.functional.grid sample for trilinear interpolation with padding

mode set to “border.” This approach enables us to rapidly process large volumes

and multiple structures. We leveraged tensor operations and the Adam optimiza-

tion algorithm for accurate optimization results. We also integrated additional

functions from SciPy, Bio.PDB, mrcfile, and Numpy libraries to enhance the algo-

rithm’s functionality. In addition, we integrated DiffFit seamlessly into ChimeraX

(Figure 4.3), based on its bundle development environment.

4.4 Use case scenarios

We designed DiffFit with its advanced fitting algorithms and integration with

visualization tools to address a range of challenges in structural biology. To be

able to illustrate their power, we now explore three key scenarios where DiffFit

can be particularly effective, demonstrating its versatility and potential.

https://doi.org/10.2210/pdb6WTI/pdb
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Scenario 1: Fit a single structure

The most straightforward application of DiffFit is the fitting of a single atomistic

structure to a target volumetric map, as we illustrate in Figure 4.5. This scenario

is common in cases in which an already-resolved protein structure or a predicted

structure needs to be placed in a newly reconstructed volume captured via cryo-EM

for further refinement.

In this scenario, DiffFit efficiently determines the optimal position and orienta-

tion of the protein (Figure 4.5(a)) in the volume (Figure 4.5(b)). The entire fitting

process is automatic, removing the prerequisite of manually placing the structure

at an approximate orientation close to the final optimal one. The interactive visu-

ally guided inspection process allows researchers to verify the fit (Figure 4.5(c)),

who apply their expertise to ensure biological relevance and accuracy.

We use the dataset reported in the recent MarkovFit work [3] to benchmark

DiffFit’s performance in this scenario, compare it with ChimeraX and MarkovFit,

and report the results [successful hit rate, computation time, and root-mean-square

deviation (RMSD)] in Table 4.1 (we provide a complete table that includes each

structure’s EMDB ID, the number of chains, the number of atoms, voxel size,

and the used surface level threshold used in Table A.1 in section A.1). For each

structure, we performed five experiment runs to obtain reliable results (we also

attach each individual run’s metrics in our supplementary material). For each

run, we fit 1000× to perform the search. For ChimeraX, we ran the command

“fit #1 in #2 search 1000” to perform atom-to-map searching, which is about

one-fold faster than the atom-simulated map-to-map fitting and delivers similar

results. We regard the number of fits in the top-ranked cluster as the hit rate

if the representative fit of that cluster is within 3 Angstroms and 6 degrees

(ChimeraX’s default threshold) from the ground truth. We do not repeat the

MarkovFit computation as it takes an average of “7.7” plus “6.25” hours (as

stated in prior work [3]) to finish a single run for each structure. Instead, we

directly take the author-reported [3] RMSD. We take the “top-scored” model’s
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RMSD (although it is often the same as that of the “best model by RMSD among

top 10”) because, in practice, there is no ground truth to compare to in advance

to get the best model. DiffFit significantly outperforms ChimeraX on the hit rate

(on average, a 26.9× gain) and the computation time (26.0× gain). The RMSD of

DiffFit is also significantly better than MarkovFit but often slightly worse than

ChimeraX’s. However, this can always be corrected (the last column in the table)

by a single automatic fit using ChimeraX’s atom-to-map fitting, which results

in a better RMSD on average. Compared with the overall averaged metrics, for

high-resolution maps, DiffFit gets higher gains on hit rate; for medium-resolution

maps DiffFit gets higher gains on the computation time. Of note is that, with

expert knowledge, ChimeraX’s performance can be boosted. For example, after

smoothing the map via a command similar to “vol gaussian #2 sd 2,” the

hit rate goes up to 1 (6WTI), 67 (7D8X), and 12 (6M5U). We can also achieve

a similar boosting with DiffFit. As this boosting highly depends on the user’s

knowledge, we report only the simple version of the fitting where the user only

needs to specify the surface-level threshold (which, in most cases, is ChimeraX’

built-in heuristic: the top 1% percentile of all the density values). We computed

the reported performance metrics on a workstation that uses an Nvidia RTX

4090 GPU for DiffFit and a single thread on an AMD Ryzen Threadripper PRO

3995WX 2.70 GHz for ChimeraX (version 1.7.1 (2024-01-23)).

Scenario 2: Composite multiple structures

A more complex use case involves the fitting of multiple structures to a single,

large, often complex, volumetric dataset, such as assembling a viral capsid from

individual protein units or constructing a ribosomal complex from its constituent

proteins and RNA molecules. DiffFit can handle such composite fitting tasks by

iteratively optimizing the placement of each component, from largest to smallest,

while considering the spatial relationships and interactions between them to

prevent overlaps and ensure a coherent assembly.

https://doi.org/10.2210/pdb6WTI/pdb
https://doi.org/10.2210/pdb7D8X/pdb
https://doi.org/10.2210/pdb6M5U/pdb
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Table 4.1: Performance results for fitting a single structure. Res stands for
resolution, C stands for ChimeraX, D stands for DiffFit, M stands for MarkovFit
[3], DC stands for DiffFit corrected by a single automatic ChimeraX fit; G stands
for Gain and is D/C for Hit and C/D for Computing time (in seconds). High-avg
stands for the averaged metrics for the high-resolution maps, and Med for medium
maps, All for all maps.

Hit rate Computing time RMSD (Å)
PDB Res ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

C D G C D G M C D DC

6WTI 2.38 0.0 136.8 n/a 150.3 3.8 39.7 1.310 n/a 0.942 0.037
7D8X 2.60 0.0 202.0 n/a 196.0 5.2 37.6 1.960 n/a 0.984 0.014
7SP8 2.70 4.6 188 40.9 130.6 2.6 50.5 1.290 0.996 0.969 0.025
7STE 2.73 14.0 110.4 7.9 806.1 12.1 66.6 1.740 0.062 0.662 0.058
7JPO 3.20 5.4 191.8 35.5 250.7 6.7 37.2 2.540 0.017 0.922 0.015
7PM0 3.60 44.0 195.4 4.4 352.4 4.1 86.7 1.640 0.030 0.907 0.024
6M5U 3.80 0.0 105.0 n/a 162.2 4.1 39.2 2.360 n/a 0.912 0.018
6MEO 3.90 7.4 116.0 15.7 128.2 3.2 40.1 1.940 0.489 0.786 0.488
7MGE 3.94 4.8 123.6 25.8 337.6 4.3 78.1 1.870 0.017 0.819 0.017

High-avg 8.9 152.1 21.7 279.3 5.1 52.8 1.850 0.268 0.878 0.077

5NL2 6.60 1.8 163.2 90.7 94.6 2.0 48.0 2.440 0.093 1.124 0.056
7K2V 6.60 49.0 165.6 3.4 240.6 4.1 58.2 25.290 0.338 1.323 0.338
7CA5 7.60 55.8 72.4 1.3 322.6 2.9 110.0 3.290 2.042 1.207 2.042
5VH9 7.70 68.6 158.0 2.3 1147.8 14.1 81.3 0.960 0.085 0.991 0.085
6AR6 9.00 78.0 182.6 2.3 74.9 1.5 49.3 2.200 0.123 2.617 0.117
3J1Z 13.00 138.6 172.2 1.2 64.4 2.0 33.0 32.330 0.396 2.612 0.388

Med-avg 65.3 152.3 16.9 324.1 4.4 63.3 11.085 0.513 1.646 0.504

All-avg 31.5 152.2 19.8 297.3 4.9 57.0 5.544 0.366 1.185 0.248

In Figure 4.6 we show an example of compositing multiple structures into

a cryo-EM volume map, for the PDB-protein 8SMK [130]. In the first row we

demonstrate how the middle and bottom parts are fitted in the first computation

round, with the remaining top part of the protein being fitted in the second round

of the interactive process.

The ability to zero-out densities, once a fit is interactively confirmed by the

expert, allows DiffFit to fit multiple structures sequentially without interference

from previously placed components, as we demonstrate in Figure 4.6. This iterative

approach is particularly useful for densely packed molecular complexes, where

individual components may be difficult to distinguish in the volumetric data. This

https://doi.org/10.2210/pdb6WTI/pdb
https://doi.org/10.2210/pdb7D8X/pdb
https://doi.org/10.2210/pdb7SP8/pdb
https://doi.org/10.2210/pdb7STE/pdb
https://doi.org/10.2210/pdb7JPO/pdb
https://doi.org/10.2210/pdb7PM0/pdb
https://doi.org/10.2210/pdb6M5U/pdb
https://doi.org/10.2210/pdb6MEO/pdb
https://doi.org/10.2210/pdb7MGE/pdb
https://doi.org/10.2210/pdb5NL2/pdb
https://doi.org/10.2210/pdb7K2V/pdb
https://doi.org/10.2210/pdb7CA5/pdb
https://doi.org/10.2210/pdb5VH9/pdb
https://doi.org/10.2210/pdb6AR6/pdb
https://doi.org/10.2210/pdb3J1Z/pdb
https://doi.org/10.2210/pdb8SMK/pdb
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Figure 4.6: Compositing a protein (PDB 8SMK [130]) from its three unique chains.
Top row from left to right: three input chains, input target volume, the best fits
in the first fitting round, the remaining voxels after zeroing-out, and the fitted
chains. Bottom row from left to right: two remaining input chains, remaining
region of interest in the target volume from the first round, the best fits in the
second round, the remaining voxels after zeroing-out, the fitted chains. Right: the
final composited structure overlaid on the original target volume (RMSD: 0.138).
The involved computation takes 10 seconds in total, and the human-in-the-loop
interaction takes ≈ 3 minutes.

scenario is critical for understanding the functional context of proteins in larger

biomolecular assemblies or cellular environments.

Scenario 3: Identify unknown densities

DiffFit also offers bioscientists the capability to identify and characterize unknown

densities within volumetric datasets. In cases where a volume contains unassigned

or ambiguous regions, possibly indicating the presence of previously unidentified

molecules or molecular complexes, DiffFit can be used to screen a library of known

structures and predicted structures for potential matches.

By fitting the structures from a library to the unidentified densities and

evaluating the fit quality, researchers can hypothesize the identity of the unknown

components. This scenario is invaluable for discovery-based research, where

identifying novel components in complex molecular assemblies could lead to

significant biological insights.

We performed a search with the demonstration dataset from a recent automated

domain-level protein identification technique, DomainFit [34]. The task was to

https://doi.org/10.2210/pdb8SMK/pdb
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(a) Library of structures to search against (subset).

(b) Unknown density identification: comparison of three potential fits which are overlaid on top
of the target volumes.

Figure 4.7: Unknown density identification, where dozens to hundreds of molecular
structures can be evaluated for potential fit.
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Table 4.2: Performance results for identifying unknown structures. C stands for
ChimeraX, D stands for DiffFit; Gain = D/C for Hit.

Structure C Hit D Hit Gain

I7MLV6 D3 108 254 2.4×
I7M317 D1 127 240 1.9×

identify, from a library of 359 protein domains (Figure 4.7(a) shows a subset),

which domains best fits into the given volume (Figure 4.7(b)). DomainFit identified

two candidates (I7MLV6 D3, and I7M317 D1), after first fitting all domains using

the fitmap command in ChimeraX and then performing statistical analyses to

remove false positives. With our DiffFit, we identified these same two candidates

with our fitting technique followed by a visual inspection, where the two candidates

were the first to be inspected. We report the hit rates in Table 4.2, which shows a

≈ 2× gain on the hit rate. In addition, DomainFit takes ≈12 hours to finish the

task, while with DiffFit it takes ≈ 7 minutes—a 103× gain in computation time.

4.5 Feedback

In addition to these quantitative metrics, qualitative feedback from users plays a

crucial role in evaluating the practical utility and user experience of DiffFit. We

thus solicited feedback from a diverse group of users, including PhD students,

structural biologists, and computational scientists; through surveys, interviews,

and hands-on testing sessions.

Specifically, we emailed cryo-EM practitioners at our university to test our

tool. We performed three Zoom-based demo sessions and one in-person demo

and feedback session with those people who expressed interest. The first session

involved five people from a research group that studies structural biology and

engineering (one senior PhD student specializing in structural and computational

biology, one senior PhD student in experimental biology about protein structures,

one senior PhD student in experiments elucidating the structure and function of

proteins, one postdoc in experimental biology about protein structures involved
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in cell signaling, one research scientist in using Cryo-EM and other techniques to

study protein structures). The second session involved two people from a research

group focusing on using cryo-EM to study the structural biology of human DNA

replication and repair (an assistant professor and his postdoc). The third session

involved one junior PhD student using cryo-EM to solve protein structures. The

final in-person session involved one research scientist who provides cryo-EM service

as a platform to the whole university and builds a bridge between the microscope

and users at all levels. Apart from verbal feedback during and after these demo

sessions, one participant in the first group, as well as the participant in the

in-person session, also sent us written feedback, which we include in section A.2.

In total, nine people provided qualitative feedback, which we report next.

Usability. The participants appreciated DiffFit’s intuitive interface and

workflow (“quite intuitive and easy to use”) and the direct integration into

ChimeraX with its known UI, which significantly lowers the barrier to entry, in

particular, for new users, while still providing advanced features for experienced

researchers. In particular the easy one-step fitting of a PDB file into a cryo-EM

map was highlighted. The visually guided fitting process was appreciated as a

powerful feature for refining fitting results based on expert judgment. Suggestions

for further improvements of this interaction step and the UI in general were to

display several visual clusters at a time, to visually compare the fit results, and to

offer a tab-based method to check the various clusters. This approach would make

it easier to observe how each cluster fits relative to the cryo-EM volume; thus,

researchers would be better able to focus on a chain of interest. We have addressed

this point already with our visual fit assessment tools (Figure 4.4 and section 4.2).

One issue we noticed is that some experts commented on the computation times

in the order of a few minutes, which points to the fact that they did not have a

Compute Unified Device Architecture (CUDA)-compatible GPU at their disposal.

As we demonstrated with our runtime analysis in section 4.4, with such affordable

hardware, the computation is possible in well under a minute for many structures,
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so cryo-EM labs can break free from extremely long computation times or the

need for employing large (and expensive) computation resources.

Impact on Research. The participants reported that DiffFit has the potential

to have a tangible impact on their research, enabling them to address complex

fitting challenges that were previously out of reach. They thus get the ability to

rapidly sample a large database of candidate structures for regions with unassigned

protein density. The new ability to fit structures rapidly and accurately into

volumetric data offers new directions of investigation and has the potential to

accelerate discoveries in structural biology. One respondent stated that our

automatic fitting and visual inspection approach “could be a key feature in

ChimeraX that [could become] a standard in many pipelines” as well as “a key

implementation [for] a standard modeling workflow.”

The respondents also made suggestions for future developments such as better

structuring the handling of the associated files, further exploring the design space

of the abstract cluster representations, a detailed protocol for downloading and

installing the tool (already implemented in our GitHub repository), as well as

adding workflows that would require automatically creating model subdivisions

and performing fits on those before integrating the results into the reference

volume. They also highlighted further potential uses, such as employing our

approach to analyze density maps generated using X-ray crystallography.

4.6 Limitations and Future Work

Although our DiffFit technique demonstrates a substantial improvement over state-

of-the-art techniques, it also has some limitations. One issue arises in Scenario 2,

due to the gradual zeroing-out of the target map, as multiple structures are being

composited onto a single map. In this case, the volume removal can potentially

remove some voxels that are also part of adjacent interacting molecular subunits,

especially in those cases when the chosen fit is not exactly perfect. Then, the

subsequent subunit to be placed may have a higher difficulty of finding its correct
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location because these few zeroed voxels penalize the correct position. We are

currently investigating this limitation and plan to experiment with heuristics

that remove only voxels that are fully covered by the molecular structure or

slightly shrink (by using a higher user-specified threshold) the to-be-zeroed-out

region before removing it from the map. Another related limitation is that the

fitting process does not check for collisions in adjacent subunits, as previously

investigated in visualization work (e. g., [92]). While the map shrinking approach

should address this issue, subunits may still overlap in some cases. Resolving this

issue is straightforward: we could remove those subunit poses that overlap with

previously confirmed subunit placements or could minimally modify the pose to

resolve the structural collisions.

Our technique is also not entirely parameter-free. The threshold value for

removal of voxels with small density values, e. g., and the threshold value for

the connected-voxel minimal cluster size have to be manually set. Manipulating

these parameters requires prior domain experience with cryo-EM data from the

bioscientists. We plan to automate the identification of these thresholds or, at

least, define suitable default values and provide guidance on reasonable parameter

ranges.

The visualization design in our current version of the tool also offers only the

most essential visual encoding types, with a clear potential for further improvement.

We plan to adapt comparative visualization techniques for intersecting surfaces

and smart visibility techniques for combined rendering of the volumetric density

representation with molecular surfaces or cartoon representations. Furthermore,

the visualization design for analyzing the structural poses in a cluster suffers from

high spatial occlusion among the subunits’ various poses (see Figure 4.2(d)). This

is a common domain problem and requires a dedicated research effort to combat

the occlusion of this magnitude. Our tool can also be further extended in future

work to, for instance, change the color encoding of the fitting results presentation

to use one of the other alignment metrics (section 4.2) or to change the size of the
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spheres in the results summary to make larger clusters appear more prominent.

Driven by the feedback we received, additional possible future research di-

rections include extending DiffFit to deformable transformations, considering

stoichiometry and symmetry, and speeding it up even further through an integra-

tion with CUDA.

4.7 Discussion

DiffFit provides a novel and efficient solution to atom-to-map fitting in structural

biology, combining differentiable optimization with a human-in-the-loop visual

analytics workflow within ChimeraX. We address these challenges with our

differentiable fitting along with a set of essential strategies that make our algorithm

robust for the domain problem. Our approach adds a human-in-the-loop visual

analytics approach to the workflow and provides an open-source package designed

to work as part of a standard software tool on the domain (ChimeraX). A key

element of our approach is the change from pixel-to-pixel (or the equivalent,

voxel-to-voxel) fitting to point-to-volume fitting, which enabled us to deal with the

specific constraints of the fitting problem in structural biology. This observation

also suggests a hypothesis for the originating graphics technique [85]: sparse,

structure-aware sampling (atoms/landmarks) may suffice for effective optimization,

implying that differentiable compositing could benefit from principled pixel/voxel

sparsification schedules—an avenue for future work.

Our results depend on map quality (resolution, noise) and segmentation ac-

curacy; ambiguous density can produce plausible but incorrect fits. Current

experiments focus on rigid-body placement; flexible fitting and subunit rear-

rangements remain open. Multi-subunit fitting may encounter steric clashes that

require additional constraints. Evaluation metrics (e.g., mean overlap, correla-

tion, atom-wise weights) are informative but not perfect surrogates for biological

plausibility. The expert feedback we collected was informal; a controlled study

with pre-registered tasks, recruiting criteria, and measures (time, accuracy, con-
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fidence) is needed to quantify usability and decision quality at scale. Finally,

while GPU parallelism accelerates sampling, very large assemblies may still be

compute-bound.

The quantitative performance metrics we reported collectively demonstrate

DiffFit’s substantial improvement over traditional approaches, highlighting its

potential to transform the field of structural biology. This potential is particularly

large because the workflows of Assembline, a protocol published in 2022 [84], and

DomainFit [34], so far, rely on ChimeraX’s fitmap command as their first step. This

stage can now be replaced by our more effective DiffFit, laying a new foundation

for these and other workflows. By demonstrating the effectiveness of our technique

across three scenarios, from fitting individual structures to assembling complex

molecular architectures and identifying unknown components, we demonstrated

that DiffFit overcomes the limitations of manually placing individual molecules

before fitting, makes the compositing faster, more accurate, and intuitive, and

opens the possibility of scanning the whole set of known and predicted molecules

with the current computational resources. Ultimately, we thus escape the Faustian

bargain [118] and instead are now free ourselves to explore the inner workings of

the biological world.

https://en.wiktionary.org/wiki/Faustian_bargain
https://en.wiktionary.org/wiki/Faustian_bargain
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Chapter 5

ProteinCraft: Integrative visualization of protein

attributes and residue interactions in the AI era

DiffFit—and especially the success of its ChimeraX plugin—served as an unex-

pected catalyst for the next stage of my research journey. The impact of DiffFit

in the structural biology community drew the attention of Prof. Le Song, a leader

in AI-driven protein design, who identified the potential of similar visual analytics

systems to transform the workflow for generative AI models in biology, especially

those for protein modeling. Recognizing that visual interfaces were critical for

navigating and interpreting the vast, complex datasets produced by AI in biology,

Song approached our group to initiate a collaboration. After a personal trip

of mine that included both tourism and a visit to Song’s institute, Mohamed

bin Zayed University of Artificial Intelligence,1 and further exchanges with my

supervisor, we committed to this new direction together.

As defined in Chapter 1, AI-driven protein-binder design clearly manifests the

non-optimizable gap: objectives are multiple and competing (affinity, stability,

specificity, developability), the search space couples discrete sequence choices with

continuous backbone and pose variables, and predictors return large, heterogeneous

ensembles rather than a single optimum (e.g., conflicting scoring and contact

signals). ProteinCraft targets this regime by coupling automated generation

and prediction with coordinated 2D/3D visual analytics that let experts steer

computation—triaging thousands of designs, aligning promising backbones to

intended poses, applying local “jittering,” reseeding sequences, and iteratively

validating with residue-contact and scoring evidence. In effect, the system moves

1https://mbzuai.ac.ae/
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algorithmic effort from the rough, multi-minimum landscape to the “sweet spots”

around viable minima while reserving human attention for diagnosis, prioritization,

and selection.

This initiative led directly to the conception of ProteinCraft, my most ambitious

project to date. Drawing from the lessons and design philosophies that underpinned

DiffFit, I developed ProteinCraft to integrate the scalable graph analytics of

Tulip [6] with the molecular rendering capabilities of ChimeraX [80], providing

researchers with an interactive platform to explore, filter, and analyze thousands

of AI-generated protein binder designs. By empowering scientists to seamlessly

bridge structural, sequence, and functional information, ProteinCraft illustrates

how visualization becomes not merely a supporting tool, but an indispensable

partner in accelerating discovery in the era of AI-driven protein design. I present

ProteinCraft in its current form, based primarily on my in-preparation manuscript,

with ongoing modifications and refinements to align with the evolving narrative

of this dissertation.

5.1 Introduction

Recent breakthroughs in artificial intelligence have significantly advanced the

prediction and design of protein structures, sequences, and their structural and

functional attributes [1, 124]. Of particular interest is the potential to design

protein binders, engineered proteins designed to selectively interact with specific

target molecules, which hold immense promise for therapeutics and biotechnol-

ogy [22, 11, 115]. Intuitive and interactive visual analysis of the extensive and

complex spatial and scalar datasets generated in the involved workflows can en-

hance data filtering, facilitate hypothesis generation, deepen understanding, and

boost workflow efficiency [48].

Despite advances in AI-driven protein design, researchers still rely on frag-

mented toolchains. Tools like ChimeraX [80] or PyMOL [93] excel at molecular

rendering but lack integrated multivariate data visualization, whereas RING [24]
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computes residue-level interactions for a single structure without linking to broader

statistical analysis. The visualization community has developed graph-based

techniques and coordinated multi-view layouts—such as Tulip [6]—but these

approaches have not been systematically applied to protein engineering work-

flows. Consequently, identifying critical structural insights across hundreds of

candidate designs remains cumbersome, underscoring the need for scalable, inte-

grative platforms that bridge structure, interaction, and attribute data to enable

comprehensive analyses.

We developed ProteinCraft (Figure 5.1) to overcome these limitations and facil-

itate an integrative visualization of multivariate protein attributes and structures,

with a focus on residue interactions. ProteinCraft is a scalable interactive visu-

alization system that combines Tulip’s powerful graph visualization capabilities

with ChimeraX’s advanced structural viewer, and couples both with novel visual

abstractions, supporting simultaneous exploration of up to millions of protein

structures bearing billions of residue interactions and heterogeneous attributes.

Specifically, it allows us to associate one line record of numerical and string

attributes with multiple protein structure paths, and provides parallel coordinates,

histograms, and scatter plots for attribute exploration with on-the-fly brushing and

filtering. A distinguishing strength of ProteinCraft is the seamless synchronization

between the abstracted information visualization and structural visualization,

further enhanced by the novel interaction Tetris view and the residue binding

bouquet view to pool the binding information across a batch of structures to

quickly identify batch residue binding patterns.

Protein design workflows fall into two main categories: backbone-then-se-

quence [124, 22, 128] and backbone-sequence co-design [38, 76]. To accommodate

all current and potential future paradigms, we pivot each design record to its

final predicted structure (derived from the designed sequence) and link it to

any intermediate models and attributes generated along the way. In this way,

ProteinCraft is workflow-agnostic and can also be utilized to explore all deposited
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protein structures. To pursue a more universal tool that is independent of

specific post-design analysis workflows, we perform pre-processing steps including

residue interaction identification, dimensionality reduction, and evaluation metrics

calculation externally—a strategy that is similarly employed by other complex

integrative visualization systems such as Vitessce [48].

Given the rapid development and growing adoption of AI-driven workflows

and ProteinCraft’s capability to examine publicly available structures [12, 114],

we designed the tool to serve a broad audience of structure data curators, con-

sumers, and producers. To empower this audience to scrutinize—and ultimately

refine—protein structures using integrative visualizations, we tackle five main

challenges:

1. Manage large, heterogeneous datasets: Protein design projects can

encompass tens of thousands of records, each comprising multiple structure

models (e.g., backbone, sequence-populated, predicted). Individual struc-

tures may exhibit hundreds to thousands of residue interactions and an

arbitrary set of tool-generated attributes; chain counts can vary between

use scenarios. In addition, folder hierarchies are often arbitrary. We thus

consolidate metadata in a single master Comma-separated values (CSV)

file, where each row represents a design record identified by the predicted

structure’s file path, along with paths to alternative models and associated

attributes. This approach allows us to handle the large, heterogeneous

datasets in a unified manner. With a column name agnostic table viewer

and editor, users can easily rank, navigate, and filter the data.

2. Support multi-level analysis: Researchers require both high-throughput

comparisons—ranking thousands of candidate designs by metrics such as

binding affinity or predicted stability—and detailed, per-structure inspec-

tions of residue-level interaction networks. Yet integrating 3D coordinates,

graph-based contacts, and numerical attributes into a unified interface is

nontrivial. We leverage Tulip’s parallel coordinates, histograms, and scatter
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plots for batch-level exploration. To track conserved residue bindings, we

maintain a CSV file, whose rows correspond to target-chain residues and

encode their interacting binder residues as [JavaScript Object Notation

(JSON)], along with the associated structure path; we render this repre-

sentation in our novel Tetris view. For fine-grained analysis we visualize

residue interaction graphs in Tulip and synchronize bond-selection events

with ChimeraX’s cartoon and atomic-style renderings.

3. Mitigate visual clutter and occlusion: Rendering thousands of designs

in parallel coordinates or displaying dense all-atom structures and interaction

graphs can overwhelm users with overlapping edges and crowded residues.

To reduce noise, we leverage subgraph extraction in Tulip such that users

can isolate and examine a subset of interest. For multi-chain complexes, we

provide a bipartite [5] interaction view that separately shows interactions

between two sets of chains (usually binder and target chains). At the

ChimeraX side and for binder design scenarios, we pre-align all target

structures to the same reference target. When applicable, we can apply the

same strategy to other use cases on demand using ChimeraX’s matchamaker

call. We further simplify residue interactions by drawing two pseudobonds

per contact: a coarse backbone link for a low-density overview and a fine

atom bond for detailed inspection on demand. Finally, users can toggle

between representations, apply color highlighting, and hide flanking residues

to focus on key regions.

4. Overcome technical barriers: Integrating advanced visualization com-

ponents (parallel coordinates, scatterplots, histograms, interaction graphs)

with high-fidelity molecular rendering ordinarily demands extensive engi-

neering—extending ChimeraX with custom visualization modules is labor-

intensive, while embedding a full molecular viewer inside a generic graph

toolkit incurs API incompatibility and performance hurdles. We circum-

vent these challenges by coupling Tulip and ChimeraX via a lightweight
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messaging layer: Tulip manages attribute-centric displays and graph analyt-

ics; ChimeraX handles structure rendering; Tulip sends selected bonds to

ChimeraX via its remote-control mechanism; This division of labor reuses

mature codebases, achieves high performance on both sides, and accelerates

development.

5. Guide users through low in silico success rates: AI-driven binder

design pipelines routinely generate thousands of candidates; rigorous in

silico filtering is required to distill this pool into high-confidence designs

for experimental validation, which usually leads to a few dozens of designs.

To prevent users from being overwhelmed by this “lottery,” ProteinCraft

facilitates an iterative design cycle: highly promising backbones and key

interactions identified in one round inform sequence redesign in the next,

fostering a human-AI teaming paradigm [72] that is more efficient than the

traditional brute-force computing.

ProteinCraft facilitates the visual exploration of large-scale protein structure

datasets—spanning AI-designed binders, AI-predicted structures, and experimen-

tally solved PDB entries—within a unified, interactive environment. Through the

demonstrations in Figure 5.2, we further (apart from the system) contribute: (1)

a new filter (interchain predicted aligned error < 10, binder-aligned binder RMSD

< 1 Å, pLDDT > 90, interchain H-bonds ≥ 3) that leads to increased in-vitro suc-

cess rate of binder design in a public dataset containing half a million designs [20];

(2) an observation that high-affinity binders in the state-of-the-art designs [128]

always bear an ample number of H-bonds in their predicted structures; (3) a

workflow to iteratively perform backbone and sequence redesigning and to include

the interchain residue interactions in binder design that dramatically increases the

in-silico success rate; (4) an observation of residue binding bouquets that can lead

to new computational design methodologies; (5) a workflow to examine multiple

structures in detail in general (outside the protein design context).

The development of ProteinCraft has been propelled by a close collaboration
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of a visualization group with AI-driven protein design teams. We began with an

RFdiffusion-based binder design pilot study [124, 22, 11] and quickly abstracted

the system to be workflow-agnostic to support additional generative protocols and

general protein structure analysis. Future work includes: building a communication

layer with AI models to facilitate interactive prompt authoring and result analysis

to form a “Copilot” for protein engineering as well as lowering the granularity of

the dataset records from structure level to bond level to facilitate more fine-grained

analysis.

Decoupled from any specific design pipeline, ProteinCraft provides a workflow-

agnostic platform for the integrative visualization of protein structures, residue

interactions, and multivariate attributes. To the best of our knowledge, it is

the first system to unify high-throughput statistical analysis with interactive 3D

rendering and to explicitly correlate residue-level contacts with iterative designing

and filtering strategies. We anticipate that ProteinCraft will empower the protein

engineering community to design, refine, and analyze protein structures. In

particular, similar to the atomic motifs in RFDiffusion2 [2], we foresee that the

next generation of protein binder design models will leverage the batch-level

residue binding bouquets as input to guide the iterative design and refinement of

binder structures.
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5.2 Method

System Architecture

We designed ProteinCraft as a modular, workflow-agnostic system for integrative

visualization of protein structures, residue interactions, and multivariate attributes.

To achieve this, we tightly couple two mature open-source platforms: Tulip [6],

which we use for scalable graph and attribute visualization, and ChimeraX [80],

which provides high-fidelity molecular structure rendering. We synchronize these

environments through a lightweight, custom-developed messaging layer that we

built specifically for real-time interaction and data exchange.

Tulip: Attribute and Interaction Visualization

We chose Tulip as our core environment for large-scale data exploration and graph-

based analytics because it offers robust scalability, a flexible plugin architecture,

and comprehensive support for interactive, multi-view visualization of complex

networks. Within ProteinCraft, we leverage Tulip’s scalable architecture and

plugin system to manage heterogeneous protein design datasets, visualize the

predicted attributes and residue interactions as interactive graphs, and provide co-

ordinated multi-view analytics. Specifically, we utilized and adapted the following

features:

• Attribute Exploration: We treat the protein design workflow’s output

data as a graph, consolidating all metadata and attributes in a single master

CSV file where each row encodes a design record, including structure file

paths and associated metrics. We utilize the column name–agnostic CSV

importer, table viewer, and editor to enable users to easily navigate, rank,

and filter large, heterogeneous datasets (C1). By consolidating data in this

way, we can immediately pipe our records into Tulip’s native analytics and

visualization features. We thus further take advantage of Tulip’s built-in

parallel coordinate plots, scatter plots, and histograms to support high-
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Figure 5.2: Use ProteinCraft in protein binder design workflow. Apart from H
and K, all other sub-figures are skematic representations. A. Input target protein
structure. B. Generated binder backbones from models like RFdiffusion. C.
Populated sequences from models like ProteinMPNN. D. Predicted binder-target
complex structures from models like AlphaFold2-initial guess. E. Ranking the
binder candidates by predicted metrics. F. In-silico success rate by emperical
filtering. G. Parallel coordinates view for predicted metrics ranking. H. Interaction
tetris view for batch residue binding pattern identification. I. Schematic view
to show the conserved bindings for residue “T”. J. Schematic view to show the
residue binding bouquet for residue “T”. K. Binding bouquet view in practice. L.
Feed the conserved bindings from the last round to the next round for sequence
redesign.

throughput, multi-attribute exploration and candidate selection within this

unified framework. Another advantage of our approach is the ability to

create subgraphs directly in Tulip, enabling users to isolate and analyze

specific subsets of data. This functionality helps mitigate visual clutter and

occlusion, addressing the challenge of making sense of complex, overlapping

relationships in large-scale datasets (C3).

• Dimensionality Reduction: We use Uniform Manifold Approximation

and Projection (UMAP) (with the option to switch to PCA or other dimen-

sionality reduction methods) to project high-dimensional protein structures

into two dimensions, allowing users to visually assess the diversity or clus-

tering of designs. Specifically, we developed a Python script to extract

alpha-carbon (CA) coordinates from the designed binder chain—while re-

taining the flexibility to extend this process to any chain in the structure.

We construct fixed-length feature vectors via zero-padding and generate

2D embeddings using UMAP. We then append these 2D coordinates to the
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master CSV file and set the layout properties of each record in Tulip to these

values. As a result, node positions in Tulip’s node-link diagrams reflect the

dimensionality-reduced layout, enabling intuitive and effective exploration

of structural similarity among large sets of protein designs.

• Residue-Level Interaction Views: We developed custom views—including

the interaction Tetris view and bipartite interaction graphs—to summarize

and allow users to examine residue-level contacts across large batches of

protein structures. To systematically track conserved residue bindings, we

generate a dedicated CSV file where each row represents a target-chain

residue and encodes its interacting binder residues in JSON format, along

with the relevant structure path. Our custom Python script parses inter-

action outputs (e.g., from RING [24]), aggregates binder–target residue

contacts, and writes them in this tabular format. In Tulip, we use a special-

ized plugin to import this file and construct the Tetris view, where target

residues are arranged as a single row at the bottom and their interacting

residues are stacked vertically above them. This Tetris-style aggregation

reveals conserved binding patterns across the dataset. For fine-grained

analysis, we implemented a specialized Tulip plugin that constructs bipar-

tite interaction graphs. This plugin automatically identifies all residues in

the binder (chain A) and target (chain B) that participate in non-covalent

interactions, and generates a subgraph containing just these nodes and their

connecting edges. The layout arranges target residues along one axis and

binder residues along a parallel axis, creating a bipartite visualization that

makes it straightforward to inspect which residues interact across chains.

The algorithm further optimizes the node arrangement to minimize edge

crossings and total edge length, thus reducing visual clutter and improving

interpretability. Node attributes such as residue type and secondary struc-

ture are encoded by color and shape, enabling efficient visualization and

analysis of conserved binding patterns and residue-level interaction diversity,
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and supporting intuitive, comparative exploration across large protein design

datasets.

• Coordinated Linked Views: We support real-time selection and brushing

across all views, enabling users to seamlessly link tabular, graphical, and

structural representations. Users can customize their workspace by creating,

arranging, pinning, linking, and deleting views, with up to six panels in a

single workspace. Efficiency and scalability are further enhanced through

a suite of utilities (Figure 5.1 I–L): users can drag and drop to reorder

views, access a set of predefined algorithms for opening and synchronizing

views and for analyzing data graphs, and navigate a hierarchical contents

viewer for easy management and subgraph filtering of opened graphs. In

addition, a built-in Python script editor and interpreter enables advanced

data operations within the workspace, supporting complex and flexible

exploration tasks.

ChimeraX: High-Fidelity Structure Rendering and Synchro-

nized Exploration

ProteinCraft leverages ChimeraX as its core molecular structure viewer, support-

ing interactive inspection and advanced residue-level interaction visualization.

Through a tightly integrated architecture, we bridge large-scale, attribute-centric

analytics with detailed three-dimensional structural context, allowing users to

move fluidly from high-level data filtering to fine-grained molecular structure

examination. Our approach combines specialized data abstractions, a robust

synchronization protocol, and feature-rich visualization controls.

Load RING data. To support advanced residue-level interaction analysis

and visualization in ChimeraX, we leverage a robust data management strategy

based on the RING [24] data structure. Each protein structure, when loaded,

is associated with a RING instance that maintains comprehensive records of all
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residue-residue contacts, their types (e.g., hydrogen bond, ionic, π-π stacking,

van der Waals, disulfide, etc.), and their properties (distance, angle, involved

atoms). Each contact is indexed by a bond key—a unique string constructed as

chain1:resnum1:atom1→chain2:resnum2:atom2|interaction type—which en-

codes both the identities of the atoms and residues involved and the type of

interaction, e.g., A:57:CA→B:99:CB|HBOND:MC SC. The RING object stores these

bonds using their keys and manages associated pseudobond objects for efficient

toggling and display within the ChimeraX environment. Structures are indexed by

file path, enabling programmatic control and rapid retrieval of models and their

associated interaction data. All bond types are color-coded and can be filtered,

grouped, or toggled via both graphical and command-line interfaces, supporting

both automation and interactive analysis.

For the visualization of these residue-level contacts, we implement two com-

plementary drawing styles for pseudobonds. In cartoon mode, pseudobonds

are drawn between backbone atoms (typically the Cα atoms or principal back-

bone atoms) of the interacting residues, providing a simplified and uncluttered

representation suitable for overview analysis. In atom mode, pseudobonds are

rendered between the actual atoms involved in the interaction (e.g., sidechain

or backbone atoms as specified in the contact), allowing for detailed, chemically

precise inspection. Users can toggle between these modes, or cycle through them,

using toolbar actions or commands, enabling flexible navigation between high-level

and atomistic perspectives on the interaction network.

Binding Bouquet View. While the Interaction Tetris and bipartite/contact

graph views facilitate large-scale contact analysis and are implemented in Tulip,

we introduce the Binding Bouquet View natively in ChimeraX to summarize and

visually encode the diversity and recurrence of binder residue contacts for each

target residue in 3D. Upon loading a structure and its associated RING data and

the user’s selection, the Binding Bouquet View displays all selected binder-side

residues that interact with a specific target residue, presenting them spatially
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as a “bouquet” around the target. This abstraction allows users to intuitively

explore which positions are most consistently engaged across a batch, recognize

binding hotspots, and relate these observations directly to the physical structure.

Interactive controls in the ProteinCraft tool panel and toolbar allow users to

adjust bouquet display, filter by interaction type, and quickly highlight or inspect

specific motifs in the context of the target molecule. This targeted visualization,

tightly coupled with the underlying RING data management, provides a powerful

interface for binding motif discovery and for guiding iterative binder design directly

within ChimeraX.

Synchronization Layer and Interactive Controls. To integrate data-driven

analytics with molecular structure exploration, we implemented a lightweight, cus-

tom messaging protocol that transmits selected protein structures and bonds from

Tulip to ChimeraX. This single-direction synchronization, realized via ChimeraX’s

remote-control interface, enables real-time propagation of selections, ensuring

all visual states remain consistent as the user explores. The protocol supports

programmatic coordination of structural views, including control of multiple

ChimeraX instances from a single Tulip session, facilitating collaborative or

large-scale analyses.

Within ChimeraX, we provide extensive capabilities for interactive exploration

and visualization. Users can load, superimpose, and manage predicted or ex-

perimental structures (PDB, mmCIF) with ChimeraX’s built-in functionalities.

With our newly developed plugin, we enable users to visualize residue contacts as

pseudobonds, supporting a variety of bond types, each with configurable colors

and display modes. Users can toggle cartoon or atom representations, filter bonds

by type or chain, and cycle visibility at both the individual and group level.

The dedicated ProteinCraft tool panel organizes controls for bond types, model

attributes, highlighting, and flanking regions into intuitive tabs, while toolbar

actions provide rapid access to common workflows such as toggling bond types or

applying highlights. Users can also highlight residues and local neighborhoods
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with adjustable transparency and color blending, annotate special residues (e.g.,

mutations). All key actions—model loading, bond display, color and transparency

adjustments, and chain category management—are accessible via both the GUI

and a suite of custom ChimeraX commands, supporting advanced scripting and

toolchain integration.

Through this unified, extensible architecture, ProteinCraft empowers re-

searchers to seamlessly transition from large-scale data analytics in Tulip to

detailed, context-rich 3D visualization and interpretation in ChimeraX. The

system enables users to efficiently identify, inspect, and iterate on conserved

residue-level interaction patterns and candidate designs, supporting discovery and

hypothesis generation in modern protein engineering workflows.

Iterative Design and Feedback Workflow

A key innovation in ProteinCraft is its explicit support for iterative design cycles,

leveraging feedback from structure prediction and interaction analysis to drive

substantial improvements in binder design success rates. In practice, the landscape

of backbone conformations in computational protein design is highly sensitive: a

backbone that fails under conventional in silico filters (such as interchain PAE <

10) may be separated by only a few Angstroms from one that succeeds, indicating

a steep and narrow energy funnel. Traditional approaches—random backbone

sampling followed by brute-force sequence generation—frequently fail to capture

these near-miss opportunities.

We overcome this limitation by enabling users to systematically propagate

promising but imperfect backbone candidates through iterative rounds of redesign.

ProteinCraft allows users to select candidates that narrowly miss strict design

criteria (such as interchain PAE < 20), use predicted structures as new backbones,

and launch additional rounds of sequence redesign. Through repeated prediction,

analysis, and redesign, users can systematically improve the quality of binders

and increase the pass rate for stringent in silico filters.
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This iterative refinement is guided by interactive selection, multi-attribute

filtering, and residue-level contact analysis. We find that generating and evaluating

multiple sequences for each candidate backbone is essential to verify whether

iterative improvement is possible, and that even small structural adjustments or

alignment corrections can yield breakthroughs for otherwise intractable targets.

Importantly, ProteinCraft decouples this feedback-driven process from any specific

generative pipeline, supporting backbone-then-sequence, co-design, and emerging

AI-driven protocols, as well as retrospective analysis of deposited PDB structures.

By providing an environment for tracking, selecting, and propagating interme-

diate backbones and key residue contacts across rounds, we enable researchers to

systematically explore rugged energy landscapes, exploit near-miss opportunities,

and achieve disruptive improvements in protein binder design.

Data Processing and Pre-Analysis

To ensure that ProteinCraft remains both workflow-agnostic and scalable, we

perform all major data pre-processing steps outside the visualization environ-

ment. Residue contacts are identified using external tools such as RING [24],

while dimensionality reduction (e.g., UMAP) and the calculation of evaluation

metrics are carried out in batch scripts. All resulting metadata and attributes are

consolidated into a master CSV file, which is then loaded into Tulip for analysis.

This approach enables seamless handling of heterogeneous datasets, as the system

is agnostic to column names and attribute types, ensuring flexibility and future

extensibility.

By integrating scalable graph analytics with high-fidelity structure visualization

and novel residue interaction abstractions, ProteinCraft enables users to explore,

filter, and iteratively refine large protein design datasets. This tightly coupled

system overcomes the limitations of brute-force workflows and accelerates the

discovery and optimization of effective protein binders.
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5.3 Implementation

We implemented ProteinCraft as a modular, high-performance visual analytics

system, combining custom C++ plugins for Tulip with a Python extension for

ChimeraX. Our architecture uses REST-based synchronization to enable seamless

interactive analysis across both platforms.

Tulip Core and C++ Plugins. We extended Tulip with a suite of C++ plugins

for project management, RING data import, and attribute-driven analytics. Our

importers parse RING node and edge files, as well as tabular CSV data, to create

detailed residue-level contact graphs, parallel coordinate views, Tetris interaction

diagrams, and dimensionality-reduced layouts. We implemented dedicated plugins

to generate subgraphs (such as bipartite or binder-target interaction networks),

filter interactions, and apply custom layouts for clarity in complex graphs. We

manage all project and structure state centrally, enabling linked selections and

consistent view synchronization across all open graphs. We specify user parameters,

attribute mappings, and color schemes via JSON configuration files for flexible

extension to new data types.

ChimeraX Integration and Python Plugin. To provide interactive molecular

structure visualization, we developed a Python plugin for ChimeraX. We use a

REST API to receive real-time synchronization messages from Tulip, which encode

selected structures, bond states, display modes (cartoon or atom), and highlighting

commands. In ChimeraX, we provide an intuitive graphical user interface that

lets users control residue-level bond display, toggle between cartoon and atom

pseudobond rendering, filter and color bonds by interaction type, and highlight or

flank specific residues. Our plugin supports rapid updates as the user explores

data in Tulip, ensuring all selections and structure views stay synchronized. We

manage binder and target chain categorization and provide toolbar shortcuts for

common operations, streamlining iterative analysis.
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Synchronization and Build. We implemented a lightweight REST-based

protocol to transmit the current visualization state from Tulip to ChimeraX,

ensuring robust, real-time coupling between data analytics and 3D molecular

inspection. We compile all C++ modules as Tulip plugins using CMake, and

maintain flexible configuration and extensibility through JSON-based project

settings.

We have made all code and build instructions available at github.com/nanovis/

ProteinCraft.

5.4 Use Case Scenarios

To illustrate the impact of our iterative feedback workflow, we present use case

scenarios based on real-world applications of ProteinCraft in challenging binder

design problems. Below, we detail two representative cases that highlight the

efficiency and effectiveness of iterative, feedback-driven optimization compared to

conventional brute-force approaches.

Case 1: SARS-CoV-2 Receptor Binding Domain—Iterative

Rescue of Near-Miss Backbones

The design of binders targeting the SARS-CoV-2 Receptor Binding Domain

exemplifies the challenges of protein engineering in a difficult regime. This target

is recognized as more challenging than approximately 75% of representative

in silico cases [128]. In our two-round experiment, an initial design campaign

using standard RFdiffusion [124], ProteinMPNN [22], and AF2ig [11] workflows

yielded only 18 successful designs (0.19%) out of 9,690 candidates (Figure 5.3(a)),

as determined by the stringent filter of interchain PAE < 10. By identifying

and selecting the 61 backbones with interchain PAE < 20, using their AF2ig-

predicted structures as templates, and generating ten new sequences for each in

a second round, we observed a dramatic increase: 92 designs out of 470 (19.6%)

(Figure 5.3(b)) passed the strict PAE filter—a 103-fold gain in success rate. This

https://github.com/nanovis/ProteinCraft
https://github.com/nanovis/ProteinCraft
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(a) Round 1: Initial design pool. (b) Round 2: After iterative selection and
redesign.

Figure 5.3: Distribution of inter chain PAE values for generated designs in
ProteinCraft case study 1. (a) In the first round, nearly all designs cluster at
PAE values higher than 24, indicating low-confidence binding in the initial pool.
Only 18 out of 9,690 designs exhibit PAE < 20. (b) After iterative selection and
redesign, the second round shows a broader distribution, with a clear increase in
low-PAE designs. Specifically, 92 out of 470 designs achieve PAE < 20, reflecting
the emergence of improved binders.

result highlights the power of leveraging intermediate “near-miss” backbones and

feeding them back through iterative sequence redesign to systematically traverse

challenging energy landscapes.

Case 2: Recovery from Hard Failures via Jittering and

Alignment Correction

In other difficult scenarios, initial backbone sampling may yield no candidates that

pass even a relaxed interchain PAE < 20 threshold. Here, ProteinCraft enables

alternative strategies: we can select a backbone with strong intra-chain PAE

(Figure 5.4(a), (d)), align it back to the intended design pose (Figure 5.4(b)), and

perform local “jittering” to generate a large set of structurally similar variants.

By generating multiple new sequences per backbone and iteratively re-applying

structure prediction and contact analysis, we can eventually identify high-quality

binders that overcome initial failures. For example, this approach reduced PAE

from 26.341 (Figure 5.4(d)) to 7.994 (Figure 5.4(c)) in the next round, and further

refining leads to as low as 4.4, with results independently verified by AlphaFold3 [1]
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(a) Selected good backbone de-
sign.

(b) Predicted binder aligned to
designed pose.

(c) Jittering the aligned back-
bone and redesining sequence.

(d) Predicted binder-target
complex for the original
backbone.

(e) All structures, colored by
method.

(f) AlphaFold3 validation of
the final design.

Figure 5.4: ProteinCraft case study 2: Iterative binder design and
validation workflow.
(a) A promising backbone structure is selected from the initial design pool. (d)
The structure of the binder-target complex is predicted for the original backbone
with the sequence designed, allowing assessment of the initial binding interface.
Inter-chain PAE = 26.341; intra-chain PAE = 3.143. (b) The predicted binder
is aligned to the designed pose to enable sequence redesign. (c) The backbone’s
binder interface is locally perturbed (“jittered”) and the sequence is redesigned to
improve binding potential. Inter-chain PAE = 7.994. (e) All structures are shown
together, colored by design method. Cyan for the original backbone, green for the
predicted binder pose, yellow for the aligned binder pose, red for the jittered and
sequence redesigned binder. (f) The final binder-target complex is validated using
AlphaFold3, with model confidence scores and PAE scores visualized to confirm
the design quality.
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predictions (Figure 5.4(f)). Such recovery from hard cases demonstrates the

flexibility of feedback-guided, interactive design workflows.

This strategy demonstrates that iterative backbone and sequence refinement—guided

by intermediate structure predictions and residue-level contact analysis—can trans-

form the design process from a “lottery” of random computation into a targeted,

data-driven workflow.

5.5 Discussion

ProteinCraft represents a significant advance in the landscape of computational

protein design, demonstrating how tightly integrated visual analytics, interactive

feedback, and scalable data management can transform both everyday workflows

and the boundaries of what is possible in the AI era. By bridging the gap between

large-scale attribute exploration, fine-grained residue interaction analysis, and

high-fidelity molecular visualization, we have enabled researchers to move beyond

the limitations of fragmented toolchains and brute-force design pipelines.

Our workflow-agnostic architecture, built upon Tulip and ChimeraX, em-

powers users to interrogate, refine, and optimize large, heterogeneous protein

datasets in ways not previously feasible. Iterative design and feedback—supported

by synchronization, custom visual abstractions, and extensible plugin infras-

tructure—allow researchers to systematically convert near-miss candidates into

high-quality binders, dramatically improving in silico success rates even for the

most challenging targets. The examples presented here highlight not just perfor-

mance gains, but also a fundamental shift in the design process: from random

search to a targeted, data-driven, and human-guided exploration of the vast

sequence-structure-function space.

Our case studies reflect specific targets and expert workflows; results may

vary with target class and predictor choice. Metrics such as PAE/pLDDT are

proxies and do not guarantee binding; experimental validation remains essential.

Interactive steering can introduce user bias; provenance capture and replayable
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pipelines mitigate but do not eliminate this risk. Compute budgets constrain

iteration depth and ensemble size. A larger, controlled user study (tasks, base-

lines, cross-lab replication) is needed to quantify gains in time-to-solution and

downstream success.

As AI-driven modeling continues to evolve, we foresee ProteinCraft serving as

a blueprint for integrative visual analytics systems in computational biology and

beyond. Future work will expand the platform’s capabilities, enabling even deeper

coupling with generative models, finer-grained residue-level analytics, and new

modes of human–AI collaboration. Ultimately, ProteinCraft’s contribution is not

just technical, but conceptual: it affirms that in the era of big data and powerful

prediction, visualization and interactive feedback remain essential to scientific

discovery and innovation.
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Chapter 6

SynopFrame: Multiscale time-dependent visual abstraction

framework for analyzing DNA nanotechnology simulations

While I present SynopFrame here as the final system in my dissertation, it is

actually the project that spanned the entirety of my PhD journey. My initial goal

was to build a comprehensive framework capable of visualizing the rich abstraction

space of DNA nanostructures—an ambition that demanded new strategies for

organizing, interpreting, and interacting with large-scale, complex simulation data.

Along the way, my work on DiffFit and ProteinCraft helped further validate the

design philosophies that underpin SynopFrame. DiffFit, with its focused workflow

and rudimentary table viewer, demonstrated how integrating automation and

visual inspection could streamline the analysis of fitting results. ProteinCraft, in

contrast, marked a significant leap in complexity: it integrated diverse representa-

tions and multiple coordinated views, enabling interactive exploration of massive

AI-generated protein design datasets.

As defined in Chapter 1, the DNA-nanotechnology problems addressed here

locate at the heavy human intervention end of the automation spectrum and

lie in the non-optimizable gap: the task lacks a single target or scalar objective

(e.g., why did a design fail to assemble? or when/how does a conformation switch

occur? ), the evidence is heterogeneous and time-dependent, and “correctness”

depends on expert interpretation rather than a unique optimum. SynopFrame

targets this regime by structuring simulation analysis into a visualization space

that coordinates structural abstractions on granularity, visual idiom, and layout

aspects, enabling linked navigation, overview, and detailed analysis. The system

thus provides solutions for the open-ended questions for hypothesis formation and
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Figure 6.1: SynopFrame dashboard shows an icosahedron design (6540NTs) in
various different representations (arranged in a clockwise fashion): (a) All-NT,
(b) Snake, (c) Schematic3D, (d) Schematic2D, (e) Heatbar, (f) Progress bar, (g)
Principal component analysis plot, and (h) Control panel.

validation—localizing failure modes, tracing transition pathways, and explaining

outcomes at scale.

With SynopFrame, these principles are fully leveraged to address the unique

challenges of DNA nanotechnology. The system I present in this chapter brings

together detailed and abstract visualizations in a flexible, multiscale environ-

ment—empowering domain experts to navigate, interpret, and compare the dy-

namic evolution of large DNA assemblies over time. In particular, I organized all

the related views in a unified visualization space, enabling seamless navigation and

comparison across different levels of abstraction and representation. In this way,

SynopFrame does not merely extend prior work, but encapsulates the ongoing

evolution and maturation of my research perspective across my doctoral studies.

I now present SynopFrame mainly as it appears in the original publication, with

slight modifications to fit the narrative of this dissertation.

6.1 Introduction

Recent years have seen a series of breakthroughs in the DNA nanotechnology

(DNA-nano) domain [95, 96], with a technique known as DNA origami [87]

bringing dramatic success on various designs and use cases. A hallmark of DNA

origami designs is their structure, constructed from one long scaffold strand

that is folded by many short staple strands. The complexity of these designs,
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which is often characterized by the structure’s huge size, the DNA strands’

complicated routing, and the high-frequency motion in their dynamics can lead to

difficulties for experts in designing and analyzing them. This challenge becomes

even larger when scientists rely on MDS to examine the behavior of DNA-nano

structures at nanoscale resolution, where standard visual inspection methods can

be overwhelmed by the dynamic complexity and large data size.

DNA-nano design and simulation tools, e. g., caDNAno [27], Adenita [23], CA-

TANA [55], oxView [83], and oxDNA [104], provide semi-automatic workflows to

lower these difficulties. Domain experts can author designs in high-level geometries

(lines, squares, honeycomb), generate the DNA sequences for each strand, and

then make modifications if necessary, followed by feeding the designs to MDS

tools for further analysis.

Yet, experts still have to examine the structure carefully to envision the

resulting design and to mentally connect the designed shape, the strands, and the

sequences with the findings from the simulations. Visualizing the design can help

experts inspect its structure directly. These designs, however, typically contain

tens of thousands ofNTs on hundreds of strands. Some of the staple strands

are “high-degree” strands that pair with several parts of the scaffold strand to

form complicated folding patterns. Conventional visualizations of all theNTs in a

design in turn generally produce cluttered and occluded views. In the past, Miao

et al. [68] had solved some of these problems with abstract views, yet only for

static structures rather than for dynamic simulations.

In our work we address the problem of efficiently interpreting and visually

analyzing large-scale MDS trajectories for DNA-nano designs. We propose Syn-

opFrame, a multi-viewport, multiscale, multi-dimensional, time-dependent, and

comprehensive visual abstraction framework that aims to help experts identify

and interpret the dynamic evolution of their DNA-nano structures. Given an MDS

trajectory of a DNA-nano design, our solution offers interactive, synchronized

viewports for both detailed and abstract representations as we show in Figure 6.1.
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This approach enables users to: (1) navigate and compare the overall structural

progress in relation to the designed shape, (2) identify problem regions via color-

coded H-bond status, and (3) focus on specific areas for deeper inspection of local

pairing events.

Overall, our contributions are threefold:

• we introduce an abstraction space that extends existing representations for

DNA-nano structures and bridges design and MDS analysis;

• we provide a new way to categorize and encode H-bond status, enabling the

quick identification of design flaws and conformational changes; and

• we develop a synchronized multi-view environment that links different abstrac-

tion levels (from detailed 3D shapes to schematic progress bars), helping experts

effectively explore and interpret dynamic simulation data.

Our user feedback indicates that these contributions can substantially aid in

explaining and troubleshooting unsuccessful self-assembly in DNA-nano designs.

6.2 Motivation, approach, and prerequisites

As we showed, one major shortcoming of the state of the art of visualizing DNA-

nano designs is the lack of representation of the dynamic properties. We thus

teamed up with experts who design DNA-nanotechnology structures as a part of

their scientific work. Our primary collaborator is a domain expert in DNA-nano

design and wet-lab experiments (a co-author of this paper), who has been leading

a team that collectively designs components of nano-robots that would be able to

destroy cancer cells or neutralize pathogens as a part of next-generation health

treatments. To gain understanding of the domain workflows, we met several times

a month over the period of six months. We were also in contact with several other

experts, including developers of the oxDNA simulation package and researchers,

who all are familiar with DNA origami experiments.
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Goals

Through our discussions with these experts, we established a set of high-level goals.

The primary objective for DNA-nano designers is to understand the dynamic

behavior of their nanoscale structures—specifically, to predict whether a design

will self-assemble correctly or exhibit a certain behavior in a wet-lab experiment.

MD simulations are a key computational tool for this purpose, allowing scientists

to test designs cost-effectively before committing to expensive and time-consuming

lab work. The analysis of the resulting large and complex trajectory data, however,

is a major bottleneck. Currently, experts analyze MDS properties by compiling

statistics such as energy and H-bond occupancy, but these approaches often

lose structural information and provide little insight into the structure’s dynamic

behavior. Structural information is currently conveyed by a fast-forward animation

or selection of representative images capturing simulation emergence. Both these

methods are of presentational character and cannot be used as analytical tools

that would lead to structure-related insight. Therefore, our central goal is to

facilitate the efficient visual analysis of DNA-nanotechnology MDS trajectories

to help experts interpret simulation outcomes and gain actionable insights for

improving their designs.

Task analysis

To translate our high-level goal into concrete requirements, we worked with our

collaborators to identify key analysis scenarios and derive a set of user tasks

that a visualization tool must support. First, we found that beginners and lay

audiences often view dynamic processes using schematic diagrams to comprehend

the process as a whole. Second, experts often work on abstracted spatial views

during the designing phase to keep the cognitive load low. However, the DNA

simulation is usually performed at a more detailed granularity, such as theNT and

atomistic levels. So the MDS results visualization needs to bridge the gap between

the abstracted spatial views and the detailed views. In a third key scenario,
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the process of structural assembly and disassembly as generated by the DNA

simulation models is also of great importance to domain scientists. Of particular

interest here is the information about the order of association and dis-association

on two conceptual levels of structural detail: on the nucleotide level and on the

level of a DNA strand. Finally, experts sometimes do not understand why their

designed 3D structure does not self-assemble in laboratory experiments, even with

MDS results at hand. So they are looking for ways to examine these structures.

From these scenarios, we distilled the following essential user tasks:

T1: Assess the overall quality of the simulation—seeing the current struc-

tural assembly progress in comparison to the fully assembled state can help

one decide whether more simulation time or more detail is needed.

T2: Identify and interpret patterns throughout the simulation—the high-

level observation of an MDS run in the schematic view allows the experts

to pinpoint potential problems of a simulation run, interesting simulation

periods, and the change of H-bond status over time.

T3: Examine H-bond pairing events for specific, interesting periods—

seeing the order and the exact position of individualNT and strand pairing

can lead to insights and thus the identification of problems with the design.

Thus the proposed solution should allow users to focus on specific periods

from the whole simulation and to analyze them in detail, frame by frame.

T4: Inspect how one structural conformation converts to another—the

aforementioned tasks should easily interplay with each other to enable the

experts to comprehensively and seamlessly understand the overall biological

dynamics at both abstract and detailed levels.

T5: Determine why some structures do not form—one of the major chal-

lenges in DNA-nano is the low yield in wet-lab assembly experiments, and

sometimes (e. g., our case study in section 6.4) the structure does not form at

all. It is thus important to study the dynamic simulation to understand the

reasons for the low yield.
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Figure 6.2: Inspirations for fundamental representations from existing tools, all for
the same triangle structure: (a) All-NT—3D spatial representation from oxView
withNT detail, in its relaxed configuration; (b) All-NT in the triangle’s designed
configuration; (c) Snake—Miao et al.’s [68] “Single Strands” 3D spatial representa-
tion that only shows each DNA strand as a backbone; (d) Schematic2D—parallel
straight lines showing the pairing between the scaffold and staples as well as the
“flying lines” (lines that diagonally cross the structures) showing the linking be-
tween different parts of the staples; (e) Heatbar—each DNA strand straightened
and sorted by length, as done by Miao et al. [68].

T6: Present real data and avoid artifacts such as those caused by struc-

tural averaging—the averaged structure of a trajectory often deviates from

any specific frame and bears artifacts that might lead to false insights [83].

Such problems are even less visible in more abstracted statistics. It is thus

essential to show both the aggregated and the non-aggregated real data from

the simulator.

These tasks can be coupled with conventional analysis approaches such as

energy, distance, or angle graphs. Such analysis is essential yet beyond the scope

of this article: it does not directly deal with structural abstraction, on which we

focus here.

Challenge analysis

To effectively support the identified tasks, we first had to understand the inherent

challenges posed by the data itself. We found that issues arise due to the specific

properties of the MDS trajectories, which prevent existing tools from producing

visualizations that are effective for drawing actionable conclusions.

Specifically, we inspected a range of various MDS trajectories in oxView. We

visualized small and large systems, with short and long simulation durations, for

assembly/disassembly and stability simulations. We found that, for extremely

small systems (less than 50NT) and extremely short durations (less than 100
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frames), oxView works well. For other configurations we applied the widely

recommended structural alignment as well as several smoothing methods but

realized that several challenges exist that prevent oxView and similar tools from

producing effective visualizations that show both the spatial structure and the

dynamic behavior to come to actionable conclusions:

C1: High frequency, large structure, many frames. The high motion

frequency is due to eachNT’s position changing in all consecutive frames.

When this characteristic meets a large structure with tens of thousands

ofNTs and tens of thousands of frames or more, analysts face a huge amount

of information for each step. No matter how slowly the trajectory is being

presented, the resulting visualization always vastly exceeds an analyst’s ability

to comprehend and make use of it as long as the actual position of eachNT is

shown. And even if one can invest the time to digest the changes between

two frames, this is an extremely inefficient way of studying the trajectory

because MDS often exhibits long periods devoid of any important events.

C2: Clutter and occlusion. Large structures include manyNTs, making it

difficult to distinguish different strands and causing occlusion in 3D structures.

This situation results in an ineffective visualization that can only reveal the

surfaceNTs in the foreground.

C3: Periodic bounding box. OxDNA MDS uses periodic bounding boxes (a

technique involving a simulated unit cell that is regularly repeated throughout

the space, allowing a finite system to be artificially modeled as infinite but

seemingly splitting the molecules over the boundaries [16]) to emulate a bound-

less environment. It breaks up strands at the borders of the box, however,

and thus prevents analysts from understanding the structure correctly.

C4: Lack of well-defined formats for analysis. Most observables from

conventional analysis, in particular H-bond occupancy, are only generated

on-demand by improvised scripts and lack well-defined formats. Such an

approach thus prevents the experts from performing a reliable, standardized,
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and reproducible analysis.

C5: Conceptual views lost in dynamics. When a disassembly or stability

simulation starts, the structure changes immediately and diverges from its

“canonical” shape, making it difficult to perceive for analysts. As a conse-

quence, all the design phase helpers that were created to assist users in

understanding the topology of the structure are lost in the now-changed

structure in the trajectory.

Based on this analysis of goals, tasks, and challenges, we concluded that an

effective solution should not rely solely on aggregating data into synthetic statistics,

which often obscures critical structural information. Instead, our approach centers

on displaying both structural and dynamic information from an MDS trajectory

concurrently across multiple, synchronized abstract views. By coupling these

views with visual highlighting, we can provide the derived information, usually

communicated with statistics plots, directly in the structural context. We believe

that seeing both types of information together enables domain experts to find

actionable improvements for their designs. In the following section, we describe

the design of our framework built on these prerequisites.

6.3 Design of the SynopFrame

To help users with the mentioned tasks and challenges, we developed our Syn-

opFrame approach. Below, we first explain our efforts in exploring the entire

possible visualization space in the context of DNA-nano design that ultimately

led to a number of design decisions for our framework. Next, we describe—in an

implementation-agnostic way—a sequence of the transformations that realize the

representations in use and address the challenges we just described in section 6.2.

We also report how we arrange and connect the various representations together,

how we color code theNTs by their H-bond status, and how we add the highlighter

that links all parts. To ensure reproducibility and extensibility, we discuss in B.4

the Houdini-specific implementation details and in B.5 the transitions between
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different representations.

SynopSpace: The visualization space

To discuss the entire space of possible data mappings we begin by analyzing

well-established visual representations. One of these is the depiction of positions

and orientations of eachNT output by the simulator (All-NT as in Figure 6.1a or

Figure 6.2a).1 In the simple example in Figure 6.2a we show a 3D triangle structure

in the spatially final, “relaxed” configuration, while Figure 6.2b shows the same

structure but in its “designed” configuration (converted from its caDNAno design

format to oxDNA format). In this mapping, eachNT is drawn as three parts,

a sphere at the backbone site, an ellipsoid at the base site, and a cylinder that

connects the sphere and the ellipsoid. The backbone spheres of theNTs from the

same strand are then connected by cones. This representation is used in both

oxView [83] and Adenita [23] and shows whether an H-bond is formed—through

an examination of the distance between a pair ofNTs, and their respective types.

Structures were traditionally designed in such a configuration because it allowed

the experts to focus on the matching between scaffold and staples. Yet, for such

a design theNT detail shown in Figure 6.2b is not needed and may even be

detrimental for some tasks. So the “Single Strands” representation from Miao et

al.’s work [68] can be used to reduce the detail, while still showing the actual spatial

positions of each strand in the dynamic context (Snake—once the strands start

moving, they look very much like snakes in this representation—as in Figure 6.1b

and Figure 6.2c). A related representation as it is used in caDNAno [27] further

simplifies the double helices to parallel straight line segments shown in a 2D

abstract representation (Schematic2D—as in Figure 6.2d). It no longer shows any

3D spatial information but visualizes the pairing between the scaffold and staples

as well as the linking between different staple segments. Finally, we may want to

compare and see information about the scaffold and the staples by arranging them

1In the brackets we give our abbreviations for each representation.
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independently next to each other, sorted by length (Heatbar—as in Figure 6.2e;

by Miao et al. [68]).

What is less obvious about these representations is that they can be thought of

in terms of three orthogonal aspects or axes. The first of these axes isGranularity,

which describes the primary intact physical individual that we are dealing with.

For example, in All-NT (Figure 6.2a–b), eachNT is depicted individually as

sphere-cylinder-ellipsoid so that the primary element is the NT. In Snake and

Heatbar (Figure 6.2c and e), in contrast, all theNTs on the same strand are merged

into a line entity and the physical individual now corresponds to the Strand. In

Schematic2D (Figure 6.2d), then, each pair of the parallel straight lines (each

individual in focus) represents a continuous double Helix. The three levels on

the granularity axis we can extract from the discussed representations are thus

NT, Helix, and Strand, with a decreasing amount of granularity. In particular, we

consider Helix to have a higher amount of granularity (finer) than Strand because

a strand usually spans multiple helices. Even though we did not encounter more

granularity levels in the above-discussed representations, we can still reason that

there should be another one, Assembly, which treats the whole design as an intact

individual. This Assembly naturally is a coarser level than Strand. Similarly, we

can see that Atom is another level with a higher granularity than NT. We show

the Granularity axis as the horizontal blue coordinate direction in our abstraction

space in Figure 6.3. In the figure, we label the levels at the bottom to avoid

clutter and occlusion. We also do not explicitly indicate Atom as a dedicated

level because the DNA-nano domain rarely simulates the dynamics of assemblies

at that granularity.

Next to the granularity of the model, another way of looking at the abstraction

of the depiction is to use different graphical primitives or elements. For example,

in Heatbar and Schematic2D, (with the exception of the flying linkage lines in the

latter) straight lines are used, to which we refer as Bars. If we allow the bars to

bend and follow flexible paths, then we call the primitives Snakes. Finally, the
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Figure 6.3: Schematic view of the SynopSpace with its three axes granularity,
idiom, and layout. Among the 4× 3× 3 = 36 possible SynopPoints we highlighted
those we discuss here with dots and numbers 1–6 in the order of (a)–(f) of Figure 6.1
and Figure 6.4. We discuss the others at the end of 6.3.

primitives used in the All-NT representations are spheres, ellipsoids, cylinders,

and cones. These simple geometric forms are examples of what neuroscientist

Irving Biederman called Geons [13]—geometrical ions, which is “a modest set of

generalized-cone components.” We call the resulting abstraction direction the

visual Idiom axis, in which the shape complexity that an idiom is capable of

representing grows from Bars to Snakes, to Geons. Beyond the Geons, in fact, we

could argue that another level that is able to show even more complex structures

is Surfaces that are commonly used, for instance, in protein rendering [90]. We

show the idiom axis in blue in Figure 6.3 and label the levels at the upper-left of

the figure. We do not explicitly indicate Surface in Figure 6.3 because it is not

commonly used in the DNA-nano domain.

The third axis in our space is Layout: the arrangement of the visual idiom of

a granularity in the scene. In All-NT, eachNT’s sphere, cylinder, and ellipsoid

are placed at their precise 3D positions as calculated based on the output by

the simulator. In Snake, even though the details of theNTs are abstracted out,

the snake still passes the precise center of mass (CMS) positions of eachNT. In

Schematic2D, each helix is no longer twisted but straight. So the bars no longer



101

represent the precise positions. As the semantics of the helix and the relative

positions between the helices are maintained, we call it a schematic layout. In

Heatbar, theNTs are sequentially arranged along a bar and the bars are again

sequentially arranged in screen space. So the three levels of the Layout, with

increasing spatial faithfulness to the simulation, are Sequential, Schematic, and

Precise, which we show as the vertical blue axis in Figure 6.3 and label the levels

at the right of each layout plane, with the corresponding color.

The three axes are independent from each other, so we can sort them in

increasing amounts of detail and arrange them in an abstraction space [116, 117]

we call SynopSpace (Figure 6.3)—owing to its capability of showing various levels of

synopsis of an MDS trajectory—, and points within it SynopPoints. As discussed

by Viola et al. [117, 116] and demonstrated in various examples in the past

(section 3.3), such abstraction spaces allow us to understand aspects of existing

visual mappings of our data. For example, the existing All-NT representation is

at point (Precise,NT, Geon) within SynopSpace (i. e., point (1) in Figure 6.3),

so we can understand that it is far from the origin of the space and thus the

information density it encodes is high and it is likely useful for tasks that require

detailed analysis.

But the established representations do not cover all points within our space,

and we can also use it to discover alternative representations that may be useful

for particular tasks. So let us examine some positions that are not yet covered. A

possible representation at the origin of the space at (Sequential, Assembly, Bar),

for instance, triggers us to think about how a bar could be used to show the

entire structure assembly in a sequential manner. This thought brings to mind

the metaphor of a progress bar (such as for showing the progress of copying a

file). We could use a progress bar representation, e. g., to show the number of

H-bonds that are formed in the entire structure as it dynamically assembles from

the scaffold and staples (T1; we discuss this representation further in section 6.3).

Another example of reasoning in the space allows us to address the dilemma that,
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Figure 6.4: Zoomed-in views (arranged in a clockwise fashion) for the purple
dashed regions in the icosahedron design from Figure 6.1. Apart from (f), we
show all views in two color schemes—strand identity (by color) in the upper-left
and MD progress (five colors) in the bottom-right. In the latter, the not-formed
H-bonds are gray and the singletonNTs (i. e., designed not to be in an H-bond) are
dark blue. (a) displays theNT details, which shows theNT types of the not-formed
H-bonds. (b) removes the backbone and the base details and only shows the strand.
(c) shows the designed geometry. Even though the highlighter-indicatedNT hangs
in the air in (a) and (b), in (c) it becomes clear where thisNT should be attached
if assembled correctly. (d) shows that thisNT is at the end of the helix to which it
belongs, while (e) shows it is at the end of a staple strand. (f) shows the progress
bar.

when using a caDNAno representation (Figure 6.2d), the detail on helices (T3

and T4) and the information about linkage between segments on the strands

(T5) come at the cost of a lot of occlusion and clutter (C2). To improve the

situation we examine the caDNAno representation closely in SynopSpace. First,

it is easy to tell that its layout is a schematic. Second, it mostly uses straight

bars even though there are also some curves that connect segments across bars,

yet those are used to indicate the connections rather than to encode actualNTs.

But, third, what is its granularity? The straight bars represent the helices well,

while linking curves provide information about the strands. So the granularity

is coarser than the helix level but finer than the strand level. So, if we were to

assign a point for the caDNAno representation, it would be in-between point (3)

and point (4) in Figure 6.3. Based on this classification we can now try to address

the mentioned issues. For example, we can derive two separate representations,

one solely dedicated to helices and the other solely to strands. Creating the first

is easy, we can remove the linkages between the segments from the caDNAno
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representation and thus move it to point (4). The latter is more difficult. We

need to remove the linkages while keeping the strand intact. Our solution is to

shorten those linkages and place the helices in 3D rather than 2D (as if the curved

links are shrunk to drag the helices on both ends together to fold them). We

thus changed the original caDNAno representation to now be located at point

(3). With the new mappings, which we name schematic2D and schematic3D and

discuss further in section 6.3, we demonstrated that we can use SynopSpace as a

mental tool to design proper mappings to tackle the various challenges and fulfill

the tasks. Later in section 6.3 we also show that SynopSpace helps us to arrange

the different representations in the linked views.

We do not describe all possible SynopPoints, rather focus on few that we found

useful in specific situations. For example, (Precise, Assembly, Bar) may appear

bizarre yet if we need to show multiple different designs in an MDS system then

it may be useful to place a Bar for each design (Assembly) at its Precise location.

Similarly, the point (Schematic, Assembly, Bar) makes sense if we place the Bars

at predefined locations. A similar scenario can also make use of another set of

SynopPoints, (*, Assembly, Geon) by using simple geometries to abstract the

whole assembly rather than justNT and then showing them either Sequentially,

Schematically, or Precisely. We can also potentially extend the space, for instance,

by allowing the granularity to have one more level, Atom, to allow us to expand

our work to all-atom simulators. So the use of new SynopPoints depends on the

given application and whether it needs respective representations or not. Once

a scenario expands or changes, SynopSpace can be used as a mental tool for

designing the proper representations.

Realizing each representation

Having established the SynopSpace abstraction and identified the six key represen-

tations within it, we summarize in Table 6.1 their SynopPoint index, coordinate

tuple, example figures, and the specific tasks and challenges that it addresses,
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Table 6.1: Summary of the six key representations in SynopSpace, with their names,
SynopPoints, coordinates in SynopSpace, examples, tasks and/or challenges, and
description. They are described in detail in B.1.
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Figure 6.5: Transformations in the Schematic3D algorithm (arranged in a clockwise
fashion): (a) Input CMS positions. (b) Connected polylines (color showing strand
identity). Notice the broken double helices (result of Step 1/Algorithm 1). The
enlarged inset shows the attributes CMS (purple dot), CMS of its pair (brown
dot), CMS of the whole double helix (orange dot), and direction vector from the
double helix’s CMS to the purple polyline’s own CMS (white arrow). (c) Smoothed
double helices (one line per double helix)—result of Step 3. (d) Straightened
and shifted double helices (two lines per double helix)—result of Step 4. The
enlarged inset shows the distance (straight orange line) and angle (orange curve)
that we threshold. (e) Straightened double helices group (those with the same
schematic2D row value)—result of Step 5. (f) Connected strands—result of Step
6.

along with a concise description (for more details see B.1).

Among the six SynopPoints, Schematic3D is key to bridging the 3D and 2D

representations. To realize it, we use the topology and CMS positions (Figure 6.5a)

of allNTs of one frame (usually the designed configuration) as input, followed by

a series of transformations: Step 1: We construct polyline primitives differently

than for Snake, so that only theNTs that form a continuous double helix end up

in the same polyline. The singletonNTs that do not form H-bonds are not in

any polyline. We use Algorithm 1 (B.10) to exhaustively check the conditions

that could potentially break a continuous helix and create the primitives for the

continuous ones. We show the result in Figure 6.5b. Step 2: We prepare the

required attributes for each polyline for downstream transformations. We run this

algorithm for each polyline primitive using the firstNT to find its pair and then

using the pair to find the pair’s polyline ID and save it as an attribute. We also

save the following attributes for each polyline: CMS, CMS of its pair, CMS of the

whole double helix, and the direction vector from the double helix’s CMS to its
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own CMS, see Figure 6.5b for illustrations. Step 3: We use a smoothed line to

represent each helix (Figure 6.5c). We move eachNT to the center of itself and its

pair. The two strands of each helix thus overlap with each other. Step 4: We

straighten the helix and shift the two polylines in each helix at a user-controllable

distance and evenly space theNTs on each polyline at a user-controllable distance

(Figure 6.5d). For this purpose, we first perform a linear regression against all the

vertices in each polyline. We then use Algorithm 2 (B.10) to shift the two lines in

each helix and distribute theNTs on them. Now, we can use the same preprocessing

and rendering technique as those in the Snake representation to create the final

visual representation. Sometimes (e. g., when a relaxed configuration rather than

the designed one is used), however, there are multiple double helices that are

supposed to be along a straight line but are tilted against each other. We thus

use the following steps to refine this issue and to prepare the intermediate data

for Schematic2D. Step 5: We create a new attribute (schematic2D row) for each

polyline, and shift those double helices with the same schematic2D row so that

they locate precisely along one straight line (Algorithm 3, B.10). It works on two

user-specified threshold values: one for distance and the other for angle. Those

double helices within a certain distance and within a certain tilt against each other

will have the same schematic2D row value. For each schematic2D row, if there

are multiple double helices, we then extract each helix’ CMS into an array and

perform a linear regression so that we shift the CMS of all double helices bearing

the same schematic2D row to sit on exactly the same straight line (Figure 6.5e).

Step 6: We delete all polyline primitives and construct the Snake. Since allNTs

are now at straightened positions our final visual representation consists of straight

bars (Figure 6.5f) instead of curved snakes.

The dashboard: Linked views, highlighter, H-bond status

Each of the six representations reveals the structure at an important level of ab-

straction, solves particular challenges, and fits certain tasks. To address challenges
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and tasks we thus link all six via the time axis (Figure 6.1 and the supplemental

video) such that, once the time slider moves or is moved, all six change together. In

addition, we can optionally link All-NT and Snake in a structural way, i. e., once

the camera parameters change in one (rotate or zoom) the other will follow. We

purposefully do not structurally link Schematic3D in the same way because, when

the structure is no longer fully assembled, the similarity between Schematic3D

and Snake no longer holds. We further support the linking with a synchronized

highlighter, similar to the linking and brushing applied by Becker et al. [10].

Once, in selection mode, the user clicks on a specificNT in any representation, we

highlight the sameNT in all rest except in the Progress bar as the latter does not

convey any structural information. The strand, a highlightedNT belongs to, can

optionally be highlighted as well with an increased radius of the circle that we

use to sweep along the strand’s polyline.

On top of the structural views, MDS analysts often check additional abstract

representations. A frequently used one is a PCA projection of the entire trajectory

data, where each simulation frame becomes a data point in a 3D space with

similar simulation frames being mapped to nearby spatial points. This view can

be regarded as a projected conformational space plot. We also generate (similar

to Poppleton et al. [83]) and link this PCA plot (Figure 6.1g) to further assist

the user with navigating the linked views. We link it interactively so that, once

the time slider moves, we show the dot for the new frame’s configuration with a

bigger radius. Alternatively, once the user clicks a certain dot in the PCA plot, we

move the time slider (and hence all the linked views) to that frame. We order all

seven views clock-wise according to the abstraction level, with All-NT first and

PCA last. The projected conformational space plot essentially shows a vector with

three scalars for each frame. In a similar way, SynopFrame can also be coupled

with the scalar versus time plots or the scalar versus another scalar plots showing

the statistical metrics along the temporal aspect (more detail in B.9).

In addition to providing experts with this DNA-nano data dashboard, we also
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introduce a new way of categorizing H-bond statuses for better comprehensibility.

OxDNA’s built-in analysis only detects all H-bonds in each frame and then outputs

the twoNT IDs for each H-bond, regardless of whether that H-bond is in the

designed configuration (C4). This reporting does not facilitate an effective analysis:

mispairing ofNTs may happen and mixing the designed H-bonds with non-designed

ones hides the accurate H-bond counts, so potentially important mispairing events

may go unnoticed. We thus categorize eachNT in each frame into one of five

groups (which forms a new format, which we detail in B.7), indexed from −2 to 2:

(−2) designed to be in an H-bond, but wrongly formed; (−1) designed to be a

singletonNT but an H-bond is formed; (0) designed to be in an H-bond but not

yet formed; (1) designed to be a singletonNT and is single; and (2) designed to be

in an H-bond and correctly formed. We then assign a color to each category (by

default green to 2 and red to −2) and use it to color all representations, except

for PCA which we color by time, by the entire configuration’s energy, or other

properties. Except for this coloring according to H-bond statuses, we also allow

users to color the six representations according to the strand ID to reveal the

routing of the staples. Users can also use a custom scalar value for eachNT in

each frame and use it instead for the color encoding such as the H-bond distance,

the forces thatNT is bearing, theNT’s speed, etc. In the default color scheme for

H-bond status we use red for bonds that are designed to be in an H-bond but are

wrongly formed; correcting such cases requires first breaking the bond and then

forming the correct one. We use orange when a nucleotide is designed to be a

singleton but an H-bond is formed; this case is less severe than the former as it

only requires breaking the bond. Gray indicates a designed H-bond that is not yet

formed, also an uncritical status. Blue shows a correctly single-nucleotide designed

to be a singleton, signaling a correct status without need for change. We use green

for correctly formed H-bonds as designed, signaling success. For the projected

conformation space plot (PCA plot), we use a gradient from red to green based on

the timeframe, as simulations typically start with fewer correctly formed H-bonds
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Figure 6.6: Three frames from an animation (from left to right) that showcase the
break-up of a structure. From the top: snake, schematic3D, schematic2D, PCA
plot, progress bar, and heatbar.

and progress towards more correctly formed H-bonds over time. We represent the

identity of the strands by random colors, due to the large number of staple strands

often present, which would otherwise lack meaningful differentiation. For the base

ellipsoids, our color scheme follows oxView: blue for A, red for T, green for C,

and yellow for G. We also allow users to fully control all colormap assignments

and adjust as needed.

Dynamic data analysis

Previous approaches to coping with the different DNA-nano representations by

relying on abstraction spaces [67, 68] focused on showing different visual represen-
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Figure 6.7: Cube case study. All-NT (a), Snake (b), and Schematic3D (c) show
that the cube’s middle disassembles first, as if the cube is cut by a knife (see
purple line). A synchronized highlighter attached in Schematic3D (d) highlights
the cause: the short double helix visible in Schematic2D (e).

tations of static data. In contrast to this past work, our approach of embedding

our SynopSpace abstraction space into our SynopFrame dynamic framework—for

the first time—allows us to not only traverse different representations of the

structures at some point in time but to actually use MDS to simulate the dynamic

behavior of the structures as they assemble or not (T2–T5). We provide such

dynamic analysis largely not in the form of summary views of dynamic behavior

(the PCA plot is an exception and we describe another in B.9) but instead as

actual animations (see the accompanying videos) in which the experts can observe

whether and how a structure forms or not. Summarizing the dynamic behavior of

the designs into a single and dedicated ‘dynamics overview’ representation is, in

fact, not needed—our H-bond status visualization together with SynopFrame’s

playback possibility allows experts to quickly identify interesting time periods (as

we demonstrate in Figure 6.6).

The means to show dynamic changes we studied in this paper vary between a

progress bar and a full 3D representation with a changing H-bond status. The

progress bar is a well known visual encoding of an emergent process completion,

which completely abstracts from structure and as such, animates throughout

the simulation time how many desired H-bonds have been created and how

many are not established. In contrast, on the other end of the spectrum is the

animated structure depicted with its highest level of detail, where the bonding is

conveyed spatially as well as through color mapping. Our design showcases some

of many possible abstractions of animated process visualization that abstract from
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particular structural detail. Abstracting granularity allows us, in the absence

of fine detail and its motion, to abstract these detailed motions, thus lower

motion frequencies become visually more prominent. This way our representation

allows viewers to follow the animation at faster simulation playback. The Snake

representation used for this purpose can be further abstracted into a static

3D structure, where the dynamics remains in the color-coded animation of the

bonding state of nucleotides. To facilitate a clear view of every such nucleic-acid

substructure, we further abstracted the 3D representation into 2D or even 1D

layouts where all details can be observed and additional details, such as strand

length, become visually promoted. Finally, due to the linear nature, strands can

be hierarchically grouped and merged together. On each level, the animated

color-coding conveys the degree of bonding. Finally, at the most abstract level,

all 1D strands are grouped into a single linear structure where still the order of

theNT sequence is preserved. One final representation that abstracts from this

order leads to the animated progress bar. All these visual encodings represent

animated visualizations of an emergent process in time. Either only photometric

visual channels, i.e., color mapping, are animated, or gradually geometric spatial

animation adds the structural detail. Such detail can be varied throughout the

simulation, or even within the simulation, different parts of DNA sequence could,

in principle, be encoded by varying level of procedural detail. Our work thus

explores the visual abstraction continuum where structural analysis of animated

DNA is encoded by animated visual metaphors, which can be, if needed, further

complemented by visualizations where the time is encoded in a different way than

through animation.

In the following section we showcase an example application case and demon-

strate the benefit of the analysis of dynamic DNA-nano data with SynopFrame,

specifically the identification of a problematic design issue for a given DNA-nano

design.
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6.4 DNA-nano MDS exploratory analysis case study

To better illustrate how DNA-nano experts can make use of SynopFrame, we now

describe a case study for performing an exploratory analysis for MDS trajectories.

This realistic example showcases the overall process that experts can use to

understand why it cannot assemble in wet lab experiments (T1, T5).

A cube structure with 16,128NT (Figure 6.7; one scaffold, 238 staples) was

designed in caDNAno by a domain expert (a co-author of this paper) and his

group. After the in-silico design, the structure appeared to be a robust design

that will also self-assemble throughout the experiment. The research team had

tried to assemble it in many wet lab experiments, but all attempts had failed, even

though an experienced postdoctoral researcher had spent three months and ample

resources on the project. We thus performed molecular dynamics simulations to

examine the stability of the structure at various temperatures. While animating

through the MDS with SynopFrame and looking at its various views, together

with the expert we then noticed an interesting phenomenon that occurred at 78°C.

In the Schematic3D view, in which—with the animation—the expert could

quickly identify (via fast-dragging the handle on the animation’s playbar with the

mouse) the time period in which the structure was attempting to assemble, we can

immediately perceive a prominent pattern of the H-bond statuses at the beginning

of the simulation (Figure 6.7c). The pattern shows that the middle of the cube

disassembles first, much like being cut by a knife right in the middle Figure 6.7a–c.

By attaching a highlighter to the disassembledNT (see our supplemental video),

we can then easily identify the cause of such a pattern from the combination

of Schematic3D and Schematic2D : there are many short double helices (3NTs)

aligned at that knife-cutting plane Figure 6.7d–e. This observation can further be

mapped back to the original caDNAno design view (supplemental video).

When observing this behavior of the simulation, the expert commented that it

“is very helpful in understanding why the structures did not form. In caDNAno,

these mistakes (the short double helices) are not easily spottable.” In our video
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interview with him (see our evaluation below in section 6.5) he also mentioned

that “it could have saved three months of working time and resources of a postdoc

experienced in wet labs but who has limited know-how in biophysics. This tool will

give lab practitioners who do not have enough biophysics knowledge to understand

the details of an MDS and its analysis a faster way to digest what is happening in

the simulation and to remove bad designs. And even people who use traditional

statistics such as root-mean-square deviation to analyze an MDS trajectory will face

problems in finding insights for the case of large structures with long simulation

durations. This tool comes right in place for these cases to help the analyst dive

into the details.” We later learned from our collaborating domain expert that the

cube’s main designer was surprised by the “knife-cutting” pattern because he had

not realized this problem when using caDNAno.

An actionable insight from this analysis for the experts is thus that designers

need to fix those short helices to prevent the respective parts from disassembling,

which our collaborator then incorporated into his future DNA-nano designs. In

addition, the caDNAno developers could improve their software by highlighting

short strands to easily solve cases like ours. Ultimately, this aspect of the reported

case study demonstrates that our H-bond color scheme allows experts to observe

dynamic properties of the dataset using “normal” play-back animations of the

MDS data, simply by seeing the characteristics of the H-bond status in different

parts of a design. This visual representation of the dynamic characteristics relies

entirely on the interactive play-back animations of the normally static views that

we described (e. g., Figure 6.6)—it does not require any dedicated visual summary

of the dynamic characteristics of the MDS data to be effective.

We describe another case study of a smaller structure in B.8, where we focus on

how it converts from one configuration to another (T4) as well as on its potential

design flaws.
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6.5 Further feedback

We gathered feedback from six expert oxDNA users and developers through

a questionnaire. One of them is our previously mentioned close collaborator,

who was our main contact in our user-centered design process and who is also

a co-author of this paper. We communicated with him via e-mail and video

meetings and he had access to a local SynopFrame installation for independent

exploration. We interviewed him for qualitative feedback, and he also filled in the

questionnaire with Likert-scale questions. In addition, we contacted eleven active

oxDNA users who had raised issues in oxDNA’s GitHub repository in the past year

and who revealed e-mail addresses on their GitHub profiles. We also personally

approached two additional DNA-nano experts. Out of these, the mentioned 5

additional experts answered our questionnaire. Due to their time constraints we

did not expect them to install and learn our new interface from the ground up,

but instead we provided them with a video description of our system (similar

to our supplemental video) and asked them to fill in the same questionnaire as

our close collaborator, and we received one anonymous and four signed responses

(details about their backgrounds in B.11).

In Figure 6.8 we report the questionnaire responses (see the full questions

and the detailed answers in B.11) from all contacted oxDNA users, based on a

5-point Likert scale with 1 meaning strongly disagree/very useless/very ineffective

and 5 meaning strongly agree/very useful/very effective. Generally, the experts

found the linked views, the connection with the PCA, the H-bond coloring, and

theNT highlighter to be effective for analyzing DNA-nano MDS trajectories. The

transitions between different representations, however, play a less important role

in the case studies, and may thus have received lower ratings from the experts.

In addition, we purposefully separated the transitions from the animation of

the molecular dynamics because, otherwise, viewers may confuse both types

of animation. The linked views and the highlighter, in contrast, already seem

to be sufficient for the experts to understand the relationships between the



115

representations, so the effectiveness of the transitions may be shadowed by the

other features in the tested scenario. The 2-rating for “Understand” comes from

an oxView developer who prefers much more the conventional statistics-based

analysis approach and who tried our tool without training, he may have missed

already implemented functionality. We thus conclude that our tool requires more

training to be fully effective.

The concerns that the evaluators raised are twofold. First, the accessibility of

the tool is reduced if it resides in Houdini and requires careful preparation of the

input data in specific formats. So, after our current proof-of-concept, the domain

users are eager to get access to a more accessible tool with the functionalities of

SynopFrame, e. g., as a web-based tool. Second, even though experts appreciated

the structural abstraction, they still would like to see an integration of more

conventional statistics. We aim to realize both goals together in our future

development.

6.6 Limitations and future development

While multiple views at different scales and abstractions are necessary, showing all

views at once indeed can overwhelm a viewer. A future direction is to adaptively

show the appropriate abstraction level based on the MDS phenomena. The

implementation in Houdini is more of a prototype for proof-of-concept, which is

fast to develop, but installing the whole Houdini software takes unnecessary disk

usage, and the huge amount of widgets in Houdini are distractors for the user.

A dedicated development with technologies such as WebGPU could be followed

after the proof-of-concept to solve these problems. We also think that it would

dramatically increase the efficiency of the whole workflow if it was possible to

directly modify the design upon identifying the problematic regions, followed

by feeding the updated design back to the oxDNA simulation. Features for the

comparative analysis of multiple trajectories could also be helpful. In addition,

the ability to locally and schematically animate the simplified static geometries
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Figure 6.8: User feedback for the effectiveness of SynopFrame. Our collaborator’s
response is colored in red, while the external evaluators’ are colored in blue. We
provide the full questions (y-axis) in B.11.

to convey certain dynamic properties could further unleash the power of the

schematic representations we developed. It is also worth mentioning that our

whole design study could be expanded to other domains—e. g., in protein MDS,

one could change the granularity axis of our SynopSpace to fit the hierarchical

multiscale nature of protein structure and solve similar challenges there.

6.7 Discussion

The extensive research on DNA-nano structures for various applications has led

to the use of MDS as a cost-effective method for identifying poor designs and

understanding the dynamic nature of these structures. Nonetheless, analyzing and

comprehending an MDS trajectory continues to present significant challenges. We

systematically analyzed the tasks, challenges, and established representations from

the domain, and proposed a visualization abstraction space as a foundation, based

on which we developed a proof-of-concept visual analysis tool that enables experts

to see the connections between the different representations and to better explore

and understand MDS trajectories, i. e., the dynamic aspects of DNA origami

assemblies. While our tool is not yet integrated into the toolchain of the experts,

we still demonstrate that the approach works in principle and with some more

development an integration is possible.

In a broader sense, as MDS systems increase in size and approach the mesoscale,



117

such as the whole cell simulation mentioned by Stevens et al. [106], a critical need

arises for the abstraction of the structure for visualizing the resulting trajectory.

With the novel approach we developed, SynopFrame, domain experts are now

able to identify design flaws in a DNA cube design, such as the one that troubled

our collaborators for months and cost them vast amounts of experiment resources.

Users can also identify the transition period for the conformational change in an

RNA tile design to understand how theNTs’ H-bonds change during that period.

SynopFrame goes beyond Miao et al.’s work [67] by extending the abstraction space

to the idiom axis, encoding dynamic spatial data from the simulation in the more

detailed views, connecting the static design and its dynamics through the novel

Schematic3D view to lower the cognitive load, as well as taking advantage of color-

coding the H-bond status in the more abstract views to allow experts to identify

problems with their designs through traditional playback or the use of a time

slider (for a detailed comparison see B.12). As such our approach is best suited

for the post-design phase, while Miao et al.’s work supports experts in navigating

the different design spaces that are important at design time. The organization

of various data mappings/representations in a holistic space, reasoning within

the space, and linking 3D and abstract views in our work collectively enable a

new paradigm of MDS trajectory analysis. Rather than drawing insights only

from statistics compiled from the trajectory, this new approach allows experts to

gain insights by directly visualizing the trajectory. We thus extend the previous

design-only solution to a comprehensive MDS analysis scenario. This analysis is

based on all available information in the data, avoiding any bias toward certain

statistical approaches that compress information in certain aspects. In this context,

SynopFrame facilitates a shift in thinking about the analysis of MDS and the

design of new visualization techniques in the emerging mesoscale era.
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Chapter 7

Conclusions and Outlook

In the final chapter, I offer a mapping of my projects to the non-optimizable gap,

followed by a synthesis of the key insights, challenges, and conceptual advances

that emerged throughout my doctoral research. I reflect on the lessons learned

from integrating visualization and computation, consider the broader impact of

these approaches, and outline potential directions for future work.

Projects mapped to the non-optimizable gap at a glance.

• DiffFit: robust pose sampling, negative-space–aware loss, and GPU-based

differentiable search with clustering/ranking → removes manual coarse

placement (narrow basins & rough paths) and shifts expert effort to selecting

among high-quality candidates (multiple good minima).

• ProteinCraft: coordinated multivariate/3D views (attributes, residue–

residue interactions), guided realignment and local jittering, and iterative

sequence redesign with contact/PAE evidence → steers computation through

rough landscapes toward promising basins when no single global objective

exists.

• SynopFrame: a visualization space of synchronized, gradually abstracted

views across granularity, idiom, and layout axes for time-dependent sim-

ulations → supports open-ended reasoning (diagnosing assembly failures,

tracing conformational switching) without a single scalar objective.
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7.1 Reflections and Lessons Learned: Discover the Non-

optimizable Gap Through Visualization

As my research progressed, the interplay between visualization, computation,

and automation became a recurring theme. The journey of ProteinCraft, in

particular, crystallized this lesson. Through direct experimentation with large-

scale AI-driven protein binder design workflows, I observed that iterative, visually

guided refinement can yield dramatic improvements over traditional “brute force”

approaches. For instance, in designing binders to the SARS-CoV-2 receptor

binding domain—a moderately challenging target [128]—I observed a more than

100-fold increase in downstream success rate by strategically selecting and evolving

promising backbones. Specifically, by first filtering for designs with interchain PAE

< 20, then iteratively generating and testing sequences using these “near-miss”

backbones, I was able to boost the pass rate from just 0.19% to nearly 20% in

subsequent rounds. This process uncovered backbones with progressively better

PAE values, eventually converging on designs that were independently verified by

AlphaFold3 [1], and could be further optimized with each iteration.

This broader realization, however, was first sparked by a very specific question

that arose during my attempt to reproduce a snake toxin binder design [115].

While working with a set of backbone structures that appeared—by all visual and

structural metrics—to be very close to the published, experimentally validated

backbone, I found that almost none of my reproduced designs could pass the

established computational filters. Curiously, when I used the exact published

backbone, the pass rate was high. This puzzling observation prompted deeper

investigation: why could structures so close in geometry lead to such dramatically

different design outcomes?

Visualization proved essential in formulating and pursuing this question. Only

by overlaying and visually comparing the backbones could I confirm that my

candidates were indeed extremely similar to the published reference. This question

led me to reconsider and modify the workflow: if the final predicted structure
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from AF2ig [11] looked correct, why not feed it back for sequence redesign? When

I adopted this approach, I discovered a dramatic increase in the downstream

pass rate. Here, visualization was not just a tool for validation, but a catalyst

for insight and innovation, directly inspiring a more successful iterative design

strategy.

What became increasingly evident is that even slight perturbations of near-

successful backbones often resulted in dramatic drops in performance, indicating

that many designs classified as failures may in fact be very close to success,

but remain overlooked by purely automated filters. This insight echoes lessons

learned with DiffFit [61]: in both cases, user interaction and visualization enable

researchers to use a kind of “informed navigation” through a complex search space,

guiding computational resources toward the most promising regions.

Critically, these findings highlight a deeper conceptual takeaway: visualization

and automation must be co-designed, each component compensating for the other’s

limitations. In DiffFit, we saw how visual inspection and manual adjustment

could be replaced or augmented by GPU-accelerated optimization. Yet in the

iterative protein binder workflow, it is precisely the visualization layer that allows

experts to identify and “rescue” sub-optimal but promising candidates, focusing

automation where it is most effective. This conceptual lesson leads to a practical

answer for an often-posed question in visualization research: What should we

visualize, and what should we automate? The answer, I found, is dynamic and

context-dependent—but in the era of large datasets and differentiable models,

visualization is most effective where the computational gradient vanishes: at those

non-differentiable decision points, where algorithmic optimization cannot proceed

further, but human intuition and exploratory analysis can open new paths.
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7.2 Generalization and Human-in-the-Loop Design: The

Broader Impact of DiffFit

Another significant insight that emerged from this dissertation is the versatility of

the DiffFit framework beyond its initial application in macromolecular structure

fitting. At its core, DiffFit leverages differentiable optimization and modular

loss design to facilitate automated alignment and registration between complex

data objects. This architecture is not restricted to biomolecular structures;

rather, it readily extends to a broad class of registration challenges, such as point

cloud alignment in computer vision, multi-modal data integration, and other

scientific or engineering domains where matching disparate representations is

required [42, 33, 4].

A key feature of DiffFit is its use of massive parallelism: by launching a large

number of initializations on the GPU, the system explores multiple starting points

simultaneously, thereby increasing the likelihood of finding a robust and globally

optimal solution. After parallel optimization, the best result is automatically

selected according to the predefined loss function or other final evaluation metrics.

This approach not only accelerates the registration process but also improves

reliability, mitigating the risk of suboptimal solutions that can arise from poor

initialization. The essential requirement for applying DiffFit to new problems is the

construction of a differentiable computational pipeline and a thoughtfully crafted

loss function that accurately reflects the domain-specific objectives. With these

components in place, the same automated and scalable optimization approach

can be used to solve a variety of alignment and registration tasks, making DiffFit

a flexible template for many cross-disciplinary challenges.

Crucially, even as DiffFit shifts much of the registration workload onto auto-

mated optimization, it retains an essential role for human expertise through a

final visual check. This design ensures that, regardless of the problem domain or

the sophistication of the underlying algorithms, expert users remain empowered

to validate, interpret, and refine the results. In doing so, DiffFit exemplifies
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the broader philosophy of this dissertation: that the most effective systems are

those that balance computational power with human intuition, allowing each to

operate where it is most effective. This principle of human-AI teaming design

not only safeguards the integrity of the results but also fosters greater trust and

understanding, qualities that are critical as automated systems become more

prevalent in scientific research [72].

7.3 Differentiability in Visualization: The Perspective of

SynopSpace

A unifying thread across my work is the relationship between what is “differen-

tiable”—what can be directly optimized by algorithms—and what is not, requiring

human insight. Traditionally, differentiability has drawn a line between automated

and manual steps in computational science. However, through the development of

frameworks like SynopFrame and its SynopSpace abstraction, I began to consider

a new perspective: can visualization itself become a differentiable space?

SynopSpace, by organizing molecular data and simulation trajectories into a

continuous, multi-dimensional abstraction space, hints at this possibility. Here,

users fluidly traverse levels of detail and representation, dynamically linking

structural, temporal, and abstracted views. Looking ahead, I envision visual-

ization spaces where not only humans, but algorithms (AI agents), can “see”

and act—optimizing visual representations, recommending informative views,

or even learning from user interactions in real time. In such a co-differentiable

environment, the boundary between computational optimization and human explo-

ration becomes increasingly seamless, enabling a continuous loop between visual

reasoning and algorithmic search.

This perspective opens an exciting frontier. In this view, visualization is not

merely about exposing data to human users, but also about creating a space acces-

sible to machines, enabling both differentiable optimization and human exploration

to interact and co-evolve within the same environment. This outlook resonates
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with emerging protocols at the AI agent frontier,1 where models are given access

to shared contextual spaces and interfaces, allowing them to interpret, reason,

and act alongside human collaborators. As visualization environments become

increasingly expressive and structured, they can serve not only as interactive and

interpretive tools for people but also as differentiable landscapes for autonomous

agents, supporting joint workflows in which both humans and machines leverage

a common visual context, thereby enabling new modes of scientific discovery.

7.4 Toward Standardization and Benchmarking in Visual-

ization Research

Another key reflection is the transformative role that standardization and bench-

marking have played in other data-driven disciplines—most notably, computer

vision. The explosive progress in computer vision over the past decade was not just

a result of better hardware or algorithms, but of widely adopted datasets, clear

evaluation metrics, and structured challenges (such as the ImageNet competition)

that accelerated community-driven innovation [25].

By contrast, visualization research, especially in scientific and interactive

analytics, remains largely fragmented. Evaluations are often qualitative or context-

specific, making it difficult to compare methods or track field-wide progress. To

bring visualization research to the next level, I believe our community needs to

learn from the successes of computer vision by:

• Curating open, representative datasets that reflect both real-world and

broadly applicable visualization tasks;

• Defining clear, multi-faceted evaluation metrics—capturing not only perfor-

mance, but insight generation, hypothesis refinement, and even adaptability

to user intent;

1anthropic.com/news/model-context-protocol

https://www.anthropic.com/news/model-context-protocol
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• Establishing reproducible benchmarks and shared challenges that can drive

healthy competition and convergence toward best practices.

Such an ecosystem will not only accelerate research and adoption, but will also

make it possible to objectively measure the progress of visualization as a scientific

discipline, further amplifying its impact on data-driven fields like computational

biology.

In my own research, I have made standardization and benchmarking central to

the design and dissemination of my systems. DiffFit introduced a fully reproducible

pipeline for fitting atomic structures to cryo-EM maps, with public release of all

test data, parameter settings, detailed logs, and comprehensive documentation.

Notably, DiffFit received a Graphics Reproducibility Stamp2, recognizing its

commitment to transparency and reproducibility. Its direct integration with

ChimeraX further enables easy adoption and independent reproduction of results

within a widely used molecular visualization platform. By leveraging established

EMDB datasets and providing automated metric calculations, DiffFit supports

rigorous, side-by-side comparison of fitting algorithms.

With ProteinCraft, I took a complementary approach by enabling systematic

comparison against previously reported case studies in AI-driven protein design

and interaction analysis. ProteinCraft’s support for standardized data formats

and published benchmarks makes it possible to directly replicate and extend

existing visual analytics workflows, facilitating objective assessment of visualization

effectiveness across diverse protein design scenarios.

Across DiffFit, ProteinCraft, and SynopFrame, all code, datasets, and docu-

mentation have been released as open source. This commitment not only promotes

transparency and reproducibility, but also lowers the barrier for other researchers

to adopt, evaluate, and extend these tools—contributing to a more standardized

and benchmarked landscape for scientific visualization.

2replicabilitystamp.org/index.html#https-github-com-nanovis-difffit

https://www.replicabilitystamp.org/index.html#https-github-com-nanovis-difffit
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7.5 Summary

In this dissertation, I have demonstrated that integrative visual analytics is a

key enabler in bridging the “non-optimizable gap” in modern macromolecular

science. By building systems that combine large-scale, automated computation

with interactive, expert-driven visualization, I have shown that it is possible

to dramatically improve both the efficiency and the scientific value of complex

workflows.

• DiffFit automates the critical optimization steps in structure fitting, reduc-

ing manual overhead but preserving the expert’s ability to validate and adjust

as needed. It removes manual coarse placement (narrow basins & rough

paths) and shifts expert effort to selecting among high-quality candidates

(multiple good minima)

• ProteinCraft unlocks scalable, multi-modal exploration of protein struc-

tures and interactions, empowering users to not just filter large datasets

but actively guide the design process, resulting in concrete improvements in

in-silico success rates for challenging targets. It steers computation through

rough landscapes toward promising basins when no single global objective

exists.

• SynopFrame facilitates multi-scale analysis of DNA nanotechnology simu-

lations, revealing design flaws and dynamic phenomena that were previously

inaccessible to domain experts. supports open-ended reasoning (diagnosing

assembly failures, tracing conformational switching) without a single scalar

objective.

Together, these systems demonstrate a simple principle: automate where

“gradients” exist; visualize where they vanish, converting computational scale into

scientific understanding. Across these efforts, the common thread is clear: human

intuition and computational power are most impactful when brought together

through thoughtfully designed visualization systems.
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7.6 Conclusion and Outlook

As the biological sciences move further into the “AI era,” the challenge is no longer

just generating massive amounts of data or deploying ever-larger computational

models—it is in making sense of this information, and in transforming potential

into actual scientific discovery. The case studies and results that I presented here

show that visual analytics is not an optional add-on, but an essential interface for

navigating complex, high-dimensional design spaces. By combining the strengths

of automation (speed, scale, reproducibility) with the strengths of human reasoning

(interpretation, adaptation, creative insight), we can traverse scientific landscapes

that would otherwise remain inaccessible.

Looking forward, I envision systems where visualization and automation are

ever more deeply intertwined: with AI models that learn from user-driven visual

exploration, and visualization tools that adapt dynamically to guide automated

search. Lowering the granularity of analysis, incorporating real-time feedback, and

broadening these approaches to new domains—all present exciting opportunities

for future research. Above all, my work supports a central idea: In the age of big

data and AI, visualization remains the indispensable bridge between algorithmic

progress and scientific understanding. By designing systems that empower human

expertise at the points where computation cannot reach, we can close the non-

optimizable gap and further enable meaningful discovery in molecular science.
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tation – oxDNA. lorenzo.rovigatti.github.io/oxDNA/, 2022. Accessed

in Apr. 2024.

[89] L. Rovigatti, P. Šulc, I. Z. Reguly, and F. Romano. A comparison between

parallelization approaches in molecular dynamics simulations on GPUs. J

Comput Chem, 36(1):1–8, 2015. doi: 10/b5k3

[90] L. Sael and D. Kihara. Protein surface representation and comparison: New

approaches in structural proteomics. In Biological Data Mining, chap. 5, pp.

109–130. Chapman and Hall/CRC, New York, 2009. doi: 10/c83vqf

[91] V. Schetinger, S. Di Bartolomeo, M. El-Assady, A. McNutt, M. Miller,

J. P. A. Passos, and J. L. Adams. Doom or deliciousness: Challenges and

opportunities for visualization in the age of generative models. Comput

Graph Forum, 42(3):423–435, 2023. doi: 10/pdf9

[92] J. Schmidt, R. Preiner, T. Auzinger, M. Wimmer, M. E. Gröller, and
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APPENDICES

In these appendices, I provide additional explanations, tables, plots, and charts

that offer further detail and context beyond what is presented in the main chapters.

These supplementary materials are included to enhance the clarity, reproducibility,

and completeness of the research, allowing interested readers to explore the data

and analyses more deeply.

Appendix A

Appendix for DiffFit

A.1 Detailed benchmark results for use case scenario 1—

Fit a single structure

In Table A.1 we provide a detailed benchmark table for the first use case.

A.2 Details on the user feedback sessions

One participant in the first feedback group sent us written feedback in addition

to the comments during the Zoom session, which we attach in anonymized form

at the very end of this appendix. In addition, the expert who participated in the

in-person session also sent additional feedback by e-mail, which we also include in

anonymized form at the end of the appendix.
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Appendix B

Appendix for SynopFrame

B.1 Detailed description of SynopPoints

We describe each of the implemented SynopPoints in more detail and discuss how

they help us to address the tasks and challenges we outlined before. We use an

icosahedron nanostructure (6,540 NTs) as an example DNA-nano design and, for

each representation, describe its rendering method and the algorithms used to

preprocess the input data when necessary.

All-NT, SP1 (Precise, NT, Geon), (for each representation, we mention its

name, SynopPoint index, and its coordinate in SynopSpace) shown in Figure 6.1a

and 6.4a, is the traditionally used representation in most DNA-nano-related tools,

and is the only one in oxView [83]. It shows the precise positions and orientations

(T6) of all NTs output by the simulator and is ideal for scrutinizing an H-bond

pairing event in its local environment. Hence it helps with identifying interesting

local events and understanding conformation changes (T3, T4). The output

data from oxDNA are the center of mass (CMS) position and two orientation

vectors for each NT. Following the oxDNA2 model’s geometry [88] (see also B.3),

we calculate the required positions and orientations for the backbone, the base,

the backbone-backbone connector and the backbone-base connector. We then

instantiate the backbone repulsion sites with spheres, base stacking sites with

ellipsoids, backbone connector sites with truncated cones, and base connector

sites with cylinders. To be consistent with the domain we use the same color

scheme as in oxView for the base ellipsoids, i. e., blue for A, red for T, green for

C, yellow for G. We leave the backbone spheres and connectors to color-encode
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other properties (section 6.3).

Snake, SP2 (Precise, Strand, Snake), shown in Figure 6.1b and 6.4b,

in its dynamic context is inspired by less formal representations used on various

occasions such as on-demand drawings, gestures in a conversation, or educational

animations (DNA origami folding animation, see youtu.be/p4C aFlyhfI). To

create it we remove the detail of the base and backbone of an NT and only

show the position of each strand. As such, this representation reduces, to some

extent, the high frequencies (C1) as well as clutter and occlusion (C2). It is ideal

for examining a strand pairing event in a slightly wider local environment than

that of a single H-bond, it thus helps experts to identify events and understand

conformation changes (T3, T4) at a coarser level as well as with understanding

those events in a larger context (T2). With the CMS data of each NT and the

design’s topology, we construct a polyline primitive by connecting it from the

3’ end NT toward the 5’ end for each strand. Translational sweeping of a circle

along the curve then forms a snake-like geometry.

Schematic3D, SP3 (Schematic, Strand, Bar), shown in Figure 6.1c and

6.4c, is a caDNAno-like representation that we created by reasoning with the help

of SynopSpace. It can be thought of as the 3D version of caDNAno’s representation

which, instead of using the precise positions of each frame’s configuration, relies on

a single frame. In practice, we observe that the designed configuration—before any

relaxation or simulation (C5)—has the optimal geometry for a user to comprehend

the structure, for several reasons: First, it is designed by people who often also

analyze its MDS. Second, it is usually the configuration that people mentally

construct. And, third, the double helices are still straight, which helps the experts

to comprehend the structure. Even though sometimes elongated backbones exist,

they help users understand the relationship between the surrounding structures

by placing the paired NTs together to keep the clutter low, rather than causing

any illusion or confusion. After simplifying double helices into two parallel lines,

this representation further decreases the clutter and occlusion (C2), which is

https://youtu.be/p4C_aFlyhfI
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most beneficial in large structures (C1). As the geometry is now static, there

is no more periodic bounding box issue (C3). After color coding the properties,

e. g., H-bond statuses onto the geometry, it also helps the user to understand

the simulation schematically (T2) at various levels depending on the zoom level.

Furthermore, it serves as a bridge to connect other representations to tackle

more tasks and challenges, e. g., the user might observe in the to-be-described

Schematic2D representation that a helix is unpairing (T3), and then move to

Schematic3D to understand which strand this helix belongs to, the routing (the

crossovers involved) of that strand, as well as the H-bond statuses of the whole

strand (T2). Then they may move to Snake to examine this strand’s precise

positions and see how it interacts with other strands in the spatial context (T4).

We describe the implementation details in section 6.3.

Schematic2D, SP4 (Schematic, Helix, Bar), shown in Figure 6.1d and

6.4d, is adapted from the caDNAno-like representation for which we removed all

the linkages that show the crossover between continuous double helices that can

cause a great deal of occlusion. Schematic2D is thus capable of showing all the

double helices (T3) without occlusion (C2). It is ideal to monitor the pairing

and/or unpairing of any number of double helices depending on the zoom level (T2).

We use the schematic2D row value from before, but still need schematic2D col to

place each segment of a helix and each NT on a segment. For the calculation of

schematic2D col for each NT we need to take into account the directionality of the

segment: the offset from the 3’ end of the segment. We then arrange each helix

according to its row and length as well as arranging each NT. We also arrange

the singleton NTs next to their closest NT’s helices. We use the same rendering

method as for Snake and expose parameters to allow the user to control the width,

height, and row and column spacing of the arrangement of the helices.

Heatbar, SP5 (Sequential, Strand, Bar), shown in Figure 6.1e and 6.4e,

is adapted from Adenita [23] where it is used to convey the length of all strands.

Each strand is shown as a continuous vertical straight line and the strands are
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horizontally laid out, resulting in a representation that resembles bar plots. As

the scaffold is usually more than ten times longer than the staples, however, in our

scenario this representation wastes a lot of screen space and it becomes difficult to

observe color changes on the short staples. To address these issues we first define

how many NTs each row can harbor, split the scaffold into multiple consecutive

rows, and then place the staples horizontally with spacing in-between. We allow

users to control the maximum NTs per row, the height of the bar, the width of

each NT, and the horizontal and vertical spacing with sliders. This representation

is ideal for glancing over the dynamics simulation to understand the overall process

(T1) at the strand granularity and identify issues of certain strands if there are

any. As the strands are laid out in 2D there is also no occlusion (C2). We realize

this view by assigning a row and column index to each NT according to the length

of the strand it belongs to and the offset to the 3’ end on that strand. We use the

same rendering method as for Snake.

Progress bar, SP6 (Sequential, Assembly, Bar), shown in Figure 6.1f

and 6.4f, is the linear layout of the NTs based on their H-bond statuses. It is

ideal to understand the overall process of H-bond changes (T1) and let the user

decide whether a certain simulation period should be further examined. No matter

how frequently H-bonds change, how large a structure is, or how many frames

a simulation has (C1), at this abstract level the user can quickly perceive any

changes and make decisions accordingly. We implemented this view by again

assigning a row and column index to each NT, but here only according to the

NT’s H-bond status. The layout can also be adapted by the user to the viewport

size and aspect ratio. We achieve the final visual representation by rendering

impostors to form a circle at the given positions. Thus, when zooming out,

the representation looks like a progress bar and, when zooming in, each NT is

observable as an individual circle. We also do not use numbers to record the

H-bond status because changing text does not communicate the dynamic nature

of the simulation efficiently. Instead, we use color coding that we explain in
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section 6.3.

B.2 DNA-nano design simulation

After a DNA-nano structure is designed, usually before performing the wet

lab experiments, domain experts subject it to simulation to test its dynamic

properties. There are several DNA simulators, ranging from a focus on the

atom level [62] to the polymer level [17]. We rely on a commonly used one,

oxDNA [75, 89, 104, 107]. OxDNA runs at the NT level and captures the movement

of each nucleotide, the binding of Watson-Crick base pairs, and “zipping” events

(binding of multiple consecutive NTs) between complementary strands. To prepare

a newly designed structures for the actual dynamics simulations, we first need to

run relaxation simulations that prepare the structure in a proper configuration that

can further be simulated via Monte Carlo or molecular dynamics methods. We

focus on the molecular dynamics simulation that, with a given initial configuration,

generates the configuration in consecutive time frames via integration on small

time steps, according to a selected biophysics model. The resulting configurations

can be sampled at a user-specified time interval to form an MD trajectory and

then stored. In the case of DNA-nano, a typical trajectory has thousands to

millions of frames and each frame has tens of thousands of NTs, which easily leads

to gigabytes to terabytes of data.

B.3 OxDNA2’s model geometry

With the center of mass (CMS) position vector (r) and two orientation vectors

(a1, a2) for each NT, we calculate the required positions (P) and normals (N)
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with the following equations. The end3 in the equation refers to the 3’ end.

Pbackbone = r − 0.34 ∗ a1 + 0.3408 ∗ a2

Pbase = r + 0.34 ∗ a1

Pbackbone connector = (Pbackbone end3 + Pbackbone end5)/2

Nbackbone connector = normalize(Pbackbone end3 − Pbackbone end5)

Pbase connector = (Pbase + Pbackbone)/2

Nbase connector = (Pbase − Pbackbone)/2

B.4 Houdini-specific implementation

There are significant benefits to using Houdini as our prototyping environment.

First, the Apprentice version is free and available for all three major platforms

(Windows, Mac OS, and Linux). Second, from the user’s perspective, after our

application is developed, a typical user needs just around a 15-minute onboarding

tutorial and a one-page cheat sheet to be comfortable navigating inside the

application and then focusing on the analysis of their MDS trajectory. Third

and most important, it is extremely friendly from the developer’s perspective.

Multiple viewports, which are required by the linked views, can be created with a

few mouse clicks, followed by specifying the geometry to be rendered. Another

valuable feature is Houdini’s node-based workflow.1 Each node harbors a tabular

data structure for the points, vertices, primitives, and detail it contains so the

developer can assign attributes to them and leverage the handy and fast attribute

fetching function via its high-performance expression language VEX.2 Each node is

also a small program that performs certain transformations on the data it receives,

much like the concept of a shader. The program can be written in VEX, Python,

or C++ via Houdini Developer Kit (HDK).3 In the case of VEX, the program

can be chosen to execute just once, or in parallel for each point/vertex/primitive.

1sidefx.com/tutorials/intro-to-houdinis-node-based-workflow
2sidefx.com/docs/houdini/vex
3sidefx.com/docs/hdk

https://www.sidefx.com/tutorials/intro-to-houdinis-node-based-workflow/
https://www.sidefx.com/docs/houdini/vex/
https://www.sidefx.com/docs/hdk/
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Figure B.1: Example for the use of a different color map for people with color
deficiencies. The top panel shows the new zoomed-in area of Figure 6.1d; the
bottom panel shows the new Figure 6.1g.

Another feature we have used is the data cache node4 that can cache the processed

data into binary for fast loading the next time.

We use C++ via HDK to parse the large trajectory data as well as the newly

defined H-bond data to gain the highest performance; we use VEX to perform all

the geometry transformations and have leveraged the parallel processing to the

best we can; we use Python for various other small tasks as well as the Python

Viewer State5 to achieve most of the user interactions.

We can also adjust the specific coloring of, in particular, the H-bonds to avoid

4sidefx.com/docs/houdini/nodes/sop/cache.html
5sidefx.com/docs/houdini/hom/python states.html

https://www.sidefx.com/docs/houdini/nodes/sop/cache.html
https://www.sidefx.com/docs/houdini/hom/python_states.html


149

110-124

63-105 4-98 5-97

0-36 94-74

a b c

Figure B.2: Case study for an RNA tile design. (a) PCA plot shows two groups
of configurations. The yellow dashed rectangle is further zoomed in (b). (b) Two
different configurations are located closely in the PCA plot. The difference is
indicated by the red arrows. (c) The non-Watson-Crick base pairs in the design
are easily identified as they are colored dark blue (indicated by the yellow arrows).

red-green color contrasts for those people with color deficiencies. Figure B.1 shows

an example with a different color map that is safe for people with color deficiencies.

B.5 Transitions

Even though all the representations are linked together, it is still important to

visualize the transitions (see the supplementary video) between some of them. The

users can view the transitions at the beginning of the analysis to understand what

each representation is conveying for a specific DNA-nano design and how they

are related to each other spatially. We implement these consecutive transitions:

Snake ▷ Schematic3D ▷ Schematic2D ▷ Heatbar. As all of them are transformed

from the CMS of all NTs, we interpolate the CMS values between them to achieve

the transition. For the case of large structures, the transitions from Schematic3D

to the more abstracted ones usually give illegible results if all strands transit

together. So, we applied staged transitions by moving one strand after another.

B.6 SynopFrame performance

We record the performance-related number on a Windows 10 desktop (Intel(R)

Xeon(R) Gold 6242 CPU @ 2.80GHz (2 processors), 256GB RAM) with an Nvidia

RTX 3090 graphics card. To load and cache the cube structure (in the first case

study) with 16,128 NTs, 1,000 frames, 3,076 MB data, SynopFrame takes 63



150

seconds. After caching into Houdini native binary data, the file size reduces to

494 MB, corresponding to 494 KB per frame. Reloading from the cache takes

6.2 seconds. The frame rate to show all seven views together is 1.65 fps; to show

All-NT only is 6.27 fps; to show Schematic3D only is 24.97 fps; to show Progress

bar only is 19.75 fps. As analysts very often stop at certain frames and scrutinize

the structure, such frame rate is still considered to be interactive.

B.7 The SynopSpace.hb format

For a whole trajectory with many frames, we record the H-bond status code

(mentioned in section 6.3) of each NT in each frame as follows. We first record

the frame number and then sequentially record the status code for each NT in a

new line, with StatusCode ∈ [−2, 2] as an integer to classify the H-bond pairing

status. Below we first give a generic format description (*.synopspace.hb)6 and

then a specific example for its use.

t = <FrameNumber>

<StatusCode> [Pair ID if StatusCode == 2] # for NT0

<StatusCode> [Pair ID if StatusCode == 2] # for NT1

<StatusCode> [Pair ID if StatusCode == 2] # for NT2

...

t = <FrameNumber>

...

An example that shows in Frame number 1000, the first 5 NTs’ StatusCode,

with the 5th’s pair (NT ID 7923) recorded:

t = 1000

-2

-1

0

6This format alone triggered a discussion among domain users and has
since been integrated by some users into their own analysis approaches:
github.com/lorenzo-rovigatti/oxDNA/issues/45

https://github.com/lorenzo-rovigatti/oxDNA/issues/45
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1

2 7923

...

t = 2000

...

B.8 Case Study 2: An RNA tile design

As oxDNA can simulate RNA designs, we also performed a case study for an RNA

tile design to demonstrate that SynopFrame can also work with RNA designs.

In an experiment with an RNA tile with 132 NT (one strand) from [83] two

different conformations were known to occur. From a simulation at 45 °C, the two

groups of conformations are well manifested in the PCA plot Figure B.2a. Further

examination reveals that H-bond statuses are not always correlated with PCA

dimension reduction results. For example, frame 259’s conformation and frame

7765’s are very close to each other in the PCA plot. But their H-bond statuses

show a big difference in one critical crossover Figure B.2b. This observation

raises a caveat that although in general, PCA followed by clustering performs well

in categorizing the conformations, it cannot reliably capture the subtle H-bond

changes that will cause disproportionate effects on the conformation.

The transition period between the RNA tile’s two conformations can be easily

identified, see the supplementary video. The biggest difference between the two

conformations is the loss of the two crossovers at around 1/3 of the structure. So

we can attach a highlighter to this helix and then focus on Schematic2D, which

is much easier to absorb the H-bond status changes. But the Schematic2D view

first shows the opening of another helix from frame 601 to 607. So it forces the

analyst to go back to the 3D structure (Schematic3D, Snake, All-NT ) and think

about the relation between these two helices. Only after this helix opened, the

initially attended helix is then opened at frame 1181 to 1184. The analyst may

then proceed to crop out these frames to perform further-detailed analysis, such
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Figure B.3: Statistical scalar plots. The top panel shows an energy versus time
plot. The bottom panel shows a force-extension curve.

as distance, angle, and energy distribution.

Looking at the bizarre Schematic2D view, one might wonder what those NTs

are that are not forming helices. A close examination from the linked view with

help of the highlighter reveals that apart from the non-pairing loop on the side

of the structure, there are six base pairs that are within the H-bond distance

threshold, but their sequences do not obey the Watson–Crick rule Figure B.2c.

The designer might then proceed with changing some of the sequences on those

base pairs and see how the design behaves.

B.9 Statistical scalar plots

Although SynopFrame mainly explores the abstract views to visualize the MDS

trajectory frame-by-frame, it can also be coupled with traditional data analysis

plots focusing on the aggregated statistical metrics along the temporal aspect, i. e.,

generate a scalar to represent each frame and then plot that scalar. Figure B.3

shows two such plots, with the top panel showing the energy versus time and the

bottom showing the “force-extension curve” [29] previously used in the domain.

The force-extension curve encodes each frame by two scalars, one for the force

between two NTs, showing on the Y axis, and the other for the extension, or the

distance, between these two NTs.
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B.10 Algorithms

Here we detail the algorithms used to perform the transformations needed for

the Schematic3D representation (section 6.3). With the CMS of all NTs and the

topology of the design as input, Algorithm 1 exhaustively checks the conditions

that could potentially break a continuous helix and create the primitives for the

continuous ones. With the CMS data of a straightened polyline, its pair, and

the whole double helix it belongs, Algorithm 2 shifts the two polylines in each

helix for a user-defined distance and then evenly space the NTs on each polyline.

With the user-specified distance and angle thresholds, Algorithm 3 assigns a

schematic2D row value for each polyline so that those with the same value can be

then aligned along one straight line.

B.11 User feedback details

As explained in the main paper, we received feedback from our co-author col-

laborator, from one anonymous respondent, and four signed responses. These

latter four were a senior researcher in computational chemistry who focuses on

molecular dynamics and bioinformatics, a PhD student in the OxDNA devel-

opers group, a PhD student who focuses on wet-lab DNA-nano experiments,

and a professional bioinformatician who specializes in wet-lab experiments for

DNA origami. Please note that, for completeness, we also provide the video

(Video for User Feedback.mp4) that we sent to the invited experts as an expla-

nation of our approach, which served as the basis of the following questionnaire,

as additional material.

At the end of the appendix we provide the filled-in questionnaire responses

from all participants that provided us with feedback. Note that we also provide

the video we provided to participants as the basis of their evaluation as additional

material, in addition to the actual paper video itself. In total we received 1

anonymous response and 5 signed responses (the latter including our closely

collaborating expert who is a co-author). We provide these answers as screenshots
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from the online questionnaire tool to show both the stimuli and the specific

questions we asked about it, as well as the answer possibilities and the detailed

comments that all our participants provided.

We also note that SynopFrame visuals won 2nd place in the Design X Bioinfor-

matics [105] Student Competition. Committee members from the Scripps Research

Institute (USA), STUDIO ABOVE&BELOW (UK), the Royal College of Art

(UK), and the Tokyo Institute of Technology (Japan) praised our “highly useful

and computationally interesting system to display DNA data in multiple ways.”

B.12 Comparison to Miao et al.’s DNA origami abstrac-

tion space DimSUM

To better illustrate our conceptual extension of past work, in particular the work

by Miao et al. [67, 68], we list the fundamental differences between their and our

abstraction spaces in Table B.1 (we do not include Miao et al.’s [68] first approach

because it only focused on a single visual representations sequence).
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Table A.1: Performance results for fitting a single structure. S stands for subunits,
A stands for atoms, Res stands for resolution (in Å), Vs stands for voxel size, L
stands for surface level threshold, C stands for ChimeraX, D stands for DiffFit, M
stands for MarkovFit [3], DC stands for DiffFit corrected by a single automatic
ChimeraX fit; G stands for Gain and is D/C for Hit and C/D for Computing time
(in seconds).
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Algorithm 1: Create polylines for continuous double helices
Data: CMS of all NTs, topology of the design
Result: Polyline primitives for continuous double helices

1 totN = total number of NTs
2 N = 0
3 primList = [N ]
4 while N < totN do
5 end5 = the 5’ end ID of N
6 if end5 == −1 then
7 CreatePolyline(primList, N)

8 else
9 pair = the pair ID of N

10 strand = the strand ID of N
11 if pair == −1 then
12 CreatePolyline(primList, N)

13 else
14 end5Pair = the pair ID of end5
15 if end5Pair == −1 then
16 CreatePolyline(primList, N)

17 else
18 pairStrand = the strand ID of pair
19 end5PairStrand = the strand ID of end5Pair
20 if pairStrand! = end5PairStrand then
21 CreatePolyline(primList, N)

22 else
23 pairEnd3 = the 3’ end ID of pair
24 if pairEnd3! = end5Pair then
25 CreatePolyline(primList, N)

26 else
27 push(primList, end5)
28 end

29 end

30 end

31 end

32 end

33 end
34 Function CreatePolyline(primList, N):

/* When this function is called, it means the continuity of the

helix is broken. */

35 Add a polyline primitive that has all the NTs in the primList
36 primList = [+ +N ]

37 return None
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Algorithm 2: Shift the two polylines in each helix and evenly space NTs
on each polyline
Data: User define: halfPairDistance, spacing
Result: Two parallel polylines with NTs evenly distributed for each continuous double

helix
/* This algorithm is supposed to be run in parallel for each polyline

*/

1 dir = the white arrow vector in Figure 6.5b
2 primDisplacement = halfPairDistance ∗ normalize(dir)
3 unitBackboneDir = spacing∗ (the direction along the polyline)
4 pts[] = all the points (NTs) ID on this polyline
5 avgPtnum = average(pts)

/* The IDs on the same polyline are guaranteed to be consecutive so

that we can take the average value */

6 for ptnum in pts[] do
7 offset = ptnum− avgPtnum
8 newP = polylineCMS + unitBackboneDir ∗ offset+ primDisplacement
9 set the position for ptnum as newP

10 end
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Algorithm 3: Assign schematic2D row for each polyline)

Data: User define: distanceThreshold, angleThreshold ( Figure 6.5d)
Result: schematic2D row assigned for each polyline

1 Function PushPrimToDict(prim, primPair, nextRow ,rowDict, key):
2 helixInfo = a dictionary to hold the prim’s CMS and direction
3 helixArray[] = fetch from rowDict by key or initialize an empty array
4 push(helixArray, helixInfo)
5 dictKey = key if key exists, otherwise nextRow
6 rowDict[dictKey] = helixArray
7 set schematic2D row for prim and primPair as int(dictKey)

8 return None
9 numprim = total number of polyline primitives

10 schematic2D row = {}; nextRow = 0
11 for prim = 0; prim < numprim; prim++ do
12 primPair = the pair ID of prim
13 if prim < primPair then

/* process only once per helix */

14 if len(schematic2D row) > 0 then
/* initialize thresholding terms to large numbers */

15 minDist = 100.0,minAngle = 90.0
16 overlapKey = ”− 1”
17 rowKeys[] = keys(schematic2D row)
18 for key in rowKeys do
19 dict helixArray[] = schematic2D row[key]
20 Loop through the CMS and direction of each helix in helixArray
21 Calculate the distance and angle value as shown in Figure 6.5d
22 if distance < minDist then
23 minDist = distance
24 minAngle = angle
25 overlapKey = key

26 end

27 end
28 if minDist < distanceThreshold AND minAngle < angleThreshold then

/* This means the current helix is overlapping with a row

group, so we push it using the overlapKey */

29 PushPrimToDict(prim, primPair,
30 −1, schematic2D row, overlapKey)

31 else
/* This means the current helix is not overlapping with

any row group, so we push it using nextRow++ as a new

key */

32 PushPrimToDict(prim, primPair,
33 nextRow ++, schematic2D row,′′ )

34 end

35 else
/* Same as the last push */

36 PushPrimToDict(prim, primPair,
37 nextRow ++, schematic2D row,′′ )

38 end

39 end

40 end



159

Table B.1: Comparison between SynopSpace and Miao et al.’s [67] DNA origami
abstraction space.

Criterion Miao et al.’s DimSUM [67] Our own work

focus of the
work

seamless animation between
1D, 2D, and 3D layouts and
multiple 3D semantic repre-
sentations for different lev-
els of detail

comprehensive MDS analysis scenario
to identify issues for the wet-lab assem-
bly of previously designed DNA-nano
structures

target applica-
tion

DNA-nano design phase DNA-nano post-design phase

represent. of
layout

1D, 2D, 3D layouts; i. e., a
geometric view of possible
layouts

sequential, schematic, precise; i. e., a
domain-centered view of layouts

represent. of
scale

10 named scales, orga-
nized based on a perceived
level of “concreteness” or vi-
sual abstraction

two separate and independent
components for a greater flexibility:
• the four levels of granularity : nu-

cleotide, helix, strand, assembly; also
organized based on a perceived level
of “concreteness” or visual abstrac-
tion

• the three–four levels of idiom: bar,
snake, geon, and surface; to charac-
terize different visual encodings of a
given data component

unique views • DimSUM abstraction
view

• Schematic3D (Figure 6.1c, Fig-
ure 6.4c)

• progress bar (Figure 6.1f, Fig-
ure 6.4f)

• PCA plot (Figure 6.1g)

represent. of
dynamic data
character

n/a
(only one data view is shown
at any given time)

MDS-based animation of assembly
that relies on a visual encoding of the
H-bond status, observable in mul-
tiple points of the abstraction space
that are shown in parallel



Deng Luo <xxxxxxx@kaust.edu.sa>

Fwd: testing new molecular fitting technique

XXXXXXXXXX <xxxxxxxxxxx@xxxxxxxxx.xx> Mon, Apr 1, 2024 at 11:38
AM

To: Roden Deng Luo <xxxxxxxxx@kaust.edu.sa>
Cc: XXXXXXXXXXX <xxxxxxxxxxx@xxxxxxxx.xx>

Hi Roden,

Thanks for sending over the MS and the GitHub, and for your demonstration this morning. The demonstration helped see
the viability of your program, compared to the quick video I saw last week.

Do you think the workflow of automatic fitting + visual inspection + selection to remove regions in the target
volume is the desired form of working? Or do you envision another workflow scenario? 

The workflow that you mention through this tool, with an automatic fitting followed by visual inspection, then conversion of
the model to a map for deletion of regions in the target volume to find fits to regions that were assigned low-classification
scores and hard to find in the viewer is unique and could actually be quite useful.

I think the visual inspection step may be a bit of a bottleneck and potentially including some way of visualizing clusters at
a time may be beneficial for rapid assessment of different fits. Perhaps having an alternate view than the interactive table,
such as a heatmap (may not be feasible/more confusing though). You could also incorporate separate tables for each of
the chains, with separate tabs for each of the tables. This would make it easier to see how each chain fits relatively and
would enable researchers to focus on a particular chain of interest, once they've found the best fit for the other chains. 

Even without the final step of removing regions from the target volume, I think just the automatic fitting and visual
inspection, if implemented in a very user-friendly way, could be a key feature in ChimeraX that becomes a standard in
many pipelines.

Additional workflows could be as we discussed, taking a model and automatically creating subdivisions (at the level of
domains or secondary structures) and then fitting those automatically to the reference volume, though I understand that is
out of the scope of this initial submission. 

Whether this tool, DiffFit, could be useful in your work, or is it potentially changing your workflow? If yes, is the
change incremental or dramatic? Or is the tool irrelevant/useless/conceptually wrong?

I think DiffFit could become a key implementation into a standard modeling workflow, greatly helping with the initial steps
of downloading/opening additional models and having them rapidly fit the target volume to facilitate structural
interpretation and comparison. Then, taking it deeper, DiffFit could also provide a way to find fits to more tricky regions of
the map through the easy fit-and-subtract feature that you outline.

Additionally, for the regions with unassigned protein density, the ability to rapidly sample a large database of candidate
structures could be very valuable, given the massive speed improvements compared to the current SOTA. Combined with
the ability to sample sub-regions of the proteins (automatically) given a database of structures (AlphaFold DB), I think it
could be quite powerful. 

With the speed increases that you mention, I would say that the change relative to the current SOTA is dramatic, and is
not irrelevant/useless or conceptually wrong.

Other things you would like to say

Overall I think the DiffFit program appears quite intuitive and easy to use. Perhaps some optimization could be made in
the selection of the files/reliance on the subfolders to make it more user-friendly, but that is minor. Additionally, ensuring
that the program could run within a reasonable amount of time on a Mac laptop would also be great. 

I also don't know how computationally intensive the program is to run, and if it's affected by having many different
models/maps open within a ChimeraX session. Often I have quite a few maps/models open, and it would be nice to be
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able to run the program from maps/models that are already loaded within the ChimeraX environment, rather than opening
a new session each time, though that's just a quality of life improvement.

Also, ChimeraX has a toolshed in which users can install programs directly through the ChimeraX interface. That would
enable wider use and ease of access for researchers. See ISOLDE  

Also, while the Cryo-EM field is quite exciting/trendy, your workflow may also work for density maps generated through X-
ray crystallography, so that could be a point to consider to increase the breadth of relevance to include more than Cryo-
EM.  

~

Hope that helps! Would be interested to try it out and hear more about the developments.

Best,
XXXXXXXXXX
[Quoted text hidden]
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Deng Luo <xxxxxxxx@kaust.edu.sa>

DiffFit User Feedback

XXXXXXXXXX <xxxxxxxxxx@xxxxxxxxxxx> Tue, Jul 2, 2024 at 9:31 AM
To: Deng Luo <xxxxxxxx@kaust.edu.sa>

Hi Roden,

 

Thanks for showing the demo to me yesterday. It was really more impressive than just watching a video.
Here I put all my conments below.

Do you think the workflow of automatic fitting + visual inspection + selection to remove regions in the
target volume is the desired form of working? Or do you envision another workflow scenario?

In cryoEM, the structural analysis is a very critical step. For many new users who are not familiar with
their own structures, this workflow in DiffFit do really save them a lot of time and efforts to do the
structural analysis. We can easily fit the pdb file into the EM map without any extra step and it is
integrated into ChimeraX, which is already a very common tool in cryoEM filed, which makes it easier to
use.

For the results shown in ChimeraX, I think now the UI is not the best, you are still working on it to make it
more simple and user-frendly. Now after the fitting, it will show automaticly the highest score results. You
shold consider if you have multiple chains or domains, they can be independent components and fit into
the map independently.  I think this part needs to be further optimised.

Whether this tool, DiffFit, could be useful in your work, or is it potentially changing your workflow? If yes,
is the change incremental or dramatic? Or is the tool irrelevant/useless/conceptually wrong?

Definitly it will be useful for all structural biologist. User can just open the cryoEM map and pdb file,
simply click a button (or few buttons), the fitted result will appear in few minutes, which would save a lot
of time to roughly align the map and pdb file as a starting point to use fit in map command in Chimera.
The function of selection to remove regions is also helpful because we have some cases where you
have a quite large map and contains lots of different proteins, you are interested to see whether there
are some extra densities, this function will make the task much easier.

 

Other things you would like to say

I believe DiffFit would really benefit structral biologist for the anlysis process. And of course there are still
some more work needs to be done to further optimise. The first thing is the UI integrated in Chimera X
should be more user- friendly. It will be better if you can prepare a detailed protocol for how to download,
install and test if DiffFit works well. Then also you should make sure that the fitting process does not
request intensive computational resources. We do not want to have a high performance workstation for
just the visilization step.

Last, for the function to assign model to extradensity, it would be really helpful. But now this part is not
fully implemented, we have to run many steps before going to DiffFit. I would suggest you to furthe
optimise this function.

 

As my role, I am staff seientist in EM group, mainly in responsible for cryoEM. I work as a bridge
between the microscope and the users.

 

 

Best regards,
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XXXXXXXX

[Quoted text hidden]
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3/28/23, 5:27 PM SynopFrame Feedback - 7 Questions (5 min maximum)

1/6

Feature 1: the linked 3D and 2D views. Useful? 

6 responses

Feature 2: the connection between PCA plot and structural
representations. Useful? 

6 responses

SynopFrame Feedback - 7 Questions (5 min
maximum)
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Feature 3: the H-bond status coloring. Useful?

6 responses

Feature 4: the synchronized highlighter across views. Useful?

6 responses

Feature 5: the transitions between different views. Useful? 

6 responses
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Rating 1: SynopFrame will help you understand, communicate, and 
improve your designs

6 responses

Rating 2: overall, how would you rate SynopFrame?

6 responses

General feedback

5 responses

Very effective is to be determined after using the tool.

SynopFrame explores some interesting aspects of oxDNA trajectory visualizations.
However it's really impractical to download a huge commercial tool, which is tailored towards
video effects production just to have a look at a simulation.

practical

The video is not easy to understand out of context and without additional explanations.

I appreciate that SynopFrame could help me with my designs
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Suggestions for improvement

4 responses

- Most parameters which need to be calculated are project specific so adding an interface to
easily add new order parameter visualizations might help.
- Along these lines most of the order parameters are 1D
So having 2D / 3D plots of them might show relationships. (similar to the PCA view) but have 3
/ 4 (if you count the energy) parameters of the users choice plotted out.
- Exploring the PCA view i was expecting interactive clicking through the coordinates, but
somehow this was not implemented , browsing through the PCA space using the trajectory
slider makes little sense.

As a user new to the software, a user-friendly interface or tool to import data into the program
instead of requiring users to run a few oat analysis would be helpful. The tool could allow
users to select and upload their dataset (just oxdna.dat and oxdna.top), and then automatically
generate the necessary input files and folder structure required by SynopFrame. This would
make it easier for users to get started with the program and increase its accessibility.

Describe the features before demonstrating them. For instance I haven't understood the
hydrogen-bond color coding feature and couldn't follow in the video what I was supposed to
see.

I think making the packaging/setup for SynopFrame easier might help make it more widely
usable - since grad students are mostly the ones using this tool, saving time for them would
always be appreciated. I think also being able to easily choose the sequences that require
redesign and export them would also help.
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