
EXPLORATIONS IN INTERACTIVE ILLUSTRATIVE RENDERING

moritz gerl

�e work presented in this thesis has been funded by a Ubbo Emmius
scholarship and was carried out in the Institute for Mathematics and
Computer Science according to the requirements of the Graduate School
of Science (Faculty of Mathematics and Natural Sciences, University of
Groningen). A collaboration with the Vienna University of Technology
has been funded by the ViMaL project supported by the Austrian Science
Fund (FWF), grant no. P21695.

Cover: Hatching illustration of the third lumbar vertebra.

Explorations in Interactive Illustrative Rendering
Moritz Gerl
Supervised by Dr. Tobias Isenberg
PhD thesis Rijksuniversiteit Groningen
isbn 978-90-367-6063-8 (printed version)
isbn 978-90-367-6062-1 (electronic version)

ii

Two Page View in Adobe Reader
For viewing the document correctly in the "Two Page View" mode in Adobe Reader, please enable the setting "View > Page Display > Show Cover Page in Two Page View". Otherwise the page layout will not match the layout of the printed thesis.

RIJKSUNIVERSITEIT GRONINGEN

EXPLORATIONS IN
INTERACTIVE ILLUSTRATIVE RENDERING

Proefschri�

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magni�cus, dr. E. Sterken,
in het openbaar te verdedigen op

vrijdag 15 maart 2013
om 11.00 uur

door

moritz alexander christian gerl

geboren op 18 april 1980
te Darmstadt, Duitsland

Promotor: Prof. dr. J.B.T.M. Roerdink
Copromotor: Dr. T. Isenberg

Beoordelingscommissie: Prof. dr. O. Deussen
Prof. dr. M. E. Gröller
Prof. dr. B. Preim

iv

It is truly useful
since it is beautiful.
Antoine de Saint-Exupéry

CONTENTS

1 introduction 1

2 illustrative rendering & control over the re-
sult 5
2.1 Non-Photorealistic Rendering 5
2.2 Illustrative Visualization 12
2.3 Interactive Semantics-driven Volume Rendering 14
2.4 Interactive Example-based Hatching 16
2.5 Summary 18

3 interactive semantics-driven volume render-
ing 21
3.1 Introduction 21
3.2 Related Work 24
3.3 A Framework for Semantics by Analogy 26

3.3.1 Semantic Shader Augmentation 27
3.3.2 Semantics by Analogy 32
3.3.3 Graphical Rule Speci�cation 36

3.4 Results and Discussion 41
3.5 Evaluation 48

3.5.1 Feedback fromMedical Experts 49
3.5.2 Feedback fromMedical Illustrators 50

3.6 Limitations 52
3.7 Conclusions and Future Work 54
3.8 Acknowledgments 55

4 from interactive to semi-automatic control
over the result 57

5 interactive example-based pen-and-ink hatch-
ing 61
5.1 Introduction 62
5.2 Related Work 63
5.3 Overview 68
5.4 Learning a Hatching Style 72

5.4.1 Image Analysis 73
5.4.2 Patch Properties and Surface Features 74
5.4.3 Stroke Directions 78
5.4.4 Stroke Distances 79
5.4.5 Summary 80

vii

viii contents

5.5 Hatching Synthesis 81
5.5.1 Adaptive Patches 81
5.5.2 Example-based Direction Field 82
5.5.3 Stroke Tracing and Distances 83
5.5.4 Stroke Rendering 85

5.6 Interaction with the Hatching Illustration 87
5.7 Results and Discussion 92
5.8 Limitations 100
5.9 Conclusions and Future Work 104
5.10 Acknowledgments 106

6 conclusion & future work 107
6.1 Semantics by Analogy 107
6.2 Interactive Example-based Hatching 110
6.3 Illustrative Rendering & Control over the Result 114

a appendix: supplemental images 121

b appendix: supplemental videos 127

bibliography 129

list of figures 139

publications related to this thesis 143

samenvatting 145

acknowledgments 149

1INTRODUCTION

I llustrations are a powerful means of visually communicating
information. �e evolution and usage of graphical illustrations has
a long history and illustrations are nowadays commonplace in a

wide variety of domains. To name but a few, we can �nd illustrations in
instruction manuals, in textbooks, and in scienti�c publications. To be
able to create high-quality illustrations, however, one has to be artistically
talented and undergo a lengthy training in �ne arts and illustration to
become a professional illustrator. Hiring such an illustration specialist
is expensive and unfeasible in many cases. �is o�en results in using
self-made illustrations of insu�cient quality. �e problem is that the
creation of high-quality illustrations is hard to accomplish for laypeople
in illustration.�is thesis presents twomethods for interactive illustrative
rendering that deal with this problem by making illustration expertise
accessible to people without knowledge and skills in illustration. �e
proposedmethodsmake the creation of illustrations available in domains
where it has not been available before. Let us explain the bene�t of the
availability of illustration expertise to non-experts with an example.
Imagine a researcher in the need of a case-speci�c illustration which

shall illustrate a novel �nding in a scienti�c publication. �e �nding is
of such a novelty that there is no existing illustration available to the
researcher that illustrates the �nding su�ciently well. �e researcher
cannot a�ord to hire a professional illustrator to create a suitable illustra-
tion. �e researcher in our example must then resort to either using an
illustration that does not exactly match the intended illustration purpose,
to omit the illustration completely, or to create the illustration by him-
or herself. All of these solutions will arguably have a negative impact
on the quality of the scienti�c publication, unless the researcher is also
a skilled illustrator. �is problem can be alleviated by harnessing the
bene�ts of methods for interactive illustrative rendering. �ese methods
help to deal with the described problem by making illustration expertise
available to non-experts in illustration. In this thesis, we present two
methods that meet this demand. Besides the purpose of making illustra-
tion expertise available to non-experts, the methods presented in this
thesis can as well be employed by professional illustrators to speed up
the production process, to create accurate illustrations directly from 3d
models or volume data, and to �nd new ways of visual expression. Let us
brie�y summarize the two methods that we present in this thesis.

1

2 introduction

gradient illumination normal

opacity

gradient or illumination normal

Figure 1.1: �e interactive volume illustration system presented in Chapter 3. �e system
incorporates (le�) an interface for brushing the contributions of input properties to rule-
based visualization mappings as well as (center) a graphical rule speci�cation interface
to interactively control (right) the visualization result.

�e �rst method presented in Chapter 3 is a graphical approach for
the interactive creation of illustrative volume renderings (see Fig. 1.1).
�is method builds upon a framework that allows to specify the results of
volume renderings with visualization rules [Rautek et al., 2007, 2008a].
We present a graphical user interface that makes the speci�cation of such
visualization rules more direct and intuitive than the original textual rule
speci�cation. Furthermore, we propose a graphical way of specifying the
contributions of various input properties to the visualization mapping
via brushing. Finally, we introduce a concept in Chapter 3 that facilitates
to automatically augment arbitrary shader programs with rule-based
rendering functionality. �is �exible concept makes it possible to use
arbitrary input and output properties in visualization rules and extends
the range of achievable visualization mappings.
�e secondmethod presented inChapter 5 is amethod for interactively

generating example-based hatching renderings of 3d models. A result
of this pen-and-ink hatching method is shown in Fig. 1.2. �e approach
improves upon the synthetic and regular appearance of the results of
previous approaches for computer-generated hatching.�e improvement
of the aesthetic quality and illustration e�ectiveness is achieved by the
fusion of automatic by-example functionality with interactive editing
functionality. �e approach in Chapter 5 introduces a hierarchical style
transfer model that allows us to learn the hatching style from hand-
drawn pen-and-ink illustrations using image processing and machine
learning. �e style transfer model includes data representations that
facilitate the interactive example-based synthesis of illustrations in the
learned hatching style. �e method in Chapter 5 comprises interaction
capabilities that enable users to directly and intuitively adjust the hatching
illustrations according to their aesthetic judgment and requirements.
�ese interaction capabilities improve upon the aesthetic quality of the
results that can be achieved with the method and facilitate an application
of the hatching method for illustration and creative purposes.

introduction 3

Figure 1.2: An illustration of a vertebra created with the hatching method in Chapter 5.

�is thesis is structured as follows. In Chapter 2 we further motivate
our work and draw a connection between the two distinct illustrative
rendering methods that we present in this thesis. We illuminate the rela-
tion of the two approaches by looking at them in the light of the issue
of implementing control over the result in illustrative rendering. We
proceed with detailing our interactive volume illustration method in
Chapter 3. In Chapter 4, we summarize our �ndings on control over the
result that we learned from developing the volume rendering approach
in Chapter 3. Based on these �ndings, we motivate the strategies for
implementing control over the result that we devised for developing the
hatching approach presented in Chapter 5. Next, we present the interac-
tive example-based hatching method in detail in Chapter 5. Finally, we
present ideas for future work and conclude the thesis in Chapter 6.

Viewing quality
For optimal viewing quality of the result images in Adobe Reader, please apply the following settings. Otherwise the result images will render with severe aliasing and will appear jaggy on the screen. Please open the preferences dialog via "Edit > Preferences...". The settings can be found under the category "Page Display" in the "Rendering" panel. Enable the option "Smooth images". Disable the option "Use 2D graphics acceleration", if this option exists in your version.

2ILLUSTRATIVE RENDERING & CONTROL OVER THE
RESULT

L arge subdomains of computer graphics focus on the realistic de-
piction of virtual objects. Physical simulations of light andmaterial
coupledwith opticalmodels increasingly approach a photorealistic

visual impression in depicting virtual scenes. Over the past three decades,
rapid advances in computer graphics research have led to spectacular
results in realistic rendering, a development that was at least partially
fostered by the entertainment industry. Photorealism is, however, not the
only depiction style that evolved in this process. �e �eld of illustrative
rendering or non-photorealistic rendering (npr) emerged parallel to the
described advances in realistic rendering. Non-photorealistic and illustra-
tive rendering methods have also been applied to and developed for data
visualization. �is process formed the �eld of illustrative visualization
[Viola et al., 2005; Bruckner, 2008; Rautek et al., 2008b].

2.1 non-photorealistic rendering

�e �eld of npr is mainly concerned with the depiction of 2d images
or 3d surface models in visual abstractions or styles that resemble tradi-
tional rendering media. A broad range of methods was developed that
simulate rendering styles such as watercolor paintings, pencil drawings,
or pen-and-ink illustrations [Gooch and Gooch, 2001; Strothotte and
Schlechtweg, 2002; Kyprianidis et al., 2012; Rosin and Collomosse, 2012].
Some npr methods are image �lters, others are shading models, and oth-
ers rely on the explicit calculation of drawing or painting marks, which
o�en are strokes [Hertzmann, 2003]. In the majority of npr methods
the rendering result is algorithmically pre-determined. �is means that
the control over the appearance of the generated images lies solely in
the hands of the programmer. �is algorithmic control contrasts the
artistic nature of the imagery generated by non-photorealistic and illus-
trative rendering methods. We will explain why this algorithmic control
restricts the aesthetic quality and illustration e�ectiveness of illustrative
rendering methods. In this thesis we examine two di�erent strategies
for implementing control over the result in illustrative rendering that
improve upon a control that is solely in the hands of the programmer:
user interaction and learning from examples.

5

6 illustrative rendering & control over the result

Figure 2.1: Fully automatic real-time hatching by Praun et al. [2001].

When we speak of control and controlling in this thesis, we speak of
control in the sense of command, speci�cation, regulation, and guidance.
We do not refer to control and controlling in the sense of checking, testing,
and verifying. Furthermore, we use the term rendering function in this
thesis as a generic term for a function that de�nes a mapping from a set
of input arguments to a set of rendering outputs. An input argument
of such a generic rendering function can be any input value on which
the visual mapping is based (e. g., a color value of an input raster im-
age, a geometric feature of a 3d surface, or a data feature in a volume
dataset). An input argument can also be a rendering parameter (e. g., a
parameter that controls the brightness of the rendering). �e rendering
output can be simply a color and opacity value per pixel, or a value of
a parameterized visual abstraction (e. g., the local density of hatching
strokes). In the parts of this thesis that deal with volume rendering, we
use the term visualization mapping accordingly to the de�nition of the
term rendering function given here. Having introduced this terminology,
let us proceed with examining the di�erent strategies for controlling the
result in illustrative rendering.

Many of the established nprmethods are fully automatic.�ey employ
a �xed rendering pipeline and o�er users a ‘one-button-solution’ (apart
from the necessity to manually preprocess the model to be rendered).
In such fully automatic methods, the result is controlled solely by the
rendering algorithm, which implements a static rendering function. �is
fully automated approach is very convenient and time-e�ective but lacks
the creative freedom users might be expecting, in particular if users stem
from an artistic background. �e need for ‘putting the artist in the loop’
was advocated by Seims [1999] and Salesin [2002] already in the early
days of npr, but seems to not have attracted the full awareness of the
npr community. To give an example, the texture-based hatching method

2.1 non-photorealistic rendering 7

Figure 2.2: Fully interactive freehand sketching system by [Nijboer et al., 2010].

presented by Praun et al. [2001] allows users to create attractive hatching
renderings of 3d models in real time (see Fig. 2.1). �e method, however,
does not allow users to change the appearance of the resulting draw-
ings. Users of the hatching renderer by Praun et al. [2001] cannot, e. g.,
manually darken or brighten a particular region. �is lack of possibility
for user interaction limits the creative freedom of the hatching method
and, thus, the possibilities of a deployment of the method in creative
environments such as the entertainment industry. On the one hand, the
fact that the user does not have to perform such interactions to achieve
aesthetically pleasing results surely is a bene�t of the technique by Praun
et al. [2001]. On the other hand, we see it as a limitation that the user
cannot freely and directly adjust the rendering to his or her needs.

Let us treat the di�erent approaches to controlling the result in illustra-
tive rendering as a continuum from fully automatic to fully interactive.
In this continuum, fully interactive drawing systems form the other ex-
treme as compared to fully automatic npr systems such as the hatching
renderer by Praun et al. [2001]. An example for a fully interactive draw-
ing system is the freehand sketching system presented by Nijboer et al.
[2010]. Fig. 2.2 shows an example screenshot of the freehand sketching
system by Nijboer et al. [2010]. In this system, users can draw strokes,
interact with already drawn strokes, as well as interact with the canvas
using context-sensitive gestures. Users of such a drawing system have full
creative freedom and control over the result image but are required to
draw the entire image ‘from scratch,’ i. e., without the assistance of a 3d
model or a rendering algorithm. �e described interaction continuum is
illustrated in Fig. 2.3. We continue with examining some strategies for
implementing control over the result that are situated between the two
extremes of fully automatic and fully interactive.

8 illustrative rendering & control over the result

automatic semi-automatic interactive

Figure 2.3: Interaction continuum. �e various strategies for implementing control over
the result in npr span a continuum that ranges from fully automatic to fully interactive.
�e image to the le� is generated fully automatically while the image to the right is drawn
by hand. �e images from le� to right are results of Praun et al. [2001], Gerl [2006],
Deussen et al. [2000], Salisbury et al. [1997], and Nijboer et al. [2010].

Many npr methods provide the possibility to interact with the result
by the means of interacting with rendering parameters. For stroke-based
methods, these are parameters such as the density or the width of the
strokes. Users of common npr systems can adjust the result by entering
numeric values or adjusting sliders to control such parameters. �e au-
tomatic result is updated a�er a rendering parameter has been changed
by the user. �e image synthesis is still fully automatic in such a system,
while the possibility to specify rendering parameters gives some control
over the result to the user. In our interaction continuum in Fig. 2.3, such
an interaction via rendering parameters is the �rst step away from a fully
automatic system towards an interactive system. Interaction by param-
eter adjustment is an e�ective means of interaction in many cases, in
a sense that one can quickly change the visual appearance of the result
without much e�ort. Parameter tweaking is, however, an indirect means
of adjustment and provides only limited control over the result. It is
indirect because it does not allow users to directly adjust the drawing
elements, but rather interact with the parameters that in�uence the draw-
ing elements. �e control over the result of npr systems provided by
parameter adjustment is limited because of two major reasons, which
are the common restriction to global adjustments and the restrictions
imposed by a pre-determined range of achievable visual e�ects.
First, the control given by parameter adjustment is limited because

only global parameters are provided inmany npr systems. For example, a
stippling renderer might permit users to adjust the size of all the stippling
marks in the result, but not exclusively the size of stipples within a particu-
lar region. To illustrate this global behavior, Fig. 2.4 shows the adjustment
of a global brightness parameter in a hatching renderer for volume data
by Gerl [2006]. Here, adjusting the brightness parameter brightens or
darkens the entire rendering. �e global adjustment, however, does not
allow to selectively darken or brighten particular regions.

2.1 non-photorealistic rendering 9

Figure 2.4: Global brightness parameter adjustment in volume hatching [Gerl, 2006].

Second, the control given by parameter tweaking is limited because it
restricts the possible interactions to a particular range of e�ects which is
pre-determined by the set of provided parameters. �e range of achiev-
able e�ects is restricted by the complexity of the parameter space. In our
stippling renderer example, users might be able to adjust the size of the
stippling marks, the stippling density, and a perturbation factor that adds
a random o�set to the stipple positions.�e range of adjustments that are
possible to perform with this example stippling renderer is limited to the
e�ects that can be achieved by modifying the three described parameters.
A brushing interaction for controlling a stippling renderer such as

presented by Deussen et al. [2000], or for controlling a hatching renderer
as introduced by Salisbury et al. [1994, 1997], in contrast, breaks free
from this restriction to global adjustments and the limited range of
achievable e�ects. It allows users to directly interact with the result, to
make local adjustments, and to modify the result independently of a pre-
determined range of visual e�ects that can be achieved with parameter
tuning. �is increased range of achievable visual e�ects combined with
the creative freedom given by the possibility for interaction results in
computer-generated illustrations that look less mechanical and more
hand-drawn than fully automatic methods, as shown in the example
in Fig. 2.5. Such semi-automatic illustration systems are located in the
center of our described interaction continuum, as illustrated in Fig. 2.3.
Interactive npr systems permit human intervention and provide the

user with control over the result. �is control opens up the possibility to
enhance the expressiveness, the hand-drawn appearance, or the ‘charac-

10 illustrative rendering & control over the result

Figure 2.5: Locally adjustable stippling by Deussen et al. [2000].

ter’ of the resulting images. Another means of achieving this goal is to
learn the parameters and/or the properties of a drawing style from hand-
drawn examples. �is brings our focus back to automatic systems. First
of all, many traditional npr systems implement an automatic control over
the result via relying on a rather simplemapping from a small set of image
or surface features to rendering parameters.�e rendering functions used
by early npr systems are rather simple mappings. Such a simple map-
ping is, e. g., to map the lighting intensity to the stippling density in the
generation of stippling images from 3d models or, respectively, to map
the image intensity to the stippling density in the generation of stippling
drawings from 2d images.�ese mappings roughly approximate the tone
and shading that can be found in many hand-drawn stippling images.
However, the described simple mappings do not su�ce to faithfully re-
produce all the stylistic variations and tonal detail present in hand-drawn
stipplings. Recent e�orts in npr address the described limitation of a
simplistic mapping by learning a model of the drawing style present in
hand-drawn examples and using the learned model to generate example-
based renderings. For example, Kim et al. [2009] learn a statistical model
of stipple distributions and stipple textures to transfer the stippling char-
acteristics from hand-drawn examples to computer-generated stippling
renderings of 2d input images. Related to this approach, Martín et al.
[2011] model the stippling process as a hal�oning procedure and trans-
fer individual stippling marks from an example illustration to a target
illustration based on local image characteristics. �is example-based
approach to controlling the rendering result opens up the possibility to
incorporate a model of human virtuosity in the rendering process. �is
strategy results in computer-generated illustrations that exhibit more of a
‘character’ than the results of conventional methods, which rely on simple
mappings of image features to rendering parameters. �is improvement
might become apparent in the examples shown in Fig. 2.6.�ementioned
techniques for example-based stippling have in common that they both
establish models of the characteristics and usage of drawing elements or

2.1 non-photorealistic rendering 11

(a) (b)

Figure 2.6: Stippling by example by (a) Kim et al. [2009] and (b) Martín et al. [2011].

drawingmarks (stipples).�e described systems for stippling by example
operate directly on the rendering primitives.
Instead of learning the statistical properties of the drawing elements

themselves, another means of example-based illustrative rendering is
to learn the parameters of a particular rendering style as proposed by
Hamel and Strothotte [1999]. �is learning of rendering parameters is
linked to the previously described interactive navigation of parameter
spaces to adjust the result of a non-photorealistic or illustrative rendering
system. In the formerly described interaction case, the parameter space
is navigated (inter)actively by the user. In the learning case of Hamel and
Strothotte [1999], the parameter space is navigated automatically by the
machine. �e work presented in this thesis explores the interactive, the
semi-automatic, as well as the automatic navigation of parameter spaces
for illustrative rendering in two speci�c case studies.�e goal of this e�ort
is to improve upon the aesthetic and illustrative quality as well as the
interaction possibilities of computer-generated illustration. A particular
contribution of this thesis is the combination of machine learning and
user interaction to implement an e�ective semi-automatic control over
the result of illustrative rendering methods. �is combination forms
an interactive example-based rendering system. In this semi-automatic
approach, the parameter space is navigated partially by the machine
and partially by the user. �e described combination is related to the
semi-automatic visual analysis of multi-dimensional data proposed by
Fuchs et al. [2009], who describe a visual human+machine feedback
learning system for hypotheses generation. In this system, Fuchs et al.
[2009] combine human and automatic reasoning for the analysis of
multi-dimensional data.�is approach relates to our e�orts of combining
automatic and interactive control over multiple inputs and outputs of
rendering functions. Let us proceed with outlining the issue of control
over the result with respect to illustrative data visualization.

12 illustrative rendering & control over the result

2.2 illustrative visualization

�e problem of parameter space navigation becomes even more challeng-
ing when we leave the world of illustrative rendering of 2d images and 3d
surfacemodels and enter theworld of illustrative volume rendering. Ebert
and Rheingans [2000] were among the �rst to apply non-photorealistic
rendering methods to direct volume rendering in order to create illustra-
tive visualizations of volume data. �eir seminal work also appeared as
Rheingans and Ebert [2001]. �e volume stippling renderer proposed
by Lu et al. [2002] is an early work towards the simulation of traditional
rendering media in direct volume rendering. In the following years, a
range of techniques for illustrative visualization evolved. �e interested
reader might consult the surveys by Viola et al. [2005], Bruckner [2008],
and Rautek et al. [2008b]. In the generation of illustrative visualizations,
both the parameters of the npr methods and the parameters of the visu-
alization methods have to be taken into account. �is makes the control
over the result more di�cult than for rendering 2d images or 3d surface
models. Even without respect to the usually numerous npr parameters,
the parameter space for visualizing volume data is intrinsically more di�-
cult and unintuitive to navigate than the parameter space for visualizing
3d surface models. �is is due to the fact that in volume rendering one
has to specify which structures within the volume ought to be visualized.
�is speci�cation is usually not necessary in surface rendering, where
most commonly the entire surface is depicted.
�e complexity of specifying the visibility of structures within a vol-

ume dataset is directly related to the dimensionality of the data, but
already challenging enough for 3d scalar �elds. Transfer functions are
the standard way of performing this speci�cation, and surely are a pow-
erful and e�ective tool. Despite of their e�ectivity, transfer functions
are subject to some limitations. First, the usage of transfer functions
requires a basic knowledge of the visualization process and a fair amount
of training to be used e�ciently. Second, transfer functions are an indi-
rect means of speci�cation in a sense that users do not interact directly
with the result but with an abstract data representation in a separate
region of the screen. �ird, transfer functions have a limited range of
possible mappings. Some mappings are impossible to realize using stan-
dard transfer functions, e. g., visualizing the skull-surrounded brain in
anMRI scan of a head. As the density of the bone tissue is higher than the
density of the brain matter, the brain would always be occluded by the
skull. �is circumstance requires the use of advanced transfer function
approaches. With growing complexity of the approaches and with the
increasing complexity of the involved parameter spaces, however, ad-
vanced transfer function methods run the risk of being counterintuitive
to use and demand more and more user expertise and training.

2.2 illustrative visualization 13

Apart from the usability aspect, the e�ects that are achievable with
transfer functions are limited by the domain and co-domain onwhich the
transfer function operates. In the simplest case, a transfer function only
allows users to map the original data values to opacity and color values.
A mapping from, e. g., ‘data gradient’ to a value of a parameterized visual
abstraction (e. g., ‘cartoon shading’) again requires advanced transfer
function methods. �is limited range of visual e�ects that are achievable
with transfer functions is similar to the restrictions inherent to npr
methods that employ simple mappings (e. g., that map image intensity to
stippling density) as described in Section 2.1. �e problem is similar: the
range of visual e�ects that can be achieved with the rendering function
that models a visual abstraction in a rendering algorithm is limited by the
number of inputs and outputs of the rendering function. Consequently,
the accuracy in which a traditional depiction style can be approximated
or simulated by an illustrative rendering algorithm is limited by this
very restriction of achievable visual e�ects. Increasing the number of
inputs and outputs of the rendering function unfortunately also increases
the problems of specifying an adequate mapping. One approach to this
problem is to employ machine learning to learn an adequate mapping. A
di�erent approach to this problem is to apply sophisticated means of user
interaction, as discussed in Section 2.1. Note that data derivatives such as
the gradient are sensitive to noise and are usually not standardized. Due
to this, transfer functions based on data derivatives up to now have had
only little importance for the clinical practice in medical visualization.
Nonetheless, advanced interaction methods might help to better harness
the potential of advanced transfer functions concepts.
�e notion of semantics-driven volume rendering that was introduced

by Rautek et al. [2007, 2008a] deals with the described problems of
control over the result and parameter speci�cation in illustrative visu-
alization. �e framework of Rautek et al. [2007, 2008a] allows users to
specify a mapping from data properties to visual attributes using natural
language. Instead of editing a transfer function to specify a visualization
mapping, users of a semantics-driven visualization system formulate the
desired mapping as a textual rule, for example ‘if density is high then
color is green.’ �is rule-based approach alleviates many of the described
problems of transfer function design and is a powerful tool for creating
illustrative visualizations, as can be seen from the examples of Rautek
et al. [2008a] that are shown in Fig. 2.7. Formulating visualization rules
in natural language is, however, subject to new limitations. One part of
this thesis deals with these new limitations inherent to a speci�cation of
the rendering function using natural language.

14 illustrative rendering & control over the result

if distance to plane is low
then skin-style is transparent blueish and glossy green is low

if distance to plane is high
then skin-style is opaque pink and glossy green is transparent

if penetration depth is low and distance to focus is low
then skin-style is transparent white

if penetration depth is high or distance to focus is high
then skin-style is pink

Figure 2.7: Semantics-driven illustrative visualizations by Rautek et al. [2008a].

2.3 interactive semantics-driven volume rendering

�e �rst core part of this thesis in Chapter 3 is devoted to improving
upon the limitations of a textual rule formulation for semantics-driven
visualization as well as to the problem of inputs and outputs that can
be used in a visualization mapping. �e formulation of visualization
rules in natural language is a powerful and e�ective way of specifying a
visualization mapping. It abstracts from the concept of transfer functions
and provides users with a natural way of controlling the resulting visual-
ization. A textual rule formulation has the downside, however, that the
user has to mentally envision the e�ects of possible rules or modi�cation
of rules before the rule is created or modi�ed.�is limits the possibilities
and the e�ciency of exploring di�erent mappings. In our framework
for interactive semantics-driven volume rendering (Chapter 3), which
builds upon the foundation of Rautek et al.’s [2007; 2008a] work, we
propose ways of dealing with this limitation. In Chapter 3 we describe a
graphical user interface for rule speci�cation (see Fig. 1.1). �e interface
provides the user with visual feedback in the rule speci�cation process
in the form of previews of possible results. �e graphical control and
visual feedback assist users in the rule speci�cation and provide new
exploration capabilities. Fig. 2.8 shows a result that was generated with
the semantics-driven volume rendering system presented in Chapter 3.

2.3 interactive semantics-driven volume rendering 15

(a) (b) (c)

Figure 2.8: A result of the interactive volume illustration system presented in Chapter 3.
�e system allows users to apply (a), (b) visual abstractions to the result via brushing to
interactively generate (c) rule-based illustrative visualizations.

A second limitation of the original semantic layers technique byRautek
et al. [2007, 2008a] is the fact that the data semantics are speci�ed in
a function editor. �e term data semantics refers to a function of the
input values in the visualizationmapping such as, e. g., the phrase ‘density
is high’ in the rule ‘if density is high then color is green.’ �is indirect
speci�cation of rendering parameters contrasts the otherwise direct spec-
i�cation o�ered by semantics-driven volume rendering. In Chapter 3 we
propose a technique to specify data semantics by analogy via brushing
on visualizations of semantic data properties. �e user is provided with
a rendering of, e. g., the data property density and speci�es which data
ranges ought to be visualized by brushing on the rendering. �is visual
approach again makes use of visual feedback and allows to specify data
semantics more directly and intuitively than using a function editor. �e
brushing of data semantics complements the graphical rule speci�ca-
tion. Together, these two graphical approaches give the user direct and
interactive control over the result.
Another aspect of the framework described in Chapter 3 deals with

the previously described problem of inputs and outputs that can be
used in visualization mappings. In Chapter 3, we propose a technique
that facilitates the usage of arbitrary inputs and outputs in visualization
mappings.�e core concept of this technique is to automatically add rule-
based rendering functionality to arbitrary shader programs.�is concept
of semantic shader augmentation makes it possible to use the visual
abstraction created by shader programs as the output of visualization
rules.�is means that users of the presented system can use the output of
a shader program, e. g., ‘cartoon shading’ as the output of a visualization
rule. Furthermore, the concept permits to use arbitrary variables in the
shader program as input to visualization rules.�e visualizationmapping

16 illustrative rendering & control over the result

can thus be based on any variable in the shader program, e. g., density,
gradient, normal, curvature, lighting, etc.. �is increases the �exibility
of semantics-driven visualization and the range of possible mappings.
�e described concept of semantic shader augmentation allows the user
to base the rendering on a multitude of data features. �e user of the
described system can control the result by selecting data features of
interest and by graphically specifying rules and data semantics. �is
gives the user a very �exible control over the visualization result. �e
downside of this �exibility is that it requires the user to make a selection
of data features and to use the selected features in visualization rules
in a meaningful way. In Chapter 5, we explore a di�erent approach to
implementing control over the result which is less �exible, but in turn
provides more assistance to the user.

2.4 interactive example-based hatching

�e second core part of this thesis in Chapter 5 presents a di�erent
way of using data features as input rendering parameters. Instead of
actively selecting semantic data properties and interactively specifying
their contributions to the visualization mapping, we here apply machine
learning to automatically learn functions that map data (resp. surface)
properties to output rendering parameters. Interaction is then provided
on a high level, while the learned functions form the low-level basis for
the visual appearance that is achieved with the rendering style.

In Chapter 5 we discuss a technique for the interactive example-based
generation of pen-and-ink hatching illustrations from 3d polygonal mod-
els. �e main goal of this technique is to improve upon the aesthetic
quality of the results of existing methods for computer-generated hatch-
ing. We aim at enhancing the overly regular and rather synthetic appear-
ance of the results of existing methods by learning the drawing style
from hand-drawn examples as well as by providing possibilities to in-
teract with the resulting hatching illustration. Results of the interactive
example-based hatching method are shown in Fig. 1.2 and Fig. 2.9.
One contribution of the hatching method described in Chapter 5

is that the drawing style is learned from hand-drawn and scanned-in
example illustrations.�is learning from real-world hatching illustrations
is facilitated by employing image processing to establish an analytical
description of the hatching strokes in the example image and by using
a 3d scene whose projection closely matches the example illustration.
Based on this setup, we use machine learning to establish a model of
the drawing style in the example illustration. We then apply this learned
model to target 3dmeshes in order to synthesize example-based hatching
renderings of the target meshes.

2.4 interactive example-based hatching 17

Figure 2.9: A result of the interactive example-based hatching system presented in
Chapter 5. �e rendering shows a pen-and-ink illustration of a hip bone.

We use a set of surface features such as shading, facing ratio, curvature,
image-space coordinates, etc. and train functions that map these features
to rendering parameters. We employ three di�erent types of functions
to learn the characteristics of hatching regions, directions, and distances.
Applying these functions in the synthesis stage yields hatching regions
and strokes that incorporate the learned drawing characteristics. We thus
automatically learn a mapping of data features to rendering parameters,
as opposed to the interactive mapping speci�cation chosen in the volume
rendering approach presented in Chapter 3.

In the synthesis stage, our approach for hatching by example automati-
cally infers stroke regions, directions, and distances from surface features.
We provide a set of high-level user interactions that complements and
improves upon this automatic generation. �ese interactions allow users
to adjust the rendering to their requirements and aesthetic judgment.
Two of these user interactions use a brushing metaphor and improve
upon the disadvantages of a numerical global parameter tuning that we
described in Section 2.1. One of the interactions is a brushing tool that
permits users to edit a surface direction �eld which serves as a refer-
ence �eld for inferring stroke directions. �is direction �eld brushing
allows users to �exibly edit the trajectories of hatching strokes. Another
interaction permits users to brush with patches of hatching strokes. �is
interaction gives a direct and intuitive control over the regions in which
hatching strokes are generated.

18 illustrative rendering & control over the result

�e described semi-automatic solution combines the advantages of an
automated control over the result with the �exibility and creative freedom
gained by giving control over the result to the user. �e advantage of the
automated control is the example-based generation of hatching strokes
that describe the target surface.�e advantage of the interactive control is
the possibility to freely and directly specify where these hatching strokes
are generated, as well as the possibility to interactively and locally change
the properties of the generated strokes. �e combination of automatic
learning and interactive adjustment of the hatching illustrations results
in illustrations that arguably exhibit more ‘character’ and a more hand-
drawn appearance than the results of existing methods which are either
not example-based or not interactive.�is improvement of the ‘character’
of the results is due to the fact that the results are in�uenced by human
virtuosity through both the example-based automatic and the interactive
components of the hatching system. We distribute the control over the
result in a manner that allows us to improve upon the aesthetic quality
of the hatching illustrations. Let us brie�y summarize our �ndings on
illustrative rendering and control over the result.

2.5 summary

Implementing an appropriate control over the result in non-photorealistic
and illustrative rendering is a challenging task. Numerous approaches
have been proposed in the literature to deal with this task. �ese ap-
proaches range from fully automatic methods, over methods relying on
global rendering parameters, over semi-automatic approaches, to fully
interactive approaches. In illustrative volume visualization, the control
over the result is particularly challenging because it involves the addi-
tional burden of specifying which structures in a volume dataset ought
to be visualized. �e parameter space is here intrinsically more com-
plex and unintuitive to navigate. In this thesis, we describe two di�erent
methods for illustrative rendering that explore two di�erent strategies for
controlling the result.�e �rst method detailed in Chapter 3 is concerned
with interactive semantics-driven volume rendering. It evolves around a
�exible de�nition of the input and output that can be used in the visualiza-
tion mapping as well as around a graphical user interface to directly and
interactively control the desired rule-based mapping assisted by visual
feedback. �e second method described in Chapter 5 is an interactive
approach to the example-based generation of pen-and-ink hatching illus-
trations of 3d meshes. Here, a mapping from input to output parameters
of the rendering function (i. e., surface features to hatching properties)
is learned automatically and can be applied interactively by the user to
create the desired hatching illustrations. �is semi-automatic approach

2.5 summary 19

to implementing control over the result allows us to combine the bene�ts
of a fully automatic illustration system with human virtuosity. �e list
below summarizes our observations on implementing control over the
result in illustrative rendering.

observations

• automatic control over the result allows for a rapid generation of results
but lacks creative freedom;

• interactive control over the result permits the user to enhance the
aesthetic quality of the results;

• control over the result is particularly challenging in illustrative visual-
ization due to the increased complexity of the parameter space;

• rule-based methods are a way to implement control over the result in
illustrative rendering;

• rule-based approaches can be enhanced by graphical user interfaces;

• example-based methods are a way to implement advanced automated
control over the result in illustrative rendering; and

• interactive example-based approaches allow for a twofold in�uence of
human virtuosity on the result (both algorithmic and user in�uence)

3INTERACTIVE SEMANTICS-DRIVEN VOLUME
RENDERING

gradient illumination normal

opacity

gradient or illumination normal

abstract: In this chapter, we discuss an interactive graphical approach for the explicit
speci�cation of semantics for illustrative volume visualization. �is explicit and graphical
speci�cation of semantics for volumetric features allows us to visually assign meaning to
both input and output parameters of the visualization mapping. �is is in contrast to the
implicit way of specifying semantics using transfer functions. In particular, we demonstrate
how to realize a dynamic speci�cation of semantics which allows to �exibly explore a
wide range of mappings. Our approach is based on three concepts. First, we use semantic
shader augmentation to automatically add rule-based rendering functionality to static
visualization mappings in a shader program, while preserving the visual abstraction that
the initial shader encodes. With this technique we extend recent developments that de�ne
a mapping between data attributes and visual attributes with rules, which are evaluated
using fuzzy logic. Second, we let users de�ne the semantics by analogy through brushing
on renderings of the data attributes of interest. �ird, the rules are speci�ed graphically in
an interface that provides visual clues for potential modi�cations. Together, the presented
methods o�er a high degree of freedom in the speci�cation and exploration of rule-based
mappings and avoid the limitations of a linguistic rule formulation.

3.1 introduction

L etting users specify meaningful mappings from multiple volu-
metric data attributes to visual attributes is a challenging problem
in direct volume rendering. A common approach is to design

multi-dimensional transfer functions, which are �exible but also com-
plex and demanding to use. �e design of multi-dimensional transfer
functions requires expert knowledge and is o�en provided in suboptimal
interfaces. To address this issue, alternative ways of de�ning the visual-

21

22 interactive semantics-driven volume rendering

ization mapping have been investigated. For instance, Rautek et al. [2007,
2008a] present a semantics-driven visualization framework that enables
users to specify a mapping frommultiple data features to visual attributes
as textually formulated rules. �is method allows them to explicitly de-
�ne semantics for attributes of interest. �eir approach to parameter
speci�cation for volume rendering bears great potential for creating il-
lustrative visualizations. For example, the data attribute high density can
be mapped to the visual attribute cartoonish shading by formulating an
according rule. Formulating the visualization rules textually, however, is
rather rigid and provides few possibilities for exploring di�erent map-
pings. Textual rule speci�cation is limited by the ability of the user to
mentally envision and assess the e�ects of potential rules beforehand,
and with that devise the appropriate rules. �us, exploration is rather
limited, tedious, and time-consuming. Furthermore, using a function
editor to de�ne data semantics (e. g., high density) is a rather indirect way
of parameter speci�cation. �is contrasts the direct speci�cation o�ered
by the semantic-layers concept.

Let us brie�y explain the usage of the terms ‘semantic’ and ‘semantics’
in this thesis. We use these terms in a restricted meaning that does not
exactly comply with the common usage of the terms in other areas of
computer science. We use ‘semantic’ in the sense of ‘to attribute meaning
to a data property.’ In the example in the previous paragraph, the data
property density is attributed meaning by being used in a visualization
rule. It is attributedmeaning in the sense that the data property is assigned
a role in the visualization process and thus in�uences the visualization
result. We use the term ‘semantics’ accordingly.

To address the issues described above, we present a semantics-driven
visualization technique that combines the advantages of a graphical spec-
i�cation of mappings with the illustration capabilities provided by a
rule-based approach.�e presented technique incorporates a new way of
dynamically specifying the input and output of the visualizationmapping,
allows to de�ne the mapping by analogy, and makes use of a graphical
user interface for specifying visualization rules. �is provides a more
direct control of semantics and allows us to overcome the restrictions of
a linguistic rule speci�cation. Our goal is to provide a �exible tool for
the speci�cation and dynamic exploration of meaningful visualization
mappings. We employ the following methods to achieve this goal:

Semantic shader augmentation: We present a technique for au-
tomatically augmenting an arbitrary shader program with semantics-
driven rendering functionality. �is technique replaces the visualization
mapping present in an input shader programwith a rule-based rendering
method, while preserving the visual abstraction that the input shader
originally generates. �is semantic shader augmentation enables a �exi-

3.1 introduction 23

ble and dynamic de�nition of the input and output of the visualization
mapping and extends the range of possible mappings. It permits users to
rapidly create semantics-driven visualizations based on arbitrary vari-
ables in an arbitrary input shader program.

Semantics by analogy: We let users de�ne the visualization map-
ping by analogy. Speci�cally, users de�ne contributions of properties to
the mapping through brushing on visualizations depicting properties
of interest. �e �nal result images are then visually analogous to the
brushed data ranges. �is brushing on visual data representations per-
mits a direct, �exible, and interactive de�nition of a semantic mapping.
Furthermore, it allows users to intuitively de�ne semantic mappings of
two- and three-dimensional data properties, which was not feasible in
previous approaches. �e brushing interaction improves the usability
and directness of specifying semantics-driven mappings.

Graphical rule specification: We present a graphical interface
for specifying visualization rules. With this interface, rules can be speci-
�ed and modi�ed by interacting with dedicated widgets. �ese widgets
provide visual feedback on the semantic entities they represent, which
allows to visually assess the e�ect of rules, or modi�cations to rules. �e
interface, therefore, makes use of people’s visual information-processing
capabilities in the rule speci�cation process and opens up new possibili-
ties for the exploration of semantics-driven mappings. It, thus, reduces
the restrictions of a textual rule formulation.

Together, the described concepts form a technique for the interactive
exploration of semantics-based visualizations (Fig. 3.3). Our technique
is particularly well-suited for illustration purposes and can be employed
as a tool for domain experts to quickly create illustrations from volume
data. For instance, in the visualization of medical volume data it allows
users to generate case-speci�c illustrations with respect to the diagnostic
purpose or the treatment to be illustrated. �e exploration capabilities of
our technique may also be well-suited for educational applications. Fur-
thermore, our interactive graphical approach to parameter speci�cation
is a step towards an illustrative volume rendering system which is suited
for being used by scienti�c or medical illustrators.

We �rst outline related work in Section 3.2. Next, in Section 3.3 we
describe our framework for semantics by analogy. In Section 3.4 we show
and discuss exemplary results that are generated with our technique.
In Section 3.5 we report on an evaluation of our technique. We then
discuss its limitations in Section 3.6. Finally, we conclude the chapter
and describe possibilities for future work in Section 3.7.

24 interactive semantics-driven volume rendering

Figure 3.1: A direct volume illustration system by Bruckner and Gröller [2005].

3.2 related work

�e work presented in this chapter relates to research in rule-based visu-
alization, selective application of visualization styles, multi-variate data
visualization, graphical user interfaces for specifying visualization param-
eters, as well as to volume rendering using dynamic shader generation.
Early work on automated generation of illustrations based on rules

was done by Seligmann and Feiner [1991]. �ey present a system for the
generation of intent-based illustrations using design rules. �e text-to-
scene method introduced by Coyne and Sproat [2001] follows a similar
approach. It enables the translation of simple semantics to images. Instead
of a textual rule speci�cation, we propose a graphical one in this chapter.
Along these lines, Svakhine et al. [2005] use illustration motifs to gear
visualizations towards the intended audience. Another semantics-based
graphical interface for the speci�cation of a multi-dimensional mapping
is presented by Rezk-Salama et al. [2006]. Our method di�ers from these
approaches by introducing dynamically generated semantics into the
mapping process and by enabling users to specify a mapping based on
direct data representations.
�e methods that we introduce in this chapter build, in particular,

upon techniques presented by Rautek et al. [2007, 2008a]. �ey intro-
duce semantic layers and interaction-dependent semantics which allow
to interactively create illustrative visualizations based on textual rules.
�is is realized with the help of fuzzy logic. Attributes of interest are
interpreted as fuzzy sets, whose membership functions describe the at-
tributes’ contributions to the mapping. Fuzzy-logic arithmetics is applied
to evaluate the illustration rules. In this work, we propose methods that
extend the �exibility and exploration capabilities o�ered by Rautek et
al.’s system using a graphical and analogy-based approach.
�e application of di�erent visualization techniques for selected sub-

sets of a volume was proposed by Hauser et al. [2001] with two-level
volume rendering. Other work in this direction [Csébfalvi et al., 2001;
Lum and Ma, 2004; Bruckner and Gröller, 2005; Tietjen et al., 2008] fur-
ther examines the selective application of styles and rendering attributes
(see Fig. 3.1). Instead of an a-priori selection of volume subsets to map

3.2 related work 25

Figure 3.2: Visual exploration of nasal air�ow by Zachow et al. [2009].

to di�erent visualization techniques, we present a method for interac-
tively exploring the selective application of visual attributes based on
semantics-driven visualization rules.
Providing the user with exploration possibilities was successfully ap-

plied by Gasteiger et al. [2011] and by Neugebauer et al. [2011] for the ex-
ploration of blood �ow in cerebral aneurysms. Both of these approaches
use focus+context visualizations, which can also be achieved with the
approach presented in this chapter. �e approaches of Gasteiger et al.
[2011] and of Neugebauer et al. [2011] provide exploration capabilities in
order to assist users in insight generation and decision making processes.
Our exploration capabilities, in contrast, focus on the exploration of
di�erent visual mappings for illustration purposes.
In this work we discuss a technique for specifying a mapping from a

multi-variate data space to visual attributes. �is relates to the notion of
multi-dimensional transfer functions introduced by Kniss et al. [2002].
We deviate from this concept by basing the mapping on explicitly de-
�ned semantics and by providing tools to de�ne the behavior of these
semantics interactively. Other approaches also rely on explicitly de�ned
semantics. Both McCormick et al. [2004] and Stockinger et al. [2005]
use mathematical expressions to formulate the visualization mapping.
Woodring and Shen [2006] use set operators and numerical operators
for the comparative visualization of multi-variate and time-variate data.
Another rule-based system is presented by Sato et al. [2000] who use
rules to classify tissue structures in multi-modal datasets. We believe that
rule-based visualization bears great potential for illustrative visualization
and the realization of semantic mappings, but identify formal and textual
rule formulations as rather rigid and non-exploratory. For this reason,
we combine rule-based rendering with the bene�ts of graphical user
interfaces for de�ning multi-dimensional mappings. Tzeng et al. [2005]
present such an interface that permits the user to specify the input to a
multi-dimensional data classi�er via brushing. Fuchs et al. [2009] also ex-
ploit the direct editing and visual feedback capabilities of data brushing.

26 interactive semantics-driven volume rendering

�ey propose a framework for semi-automatically deriving hypotheses
on multi-variate data with the help of visual human and machine learn-
ing. Another interface for exploring mappings of multi-dimensional
data is presented by Zachow et al. [2009]. �ey allow to brush values
of interest in multiple linked abstract data representations to visually
explore nasal air�ow (see Fig. 3.2). All these systems have in common
that the mapping is speci�ed in an abstract data space. In contrast to this,
our method allows a mapping speci�cation with brushing on a more
direct data representation, through visualizing attributes of interest and
permitting the user of our system to brush on these visualizations. Apart
from this, we also employ design galleries for parameter speci�cation, as
introduced by Marks et al. [1997].
�e technique presented here makes use of automatic shader genera-

tionmethods. In this context, Rössler et al. [2008] propose a technique for
dynamically generating shader code for multi-volume raycasting from a
graphically de�ned abstract render graph. Similar to this approach, we
exploit the �exibility and abstraction from GPU programming o�ered
by dynamic shader generation. We di�er from Rössler et al. [2008] in
realizing a rule-based approach and in the user interface for specifying
visualization parameters.

3.3 a framework for semantics by analogy

�e overall concept of our framework for semantics by analogy is de-
picted schematically in Fig. 3.3. It consists of three components that
in�uence the resulting interactive illustration. �e input to our system is
an initial shader program selected by the user. �e input shader program
is a combination of GLSL and special tags that surround variables of po-
tential interest. �e input shader is parsed and automatically augmented
with rule-based rendering functionality by a pre-compiler (Section 3.3.1).
�is results in an augmented shader program as output that encodes the
intended semantic mapping. For specifying semantic mappings on an ab-
stract level, we provide a graphical user interface. In this interface, theway
the data values are interpreted (i. e., the fuzzy membership function) is
de�ned through analogy (Section 3.3.2).�emapping to a visual attribute
is determined by rules which are graphically speci�ed (Section 3.3.3).

A key component of our framework is the process of semantic shader
augmentation, which is further illustrated in Fig. 3.4. �e input shader in
this example is a raycasting program that depicts a volume in a sparse ren-
dering style. �e code segment at the top stores the volume z-coordinate
in the ‘fCoordZ’ variable. �e segment at the bottom writes the level
of sparseness to the ‘fSparseness’ variable. �e level of sparseness is
controlled by a single ‘fParam’ parameter. �e sparseness parameter in-

3.3 a framework for semantics by analogy 27

input shader program

augmented shader program membership functionsvisualization rules

semantic shader augmentation graphical rule speci�cation semantics by analogy

interactive illustration

Figure 3.3: General schematic overview of our framework for semantics by analogy.�ree
components in�uence the resulting interactive illustration. �e boxes in the center row
show the components’ main processes. �e thick arrows leaving the processes represent
the entities which in�uence the result.�edashed lines indicate the interrelations between
the three components.

�uences the saturation of the color, the usage of a di�use and specular
shading term, and the use of contours. �e two variables are marked
as a semantic property and as a visual attribute using dedicated tags.
�e semantic shader augmentation replaces the static mapping of sparse-
ness with a rule-based mapping. �e application of the sparse rendering
style is then controlled by two visualization rules, which depend on the
volume z-coordinate. To achieve this, the process of semantic shader
augmentation injects new functionality into the input shader program.
�is results in an augmented shader program which is capable of ren-
dering visualizations of semantic properties, and of evaluating semantic
visualizations rules. �e rules used in the shader augmentation, as well
as the membership functions, can be interactively explored and speci�ed
in a graphical user interface (Fig. 3.5).
�e described semantic shader augmentation allows to quickly derive

a case-speci�c visualization system from an initial shader program in a
collaborative session of a visualization expert and a domain expert or
an illustrator. �e domain expert or illustrator is then provided with a
graphical user interface for exploring and specifying semantic mappings
on an abstract level. Together, these processes add more direct control
and �exibility to rule-based rendering and also permit users to explore
the mapping space �exibly and dynamically.

3.3.1 Semantic Shader Augmentation

Shader programs usually encode a certain visual abstraction. For example,
a shader can perform illumination computations, can render contours, or
perform illustrative volume rendering techniques. All of these techniques
typically specify a static visualization mapping. In volume rendering,
e. g., this mapping is modeled as a transfer function. By automatically
augmenting the input shader, we replace the static visualization mapping
with a dynamic rule-based mapping, while the general visual abstraction

28 interactive semantics-driven volume rendering

such as ‘illumination,’ ‘contour depiction,’ or any illustrative volume-
rendering technique is maintained.
We can work with arbitrary visual abstractions in our approach, but

we continue to use the example of a GPU raycaster that generates images
of di�erent levels of sparseness. �is program takes a volume texture
as input, aggregates color samples along a ray, and outputs a resulting
color value that depends on the pre-de�ned sparseness parameter. �e
color samples are computed by reading a scalar value from the volume,
executing a transfer function look-up to map the scalar value to a color,
and performing the sparseness computation. �is means that input data-
values (i. e., scalar values) are mapped to output visual-attributes (i. e.,
sparseness) in a static visualizationmapping. For automatically adding to
this initial shader rule-based rendering functionality that is more �exible,
we use variables in the shader code as input and output parameters of
a dynamic mapping. �is results in the possibility to apply the sparse
rendering method in a selective and �exible way.

In order to realize this augmentation we perform two automated steps:
(1) we render images of the data properties so that users can de�ne
semantics by analogy and (2) we add functionality to evaluate fuzzy visu-
alization rules.�ese steps relate to two distinct types of semantic entities.
Step 1 refers to semantic data properties which form the input, i. e., the
domain to our visualization mapping. For instance, these are properties
such as the volume z-coordinate or the normal in the raycasting shader.
�e other type of semantic entities in Step 2 are visual attributes which
represent the output, i. e., the co-domain of our mapping. Examples of
these attributes are color, opacity, or parameters of sparseness or stylized
shading. As depicted in Fig. 3.4, the input shader program is automatically
extended, resulting in an augmented shader program which is capable of
performing these two steps.
�e declaration of properties that form the input and output of the

rule-based mapping is realized using dedicated tags in the shader code.
An example for such a tagged variable is shown below:

<SemanticProperty name="z_coordinate"

variable="fCoordZ"

type="float">

float fCoordZ = vecRayPosition.z;

</SemanticProperty>

�e tag contains information about the semantic entity: a speci�er,
the name, and the type of the associated variable. Similar tags can be
added for the visual attributes that are encoded in a shader program. By
adding such tags to a number of variables of interest, users can declare
which variables in the input shader are used as either semantic data
properties or as visual attributes. �is consequently enables users to

3.3 a framework for semantics by analogy 29

input shader program

...

<semantic_property>
 �oat fCoordZ = vecRayPosition.z;
</semantic_property>

...

<visual_attribute>
 �oat fSparseness = GetSparseness(fParam);
</visual_attribute>

graphical rule speci�cation

`if z-coordinate is as in mask A then sparseness is high’
`if z-coordinate is as in mask B then sparseness is low’

z_coordinate_A

z_coordinate_A

z_coordinate_B

z_coordinate_B

sparseness

visual attribute

semantic property

rule

augmented shader program

...

<semantic_property>
 �oat fCoordZ = vecRayPosition.z;
</semantic_property>

RenderProperty(fCoordZ);
...

<visual_attribute>
 �oat fSparseness = EvaluateRules(fCoordZ);
</visual_attribute>

Figure 3.4: Overview of the concept of semantic shader augmentation. Arbitrary vari-
ables in an input shader program are de�ned as input and output to a semantic visu-
alization mapping by adding dedicated tags to the shader code. �e program is then
automatically augmented with functionality which allows to specify contributions of
input data-properties by analogy, as well as with functionality to realize a mapping of
output visual-attributes that satis�es visualization rules.

30 interactive semantics-driven volume rendering

dynamically explore the usage of di�erent input and output parameters
in the visualization rules speci�ed later. In addition, by using a shader
�le that has been tagged previously, users can also work with pre-de�ned
input and output features.

An application scenario of this shader augmentation is the rapid devel-
opment of a case-speci�c visualization system in a collaborative session
of a visualization expert and a domain expert or an illustrator. One case
in this scenario is that the domain expert or illustrator has an a-priori
understanding which data values or data derivatives are of interest for
the desired visualization. For example, an illustrator might be interested
in assigning a speci�c rendering style based on the surface orientation.
In this case our method allows the visualization expert to quickly derive
a suitable visualization system from the input shader, simply by adding
tags to the respective variables in the shader code. Another case in this
scenario is that the domain expert or illustrator has no a-priori under-
standing which data entities are of interest for the intended visualization.
For example, a medical researcher might be interested in visualizing
interior structures within a volume, but is not aware which variables
in the shader code can be used for this task. In this case our method
provides the possibility to collaboratively identify semantic variables
that can be used to achieve the desired results.Identifying and tagging
suitable semantic variables can still be a rather time-consuming process,
but it has to be performed only once. As soon as suitable variables are
tagged by the visualization expert, the domain expert is provided with an
abstract control for using these variables in rule-based mappings. �is
abstract control of the shader program is given by the graphical user
interface described in Sections 3.3.2 and 3.3.3. Using this interface does
not require any programming skills, while it provides the domain expert
with a �exible control over GPU-based semantics-driven visualizations.

To augment the input shader automatically we create a copy of the
shader �le in main memory, extend it with the required functionality,
and use the resulting code as a dynamically loaded shader program.�is
also means that the input-shader code can be edited during runtime.
�e code generation starts with parsing the source �le to detect the
tags that de�ne variables as semantic entities. �e required functionality
is then automatically inserted at the locations indicated by these tags.
�is dynamic shader augmentation is one of our key novelties to the
original semantic-layers approach [Rautek et al., 2007, 2008a]. �ere,
the rule-based rendering functionality is required to be hard-coded in a
volume rendering program, and is thus present a-priori. �is restricts
the possibilities of quickly exploring di�erent semantic mappings for
di�erent visualization techniques, because each of the techniques has to
be made usable for the rule-based rendering individually.

3.3 a framework for semantics by analogy 31

�e novelty of our semantic shader augmentation is not the dynamic
code generation as such. It is the way we employ the well-known tool
of dynamic shader generation to realize a dynamic speci�cation of the
mapping of arbitrary data values to arbitrary visual attributes based on
illustration rules. Furthermore, our method for dynamic shader genera-
tion di�ers from the concepts of the UberShader [Hargreaves, 2005] and
the SuperShader [McGuire, 2006]. Both of these concepts use pre-coded
fragments of shader code that are combined to a new shader program
on the �y. We, in contrast, do not use pre-coded program fragments in
our dynamic code generation process. �e code fragments which we
inject into the shader are entirely generated on the �y. �is means that
our method can be used to augment any existing shader program with a
minimal implementation overhead.�e only code which has to be added
to the input shader manually are the described tags, the remainder of the
code is automatically generated. �is approach drastically reduces the
necessary implementation time for adding the required functionality to
a given input shader, and also improves the code’s readability.

In order to realize Step 1 of the augmentation, we automatically insert
functionality into the shader that generates visualizations of semantic
data properties and renders the result to a texture (e. g., Fig. 3.6 le�).
Here, we use one color channel of the output texture per dimension of
the rendered data property: for one-dimensional variables we use the
blue color channel, for three-dimensional variables we use all three chan-
nels. To generate the image we perform raycasting, composite the values
that are assigned to the semantic variables during the execution of the
input shader, and map the composited value to a visible color range. For
the compositing, users can select one of three methods: averaging, maxi-
mum, or slicing. �e semantic-property image in Fig. 3.6 to the le�, for
instance, displays the maximum density. To map the composited value
to a visible data range, we multiply it with a user-adjustable factor. Al-
though more advanced mappings could be used, we found the described
simple ones to be su�cient for our purpose. Furthermore, it allows us to
operate on only one color channel when one-dimensional properties are
processed, saving computational resources. A disadvantage of this simple
mapping scheme, however, is that it ignores negative values. �e simple
multiplication with a positive factor does not map negative composited
values to positive color-values. �is could be remedied, e. g., by shi�ing
the range of the composited values. But this would result in mapping a
composited value of zero to a gray color value. As we wanted to depict a
composited value of zero with black color, we decided to not shi� the
range of the composited values. Another possibility for visualizing the
composited values would be to use an additional ‘transfer’ function that
maps the composited values to arbitrary color schemes. However, we did
choose to employ the described mapping for simplicity.

32 interactive semantics-driven volume rendering

�e average and maximum compositing represent an extension to the
semantic-layers approach. �ey map semantic properties from object-
space to image-space. An application of these image-space semantics is
demonstrated in Section 3.4.
In Step 2 of the augmentation, we automatically enhance the shader

with the capability to evaluate a semantic rule base. For this purpose we
implement the fuzzy-logic arithmetics as described by Rautek et al. [2007,
2008a]. �ey use two types of membership functions, related to data
properties and to visual attributes. In the original approach, pre-de�ned
functions are employed for both types. �e membership functions of the
visual attributes de�ne the mapping from membership-function values
of a data property to values of a parametrized visual attribute. In our
approach, we work with a set of functions that are de�ned through a
simple function editor for the visual attributes. For the semantic data
properties, on the other hand, we use dynamic membership functions
which are speci�ed by analogy as described next.

3.3.2 Semantics by Analogy

Users of our system can de�ne data semantics by brushing values of
interest in the visualizations of data properties created by the seman-
tic shader augmentation. �is speci�cation of data semantics through
brushing is one of the two interactive graphical processes for achieving
the intended visualization, as depicted in Fig. 3.5. Data semantics in this
context refers to the way data values are mapped to visual attributes by
means of membership functions of fuzzy sets. During brushing, these
membership functions are adjusted according to the selected color values.
�is concept allows the user to see and directly assign a meaning to the
data ranges of interest. �e user can, therefore, visually draw conclusions
about which data ranges are meaningful for the visualization he or she in-
tends to achieve. In this way an appropriate mapping of these data ranges
to visual attributes can be de�ned explicitly. For example, the user might
be interested in areas of low density as in the example in Fig. 3.6. �ese
areas of interest are visible and can be directly selected in the maximum
density image. �is is what we denote as the speci�cation of semantics
by analogy: the resulting visualization is visually analogous to the marked
data ranges. �e described way of specifying a semantics-driven visual-
mapping happens dynamically because the membership functions are
constantly updated during the brushing process. �e speci�cation by
analogy gives a more direct control of the semantics than the use of
membership functions speci�ed with a function editor. It is, thus, the sec-
ond key novelty that we propose as an extension to the semantic-layers
technique by Rautek et al. [2007, 2008a].

3.3 a framework for semantics by analogy 33

graphical rule speci�cation

`if z-coordinate is as in mask A then sparseness is high’
`if z-coordinate is as in mask B then sparseness is low’

z_coordinate_A

z_coordinate_A

z_coordinate_B

z_coordinate_B

sparseness

visual attribute

semantic property

rule

semantics by analogy

visualization
of semantic
properties

brushing of
 membership

functions

interactive illustration

Figure 3.5: Conceptual overview of our technique for a graphical interaction with
semantics-driven visualizations. Graphically speci�ed visualization rules (le�) make use
of data semantics which are de�ned by analogy, i. e., by de�ning membership functions
for semantic data properties via brushing on renderings of these properties (center).
�is technique allows a domain expert to create interactive illustrations (right) on an
abstract level, while the underlying entities are automatically derived from an input
shader program as illustrated in Fig. 3.4.

34 interactive semantics-driven volume rendering

Further, in the original approach by Rautek et al. [2007, 2008a] only
1d properties are used due to the complexity involved in specifying
2d or 3d membership functions with a function editor. In contrast to
this restriction to 1d properties, our approach of de�ning membership
functions by brushing on a color image natively supports the de�nition
of 2d and 3d membership functions. �is facilitates the use of data
derivatives such as the normal or the curvature direction in semantics-
driven visualizations. Fig. 3.12 shows an example.
�e concept of rendering data properties to intermediate bu�ers and

using these bu�ers as the basis for the generation of stylized renderings is
directly related to the seminal concept of G-bu�ers proposed by Saito and
Takahashi [1990]. However, we use the intermediate bu�ers in a di�erent
manner than Saito and Takahashi [1990]. While Saito and Takahashi
[1990] perform 2d image processing on the G-bu�ers to generate render-
ings, we use the bu�ers to interactively specify membership functions
which then in�uence the resulting rule-based visualizations.
�e membership functions are implemented as single-channel texture

images. �e dimensionality of the textures is determined by the number
of dimensions of the represented data properties. We here discuss the
1d case as illustrated in Fig. 3.6: a one-dimensional data attribute that is
associated to a one-dimensional membership-function texture. �e de�-
nition of 2d and 3d membership functions is implemented analogously
by simply adding additional color channels to the process. �e domain
of a membership function represents the scalar values of a semantic
property, which in our case are given by the color values in the semantic-
property image. �e co-domain of the mapping are the corresponding
membership-function values in the range of [0,1]. In our realization of
the brushing mechanism we provide visual feedback about the current
membership function bymeans of a gray valuemask (Fig. 3.6, right).�is
membership-function image is generated by mapping the color values of
the semantic-property image to the correspondingmembership-function
values (Step 5 in Fig. 3.6).

For brushing into the membership function, we treat the function
as a histogram of the color values that are marked by the user. When
the user brushes, we sample the color value at the cursor location in the
source image (Step 1 in Fig. 3.6), map the sampled color value to the
domain of the membership function (Step 2 in Fig. 3.6), and increment
the membership-function value at this location (Step 3 in Fig. 3.6, modi-
�cation through adding). We employ an adaptive brushing behavior that
lets the membership function shi� to the recently marked data range
(Step 4 in Fig. 3.6). �is adaptive selection permits users of our system
to rapidly explore di�erent data ranges without having to deselect for-
merly marked ranges to switch the focus to the recently selected data
range. For realizing the adaptive brushing, we apply a normalization of

3.3 a framework for semantics by analogy 35

sampled color

previous
membership function

1

2

3

5

4

membership-function imagesemantic-property image

0

1

0

1

modi�ed
membership function

Figure 3.6: Brushing on a semantic-property image (le�: maximum density image)
to specify a membership function (center), and generating a membership-function
image or mask (right). To brush into a membership function we sample the color at the
cursor location (1) and map this color to the domain of the membership function (2).
�e previous membership function is incremented at the corresponding location (3),
a normalization causes the modi�ed membership function to decrease in other data
ranges (4). To generate the membership-function image from the semantic-property
image, we sample the membership-function value at the location corresponding to a
pixel’s color and write this value to the mask (5).

the membership function so that the area below the function equals to
one. �is normalization ensures that the current membership function
represents a normalized probability distribution of brushed color values.
�is means that the membership function adapts to the frequency of the
brushed color values. As an alternative, we also provide a method to sub-
tract from the membership function, which is implemented analogously
to adding. �e subtractive brushing allows users to adjust the current
selection by lowering the membership-function values in particular data
ranges. Finally, we allow users to modify the membership function in a
non-adaptive way. In this case, we skip the normalization step, so that
brushing adds to or subtracts from the membership function at only one
color range without a�ecting other ranges.
�e described brushing mechanism is related to the concept of dual-

domain interaction introduced byKniss et al. [2002].�is concept de�nes
interactions which link the spatial domain of the resulting volume render-
ing with the domain of the transfer function. �e brushing interaction
presented here, in contrast, takes place in an intermediate domain. �e
brushing in our approach is not performed on the �nal visualization
as the probing used by Kniss et al. [2002]. Neither does it in�uence a
conventional transfer function. However, the brushing in our approach
is performed on visualizations of semantic properties, which do lie in
the same spatial domain as the resulting visualization, but represent
values from an intermediate abstract domain. Further, the control of
the membership functions through brushing is related to the control of
transfer functions. But again, the membership functions do represent an
intermediate abstract domain. �ey only have an e�ect on the resulting
visualization in combination with a set of illustration rules.

36 interactive semantics-driven volume rendering

In order to allow users to broaden the data range of input (color) values
that are mapped to non-zero output (membership function) values, we
apply a smoothing operation to the membership function. �is smooth-
ing is realized by means of computing a mipmap of the membership-
function texture so that users can freely control which mipmap-level to
use for brushing. We observed, however, that the standard mipmap gen-
eration ‘averages out’ the membership-function values. �is means that
membership-function values would decrease with descending mipmap
levels as they get averaged with zero-valued neighbors. To avoid this neg-
ative e�ect, we create an accumulative mipmap: we compute the value
of a pixel in a smaller mipmap image by summing up the values of the
corresponding pixels in the associated larger mipmap image, instead of
using the average. �is procedure allows us to maintain the magnitude
of the membership-function values throughout all mipmap levels.
In addition, the interpolation of texture-border pixels with a border

color when performing a texture lookup requires to employ texture
coordinate clamping. �is is always necessary when we access the mem-
bership function texture or one of its mipmap levels, e. g., when we use
the color values from brushing as texture coordinates to look up values in
the membership function. To cope with this e�ect we discard the border
regions by clamping the texture coordinates to the central range of the
membership function. When performing a lookup in the mipmap, we
determine an upper and lower texture-coordinate limit from the current
mipmap level and the size of themembership-function texture and clamp
the texture coordinates accordingly.

3.3.3 Graphical Rule Speci�cation

�e semantic-property images enable users to dynamically specify a
property’s contribution to the visualization mapping by analogy. We also
want to facilitate the direct and �exible construction of illustration rules
that make use of these properties. We realize this control with a rule
speci�cation via a graphical user interface (Fig. 3.7, 3.8). As illustrated in
Fig. 3.5, this rule-speci�cation interface is one component for graphically
interacting with visualization semantics. �e other component is the
brushing interface for de�ning semantics by analogy, as described in
Section 3.3.2. Together, these two components can be employed to provide
domain experts with a direct control of semantics-driven visualizations,
abstracting from visualization and programming expertise.
�e result of the graphical rule speci�cation is a set of textual rules,

such as ‘if di�use illumination is high then opacity is low.’�is semantic
rule base is constantly evaluated by the augmented shader. �e rule’s
result can, therefore, be dynamically generated. Changes to the member-

3.3 a framework for semantics by analogy 37

gradient illumination normal

gradient or illumination

opacity

visual attribute

semantic property

rule

normal

Figure 3.7: �e interface for graphical rule speci�cation. �e widgets in the top row
represent semantic data properties. �ey are used for switching between data properties,
for creating rules, and for extending rules. Rules are depicted as expression trees in the
bottom part. �e nodes of the expression trees are interactive elements for combining
and extending rules. �e widget to the le� represents a visual attribute. It serves for using
this visual attribute in an illustration rule. Fig. 3.8 shows an interaction sequence.

ship functions resulting from brushing and changes in the rule setup can
immediately be shown in the interface. �is opens up new possibilities
for the exploration of semantics-driven renderings.
�e interface for rule speci�cation shown in Fig. 3.7 contains three

types of widgets which show preview images of the semantic entities
they represent. �ese semantic entities are either a data property (top), a
node of an expression tree (bottom), or a visual attribute (le�). Fig. 3.8
shows an interaction sequence for creating a rule. �e widgets located
in the upper part of the interface represent the input data properties
(Fig. 3.8a). Such a semantic-property widget contains both the semantic-
property image as well as the membership-function image. By dragging
a connection between two such widgets the user can graphically specify
a rule based on the two respective properties (Fig. 3.8b). To allow users
to select a logical operator that combines the two properties, we use a
design gallery [Marks et al., 1997]. We render an array of result images for
rules with di�erent combinations of the three operators AND, OR, and
NOT. �e design gallery in the example in Fig. 3.9 shows result images
for six di�erent logical combinations of the expression ‘z-coordinate
is peripheral’ with the expression ‘density is low’ (e. g., ‘z-coordinate is
peripheral ANDdensity is low,’ ‘z-coordinate is peripheral OR density is low,’

38 interactive semantics-driven volume rendering

gradient illumination normal

opacity

(a)

gradient illumination normal

opacity

(b)

and

or

and not not and

or not not or

(c)

gradient illumination normal

gradient or illumination

opacity

(d)

low medium high

opacity is

(e)

gradient illumination normal

gradient or illumination

opacity

(f)

Figure 3.8: An interaction sequence for the graphical speci�cation of an illustration
rule. (a) �e widgets located in the upper part of the interface represent the semantic
properties. (b) A rule based on two properties is de�ned by dragging a connection
between two such semantic-property widgets. (c) �e interface switches to a design
gallery. It depicts the results of combining the two chosen properties with di�erent
logical operators. A logical operator for the rule is selected by clicking on a preview
image. (d) �e newly created rule appears as an expression tree at the bottom part of the
interface. �en, a visual attribute is assigned to the rule by dragging a connection from
the visual-attribute widget on the le� hand side to the root node of the expression tree.
(e) A design gallery appears which allows the user to select a visual attribute membership
function. (f) A�er the selection has been performed, the interface shows the complete
visual representation of the speci�ed rule.

3.3 a framework for semantics by analogy 39

‘z-coordinate is peripheral OR density is NOT low,’ . . .).�e visual attribute
used in the combined rule is ‘sparseness is high.’ Using the AND operator
in this example results in a sparse rendering of so� tissue in peripheral
z-coordinate regions. Using theOR operator depicts all so� tissue as well
as all peripheral z-coordinate regions with the sparse rendering method.
By clicking on the desired result image, users can specify which operator
they want to include in the rule (Fig. 3.8c). Once a rule is speci�ed in
the described way, a visual representation of the rule is created as an
expression tree, which is located at the bottom part of the rule-de�nition
interface (Fig. 3.8d).
�e nodes of this graphical expression tree are the second type of

widgets we employ. Every leaf-node widget of the tree represents one se-
mantic property, and displays the corresponding membership-function
image. Every interior-node widget represents a rule or sub-rule and dis-
plays the result image generated by evaluating this rule. �e expression-
tree widgets are interactive elements for extending and combining rules.
Drawing a connection from a semantic-property widget to an expression-
tree widget allows users to extend the rule represented by the expression
tree. �e semantic property is included as an additional operand in the
rule. By drawing a connection between two root nodes of di�erent expres-
sion trees, the user combines the two a�ected rules to form a single rule.
�e described rule manipulations are implemented as string operations
on the rule, while the graphical interface elements are generated from
the modi�ed textual rules.
�e third type of widgets we use in our interface for rule speci�cation

represents the visual attributes that can be included in rules. �ese wid-
gets are located at the le� part of the interface. �ey are used to assign
a visual attribute to a given illustration rule by dragging a connection
to the root node of an expression tree (Fig. 3.8d). �e assignment of a
visual attribute to a rule results in exchanging the then part of the rule to
include the selected visual attribute.
A visual attribute can be associated with a set of pre-de�ned visual

attribute membership functions. Each function describes a di�erent
mapping from an aggregated membership-function value to a value
of the parametrized visual style. To select one of these visual attribute
membership functions for a rule, we also use a design gallery (Fig. 3.10).
We present the user with a set of result images generated by the current
rule using di�erent visual attribute membership functions. �e user
chooses the desired function by clicking on the corresponding preview
image (Fig. 3.8e). Once a visual attribute is assigned to a rule in this
way, we render an instance of the visual attribute widget and attach it
to the root node of the rule’s expression tree (Fig. 3.8f). �e graphical
rule speci�cation interface is our third major extension to the original
semantic-layers approach by Rautek et al. [2007, 2008a].

40 interactive semantics-driven volume rendering

and

or

and not not and

or not not or

Figure 3.9: Design gallery with images of possible logical operations for adding a second
rule to the rule from the example in Fig. 3.11f. �e rule used for generating Fig. 3.11f
is ‘if z-coordinate is peripheral then sparseness is high.’ Herein, ‘peripheral’ regions of
the property ‘z-coordinate’ are de�ned by a corresponding mask. �e second rule that
we add in this example uses the density as a semantic property. We create a mask
on this semantic property that covers the regions of low density, similar to the mask
created in the example in 3.6. �is procedure adds a second visualization rule, which
is ‘if density is low then sparseness is high.’ When adding this second rule, the user
is presented with a design gallery that shows the results of di�erent combinations
of logical operators for combining the existing rule with the newly added rule. �e
combined rules that correspond to the previews above are (in reading order):
‘if z-coordinate is peripheral AND density is low then sparseness is high,’
‘if z-coordinate is peripheral AND density is NOT low then sparseness is high,
‘if z-coordinate is NOT peripheral AND density is low then sparseness is high,’
‘if z-coordinate is peripheral OR density is low then sparseness is high,’
‘if z-coordinate is peripheral OR density is NOT low then sparseness is high,’
‘if z-coordinate is NOT peripheral OR density is low then sparseness is high.’

Figure 3.10: Design gallery with preview images of possible visual attribute membership
functions for the example shown in Fig. 3.11f.

3.4 results and discussion 41

3.4 results and discussion

In this section we show explanatory examples of the variety of visualiza-
tions that can be achieved with our approach. Fig. 3.11 demonstrates a
simple case of semantic shader enhancement and the selective application
of a rendering technique by analogy. In this example, we intend to high-
light the central region of the dataset. As an input shader we use a volume
renderer that produces images of di�erent levels of sparseness. Fig. 3.11a
shows a rendering for a high sparseness parameter, while Fig. 3.11b de-
picts a visualization for a low sparseness parameter. �is shader is used
as input to our system to demonstrate the easy enhancement of existing
shaders. In the shader �le we tag the data attribute ‘z-coordinate’ as se-
mantic property. �is is the z-component in 3d texture coordinates as
they are typically used in raycasting-based volume renderers. Further-
more, we tag the visual attribute ‘sparseness’ that is speci�cally used in
this shader. Interactively adding the two simple rules ‘if z-coordinate is
as in mask A then sparseness is high’ and ‘if z-coordinate is as in mask B
then sparseness is low’ results in an automatic augmentation of the shader.
Now we de�ne the regions that we intend to highlight by analogy, i. e.,
by brushing on the z-coordinate image shown in Fig. 3.11c. For render-
ing peripheral z-coordinate regions with high sparseness, we brush the
semantics according to the �rst rule to mask A in Fig. 3.11d. �is results
in the image shown in Fig. 3.11f. In order to render the central area with
low sparseness, we add the data semantics for mask B in Fig. 3.11e by
brushing on the central area of the z-coordinate.�is results in the image
shown in Fig. 3.11g. �is example demonstrates that the enhancement of
the shader is simple yet �exible. For example, the smooth interpolation
between regions of high sparseness and low sparseness in Fig. 3.11g is
achieved with only two rules. In addition, de�ning semantics by analogy
allows to directly apply the sparse rendering to intended regions.
In the example of Fig. 3.12 we show a simple case of deriving a focus-

and-context renderer from an existing raycasting shader. We demon-
strate how our approach supports the goal to selectively depict di�erent
structures in a dataset (here: bone and so� tissue) with di�erent visual
attributes. �e selective application of these visual attributes shall be
controllable based on semantic properties derived from the data (here:
directional information). In order to achieve this goal, we take a sim-
ple shader program as input that renders the image with two di�erent
transfer functions (one for contextual rendering and one for focus ren-
dering). We then use the two rules ‘if average xz-gradient is as in mask
A then rendering is contextual’ and ‘if average xz-gradient is as in mask
B then rendering is focused’. Note that the keyword ‘average’ is a further
extension to the semantic-layers approach. It refers to a generalization of
semantic properties from object-space to also include image-space prop-

42 interactive semantics-driven volume rendering

(a) (b)

(c) (d) (e)

(f) (g)

Figure 3.11: Augmenting an input shader that produces images of di�erent levels of
sparseness. �e top row shows renderings (a) for a high and (b) for a low sparseness
parameter. In the augmented shader, we control the sparseness parameter with twomasks
that are de�ned on the volume z-coordinate. Brushing on the (c) z-coordinate image
yields (d) mask A and (e) mask B. We achieve a smooth interpolation of sparseness with
the rules (f) ‘if z-coordinate is as in mask A then sparseness is high’ and (g) ‘if z-coordinate
is as in mask B then sparseness is low’ as an additional rule.

3.4 results and discussion 43

(a)

(b)

(c)

(d)

Figure 3.12: Controlling contextual and focus rendering modes via the property ‘average
xz-gradient.’ (a) �e result is generated from the two rules ‘if average xz-gradient is as
in mask A then rendering is contextual’ and ‘if average xz-gradient is as in mask B then
rendering is focused.’ �e right column depicts (b) the ‘average xz-gradient’ image as well
as (c) mask A and (d) mask B.

erties. In object-space, the fuzzy logic evaluation is done on a per-sample
basis while in image-space it is done on a per-ray basis. To demonstrate
this generalization, we here use the image-space property ‘average xz-
gradient’. Fig. 3.12b depicts the rendering of this semantic property. �e
‘average xz-gradient’ is the average of the gradient taken along the ray
which is transformed to image-space and which is o�en used, for exam-
ple, for shading calculations. We use the x- and z-coordinates of this
property to interpolate between the two rendering modes, i. e., context
and focus visualization. �is allows us to selectively apply the two di�er-
ent rendering modes based on the surface orientation. �e two masks
created to control the interpolation between the two modes are shown
in Fig. 3.12c (mask A) and Fig. 3.12d (mask B). We use our method to
apply the focus rendering on surfaces that are oriented towards the right
as seen from the viewer.
�e example in Fig. 3.12 shows a natural extension of the data seman-

tics to a two-dimensional data property (‘xz-gradient’). In the original
semantic-layers technique it is necessary to use one-dimensional data
semantics. �is is due to the complexity involved in the speci�cation

44 interactive semantics-driven volume rendering

(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Using the semantics-by-analogy interface for an opacity modulation based
on illumination intensity. We use the two rules ‘if di�use illumination is low then opacity
is high’ and ‘if di�use illumination is high then opacity is low.’ �e le� column (a, c, e)
shows di�erent results that are generated with the masks in the right column (b, d, f) for
the data semantics ‘di�use illumination is low.’

3.4 results and discussion 45

of multi-dimensional membership functions. �e functions are speci-
�ed with a 1d function editor. With our approach, we can easily use the
brushing on images of 2d and 3d properties to interactively and directly
specify 2d and 3d membership functions, as exempli�ed in Fig. 3.12.
In Fig. 3.13 we demonstrate the progressive adjustment of a visual-

ization using the semantics-by-analogy user interface. In this example
we use the ‘di�use illumination’ term of a regular raycasting shader as a
semantic property. Our goal in the augmentation is to map the di�use
illumination term to the opacity of each sample. �is mapping allows
us to make regions that are highly illuminated more transparent. �e
two rules ‘if di�use illumination is low then opacity is high’ and ‘if di�use
illumination is high then opacity is low’ are used to achieve this e�ect.�is
visualization mapping is similar to the context-preserving volume ren-
dering technique by Bruckner et al. [2006]. �is demonstrates the ability
of our approach to dynamically specify other (usually hard-coded) visu-
alization techniques by the means of visualization rules. Fig. 3.13 shows
the results (Fig. 3.13(a, c, e)) and the di�erent masks that were brushed
to generate these images (Fig. 3.13(b, d, f)). �e brushing on the data se-
mantics ‘di�use illumination is low’ as done in this example allows users
to interact with the illustrative visualization and to adjust the illustration
according to their needs and preferences.
�e example in Fig. 3.14 further demonstrates the use of a semantics-

driven opacity modulation. �e goal of this visualization is to generate
views on a skull-surrounded brain in an mr dataset of a human head. Ray-
casting of such a dataset is subject to occlusion of the brain by surround-
ing tissue. In order to cope with this occlusion, we apply our method
to a standard raycaster to create see-through views on the brain. We
achieve this by using the ‘distance along the ray’ as a semantic property
and the rule ‘if distance along the ray is high then opacity is high.’ �is
setup allows a �exible application of opacity depending on the penetra-
tion depth. Similar to a clipping plane, it removes both the occluding
skull and the brain tissue up to a speci�ed penetration depth. �is does
not preserve the occluding brain tissue as a skull-removal scheme would
do. In contrast to the static geometry of a clipping plane, however, this
setup implements a dynamic semantics-driven clipping volume that can
be interactively de�ned.�is facilitates a �exible interactive speci�cation
of the visibility of di�erent structures within the volume dataset. �e le�
column in Fig. 3.14 depicts the results of applying this rule from di�erent
viewpoints (Fig. 3.14(a, d, g)).�e right column shows the corresponding
semantic-property images (Fig. 3.14(b, e, h)) and masks (Fig. 3.14(c, f, i))
that are used to generate the visualizations.
Fig. 3.15 shows more results of applying our technique to the visual-

ization of the mr head dataset. We here again use our technique for a
semantics-driven opacity modulation but use di�erent input properties.

46 interactive semantics-driven volume rendering

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 3.14: Generating views on a skull-surrounded brain in an mr head dataset. A
semantics-driven opacity modulation generates see-through views on the brain. We use
the rule ‘if distance along the ray is high then opacity is high.’ �is allows to apply opacity
depending on the ray penetration depth, resulting in an interactive semantics-driven
clipping volume. Similar to a clipping plane, this clipping volume removes all brain and
skull tissue up to a certain ray position. It does not preserve the occluding brain tissue.
�e le� column depicts results from di�erent viewpoints (a, d, g). �e right column
shows the corresponding semantic-property images (b, e, h) and masks (c, f, i).

3.4 results and discussion 47

In the example in Fig. 3.15 we use the spatial object-space properties
‘distance from object-space origin’ and ‘object-space position’ to modulate
the opacity in order to generate views on the brain. �e initial raycast-
ing shader without semantic shader augmentation (Fig. 3.15a) is subject
to occlusion of the brain by surrounding tissue. We use the graphical
control over the result of our volume illustration system to visualize the
brain and to selectively visualize parts of the dataset.

(a) Result of the initial shader. Without se-
mantic augmentation, the shader is subject
to occlusion of the brain.

(b) Result of the augmented shader. The view
on the brain is generated by using the two
rules from Fig. 3.15c and Fig. 3.15d.

(c) Cut-away view created by using the rule
‘if distance from object-space origin is high
then opacity is high.’ The insets to the right
show the property image and the mask.

(d) Selective view generated by using the
rule ‘if position is as in mask then opacity is
medium.’ This is an example of a 3d semantic
property.

(e) The result of Fig. 3.15b from a different
viewpoint.

(f) The result of Fig. 3.15b from a different
viewpoint.

Figure 3.15: Visualizations of the mr head dataset using an opacity modulation based on
spatial object-space properties.

48 interactive semantics-driven volume rendering

All results were generated in interactive sessions. �e performance
of our system depends on the set of rules, the used input shader, the
current membership functions, and parameters such as screen resolu-
tion and sampling distance. For all results shown in this chapter we
used a sampling distance of 0.5 voxels and achieved interactive frame
rates on a dual core 3.2 GHz PC with a GeForce GTX 480 and 12 GB
RAM. We used a 600 × 600 pixel viewport for the result image and
for the rule-speci�cation interface (which also includes the visualiza-
tions of the semantic properties and previews for sub-rules). �e images
shown in Fig. 3.11 were rendered at approximately 20 fps. �e dataset
in this example has a resolution of 122 × 62 × 128 voxels. �e example in
Fig. 3.12 was rendered at approximately 15 fps, with a dataset resolution of
256 × 256 × 166 voxels. For the results depicted in Fig. 3.13, we achieved a
framerate of approximately 17 fps, rendering a volume of 128 × 256 × 256
voxels. �e framerate for rendering the images in Fig. 3.14 and Fig. 3.15
was approximately 8 fps, for a volume of 512 × 512 × 320 voxels.

3.5 evaluation

We evaluated the proposed concepts by gathering user feedback. We
conducted two separate user evaluations with two di�erent target audi-
ences. �e �rst evaluation targeted medical domain experts, while the
second evaluation examined the usefulness of our system for medical
illustrators. Both evaluations were qualitative assessments of the bene�ts
and drawbacks of our method. We designed the evaluations as partici-
patory observational studies combined with contextual interviews. We
decided to use a qualitative evaluation methodology because we con-
sider a quantitative evaluation as inappropriate for validating our system.
�is decision is based on the discussion about the role of evaluation in
visualization and human-computer-interaction (hci) research. In this
discussion, Carpendale [2008] advocates a more thoughtful application
of a greater variety of research methodologies for evaluating information
visualizations. She provides a survey of di�erent evaluation methodolo-
gies and observes that quantitative methods can be prone to fault and to
questionable validity for scenarios such as ours. Amongst other aspects,
this is due to the fact that a quantitative experiment requires the rigorous
control of many di�erent factors, which are in fact di�cult to control as
a whole in situations like ours where complex and temporally long inter-
actions are the essential elements of a system. Carpendale argues that a
qualitative inquiry is more appropriate in such cases because it allows
the researchers to consider the interplay among factors that in�uence
visualizations, their development, and their use, and also to ground the
studies in a more realistic setting. Along the same lines, Greenberg and

3.5 evaluation 49

Buxton [2008] criticize the dogma of quantitative usability evaluation
in hci research. �ey stress the importance of choosing the appropriate
evaluation methodology for a given research problem. �ey explain how
the insistence on quantitative evaluation as a research methodology has
fostered practices of weak science in hci. Furthermore, Greenberg and
Buxton [2008] also emphasize that premature usability evaluation can
eliminate promising ideas in an early design stage. �ey recommend to
learn from the ways design worthiness is validated in other disciplines,
i. e., from the design critique as used in industrial design. We follow their
recommendation by selecting a qualitative evaluation of our system in-
volving design critique principles. Onemay argue thatmulti-dimensional,
in-depth, and long-term case studies [Shneiderman and Plaisant, 2006]
are best for evaluating creativity support tools such as ours. Although
such an approach would be an appropriate method to validate our system
quantitatively, the time required for such an evaluation approach makes
it unfeasible for us to realize at this point.

3.5.1 Feedback from Medical Experts

�e participants in the �rst evaluation were a neuro-ophthalmologist
in a �rst session and a group of eight radiologists in a second session.
�e participants were chosen from contacts available to our research
group. All participants volunteered to participate in the evaluation. All
the participants were male and between 23 and 48 years old. Each ses-
sion comprised an initial demonstration and explanation of the system,
a guided experimentation by the participants, and a concluding semi-
structured interview. �e feedback of the medical experts was positive
in general. �ey quickly understood the interface and were able to use it
a�er a short instruction. For the neuro-ophthalmologist we prepared an
example with opacity modulation. �is example was very similar to the
one shown in Fig. 3.14, but we made use of di�erent semantic properties.
As semantic properties we used the scalar values, the distances from
the object-space origin, and the volume texture coordinates. �e neuro-
ophthalmologist particularly liked the �exibility of our system. He used
the opacity modulation to generate cut-away views, and found this pro-
cedure more �exible than the usage of cutting planes. He stated that he
could imagine to employ a system like ours for intervention-procedure
planning and for teaching. �e radiologists in the second session partic-
ularly liked the abstraction from visualization internals o�ered by our
system. �ey also commented positively on the ease of use of the graph-
ical rule speci�cation. �ey suggested various extensions, for example
to include a graphical library of pre-de�ned semantic properties and
visual attributes from which the user can choose. �e discussion with

50 interactive semantics-driven volume rendering

the domain experts also revealed the bene�t of the collaborative setting
we described in Section 3.3. Semantic properties such as the ‘xz-gradient’
or the ‘di�use illumination’ are non-trivial to formulate for most domain
experts. But once such properties were visualized in our system and
explained to the domain experts, they could easily understand and use
them. On the other hand, it might be di�cult for a visualization expert
to �gure out which data properties are useful for the domain experts. In
our evaluation, it became obvious that a collaborative e�ort can help to
�nd such useful properties.

3.5.2 Feedback from Medical Illustrators

�e participants in the second evaluation were a graduate art student and
two professional medical illustrators. �e evaluation was conducted in
three separate sessions. �e participants were contacted a�er an internet
research for medical illustrators in the Netherlands. All participants vol-
unteered to participate in the evaluation. All the participants were female
and between 26 and 42 years old.�e art student is in a Master’s program
for interactive media and environments, and holds a Master’s degree in
graphics design as well as in �ne arts. For simpli�cation, we include her
in the group of medical illustrators. �e professional medical illustrators
are both trained in �ne arts as well as in medical illustration. One of them
has several years of professional experience as a medical illustrator. �e
other has several years of professional experience as a photo retoucher
and has been transitioning to medical illustration in the past seven years.
None of the participants had noteworthy experience with volume data,
but all had worked with renderings of polygonal 3d models. �us, we
started the sessions of this evaluation with a brief introduction to volume
rendering. Apart from that, we applied the same methodology as in the
evaluation with medical domain experts. We found out that some of
the proposed concepts might indeed be of use for the target audience of
medical illustrators.�e participants in this evaluation could understand
and use the interface quickly. Again, the feedback was positive in general.
At the same time, the evaluation revealed some limitations of our system,
which provide inspiration for future work. Interestingly, the feedback
was highly congruent between the three participants.
�e art student particularly liked the fact that when using our system,

she could transfer knowledge and skills from graphics editing so�ware.
An example are our membership-function images which resemble the
usage of masks in Adobe Photoshop®. She stated that the visual feedback
provided by the semantic-property images makes it easier to decide on
the application of rendering styles. She also liked the feature of working
in the intermediate domain of the semantic-property images, while the

3.5 evaluation 51

entire result is updated simultaneously. She stated that she clearly favors
our graphical rule de�nition over a textual one.
�e �rst medical illustrator gave clear con�rmation that for her needs

and preferences, the graphical rule speci�cation is by far superior to a
textual rule formulation. She liked our graphical approach to parameter
speci�cation, and stated that it would bettermeet the demands of ‘visually
oriented’ persons than other more programming-oriented interfaces. She
stated that she would use our proposed concepts in her work as a medical
illustrator, given that they were integrated in a comprehensive system for
illustrative volume rendering. Apart from that, she was very interested in
direct volume rendering in general. She was particularly fascinated by the
accuracy it provides. She emphasized that accuracy is crucial for medical
illustration. She commonly uses a 3d atlas of polygonalmodels as amaster
to create illustrations. She stated that these atlases—in contrast to direct
volume visualization—would lack a certain degree of precision because
they involve the human factor of the artist creating the 3d models.
�e second medical illustrator also revealed this keen interest in vol-

ume rendering as a reference for manually creating illustrations. Regard-
ing our system, she also shared many of the views of the other medical
illustrator. She con�rmed that she clearly favors a graphical rule de�ni-
tion over a textual rule formulation. �e illustration professional liked
our use of masks, which allowed her to transfer skills from Adobe Pho-
toshop®. She also stated that a system like ours could be of use for her
work as a medical illustrator. She also commented very positively on
the notion of using brushing as an interaction metaphor to modify the
rendering, although she was not convinced by the bene�t of brushing
on the semantic-property images instead of the result image.
All medical illustrators gave rise to the question if it would be prefer-

able to brush on the result image instead of the semantic-property images.
�ey stated that they are used to work on either the image itself, or on
a representation which is visually completely unrelated to the image,
such as dialog windows. �e art student liked the idea of working in
an intermediate domain, but the two medical illustrators considered
this more critically. �ey asked for the motivation of this design choice
and said that they would be more familiar with brushing directly on the
result image. �ey were not convinced that the visual feedback provided
by the semantic-property images is crucial for obtaining the desired re-
sults. One of the medical illustrators even felt confused by the additional
viewport needed for displaying and brushing on the semantic-property
image. For her, it led to a confusion about which interaction has to be
performed on which viewport. But both illustrators were convinced that
with some training, they would get familiar with brushing in the inter-
mediate domain. However, it would need a long-term evaluation to gain
more insight about this learning process.

52 interactive semantics-driven volume rendering

It is interesting that, in contrast to the medical illustrators, the domain
experts did not raise the issue of brushing directly on the result image.
�ey perfectly accepted the brushing on visualizations of data properties.
In our opinion, this re�ects that the group of medical domain experts
is used to approaching the creation of an image in a data-oriented way.
�ey are familiar with thinking of an image as the mapping of data. �e
illustrators, on the other hand, appeared to approach the creation of an
image in a less data-oriented way—maybe because illustration based on
real data has not been possible to a large degree until recently. Illustrators
seemed to think more in terms of modifying the image directly, instead
of modifying data or a mapping which underly the image. However, we
assume that, with training, the illustrators would be able to transfer their
creative skills to the world of data-oriented image creation.

3.6 limitations

�e one limitation identi�ed in both of the two user evaluations was
that the brushing mechanism can occasionally generate unexpected
results. �e brushing is in�uenced by a smoothing of the membership
function, which we apply for broadening the range of marked data values.
When the corresponding smoothing parameter is set to a high value, one
can easily mark large data ranges. �is turned out to have the negative
side-e�ect of unintentionally selecting a too wide range when users
intended to select a narrow data range. On the other hand, the creation
of smooth volumetric masks is not possible without su�cient smoothing
of the membership functions. Without smoothing, only one speci�c
data value can be selected at a time, which leads to the creation of noisy
or speckled masks. Our brushing mechanism, thus, involves a tradeo�
between precision and execution time. With execution time, we refer to
the time needed for the interaction of de�ning a desired mask, not the
involved computation time. �is tradeo� implies the drawback that our
brushing interaction is prone to working in an either too precise and
slow or in a too imprecise and fast way.
Another limitation of our method is the robustness of creating the

semantic-property images, which form the basis for brushing. �e �nal
result is highly dependent on the semantic-property images. �ese im-
ages, in turn, are challenging to create for the general case. Especially for
volumetric properties that are not related to iso-surfaces, it is hard to
generate renderings which are well understandable and usable as a basis
for brushing. In our examples we use either 2d or 3d properties that are
directly related to iso-surfaces. In addition to this issue, the image-space
selection of 2d and 3d data values can be problematic. Here, the maxi-
mum compositing cannot be applied, and component-wise averaging

3.6 limitations 53

results in introducing vectors which are not present in the dataset. With
proper smoothing of the membership function, however, averages of 2d
and 3d variables can still be used. We exempli�ed this in Fig. 3.12 with
using the ‘xz-gradient.’

Workingwith image-space properties such as in Fig. 3.12 can also result
in unexpected behavior. �e domain experts here assumed to work with
an object-space property and expected the mask to ‘stick’ to the dataset
instead of following image-space directions. However, this unexpected
behavior is due to the fact that the participants worked with the system
only for a short time. We assume that such problems would be resolved
quickly once that users become more acquainted with the system.

Another drawback of our technique is also related to the image-space
selection of volumetric data values. �e projection of scalar values to
image-space requires compositing. When used in combination with
a per-sample evaluation of the visualization rules in object-space, the
composited scalar value can unintentionally di�er from the per-sample
scalar value. �is then results in a discrepancy between the membership-
function image and the �nal visualization. �is discrepancy can be seen
in the examples in Fig. 3.14, where the visualizations do not entirelymatch
the membership-function images.�e problem can only be avoided with
a proper selection of semantic properties and rules, as well as with appro-
priate parameter tuning. �is restricts the generality of our technique.

Furthermore, a general problem of our interactive graphical approach
is the reproducibility of the results. Because interaction is required to
specify the masks, it is hard to exactly reproduce results created earlier.
�is circumstancemight let users perceive our system as being unreliable.
However, the addition of the possibility to save membership functions
and a comprehensive undo functionality may reduce the problem.
Finally, our technique does not address the problem of disjunct ex-

pert domains, although it addresses the challenge of semantics-driven
parameter speci�cation. A limitation of our approach is that the seman-
tics we make use of do not originate from the problem domain (e. g.,
medicine), but rather from the solution domain (computer science).�is
implies that a domain expert using our system is likely not familiar with
the semantics with which we provide him or her. �e only aid we give
for understanding the semantics are the semantic-property images. For
example, a medical expert might have di�culties using the property
‘distance along the ray.’ He or she might bene�t much more from being
able to use application-speci�c semantics such as ‘lesion’ or ‘tumor’ to
steer semantics-driven visualizations.

54 interactive semantics-driven volume rendering

3.7 conclusions and future work

In summary, we propose methods that improve the semantic-layers
approach by Rautek et al. [2007, 2008a] in several essential ways. First,
we introduce a semantic shader augmentation that increases the �exibility
of the semantic-layers approach. It makes it possible to automatically
augment semantic shaders at run-time. �is concept can be employed,
e. g., to enable a visualization expert to quickly derive a case-speci�c
visualization system from an initial shader program according to the
requirements of a domain expert. Second, we introduce the semantics-
by-analogy approach. It allows users to brush properties to ease the
process of de�ning and exploring data semantics. �ird, we describe a
user interface for the quick speci�cation and exploration of fuzzy-logic
rules. �ese two interactive graphical tools provide domain experts with
a direct control of semantics-driven visualizations which abstracts from
programming internals. Finally, we extend the semantic-layers method
by introducing image-space semantics. �ese are incorporated in the
semantic shader augmentation by using the keywords ‘maximum’ or
‘average’ in the speci�cation of visualization rules.

One direction for future research is to address the above described
problem of disjunct expert domains. It would be interesting to exam-
ine how our approach can be extended in order to permit the use of
application-speci�c semantics.
Furthermore, the concepts presented here can be modi�ed to allow

users to brush directly on the result image instead of the semantic-
property images. �is interaction was also suggested by the medical
illustrators in our second user evaluation. Many of the described lim-
itations are arguments in favor of this idea. Our experiences with the
hatching approach that is presented in Chapter 5 also suggest that the
described direct brushing behavior is bene�cial.
Apart from this, our approach makes progress towards a semantic

markup of thewhole volume rendering pipeline.�e explicit speci�cation
of semantics in the volume visualization pipeline permits us to expose
the system’s underlying semantics to the user. �is allows the user to
directly interact with the semantics of the volume visualization process
and, hence, to obtain a more direct control and a better understanding.

We see a large variety of application possibilities of our approach. Our
approach can be applied to the rapid prototyping of volume visualization
techniques. �e proposed concepts can also be applied to the implemen-
tation of visualization frameworks that enable both visualization experts
and domain experts to e�ciently explore volume data and to generate
powerful illustrative volume visualizations. We believe that the �exibility
of our approach and the novel user interface make our approach a basis
for a large number of possibilities in volume visualization.

3.8 acknowledgments 55

Although our approach is very �exible, the initial manual tagging of
shader �les is still time-consuming. However, this process only has to be
done once and each tagged shader can be re-used for further datasets
or visualization problems without further tagging. Moreover, we plan to
explore more �exible approaches in the future that allow the browsing
of a shader �le while automatically getting suggestions for data seman-
tics. We believe that the user experience can be greatly improved with
such a browsing extension. Further, we think that our approach can be
extended with a more general shader markup language. Currently, we
only support the markup of semantic properties and visual attributes. A
more general solution would allow us to tag resources (such as volumes
and textures) and parameters that are (or shall be) exposed in the user
interface. With the extension of the shader markup language, a more
general visualization system could be realized. �e markup of shader
�les would be su�cient for the rapid generation and exploration of new
semantics-driven visualization systems.

3.8 acknowledgments

We thank the participants of our user evaluations for sharing their time
and expertise. �is work has been partially funded by the ViMaL project
supported by the Austrian Science Fund (fwf), grant no. P21695. �e
mri head dataset used for generating Fig. 3.14 and Fig. 3.15 is courtesy of
the bcn Neuroimaging Center, Groningen.

�is chapter is based on a previously published article [Gerl et al., 2012].Moritz Gerl, Peter
Rautek, Tobias Isenberg, and M. Eduard Gröller. Semantics by Analogy for Illustrative
Volume Visualization. In Computers & Graphics, 36(2):201–213, 2012.

4FROM INTERACTIVE TO SEMI-AUTOMATIC CONTROL
OVER THE RESULT

U sing a graphical rule-speci�cation interface to de�ne mappings
of semantic properties to visual attributes as described in the
previous chapter improves upon the usability and �exibility of

semantics-driven volume rendering. �e semantics-by-analogy system
provides the user with a �exible, direct, and intuitive control over the re-
sult. However, the mapping speci�cation discussed in Chapter 3 requires
a selection of the semantic properties on which the mapping is based.
�is selection of input and output parameters is also intrinsically nec-
essary for the original semantic-layers technique by Rautek et al. [2007,
2008a] where the input and output of the visualization mapping forms
the basis for the visualization rules. In other words, whenever the user of
a semantics-driven volume rendering system formulates a visualization
rule, for example ‘if density is high then color is green,’ the user has to come
up with the input (‘density’) and the output (‘green’) properties of the
mapping. In Chapter 3 we illustrate the usage of a variety of di�erent se-
mantic properties such as z-coordinate, object-space position, xz-gradient,
di�use illumination, distance along the ray, etc. in illustrative visualiza-
tion mappings. �e concept of semantic shader augmentation is a highly
�exible manner of specifying the input and output of the visualization
mapping, as emphasized repeatedly. However, the concept of semantic
shader augmentation comes with the downside that the input and output
to the desired mapping have to be explicitly de�ned by a visualization
expert to begin with. Once this de�nition has been performed initially,
the semantics-by-analogy system can be used by a domain expert or
illustrator. �e selection and de�nition of semantic properties, however,
has to be performed in any case. It is an unavoidable prerequisite of the
method presented in Chapter 3. To alleviate this problem, we explore a
di�erent way of controlling the input to the rendering function in Chap-
ter 5. We take the speci�cation of the input to the function out of the
hands of the user again and employ machine learning to automatically
learn an adequate mapping. Furthermore, we also restrict the output of
the rendering function to a particular visual abstraction, which is pen-
and-ink hatching. We then provide direct interaction tools to let the user
control the application of this static input and output. We examine this
way of realizing control over the result in the development of a method
for interactive example-based pen-and-ink hatching.

57

58 from interactive to semi-automatic control over the result

automatic semi-automatic interactive

Chapter 5 Chapter 3

Figure 4.1: �e location of the two core parts of this thesis in the interaction continuum
introduced in Chapter 2. Both semi-automatic methods cover a sub-spectrum of the
interaction continuum. �e semantics-driven volume illustration method discussed in
Chapter 3 is more toward the interactive side of the continuum, while the example-based
hatching method presented in Chapter 5 uses more automated control over the result.

Let us position our two di�erent methods within the interaction con-
tinuum that we introduced in Chapter 2. �e approximate location of
the two methods in our interaction continuum is indicated in Fig. 4.1.
Both semi-automatic methods are located toward the interactive side
of the center of the interaction continuum. Both methods can be em-
ployed with a varying degree of user interaction. �erefore, the two
methods each cover a sub-spectrum of the interaction continuum.�e
semantics-driven volume illustration method discussed in Chapter 3 cov-
ers a sub-spectrum which is located more toward the interactive side of
the continuum due to the �exibility of the involved user interactions.�is
positioning might appear confusing at �rst glance because the rendering
part of the volume illustration method in Chapter 3 is fully automatic.
�e control over the result, however, is in the hands of the user to a large
degree.�is is why we position the illustrative visualizationmethodmore
toward the interactive side of the spectrum.�e example-based hatching
method presented in Chapter 5 uses more automatic control over the
result. We could as well position the hatching method in Chapter 5 more
toward the automatic side of the interaction continuum and illustrate it
to cover the entire sub-continuum from automatic to semi-automatic,
because the hatching method can as well be used fully automatically.
�e sub-spectrum that we indicated in Fig. 4.1, however, refers to the
semi-automatic usage of the hatching system.

from interactive to semi-automatic control over the result 59

�e hatching method for 3d surface meshes described in Chapter 5
examines the previously outlined semi-automatic way of implementing
control over the result. In this method, we select a �xed set of surface
features that forms the input to the visual mapping that is performed by
the hatching renderer. �e set of selected surface features is somewhat
similar to the semantic properties that we use in Chapter 3. �e surface
features we employ in our example-based hatchingmethod comprise spa-
tial, directional, and lighting properties such as image-space coordinates,
depth, facing-ratio gradient, curvature direction, di�use illumination, etc.
In contrast to the manual mapping speci�cation in Chapter 3, however,
we use machine learning in Chapter 5 to automatically learn a mapping
of this �xed set of surface features to hatching properties. �e hatching
properties are the hatching regions, the types of hatching strokes, the
hatching directions and distances between the strokes, as well as low-
level properties such as the stroke width and shape. �e example-based
mapping from surface features to hatching properties is established once
in a separate learning stage. �e learned mapping is then applied in a
semi-automatic synthesis stage. In the synthesis stage, the user of the
hatching system described in the following chapter has no control over
which properties are decisive for the resulting rendering. �is is a major
deviation from the dynamic mapping adjustment in Chapter 3, where
the decisive features can be changed at any time.�e user of the hatching
system in Chapter 5 does also have no choice of the visual abstraction that
is generated by the renderer. �e renderer does always create hatching
illustrations. �is is another major di�erence between the two core parts
of this thesis. �e semantics-driven volume renderer in Chapter 3 is a
�exible framework capable of realizing a wide variety of visualization
mappings but requires expert knowledge to come up with a suitable
mapping to begin with. �e hatching renderer in Chapter 5, in contrast,
is tailored to the generation of pen-and-ink hatching illustrations. �e
hatching method uses a �xed set of surface features and employs ma-
chine learning to learn a mapping of these surface features to hatching
properties from hand-drawn examples. �e learned mapping can then
be applied semi-automatically by the user. Although the input to the
rendering function (i. e., the set of surface features) as well as the gener-
ated visual abstraction are statically pre-de�ned in the example-based
hatching system described in Chapter 5, the user of this system still has
many options for adjusting the rendering result. Interaction with the
result is provided on a higher level, as outlined before in Chapter 2. �e
most important of these user interactions is the brushing with patches
of hatching strokes onto a 3d model. �is brushing interaction gives the
user full control over where to place which kind of strokes. �e strokes
that are automatically generated in the brushed regions incorporate the
learned lower-level drawing characteristics.

60 from interactive to semi-automatic control over the result

Together, the described semi-automatic example-based control over
the result combines the advantages of both interactive and example-
based illustrative rendering approaches. �is control gives artists and
illustrators the creative freedom and editability they need while at the
same time it provides the computer assistance that is necessary to rapidly
create hatching illustrations of a reasonable aesthetic quality. Further-
more, the example-based interactive control gives people who are not
pro�cient in �ne arts and illustration the possibility to interactively create
pen-and-ink hatching illustrations of 3d models.

5INTERACTIVE EXAMPLE-BASED PEN-AND-INK
HATCHING

abstract: �is chapter presents an approach for interactively generating pen-and-ink
hatching renderings based on hand-drawn examples. We aim to overcome the regular and
synthetic appearance of the results of existing methods by incorporating human virtuosity
and illustration skills in the computer generation of such imagery. To achieve this goal,
we propose to integrate an automatic style transfer with user interactions. �is approach
leverages the potential of example-based hatching while giving users the control and creative
freedom to enhance the aesthetic appearance of the results. Using a scanned-in hatching
illustration as input, we use image processing and machine learning methods to learn a
model of the drawing style in the example illustration. We then apply this model to semi-
automatically synthesize hatching illustrations of 3d meshes in the learned drawing style. In
the learning stage, we �rst establish an analytical description of the hand-drawn example
illustration using image processing. A 3d scene registered with the example drawing allows
us to infer object-space information related to the 2d drawing elements. We employ an
hierarchical style transfer model which enables us to capture drawing characteristics on
four levels of abstraction, which are global, patch, stroke, and pixel levels. In the synthesis
stage, an explicit representation of hatching strokes and patches of strokes enables us to
synthesize the learned hierarchical drawing characteristics. Our representation makes it
possible to directly and intuitively interact with the hatching illustration. Amongst other
interactions, users of our system can brush with patches of hatching strokes onto a 3d mesh.
�is interaction capability allows artists and illustrators who are working with our system
to make use of their virtuosity and illustration skills while interactively creating hatching
illustrations of 3d meshes. �is interaction capability improves upon the aesthetic quality
and illustration e�ectiveness of the automatic results that are achievable with our approach.
Furthermore, the proposed interactions allow people without a background in hatching to
interactively generate visually appealing hatching illustrations.

61

62 interactive example-based pen-and-ink hatching

5.1 introduction

�e computer generation of pen-and-ink hatching illustrations has a long
tradition in non-photorealistic and illustrative rendering. But although
pen-and-ink rendering methods have been introduced quite some time
ago, there seems to be little adoption outside the �eld. �is contrasts
the long tradition and widespread use of handcra�ed pen-and-ink il-
lustrations. Over centuries, those depictions have been proven to be an
e�ective means of visually communicating information. And they are
still widely used nowadays, e. g., in medical training. We believe that
the lack of adoption of computer-generated hatching illustrations can
at least in part be explained by their synthetic and overly regular visual
appearance. A comparative study of Isenberg et al. [2006] has, amongst
other �ndings, shown that computer-generated illustrations are clearly
distinguishable from hand-drawn illustrations due to a lack of ‘character’.
We aim at incorporating human virtuosity and illustration skills into the
computer generation of pen-and-ink hatching illustrations to improve
upon the aesthetic appeal and illustration e�ectiveness of such imagery.
Recently, Kalogerakis et al. [2012] presented an approach that shares
our goals. In this chapter we present an approach that uses an explicit
representation of drawing elements, in contrast to the pixel-based ap-
proach chosen by Kalogerakis et al. [2012]. �is representation allows
us to transfer drawing characteristics on higher levels than a pixel grid
and to provide user interactions for adjusting the resulting illustrations.
We present a semi-automatic strategy for implementing control over the
result in illustrative rendering in this chapter. �e strategy is to combine
automatic control via machine learning with interactive control via user
adjustments. Our approach provides the following contributions:

Image analysis on hatching drawings:We apply image processing
methods to the detection of the stroke trajectories in a hand-drawn and
scanned-in pen-and-ink hatching illustration.�is image analysis allows
us to learn the drawing style from a given example image as well as to
use the example image for texture mapping.

3d information for existing 2d drawings: We employ a 3d scene
registeredwith a hand-drawn example illustration to infer 3d information
related to the 2d elements in the example. �is enables us to include 3d
measurements in learning a model of the example drawing style.

Analytical representation of drawing elements: We represent
patches of strokes and stroke trajectories analytically in object-space.
�is representation allows us to transfer drawing characteristics on a
stroke level (as opposed to the transfer of hatching properties on a pixel
level). �e analytical representation of hatching patches and hatching
strokes also facilitates user interactions for controlling the result.

5.2 related work 63

Adaptive surface patches: We introduce the use of a real-time
example-based mesh segmentation to create adaptive surface patches as
the basis for creating patches of hatching strokes. �ese example-based
surface patches allow us to capture and reproduce global characteristics
of an example illustration. While we use the surface patches for gener-
ating hatching strokes, the notion of patch-wise style transfer can be
generalized to other depiction styles.

Stroke distance functions: We propose to learn the interrelation-
ship of hatching strokes locally as a function of object-space mesh fea-
tures. �is allows us to model the stylistic variations of the example
illustration style on a stroke level. �is local model of stroke distances
results in hatching patterns that are less uniform and less regular than
the hatching patterns generated by previous approaches.

Interaction capabilities: We provide users of our system with the
possibility to interact with the resulting illustration. Users of our sys-
tem can alter the appearance and direction of hatching strokes within
individual patches of strokes, can �exibly retouch the stroke trajectories,
and brush with patches of hatching strokes. �ese direct interactions
with the hatching illustration are an e�ective means of combining the
bene�ts of automatic style transfer with human creativity and virtuosity,
which enables an application of our method in creative environments.
Furthermore, the interaction capabilities of our approach allow users
without a background in hatching to interactively create visually appeal-
ing hatching illustrations in a short amount of time.
�is chapter is structured as follows. We �rst review related work in

Section 5.2. Next, we give an overview of our approach in Section 5.3. We
then detail how we capture a drawing style in Section 5.4 and explain
how we reproduce the learned style in Section 5.5. We explain our user
interactions in Section 5.6. In Section 5.7 we present some results of
our method and discuss its limitations in Section 5.8. We conclude the
chapter and describe possibilities for future work in Section 5.9.

5.2 related work

Many di�erent ways for creating hatching renderings have been explored
in the past. Saito and Takahashi [1990] introduce the usage of isoparamet-
ric lines to create hatching images. �is idea was further developed by
other researchers [Elber, 1995; Winkenbach and Salesin, 1996]. Already
in this �rst generation of hatching techniques, Winkenbach and Salesin
[1994] incorporate concepts derived from hand-drawn hatching illustra-
tions, such as the notion of varying the width along a stroke in order to
simulate marks which are created by applying ink to paper with a nib
pen. Girshick et al. [2000] introduce the creation of strokes based on

64 interactive example-based pen-and-ink hatching

Figure 5.1: Smooth direction �eld hatching by Hertzmann and Zorin [2000].

principal curvature directions, a notion used bymany following hatching
techniques. Hertzmann and Zorin [2000] perform an optimization of
the curvature directions and use the resulting smooth direction �eld to
create hatching strokes (see Fig. 5.1). In our work, we use this optimized
direction �eld as a basis for learning the directions of example hatching
strokes. Zander et al. [2004] propose to create object-space hatching
strokes by tracing the curvature directions in object space (see Fig. 5.2).
In our approach, we also use an object-space representation of the stroke
trajectories. In contrast to these explicit stroke descriptions, Praun et al.
[2001] introduce a hatching approach using textures. �is allows for
real-time rendering, while still achieving expressive results (see Fig. 2.1).
Praun et al.’s [2001] technique is extended by Kim et al. [2008] to work
for dynamic and specular surfaces. Gasteiger et al. [2008] build upon
Praun et al.’s [2001] technique in order to generate hatchings that are
oriented along model-based preferential directions of anatomical sur-
faces. Despite the appealing properties of these texture-based methods,
we decided to use an explicit stroke representation. �is representation
gives us the required control over singular strokes which we need for re-
producing learned stroke properties. All the mentioned methods have in
common that the hatching strokes depend on a mapping of a small set of
lighting conditions and mesh features to stroke properties. It is thus very
di�cult for these methods to convincingly reproduce the stylistic prop-
erties and variations present in hand-drawn hatchings. For this reason,
Kalogerakis et al. [2012] recently proposed to learn hatching styles from
example drawings (see Fig. 5.3). While Kalogerakis et al.’s [2012] work
serves as an inspiration of our own, we improve on it by using analytical
representations of hatching patches and hatching strokes, by modeling
stroke distance interrelationships in more detail, as well as by speci�cally
permitting interaction. We explain how we deviate from Kalogerakis et
al.’s [2012] work in more detail below.

5.2 related work 65

Figure 5.2: Object-space hatching by Zander et al. [2004].

�ere has been some previous e�ort in style transfer and example-
based illustrative rendering. Hamel and Strothotte [1999] capture user-
de�ned rendering parameters and re-use them for rendering othermeshes.
Mertens et al. [2006] transfer texture variations between meshes by cor-
relating texture properties with geometric mesh features, using similar
features as we do in our approach. Hertzmann et al. [2001] present a
framework capable of learning and reproducing image processing �lters
which mimic drawing and painting styles, taking 2d images as input.
Although many di�erent styles can be successfully transferred, the pixel-
based nature of this technique makes it di�cult to faithfully reproduce
drawing styles which depend on long and individual strokes. Zhao and
Zhu [2011] generate example-based portrait paintings from photographs
by transferring brush strokes from a collection of template paintings. Also
working on 2d images, Kim et al. [2009] adopt statistical texture transfer
methods to transfer the stippling characteristics from example stippling
illustrations to new images (see Fig. 2.6a). Related to this, Martín et al.
[2011] present a method for scale-dependent and example-based stip-
pling based on hal�oning (see Fig. 2.6b). Stippling by example is mostly
concernedwith calculating adequate stipple positions and shapes. Herein,
the individual stipple points do not have a function on their own, but
work as a conglomerate. In the drawing style which we aim to reproduce,
in contrast, each drawing mark has an individual function. Furthermore,
the hatching strokes are subject to interrelations along their entire extent,
as opposed to the interrelations of only one 2d location per mark in the
case of stippling. For these reasons, hatching by example requires more
complex style transfer models than required by example-based stippling.

Some approaches establish statistical models of stroke patterns. Jodoin
et al. [2002] as well as Barla et al. [2006] synthesize stroke patterns by
example based on statistics which they derive from given input stroke
patterns. Other related work [Freeman et al., 1999, 2003; Hertzmann et al.,
2002; Kalnins et al., 2002] focuses on the style transfer between curves.

66 interactive example-based pen-and-ink hatching

Figure 5.3: Example-based hatching in image space by Kalogerakis et al. [2012].

�ese approaches transfer stroke patterns or line rendering styles merely
in 2d. For our needs, however, it is necessary to involve 3d information in
the style transfer process. For this reason, we condition our style transfer
model on a 3d object, and also apply the style transfer model to the
generation of renderings of 3d objects. �is is inspired by the work of
Lum and Ma [2005] as well as that of Cole et al. [2008]. Both of these
approaches use machine learning to correlate hand-drawn line drawings
with computer-generated silhouettes and feature lines.

Applying machine learning to learn hatching properties was only re-
cently introduced byKalogerakis et al. [2012](see Fig. 5.3).�eir approach
operates on pixels. Both the learning and the synthesis of a drawing style
are performed on a pixel basis. Although Kalogerakis et al. [2012] syn-
thesize the �nal hatching strokes as textured triangle strips, they learn
and infer hatching properties per pixel. �e transfer of drawing charac-
teristics based on pixels means that the transfer does not involve any
explicit representation of drawing elements, such as strokes. �e results
of Kalogerakis et al. [2012] prove that this strategy works very well for
the illustration styles they work with. For learning the illustration styles
that we aim to reproduce, however, we need di�erent learning strategies,
in particular a di�erent drawing representation. �erefore, we operate
on explicit analytical representations of hatching strokes and patches of
strokes. �is explicit representation of drawing elements enables us to
capture drawing characteristics and stylistic properties present in four
nested levels of abstraction. �ese levels are a global, patch, stroke, and
pixel level. Representing the hatching strokes explicitly during the style
transfer process allows us to transfer local stroke distance characteristics,
which results in less uniform and equidistant strokes than Kalogerakis et
al.’s [2012] global pixel-based approach to transferring stroke distances.
Furthermore, the method proposed by Kalogerakis et al. [2012] delivers
a static result which cannot be modi�ed a�er its generation. Our explicit
description of drawing elements, in contrast, opens up the possibility to

5.2 related work 67

Figure 5.4: Interactively generated pen-and-ink illustration by Salisbury et al. [1997].

interactively modify the resulting illustration. We exploit this control by
providing users of our system with the possibility to brush with patches
of hatching strokes onto a 3d model, amongst other interactions. �e
interaction capabilities of the resulting semi-automatic hatching system
allow users of our system tomanually enhance the aesthetic quality of the
results. �is possibility for adjusting the result gives our method the po-
tential of being employed in creative environments as well as by laymen in
hatching illustration. Moreover, Kalogerakis et al. [2012] use an extensive
set of surface features in their style transfer model.�is vast feature space
makes their model very accurate but also computationally expensive.
�is computational load results in rather long processing times in the
order of 30 to 60 minutes for the image synthesis. To avoid this delay we
use a much smaller set of features. �is makes our model less accurate
than that of Kalogerakis et al. [2012], but brings us close to the possibility
of responsive interaction with the example-based illustration.
�e concept of interactive illustrative rendering has been proven suc-

cessful, not only since Seims [1999] advocated to provide more user
control for fully automatic non-photorealistic rendering methods. Salis-
bury et al. [1994, 1997] let users brush with stroke patterns to interactively
create pen-and-ink illustrations (see Fig. 5.4). Deussen et al. [2000] em-
ploy user-de�ned segmentation images and brushing interactions for
the semi-automatic generation of stippling drawings (see Fig. 2.5). An-
other semi-automatic illustration system is presented by Ostromoukhov
[1999], who employs user-de�ned 2d patches as the basis for generat-
ing digital facial engravings using 2d images as reference images. Rössl
and Kobbelt [2000] also use image-space segmentations in their inter-
active system for creating line-art renderings. Here, the segmentations

68 interactive example-based pen-and-ink hatching

are created automatically, but can be adjusted by the user. We also rely
on a user-adjustable automatic segmentation to identify regions of dif-
ferent drawings characteristics. However, we propose to perform the
segmentation on the mesh and to learn the segmentation using machine
learning methods, similar to the approach of Kalogerakis et al. [2010]
for learning mesh segmentation and labeling. Furthermore, we provide
users with the possibility to interactively modify the resulting illustration
by allowing them to re�ne the mesh segmentation. �is interaction is
related in its intention to the direct tweaking of lighting and shading as
proposed by Anjyo et al. [2006] and extended by Todo et al. [2007]. We
do not discuss the �eld of mesh segmentation in detail in this thesis. �e
interested reader might consult the following references. �e survey of
Shamir [2008] compares di�erent mesh segmentation techniques. Chen
et al. [2009] propose a benchmark for mesh segmentation and discuss
the performance of di�erent methods for mesh segmentation.
Furthermore, Breslav et al. [2007] also use patches embedded on

the surface for creating illustrative renderings. �ey use pre-de�ned
3d patches to transform 2d patterns in a way that the transformed 2d pat-
terns match the underlying 3d transformation. In contrast to pre-de�ned
patches, we use adaptive 3d patches that are dynamically predicted based
on a learned function of lighting conditions and mesh features. And
instead of transforming 2d patterns, we use the 3d patches to guide the
generation of stroke trajectories in 3d.

5.3 overview

Our overall approach consists of two general stages and is illustrated in
Fig. 5.5. First, we learn a model of an illustrator’s pen-and-ink hatching
style (Section 5.4).�en, we apply this model to synthesize hatching illus-
trations of target 3dmeshes (Section 5.5).�e synthesis can be in�uenced
by user interactions (Section 5.6).
As input to the learning stage (see Fig. 5.6) we use a hand-drawn

hatching illustration, a manually created segmentation image of this il-
lustration, and a 3d scene whose projection closely matches the example
image. We refer to this 3d replication of the example drawing as ‘reg-
istered 3d model’. We use it to infer 3d information related to the 2d
example image. We obtain it manually by sculpting it from a 3d model
similar to the object depicted in the illustration, or by using illustrations
that were drawn using 3d renderings as master [Isenberg et al., 2006].

In a preprocessing step to the learning procedures, we employ image
processing methods to detect the trajectories of the hatching strokes in
the example image (Section 5.4.1). �is stroke detection is facilitated by

5.3 overview 69

manual creation

Learning

Synthesis

target 3D model

texture

5.4.1

5.5.1 5.5.35.5.2

interaction

5.6

example
illustration

3D model detected strokes

patch
classifier

distance
functions

direction field
predictors

5.4.2 5.4.45.4.3

example-based
illustration

direction field stroke trajectories

texture
5.5.4

surface patches

segmentation image

Figure 5.5: Overview of our approach to hatching by example. In a learning stage, we
learn the characteristics of an illustrator’s hatching style. In a synthesis stage, we apply the
learned style to a target 3d model to gain an example-based illustration. �e arrows are
annotated with the section numbers where the corresponding processes are explained.

70 interactive example-based pen-and-ink hatching

using the manually created segmentation image to separate groups of
strokes from the remainder of the input image.
�e segmentation image also de�nes patches of strokes in the exam-

ple illustration which function as a group and which share common
properties. We attempt to learn the properties of these groups of strokes
in the following way. Using the registered 3d model and the segmenta-
tion image, we train a classi�er that classi�es the vertices of the input
mesh into segment labels based on lighting and geometric mesh features
(Section 5.4.2). When we apply this classi�er on a target 3d mesh in
the synthesis stage, it yields a dynamic segmentation of the mesh into
surface patches which incorporate the learned global drawing charac-
teristics (Section 5.5.1). �e patch classi�er operates on the whole mesh,
and represents the �rst level of our four-level hierarchy of hatching style
descriptors. To complement the described automatic inference of hatch-
ing regions, the surface patches can also be interactively modi�ed by the
user via brushing (Section 5.6).
�e second level of our hierarchy is concerned with the directions of

the hatching strokes. We learn the properties of the stroke directions in
the example illustration on a patch level. To be able to do this in 3d , we
use the following approach: we reproject the detected 2d stroke trajecto-
ries onto the registered 3d model. In this way, we gain an object-space
description of the trajectories of the hand-drawn strokes. We then use
regression analysis to learn how the 3d stroke trajectories correlate with
lighting and geometric features of the registered 3d model (Section 5.4.3).
Note that the reprojected strokes allow us to learn the directions of the
strokes on the surface, rather than learning the image-space directions of
strokes in dependency of surface features. We train one regression func-
tion for each patch of strokes in the example image. In the synthesis stage,
every surface patch is assigned one example stroke patch. We then apply
one direction �eld function per surface patch to infer a direction �eld
which incorporates the stroke directions learned from the corresponding
example stroke patch (Section 5.5.2).
�e third level of our model deals with the distance relationship of

individual strokes with their neighboring strokes. Here we use the same
reprojection setup as described above. �e reprojection setup allows us
to correlate 2d stroke distances with 3d lighting conditions and surface
features (Section 5.4.4). In order to establish this correlation, we train a
regression function for each individual stroke in the example illustration.
In this way, we learn the 2d distances of the stroke to its neighboring
stroke along its extent as a function of the surface features measured at
the locations of the reprojected stroke control points. In the synthesis
stage, we use these stroke distance functions during the tracing of stroke
trajectories to reproduce the recorded patterns of stroke interrelationship
(Section 5.5.3). �is local approach to learning stroke distances and the

5.3 overview 71

(a) (b)

(c) (d)

Figure 5.6: �e input to our approach for learning a hatching style. (a) A hand-drawn
hatching illustration (courtesy of Dauber et al. [2005]), (b) a 3d scene whose projection
closely matches the example image, and (c) a manually created segmentation image of
the example illustration ((d) shows an overlay of the latter two images for reference).

72 interactive example-based pen-and-ink hatching

explicit representation of strokes during the style transfer process allows
us to transfer stroke distance characteristics inmore detail than the global
pixel-based approach of Kalogerakis et al. [2012]. Our local approach to
modeling stroke distances results in hatching strokes that are less regular
and less uniform and arguably exhibit more ‘character.’
�e �nal step in the synthesis is to create 2d textured triangle strips

from the 3d stroke trajectories (Section 5.5.4). �is stroke rendering
represents the fourth level of our style descriptor hierarchy and involves
two attempts of transferring low-level stroke properties.
�e resulting hatching illustration can bemanually re�ned bymapping

and brushing operations (Section 5.6). �is semi-automatic system e�ec-
tively combines the advantages of automatic example-based hatching and
human virtuosity. �is interaction capability can increase the aesthetic
quality and illustration e�ectiveness of the results that are achievable with
ourmethod. First, the illustration can be altered by overriding the learned
mapping of surface patches to example stroke patches. By reassigning a
di�erent example stroke patch to a surface patch, the strokes within this
patch can be changed. Second, the hatching angle of each individual patch
can be controlled. �ird, the direction �eld that we use as a reference for
inferring the stroke direction �eld can be retouched with brushing tools.
Fourth, we allow users of our system to brush with patches of example-
based hatching strokes. All generated hatching strokes depend on the
dynamic mesh segmentation (Section 5.5.1). Users can easily modify, add,
or remove patches of strokes by re�ning this segmentation with a set
of brushing interactions. �us the interaction also allows us to address
some of the limitations of the fully automatic approach (Section 5.8).

5.4 learning a hatching style

In this sectionwe explain the learning part of our approach inmore detail.
�e illustration style that we aim to learn is a speci�c type of traditional
pen-and-ink hatching. Fig. 5.6a shows an example from an anatomy
textbook [Dauber et al., 2005]. A property of this hatching style is that
the drawing is, for themost part, composed of separate individual strokes.
Each stroke in the drawing has a particular function.�is contrasts other,
more areal, hatching styles which use many overlapping strokes (styles
that are visually similar to, e. g., the real-time hatching images of Praun
et al. [2001]). Based on this property we can automatically detect the
strokes in hand-drawn images that are drawn in our target illustration
style. �e detection of strokes would be harder to accomplish on an
image consisting of many overlapping strokes.

5.4 learning a hatching style 73

(a) (b)

Figure 5.7: Stroke detection. We detect trajectories of hatching strokes in a given example
illustration using image processing ((b) shows a detail of (a)).

5.4.1 Image Analysis

By establishing an explicit analytical representation of the strokes in
an example illustration, we create the possibility to learn the properties
of the strokes on higher levels than a mere pixel representation would
allow us to do. As input to our stroke detection, we use a high-resolution
black-and-white scan of an example drawing (Fig. 5.6a). As second input,
a manually created segmentation image (Fig. 5.6c) allows us to separate
patches of strokes from the rest of the drawing. It also helps us to ex-
clude individual strokes that we cannot reproduce faithfully, e. g., the
stippling marks in the lower right part of the shoulder blade illustration.
For each patch, we run a series of standard morphological operations
[Soille, 2003] to detect the trajectories of the hatching strokes. Our im-
age processing pipeline starts with a morphological cleaning operation
(an operation that removes isolated pixels) to remove scanning artifacts.
�en we use connected component labeling to identify the strokes. �in-
ning the stroke regions yields skeletons of the strokes. A hit-or-miss
transform identi�es skeleton junctions and endpoints which we use to
prune the skeletons and to separate the trajectories of overlapping strokes
from each other. We then vectorize the strokes by creating equidistant
control points along the stroke skeletons. Fig. 5.7a shows the result of
the described stroke detection routines, Fig. 5.7b shows a detail section.
We used Matlab® to implement the stroke detection routines. We employ

74 interactive example-based pen-and-ink hatching

the following Matlab® commands for morphological cleaning, connected
component labeling, thinning, as well as for the detection of skeleton
endpoints and junctions:
Source = bwmorph(Source, ’ c l e an ’ ,Inf);
[Boundaries , Labels] = bwboundaries(Source, ’ noho l e s ’);
Skeletons = bwmorph(Source, ’ t h i n ’ ,Inf);
Endpoints = BOHitOrMiss(Skeletons , ’ end ’);
Junctions = BOHitOrMiss(Skeletons , ’ t r i p l e ’);

�is sequence of commands is executed for each separated patch of
example strokes a�er using the segmentation image to separate a patch
of strokes from the remainder of the example image. A�er running
the given routines, we use the number of endpoints and junctions to
di�erentiate between di�erent stroke types. For stroke types consisting
of overlapping strokes, we discriminate the overlapping strokes from
each other by starting at the longest skeleton segments and searching for
adjacent shorter skeleton segments that are oriented in the same direction
(at an angle smaller than 45◦) as the long segments. In this way we resolve
ambiguities at stroke crossings and gather the skeleton segments that
belong to the same stroke. We omit small strokes whose area is below 5%
of the average stroke region within a patch or whose skeleton length is
below 50 pixels. During vectorizing the stroke trajectories, we generate
control points in a distance of 25 pixels along the stroke skeletons for an
input image of 3670×7360 pixels (Fig. 5.23a).

By reprojecting the detected stroke trajectories onto the registered 3d
model, we can relate object-space properties of the hand-drawn strokes
to 3d measurements. �is reprojection of drawing elements to object-
space is a novelty compared to previous approaches that also use a 3d
model registered with a 2d drawing, but merely read out 3d information
related to 2d elements in an input drawing [Kalogerakis et al., 2012; Lum
and Ma, 2005; Cole et al., 2008]. Our approach, in contrast, allows us to
learn object-space properties of otherwise image-space elements, such as
the directions of hatching strokes on the surface. Before we do that on a
patch level and locally, however, we make an attempt to capture global
properties of the drawing style as outlined next.

5.4.2 Patch Properties and Surface Features

We identify the grouping of strokes in patches as a central stylistic ele-
ment of our target illustration style. It can be seen in Fig. 5.6d that the
strokes in each patch share common attributes such as direction, width,
and shape. In order to take this grouping of strokes into account, we
explicitly involve it in our style transfer model. �is explicit handling of
stroke groups is an essential distinction between our approach and the
global pixel-based approach of Kalogerakis et al. [2012]. �e manual seg-

5.4 learning a hatching style 75

(a) (b)

Figure 5.8: Learning patch properties. We use (a) the segmentation image and the regis-
tered 3d model to learn the global properties of patches of strokes with respect to (b)
lighting and geometric mesh features as described in the text.

mentation of the example illustration allows us to faithfully distinguish
the di�erent patches of similar strokes. �is would be di�cult to realize
automatically, as it involves complex perceptual and creative decisions.
We use the segmentation image together with the registered 3d model
(Fig. 5.8a), which we denote here as the input mesh, for capturing the
properties of these groups of strokes. We project each vertex of the input
mesh to image-space and read out the patch label found at this location
in the segmentation image. Assigning a patch label to each vertex repre-
sents a segmentation of the input mesh that matches the segmentation
given by the segmentation image. We take this mesh segmentation and
a number of lighting and geometric features (as detailed below) mea-
sured at each vertex and train a classi�er to learn a mapping from mesh
features to segment labels. Applying this classi�er in the synthesis stage
assigns a segment label to each vertex of a target mesh (Section 5.5.1).�e
resulting dynamic segmentation of the target mesh into surface patches
incorporates the learned global characteristics of the example illustration
as de�ned by the segmentation image.

We use a voting multiclass classi�er [Hastie and Tibshirani, 1998] with
a one-vs.-one strategy for classi�cation. A multiclass classi�er is a classi-
�er that distinguishes between n classes, as opposed to a binary classi�er
that distinguishes between two classes. A voting multiclass classi�er is a
combination of multiple binary classi�ers. We employ relevance vector

76 interactive example-based pen-and-ink hatching

machines [Tipping and Faul, 2003] with radial basis function kernels as
binary classi�ers. We experimented with various classi�ers and gained
themost promising results with the named one.Weuse a stopping epsilon
of E = 0.001 for the multiclass classi�er. In all of our learning routines,
we use a gamma of G = 0.08 for the radial basis function kernels.

As mentioned before, we use a relatively small set of surface features
compared to the approach of Kalogerakis et al. [2012]. We selected a
set of 18 decisive features. We identi�ed these by correspondence with
professional artists and illustrators, by drawing conclusions from the
literature on computer-generated hatching, and by experiment. From
artists and from the literature [Hodges, 2003]we learned that lighting
features aremost in�uential on the decision onwhere to place strokes. An
illustrator did let us know that directional features, such as the curvature
direction, are o�en used for conveying shape, but that the direction of the
strokes does not necessarily have to follow the curvature direction. We
experimentedwith various features, and selected a set of features that lead
to a robust classi�cation of patch properties. We consider a classi�cation
as robust if it results in continuous patches which, assessed by subjective
reasoning, match the areas used by the creator of the example image. We
made a tradeo� of classi�cation speed and accuracy for choosing the
number of features. �e classi�er operates on feature vectors of scalar
values. For including 2d and 3d measurements in our model, we either
use their components or the dot product with the view vector as a view-
dependent scalar of a 3d variable. Fig. 5.8b depicts renderings of the
employed features in reading order and as listed below.
�e six view-independent features we use are: the �rst and second prin-

cipal curvature magnitudes |κ1| and |κ2|, the ‘parabolicalness’ |κ1|/|κ2|,
as well as the x-, y- and z-components of the �rst principal curvature
direction a�er performing the curvature optimization procedure pro-
posed by Hertzmann and Zorin [2000] λ1x , λ1y , and λ1z , which we
here denote as the �rst optimized curvature direction.
�e 12 view-dependent features we use are: di�use illumination I

(Lambertian shading), approximated global illumination SSDO (screen-
space directional occlusion as introduced by Ritschel et al. [2009]), facing
ratio n · v (where n is the normal and v is the viewing direction), facing
ratio gradient magnitude |∇(n · v)|, view-dependent facing ratio gradi-
ent direction (∇(n · v)) · v, view-dependent �rst optimized curvature
direction λ1 · v (where λ1 is the �rst optimized curvature direction),
view-dependent second optimized curvature direction λ2 ·v, depth z, the
image-space coordinates xi and yi, as well as the x- and y-components
of the normal projected to image space nix and niy .

We normalize and weight the features to control the in�uence of each
of the features individually. �e weighting is achieved by multiplying
each feature with a user-controllable weight. Multiplying a feature that is

5.4 learning a hatching style 77

normalized to the range of [0,1] with a weight greater than 1 causes the
scaled feature to have greater impact during learning and inference.

We put most emphasis on the lighting features as we assume them to
have the greatest impact on where the illustrator has drawn strokes and
on which kind of strokes he or she used in di�erent regions. We see this
assumption con�rmed by the literature on illustration [Hodges, 2003].
�e assumption is also re�ected by the ranking of features reported by
Kalogerakis et al. [2012]. We weight the image-space features slightly
stronger than the directional features. When we learn a model of the
stroke directions and distances, we adjust the feature weights accordingly.
�e feature weights we use are given in Table 1, listed in the same order
as the features are named above.

Feature Regions Directions Distances

|κ1| 1.0 2.0 1.0
|κ2| 1.0 2.0 1.0

|κ1|/|κ2| 1.0 2.0 1.0
λ1x 2.0 7.0 2.5
λ1y 2.0 7.0 2.5
λ1z 2.0 7.0 2.5
I 5.0 1.5 4.0

SSDO 4.0 1.5 4.0
n · v 2.5 2.0 3.0

|∇(n · v)| 1.5 2.0 3.0
(∇(n ·v)) ·v 1.5 2.0 2.0
λ1 · v 2.0 5.0 2.0
λ2 · v 2.0 5.0 2.0
z 2.3 1.0 4.0
xi 2.3 1.0 4.0
yi 1.5 1.0 4.0
nix 2.0 4.0 2.5
niy 2.0 4.0 2.5

Table 1: Feature weights.κ1 andκ2 are the �rst and second principal curvature directions,
λ1 and λ2 are the �rst and second optimized principal curvature directions according
to Hertzmann and Zorin [2000] (λ1x is the x-component of λ1), I is the di�use
illumination (Lambertian shading), SSDO is the screen-space directional occlusion
according to Ritschel et al. [2009],n is the surface normal, v is the viewing direction,
∇ is the gradient, z is the depth, xi and yi are the image-space coordinates,nix and
niy are the x- and y-components of the image-space normal.

78 interactive example-based pen-and-ink hatching

�e described model of patch properties is prone to over�tting. More-
over, the sparse set of features makes it less accurate than the model of
Kalogerakis et al. [2012]. We discuss the resulting limitations in more de-
tail in Section 5.8. We proceed with describing our approach to learning
the hatching stroke directions on the surface.

5.4.3 Stroke Directions

We learn and predict the locations of patches of example strokes on a
global (mesh) level. We now descend one level in our style descriptor
hierarchy and explain how we capture the directions of hatching strokes
on a patch level. We do this by establishing a mapping of surface features
to the directions of the example strokes reprojected onto the surface. In
this way, we learn how the surface directions of the strokes drawn by the
illustrator correspond with surface features. Applying this learned map-
ping in the synthesis stage yields an example-based patch-wise direction
�eld (Section 5.5.1) which incorporates the directional characteristics of
the learned hatching style.

We use the same set of features as described in Section 5.4.2 for learn-
ing the stroke directions, while weighting the directional features signi�-
cantly stronger (see Table 1 for details). We use the optimized curvature
direction �eld proposed by Hertzmann and Zorin [2000] as a reference
direction �eld. We gain an object-space representation of the example
strokes by reprojecting the detected example strokes (Fig. 5.7a) onto the
the registered 3d model (Fig. 5.6b). An example for such reprojected
strokes is shown in Fig. 5.9a. We then use regression analysis to learn
a mapping from surface features to 3d stroke directions. We measure a
scalar of the local stroke direction as the angle between the local stroke
direction and the �rst optimized curvature direction in the tangent plane.
With local direction we mean the direction of a segment of a stroke
represented as 3d polyline. We train one regression function for each
example stroke patch. For each vertex of a patch (see Fig. 5.8a) we gather
and average the local stroke directions at the K nearest control points of
the reprojected example strokes. �is yields an example stroke direction
�eld as shown in Fig. 5.9b. For the examples presented in this chapter,
we used a value of K = 5. Eventually, the training data for learning the
direction �eld function consist of one feature vector and one angle per
vertex of a patch. We employ kernel ridge regression [Hoerl and Ken-
nard, 1970] using radial basis function kernels for learning. We selected
this learning method also by experiment, comparing it to radial basis
function networks and relevance vector machines.
We complement the described learning of directional characteristics

with a model of the distances between neighboring strokes.

5.4 learning a hatching style 79

(a)

(b)

Figure 5.9: Learning stroke directions. For each patch, we use (a) the reprojected stroke
trajectories to create (b) an example stroke direction �eld. We then employ regression
analysis to establish a mapping from surface features to example stroke directions.

5.4.4 Stroke Distances

While we perform the capture and reproduction of stroke directions
on a patch level, we model the distances between neighboring strokes
more locally on a stroke level. We here use the same reprojection setup
as described in Section 5.4.3. For each example stroke, we learn the
2d distances from one of its neighboring strokes along its extent as a
function of the surface features. In the synthesis, we use these distance
functions to push strokes towards or away from their neighboring strokes
during the tracing of stroke trajectories (Section 5.5.3). In this way we can
recreate the learned patterns of local stroke interrelationship. �is local
modeling of stroke distance relationships results in stroke patterns that
are less equidistant and less regular than the results of previous methods.
According to the feedback of two professional medical illustrators, this
controlled example-based irregularity enhances the aesthetic quality
of the resulting hatching illustrations. �is local modeling of stroke

80 interactive example-based pen-and-ink hatching

Figure 5.10: Learning stroke distances. For each detected stroke, we measure the 2d
vertical distances (resp. horizontal distances for vertical strokes) to one of the neighbor
strokes along the extent of the stroke. We then train a regression function to establish a
mapping from surface features to the measured stroke distances.

distances is made possible by the detection of hatching strokes in the
example that we described in Section 5.4.1.
For learning the stroke distance functions, we again use the same set

of features as explained in Section 5.4.2 and put most emphasis on the
image-space coordinates and on the di�use and ambient lighting (see
Table 1). For a horizontal example stroke, we measure the 2d vertical
distance to its lower neighbor stroke at every control point. �is distance
measurement is illustrated in Fig. 5.10. We interpolate the surface feature
vectors measured at the vertices to gain interpolated feature vectors at
the reprojected control points. We use barycentric coordinates for a
component-wise interpolation of the feature vectors. Using this data, we
train a regression function for each stroke. We here also employ kernel
ridge regression with radial basis function kernels.

5.4.5 Summary

A�er running the described learning procedures, we have a description
of the drawing style stored in the following way. �e coordinates and
widths of the example strokes are stored in a text �le, grouped in patches.
We make use of the dlib library [King, 2009] for performing the de-
scribed machine learning methods. �e patch classi�er, the direction
�eld functions, as well as the stroke distance functions are stored as dlib
decision functions. �e example stroke data and learned functions can
thus be loaded from disk and used in the synthesis stage of our method.

5.5 hatching synthesis 81

(a) (b) (c)

Figure 5.11: Adaptive surface patches. We generate a dynamic example-based mesh
segmentation and grow adaptive surface patches from the resulting labeling. �e �gure
shows the patches generated for (a) the input mesh and view, (b) a di�erent view, and
(c) for a di�erent mesh. We use these surface patches to generate hatching strokes. �e
surface patches can also be edited directly via brushing interactions (Section 5.6).

5.5 hatching synthesis

In this section we detail how we apply the learned model to a target 3d
mesh in order to synthesize a hatching illustration by example.

5.5.1 Adaptive Patches

�e �rst step in our synthesis pipeline is to apply the patch classi�er
described in Section 5.4.2 to predict a patch label at each vertex of the
target mesh. At each vertex, we input the surface feature vector into the
patch classi�er, which outputs a patch label for the current vertex. �is
classi�cation procedure yields a real-time dynamic segmentation of the
target mesh into surface patches which incorporate the recorded global
properties of the hatching style that we aim to reproduce. It is dynamic
because the segmentation is regenerated for every frame, and gives a new
result according to the new view direction and lighting conditions.
Based on this vertex labeling, we grow adaptive patches on the sur-

face in order to gain an explicit geometric representation of the surface
patches.We let surface snakes evolve on themesh as proposed by Bischo�
et al. [2005] to gain the patches. We employ surface snakes following the
predicted patch labels to collect the connected vertices and faces of every
patch label, and to establish an explicit representation of the boundary of
each patch. Our surface snakes do not evolve iteratively and do not move
according to a velocity, in contrast to the snakes described by Bischo�

82 interactive example-based pen-and-ink hatching

(a) (b) (c)

Figure 5.12: Example-based direction �eld. We apply the learned direction �eld functions
to infer an example-based stroke direction �eld. Each surface patch is associated with a
di�erent direction �eld function and the inference is performed patch-wise. (a) shows
the surface patches overlayed over the (b) inferred direction �eld, (c) shows a detail of
(b). �ese directions are the basis for tracing stroke trajectories on the surface.

et al. [2005]. Our surface snakes evolve recursively and move the full
length of an edge per recursion. Our snake control points split at each
vertex and stop their evolution at vertices that are assigned a patch label
that is di�erent from the patch label gathered by the current snake. We
prevent the generation of too small patches by omitting all patches that
are formed by a surface snake whose number of control points is below
a threshold. Fig. 5.11 shows the resulting adaptive surface patches for the
inputmesh, for a di�erent view, and for a di�erentmesh.We denote them
as adaptive because they adjust to the current viewing and lighting condi-
tions. When the object or the light sources are transformed, the patches
move along the surface.�ese adaptive patches embedded on the surface
are the basis for the following steps in our hatching synthesis pipeline.
�e explicit representation of hatching regions as surface patches also
makes it possible to realize brushing interactions that allow users to
directly adjust the resulting hatching illustration (see Section 5.6).

5.5.2 Example-based Direction Field

For each adaptive patch, we apply a direction �eld function as described
in Section 5.4.3 to infer an example-based stroke direction �eld. Every
adaptive patch is associated with an example stroke patch and uses its di-
rection �eld function.�us, a di�erent direction �eld is inferred for each
adaptive patch. �e inferred direction �eld incorporates the directional
characteristics learned from the example illustration.�e inference takes
place at the vertices of the target mesh. One angle is inferred for each

5.5 hatching synthesis 83

(a) (b)

Figure 5.13: Stroke distance control. �e interrelationship of (a) strokes following the
direction �eld is (b) enhanced by applying the learned distances functions.

vertex. �e angle is obtained by evaluating the direction �eld function
using the respective feature vector as argument. We rotate the optimized
curvature direction by the inferred angle on the tangent plane to obtain
the �nal stroke direction. We use the resulting example-based direction
�eld for tracing the trajectories of hatching strokes on the surface. �is
patch-wise direction �eld inference is similar to the segment-wise direc-
tion inference in image space that was presented by Kalogerakis et al.
[2012]. Our object-space representation has the advantage, however, that
it enables us to provide object-space brushing interactions for editing the
reference direction �eld (see Section 5.6). �is reference �eld retouching
allows users of our system to �exibly and directly adjust the trajectories
of hatching strokes on the surface.

5.5.3 Stroke Tracing and Distances

We trace stroke trajectories on the surface by integrating the inferred
stroke directions. At the same time, we use the learned distance functions
as explained in Section 5.4.3 to control the distances between strokes in
image space. In this way we gain strokes which follow the example-based
direction �eld and which recreate the learned patterns of stroke interrela-
tionship. �is means that the generated stroke trajectories deviate from
each other and approach each other in similar ways as the strokes in the
example, introducing controlled example-based distance irregularities.
Each stroke is associated with an individual distance function. Our local
approach to transferring stroke distances results in a more detailed trans-
fer of stroke interrelationships as compared to the global pixel-based
approach of Kalogerakis et al. [2012]. �is results in hatching strokes that

84 interactive example-based pen-and-ink hatching

p
q

c

b

a

current stroke

neighbor stroke

|δ|

Figure 5.14: Stroke distance control in 2D. Starting from the current control point p,
the next control point q is determined based on a direction-based proposal a and a
distance-based proposal c. First, the direction-based proposal a is gained by integrating
the surface direction �eld by one step and projecting the point to 2d. Next, the vertical
intersectionb with the neighbor stroke is found by intersecting the neighbor stroke with
a vertical line througha. A distance δ is predicted by evaluating the distance function of
the neighbor stroke. �is prediction requires the lookup of 3d surface properties, which
is achieved by using the surface location that corresponds to the neighbor stroke control
point closest to b. �e distance-based proposal c is then found at the predicted distance
δ along a perpendicular on the local direction of the neighbor stroke starting from b.
Finally, the next stroke control point q is calculated by linearly interpolating a and c.
�e interpolation can be controlled with one user-tunable parameter. For creating the
result images in this chapter, we used a value of 0.3, meaning that each new position is
calculated to 30 percent by distance from the neighbor and to 70 percent by direction.

are less regular and less equidistant, which enhances the hand-drawn
character of the hatching illustrations generated with our approach.
�e stroke control points are embedded on the surface, living within

triangles of the mesh and on mesh edges. During the tracing within a
triangle, we interpolate the stroke directions inferred at the triangle’s
vertices using barycentric coordinates. A trajectory is stopped when it
reaches the boundary of an adaptive patch. During the tracing in ob-
ject space, we control the stroke distances in image space, in contrast
to previous object-space techniques [Zander et al., 2004]. While trac-
ing a stroke, we repeatedly evaluate its associated distance function. We
use the predicted distances from the neighboring stroke as a second
component in�uencing the position of each new control point, com-
plementing the directions from the stroke direction �eld. �e e�ect of
applying these stroke distance functions is demonstrated in Fig. 5.13. �e
distance-controlled tracing algorithm is illustrated in Fig. 5.14.

Weplace strokes incrementally, according to a seeding strategy adopted
from Jobard and Lefer’s [1997] streamline algorithm. We chose the algo-
rithm of Jobard and Lefer [1997] as a basis for our stroke generation due

5.5 hatching synthesis 85

to the following reasons. First, the algorithm facilitates the generation of
equidistant lines within a direction �eld. Second, the algorithm permits
to derive new strokes from existing ones. �ird, Jobard and Lefer’s [1997]
streamline algorithm implements a distance control mechanism via a
spatial search structure. We use the distances predicted by the learned
stroke distance functions for seeding new strokes from existing ones as
well as for terminating strokes which come too close to each other. �e
strokes are rendered as follows.

5.5.4 Stroke Rendering

We create 2d textured triangle strips from the 3d stroke trajectories for
rendering the hatching strokes.�is involves two attempts of transferring
low-level stroke properties. With those attempts we try to reproduce the
width and shape of the pen-and-ink strokes in the example image.

First, we use the stroke widths measured along the detected example
strokes for creating the 2d stroke geometry. Our stroke detection allows
us to measure the stroke widths along the extent of each detected stroke
and to parameterize the measured stroke widths depending on the po-
sition on the trajectory. We use these parameterized stroke widths for
creating triangle strips of varying width during stroke rendering. At each
control point of a stroke to be rendered, we calculate the current width
using the measured and parameterized stroke width. Examples for such
textured triangle strips are shown in Fig. 5.15b.

As a second attempt of transferring low-level properties, we texture the
resulting strokes using the entire example image as texture. �is allows
us to render strokes that simulate ‘real’ pen-and-ink drawing marks. We
realize this texture mapping by creating texture coordinates that tightly
enclose individual strokes in the example image. To gain the required
texture coordinates, we �rst map the detected stroke trajectories and
measured stroke widths to texture space using a simple linear mapping.
We then generate texture coordinates for each detected example stroke by
�tting a spline through the stroke control points and generating pairs of
texture coordinates at perpendicular o�sets from the spline. �e o�sets
are calculated using the measured stroke widths. In other words, we map
the detected stroke trajectories to texture space and in�ate them accord-
ing to the measured stroke widths. �e resulting texture coordinates
tightly enclose the detected example strokes, as shown in Fig. 5.15a. �e
image in Fig. 5.15c shows a detail section of Fig. 5.15a with a color-coded
rendering of the texture coordinates. �e u-coordinate is mapped to
green color and the v-coordinate to blue color.�e colors are normalized
to the depicted section of the texture space for readability.

86 interactive example-based pen-and-ink hatching

(a) (b)

(c)

Figure 5.15: Example-based stroke widths and stroke texturing. (a) shows a section of the
texture space (the texture image with superimposed texture coordinates) and (b) shows
a set of rendered strokes in image space. We use the entire example image as texture and
create (a) texture coordinates that tightly enclose strokes in the example image. �is is
done by mapping the trajectories of the detected strokes to texture space and in�ating
them according to the measured stroke widths. Each rendered stroke in (b) is assigned
one texture-space stroke from (a). �e measured stroke widths are used for creating both
the geometry of the (a) texture-space strokes as well as of the (b) rendered strokes. (c)
shows a detail section of (a) with a color-coded rendering of the texture coordinates. �e
u-coordinate is mapped to green color and the v-coordinate to blue color. �e colors
are normalized to the depicted section of the texture space for readability.

Weperformantialiasing for on-screen display via blurring andmipmap-
ping the example texture and via supersampling. We make use of texture
interpolation for supersampling. �e supersampling is achieved via �rst
rendering the result image to a texture that is four times the size of the
viewport. �e result is subsequently rendered to the viewport as a tex-
tured quad. We threshold and binarize the images for the result images
in this document, which also helps to reduce texturing artifacts.

5.6 interaction with the hatching illustration 87

Figure 5.16: Mapping interaction. Each patch of hatching strokes in the result illustration
(right) can be assigned a di�erent patch of strokes in the example illustration (le�).

5.6 interaction with the hatching illustration

�e processes described in the previous section automatically synthesize
a hatching illustration of a 3d model. To complement this automatic
generation, we allow users to interact with the illustration in four di�erent
ways. Users can modify which type of strokes are generated within a
surface patch, adjust the hatching angle, retouch the reference direction
�eld with brushing tools, and brush with patches of hatching strokes.
�is set of interactions allows users to adjust the illustrations according
to their requirements and aesthetic judgment and, thus, to enhance the
aesthetic appearance of the resulting illustrations.

First among the interactions, users can modify which type of strokes
are created within a particular region. We realize this modi�cation by
assigning a di�erent example stroke patch to a surface patch.�e reassign-
ment leads to the usage of a di�erent direction �eld function, di�erent

88 interactive example-based pen-and-ink hatching

Figure 5.17: Hatching rotation interaction. Users can control the general hatching direc-
tion of each patch of hatching strokes. �e strokes in the highlighted patch are rotated.

stroke distance functions as well as di�erent stroke widths and textures.
�is interaction, thus, results in a di�erent appearance of hatching strokes
within an adaptive patch. Fig. 5.16 shows the e�ect of such an interaction.

Second, users can control the hatching angle of each individual patch of
hatching strokes. We realize this interaction by adding a user-controlled
angle to the stroke direction angle that is inferred during the direction
�eld inference.�is interaction allows users to adjust the general hatching
direction of all strokeswithin one patch,while the strokes still incorporate
the learned and reproduced directional characteristics (see Fig. 5.17).
�ird, users can modify the stroke trajectories by retouching the refer-

ence direction �eld (the optimized curvature direction �eld) with brush-
ing interactions. Fig. 5.18 shows an interaction sequence for this object-
space direction �eld retouching. Modifying the reference direction �eld
results in a modi�ed inferred direction �eld and, thus, in modi�ed stroke
trajectories.We provide three di�erent direction �eld editing tools.�ese
three radial brushing tools operate with a user-controllable brush size,
strength, and hardness (a Gaussian attenuation of modi�cation intensity
dependent on the distance from the brush center). �e �rst of the three
tools is a clone stamp tool that transfers the reference directions from
a source area to the brushing area (Fig. 5.18a–Fig. 5.18c). Equally to the
clone stamp in Adobe Photoshop®, the source area is selected initially
and moves relatively to the cursor location. �is clone stamp tool allows
users to conveniently retouch singularities and discontinuities of the
reference direction �eld and to transfer reference directions from one
surface location to another. As a second operator, a blur tool averages
the reference directions in the brushing area and allows users to smooth
stroke trajectories (Fig. 5.18d–Fig. 5.18f). Finally, a rotate tool rotates
the reference directions by a user-de�ned angle on the tangent plane
(Fig. 5.18g–Fig. 5.18i). �is tool allows users to freely adjust the direction
of stroke trajectories. Together, the described brushing interactions on

5.6 interaction with the hatching illustration 89

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.18: Direction �eld retouching. �e sequence starts with (a)–(c) the clone stamp
tool. �e user retouches the reference direction �eld to adjust the stroke trajectories in
the central green area. �e clone stamp transfers the directions from the source location
(indicated by the crosshairs) to the brushing location. Next, the user employs (d)–(f) the
blur tool to smooth the discontinuities that were introduced with the clone stamp (the
discontinuities are visible as the remainder of the green spot in the center that causes the
bumps in the stroke trajectories). Finally, the user employs (g)–(i) the rotate tool to bend
the tips of the stroke trajectories. �e colors show the reference directions mapped to
rgb. �e needles indicate the reference direction at each vertex. �e stroke trajectories
shown in black are updated on the �y.

the reference direction �eld permit users to freely adjust the stroke trajec-
tories to their needs. �e tools can be used for coarse adjustments, such
as modifying the general hatching direction of an entire patch, or �ne-
grained modi�cations, such as bending the tip of an individual stroke.
�is �exible control over object-space stroke trajectories is a novelty of
our approach that improves upon the static nature and the lack of control
over the result of existing hatching methods.

90 interactive example-based pen-and-ink hatching

Figure 5.19: Brushing interaction. �e user brushes a patch of hatching strokes onto
the surface. �e strokes for the brushed patch are generated a�er the interaction. �is
interaction also allows users to reshape or remove hatching patches.

Fourth, users can brush with patches of hatching strokes onto the sur-
face. Fig. 5.19 shows an image sequence for this interaction.�e brushing
interaction is realized by interactively altering the automatic mesh seg-
mentation (see Section 5.5.1) via brushing.�is brushing interaction is im-
plemented as the assignment of a particular patch label to mesh vertices
within the brushing area. Changing the mesh segmentation in this way
e�ectively results in adding, modifying, or removing adaptive patches.
�e hatching strokes within the modi�ed patches are re-generated on the
�y. �is gives users the possibility to interactively modify the hatching
illustration to achieve the desired result. In some cases, the automatically
generated hatching patches are suboptimal because they cover unwanted
areas and are not existent in other areas where strokes are desired. Users
can then adjust the illustration with the described brushing interaction
to achieve aesthetically more pleasing and more e�ective results. Users
can as well disable the automatic prediction of hatching regions and start

5.6 interaction with the hatching illustration 91

from scratch to freely brush hatching patches onto the surface according
to their requirements. �e stroke directions and distances, however, are
always inferred automatically.
Apart from the mapping and brushing interactions described above,

there are numerous parameters in our system to tune the result. �ese in-
volve simple parameters which could be exposed to novice users, such as
stroke width and stroke distances. Other parameters allow expert users of
our system to adjust the result in more detail, such as the feature weights
that are used within the three di�erent machine learning components.
�e described interactions override the automatic prediction of hatch-

ing properties. On the one hand, these interactions serve for dealing
with limitations of our automatic style transfer mechanisms (see Sec-
tion 5.8). On the other hand, the interactions e�ectively combine the
advantages of automatic hatching and human creativity. Our interac-
tions, therefore, represent novel tools for the semi-automatic generation
of hatching illustrations in the spirit of existing semi-automatic methods
for non-photorealistic rendering [Winkenbach and Salesin, 1994; Salis-
bury et al., 1994; Deussen et al., 2000]. �e interactions provide users
with a means to directly and intuitively specify or modify the regions
where strokes are placed, which type of strokes are generated in which
region and at which direction on the surface. �ese interaction capabili-
ties make an employment of our method in a creative environment more
likely than the usage of a fully automatic and static method. Furthermore,
the proposed integration of example-based hatching with interaction
capabilities permits users without a background in hatching to create
illustrations they would otherwise not be able to create.

As discussed in Chapter 2 and in Chapter 4, the strategy of combining
machine learning and interactivity for implementing control over the
result does allow us to let the result of our hatchingmethod be in�uenced
by human virtuosity in a twofold way: by the machine as well as by the
user. �is strategy improves upon the aesthetic quality of the images that
are achievable with our approach.

92 interactive example-based pen-and-ink hatching

(a) (b)

Figure 5.20: Illustrations using the hatching style learned from the shoulder blade illustra-
tion in Fig. 5.6a. �e depicted objects are (a) the shoulder blade mesh we use for learning
and (b) the venus mesh. Both illustrations are created semi-automatically by applying the
interaction methods described in Section 5.6. Contours are curvature-controlled image-
space contours as proposed by Bruckner and Gröller [2007], but any other silhouette
technique [Isenberg et al., 2003; Bénard et al., 2012] could be chosen.

5.7 results and discussion

In this section we show and discuss some results generated with our
method. We �rst present some results of applying the drawing style
learned from the shoulder blade illustration shown in Fig. 5.6a. We
then show the input and results of transferring the hatching style of
a second example illustration. All the result images are created semi-
automaticallymaking use of the user interactions described in Section 5.6.
For example, manual adjustments include the mapping of example stroke
patches, the modi�cation of the general hatching directions of individual
patches, the retouching of the reference direction �eld to re�ne stroke
trajectories, and the adjustment of the hatching areas via brushing.�ese
manual adjustments permit us to enhance the visual appearance of the
results by considering illustration and aesthetical issues during the image
synthesis. �ese are issues such as lighting, shape perception and shape
communication, and the interplay of di�erent stroke groups.

5.7 results and discussion 93

Figure 5.21: Illustration of the third lumbar vertebra using the hatching style learned
from the shoulder blade illustration in Fig. 5.6a.

Fig. 5.20–Fig. 5.22 show results of transferring the hatching style
learned from the shoulder blade illustration in Fig. 5.6a. While creating
Fig. 5.20a, we aimed to match the example illustration (Fig. 5.6a). We
also transfer the learned hatching style to new objects. �e venus statue
illustration in Fig. 5.20b, the vertebra illustration Fig. 5.21, and the hip
bone illustration in Fig. 5.22 demonstrate that we can transfer the learned
hatching style to di�erent target meshes.

For comparison, we also apply our method to the pen-and-ink hatch-
ing style of a di�erent illustrator. Fig. 5.23a shows this second example
illustration. It is a hand-drawn pen-and-ink illustration of the trap of a
carnivorous tropical pitcher plant which was created for a previous study
of Isenberg et al. [2006]. Together with the segmentation image shown
in Fig. 5.23c and the registered 3d model in Fig. 5.23b, we use the pitcher
plant illustration as input for learning a second hatching style. �e prepa-
ration of the learning input here happened slightly di�erently. In contrast
to the shoulder blade illustration (Fig. 5.6d) which we scanned in from an
anatomy textbook [Dauber et al., 2005], the pitcher plant illustration was
drawn with the illustrator using a rendering of a 3d pitcher plant model

94 interactive example-based pen-and-ink hatching

Figure 5.22: Illustration of a hip bone using the hatching style learned from the shoulder
blade illustration in Fig. 5.6a.

as a master. In the study of Isenberg et al. [2006], illustrators were shown
renderings of 3d models and created illustrations using these renderings
as masters. In this case the 3dmodel was, thus, already close to the drawn
image and had to be only slightly adjusted. �e shoulder blade 3d model,
in contrast, had to be sculpted from a random shoulder blade model that
did not match the example illustration as closely. Fig. 5.24–Fig. 5.27 show
results of transferring the hatching style learned from the pitcher plant
illustration in Fig. 5.23a to various objects.
�e results show that many characteristics of the example illustration

styles are reproduced. For example, patterns of hatching strokes within
the patches of strokes are reproduced. �ese patterns emerge from both
the directions and the distances of strokes. Regarding the directions, pat-
terns emerge from the quasi-parallel trajectories of the strokes and the
way individual strokes deviate from these common directions. Patterns
with respect to the distances emerge from the sequences of distances
between the strokes. �is applies to both the sequences of distances be-
tween strokes within a patch and the sequences of distances along the
extents of neighboring strokes. �e latter transfer patterns of the rela-

5.7 results and discussion 95

(a) (b)

(c) (d)

Figure 5.23: (a) A second example illustration from a study of Isenberg et al. [2006]. It
shows the trap of a tropical pitcher plant. (b) shows the registered 3d model, (c) the
segmentation image and (d) an overlay of the example with the segmentation image.

96 interactive example-based pen-and-ink hatching

(a) (b)

Figure 5.24: Illustrations using the hatching style learned from the pitcher plant illustra-
tion shown in Fig. 5.23a. �e depicted objects are (a) a pitcher plant (intended to match
Fig. 5.23a) and (b) a shoulder blade.

tionship between neighboring strokes, meaning the way in which neigh-
boring strokes approach and deviate from each other. �is controlled
example-based stroke irregularity recreates some of the visual appear-
ance of the example illustrations and has a considerable positive e�ect
on the ‘character’ of our results. Furthermore, the directions of the result-
ing hatching strokes on the surface appear to be similar to the strokes’
surface directions in the example image. �e example-based direction
�eld inference does reproduce the way in which strokes are following
the surface. Using this direction �eld to trace strokes on the surface thus
results in hatching strokes that visually model the depicted surface in
similar ways as the strokes in the example illustration. Furthermore, the
interplay of groups of di�erent stroke types helps reproducing the visual
appearance of the example illustrations. �is e�ect is supported by our
stroke rendering approach, which simulates real pen-and-ink marks to a
certain extent. However, not all of the characteristics can be faithfully
reproduced. �e overall appearance of our results still shows di�erences
between the originals and the synthesized illustrations. We elaborate on
these shortcomings in Section 5.8.

5.7 results and discussion 97

(a)

Figure 5.25: An illustration of the rocker arm mesh using the style learned from the
pitcher plant illustration in Fig. 5.23a.

When comparing our results to the results presented by Kalogerakis
et al. [2012] (see Fig. 5.3), we make the following observation. �ree of
their example styles use quite uniform and regular styles (Fig. 7–9 in
[Kalogerakis et al., 2012]), while two example styles use more irregular
styles (Fig. 6 and 10 in [Kalogerakis et al., 2012]). We observe that the
irregular hatching styles are not transferred as faithfully as the uniform
styles. In particular local characteristics of the irregular styles, such as
irregularities of the stroke trajectories or the relationship of neighbor-
ing strokes, cannot be reproduced that well and are lost in the transfer
process. �e uniform hatching styles, however, are reproduced very ac-
curately. �e overall appearance of the synthesized hatchings visually
match the example illustrations impressively well. We do not achieve the
same transfer accuracy with our automatic method. �e described obser-
vation suggests that, in general, uniform and regular drawing styles can
more easily be reproduced than irregular and complex styles. We now
observe that the drawing styles that Kalogerakis et al. [2012] employ are,
in comparison, much more uniform and regular than the drawing styles
we try to reproduce. �e strokes in their example drawings have a strong
correlation with the surface curvature, and are mostly equidistant and
parallel. �e strokes in our example illustrations are much more complex
and irregular, which makes it all the more di�cult to faithfully transfer
the drawing styles. Although we might not reach the same transfer ac-
curacy as Kalogerakis et al. [2012], we can transfer some characteristics
of the complex illustration style. In particular, local characteristics can

98 interactive example-based pen-and-ink hatching

(a) (b)

Figure 5.26: More illustrations using the hatching style learned from the pitcher plant
illustration in Fig. 5.23a. �e depicted objects are (a) a hand and (b) a venus statue.

be transferred more faithfully with our style transfer model, because
our model explicitly takes them into account. As a result, our approach
facilitates the transfer ofmore stylistic detail, such as the distance relation-
ship between neighboring strokes. Furthermore, the explicit handling of
groups of strokes allows us to transfer drawing characteristics that are
embodied in patches of strokes and in the relationships of these patches.
Apart from that, Kalogerakis et al. [2012] use a vast set of geometric

features, which is another reason that their style transfer model can
more accurately reproduce the overall appearance of the example styles.
Using such many features, however, severely a�ects the performance of
their algorithm. Kalogerakis et al. [2012] name 5 to 10 hours learning
time and 30 to 60 minutes synthesis time on an Intel Core i7 processor.
Our method takes 1 to 2 minutes for learning and 0.4 to 30 seconds for
synthesis on an Intel Core 2 Duo processor. As a pixel-based approach,
the performance of their method depends on the resolution of the result
image, while the performance of our method is virtually independent of
the output resolution. With 30 seconds per frame in the worst case, our
method still does not reach real-time frame rates, but we managed to
keep it real-time applicable for hardware generations of the near future.

5.7 results and discussion 99

(a) (b)

Figure 5.27: More illustrations using the hatching style learned from the pitcher plant
illustration in Fig. 5.23a. �e objects are (a) a Klein bottle and (b) a two box cloth.

Another advantage of our approach over that by Kalogerakis et al.
[2012] is the possibility for interaction. Our interactions permit users
to adjust the illustration in order to achieve more aesthetically pleasing
results. Such adjustments are used, e. g., to reshape large continuous
hatching regions, to add strokes to blank regions, or to make use of the
aesthetics of combining di�erent patches of strokes. �e fully automatic
approach of Kalogerakis et al. [2012] does not facilitate such adjustments.
Our method, in contrast, can serve as the basis for a tool for artists and
illustrators due to its interaction capabilities.
Together, the di�erences between our approach and that of Kaloger-

akis et al. [2012] can be summarized as the following: Kalogerakis et al.
[2012] present a fully automatic approach with a high style transfer
accuracy for uniform hatching styles. We, in contrast, present a semi-
automatic approach with a lower transfer accuracy for complex hatching
styles which has the capability to enhance the results via user interactions.
We make a step towards the computer generation of pen-and-ink

hatching illustrations that incorporate human virtuosity and illustration
skills. Even if our approach cannot capture and reproduce all the stylistic
properties of the example illustrations, it does reproduce many of their
characteristics. �e interaction capabilities of our approach facilitate a
further enhancement of the hand-drawn appearance and allow the results
to be in�uenced by human creativity and virtuosity. For these reasons, we
gain result images that look less synthetic and less uniform, and arguably
exhibit more ‘character’ than the results of previous methods, which are
either not example-based or not interactive.

100 interactive example-based pen-and-ink hatching

Our patch-based approach to hatching can also easily be extended to
achieve crosshatching.We realize this by adding another layer of hatching
patches which use stroke directions at a user-controllable angle to the
inferred stroke directions. Although our target illustration style does not
use crosshatching, the illustrations resulting from this extension still have
a certain aesthetic appeal. Fig. 5.28 shows an example of a crosshatching
illustration achieved in this way.
We showed our results to two professional medical illustrators to

gain informal user feedback. Both illustrators were impressed by the
aesthetic quality of our illustrations. One of the illustrators described our
results to have a ‘lively appearance and not sti� like a digital feeling.’�e
other illustrator commented positively that our ‘method can produce good
’pen&ink’ illustrations in far less time than a hand drawn illustration.’ One
of the illustrators informed us that she would be interested in working
with a system such as ours: ‘I de�nitely could imagine to work with a
method like yours! I would really appreciate a tool like that.’�is illustrator
also stated that she lacked functionality comparable to our method in
the so�ware she is using. Furthermore, both illustrators stated that the
manual creation of pen-and-ink hatchings similar to ours is so tedious
and time-consuming that the required time prohibits them to create such
illustrations for customers. �e illustrators appreciated the possibility to
rapidly create hatching illustrations with the computer while still having
interactive control over the result: ‘I totally agree that the interactive
control over the result is bene�cial for illustration purposes.’

5.8 limitations

�e results presented in the previous section show that we can capture
and reproduce characteristics learned from a hand-drawn illustration. In
particular, we can faithfully reproduce local characteristics such as the
distance relationship between neighboring strokes along their extent. In
combination with the interaction methods, this style transfer o�ers new
possibilities for creating pen-and-ink hatching renderings. �e results
also show, however, that our style transfer model su�ers from certain
accuracy issues. We believe that the automatic reproduction of human
virtuosity is always limited. �e project described in this chapter is an
example for the insight that the general limitation of reproducing human
virtuosity can be circumvented by combining automatic style transfer
methods with user interactions. One reason that our learning methods
do not fully capture the example style is that we use a limited number
of surface features, as discussed in the previous section. �is could be
improved upon by including more features, although this would come
with the price of reduced performance. It is evident from the work of

5.8 limitations 101

Figure 5.28: Crosshatching illustration of the third lumbar vertebra using the hatching
style learned from the shoulder blade illustration in Fig. 5.6a.

Kalogerakis et al. [2012] that an extensive set of surface features yields
more robust style transfer results but is slower. �e performance gained
by using a small set of features, however, allows us to realize a semi-
automatic illustration system with responsive interactions.

Another problem is that our learning approach su�ers from over�tting
to one speci�c setup.We use just a single example illustration for learning
a hatching style. All our drawing style descriptors are thus conditioned
to one speci�c setup of viewing, lighting, and geometry which holds for
this single illustration. �is over�tting results in the problem that the
hatching properties we infer for viewing and lighting situations other
than the training setup as well as for other shapes do not match the
hatching properties found in the example drawing. �e described over-
�tting problem has most negative impact on the globally learned patch
properties, which is apparent in Fig. 5.11. �e surface patches inferred for
the training setup match the regions of the segmentation image very well.
For other viewing and lighting situations, however, the patches do not
always match the regions which we assume the creator of the example
illustration would have used. �is is one of the major reasons that our

102 interactive example-based pen-and-ink hatching

approach is not as highly accurate as the approach of Kalogerakis et al.
[2012] with respect to a fully automatic style transfer. We handle this lim-
itation regarding the patches with the brushing interaction presented in
Section 5.6. �e described over�tting problem could be tackled by using
more extensive training data, i. e., to learn an illustrator’s hatching style
from a multitude of illustrations of di�erent objects. �e preparation of
the segmentation image and the registered 3d model, however, is quite
labor-intensive. �is requirement for a manual creation of prerequisites
of the learning procedures is another drawback of our method.

Furthermore, our stroke rendering method exhibits certain problems.
First, our textured strokes appear to be cut o� at the tips because of the
following problem. We use the trajectories of the strokes detected in the
example image as a basis for both the widths and the texture coordinates
of the rendered strokes. �ese trajectories are based on the skeleton of
the regions formed by the strokes. �e skeleton does not traverse the
entire extent of a stroke region but starts and ends with an o�set from the
actual tip and end of a stroke. Using these locations to sample the stroke
widths and stroke shape results in rendering strokes which are cut o� at
the tips. �is leads to visual discontinuities at the borders of hatching
patches. Multiple parallel strokes cut o� at similar locations can form
unwanted hard edges at the patch borders. We reduce this negative e�ect
by adding an additional control point at the tip and end of an example
stroke. Second, for some strokes it is inevitable to erroneously sample
black color from a neighboring stroke or from the contour, resulting
in unwanted artifacts. To avoid this, we simply omit these strokes for
rendering. �is omitting unfortunately implies that we need to leave
away some example stroke patches which lead to severe artifacts. �ird,
distortion e�ects can appear when an example stroke is used for texturing
a stroke whose trajectory strongly deviates from the trajectory of the
example stroke. Our stroke rendering, therefore, does not always yield
satisfactory quality. Better results could be achieved with extracting a
set of representative stroke textures from the example illustration, where
each texture contains one separate stroke.

A limitation of our image processing procedure is that it is restricted
to example images with separated individual strokes. It fails in detecting
the strokes in hatchings with many overlapping strokes. More elaborate
image analysis would be necessary to detect the strokes in such imagery.
Another limitation of our approach is that both the speed of the au-

tomatic style transfer as well as the interaction granularity depend on
the mesh resolution. �e performance of inferring hatching patches
and directions at the vertices is linearly proportional to the number of
vertices of the target mesh. We thus have to work with low-resolution
meshes to facilitate a reasonably fast inference of these two properties
when using our system for real-time animation purposes. Using a mesh

5.8 limitations 103

of 20k triangles, we can infer patch labels and stroke directions at 3 fps
on an Intel Core 2 Duo machine with 3GB RAM.�is low polygon count
naturally a�ects the quality of the result with respect to depicting surface
detail. A bene�t of hatching low-polygon models, however, is that the
various interpolations during the generation of hatching strokes result
in smooth strokes that create an impression of smooth shapes for rather
blocky meshes. While the speed of the fully automatic synthesis bene-
�ts from a low mesh resolution, the brushing interactions bene�t from
a high mesh resolution. A higher resolution enables the user to brush
hatching patches in more detail and to adjust hatching directions with a
�ner granularity. �is �ne-grained control improves the users’ creative
freedom and editing possibilities. In an interactive setting, a higher mesh
resolution is thus desirable, and we here worked with mesh resolutions
ranging from 35k to 90k triangles. �is higher mesh resolution does not
hinder a responsive editing of hatching patches and hatching directions
because the global automatic inference of hatching patches is turned
o� in this interactive setting and because the stroke directions are only
inferred at the currently edited vertices.
In the process of developing our approach, we learned that we can

automatically transfer local characteristics, such as varying distances
along a stroke or the local stroke directions, more reliably than global
characteristics, such as regions where to place strokes. While experiment-
ing with di�erent ways of capturing the local characteristics, we found
out that simple measuring and re-applying the measured values was not
su�cient and that we need machine learning techniques to capture these
properties. We also learned about the granularity at which speci�c char-
acteristics can be transferred and which data is required. For example,
we �rst measured the stroke directions only locally at each reprojected
stroke control point and tried to capture it only as the measured angle
in which it deviates from the curvature direction. We learned that this
strategy was not robust enough. First, it was not robust enough because
the granularity was too �ne: we could not robustly map the direction
measured at only one location on the surface to another location. Second,
it was not robust enough because the data involved was too little: we
could not robustly map the deviation from the curvature at one location
to the deviation at another location using only the curvature direction.
For these reasons, we now transfer the stroke directions on a coarser
granularity (as a patch-wise direction �eld) and involve more data (all
surface features that we also use for the stroke regions). We had similar
insights regarding the stroke distances, resulting in us now transferring
the stroke distances on a stroke level.

104 interactive example-based pen-and-ink hatching

5.9 conclusions and future work

In summary, we propose a novel approach for the interactive example-
based generation of pen-and-ink hatching illustrations from 3d meshes.
We present a new learning setup that makes it possible to learn the depic-
tion style of a hand-drawn example image, including a way to infer 3d
information related to the 2d example image. We propose an analytical
representation of hatching patches and hatching strokes. �is representa-
tion of drawing elements is coupled with an hierarchical style transfer
model that captures rendering properties on four levels of abstraction.
We introduce adaptive surface patches that incorporate global drawing
characteristics and which can be used for the creation of hatching strokes
in object space. We present ways to capture and reproduce the direc-
tional characteristics on a patch level and the distance characteristics
of hatching strokes locally on a stroke level. Finally, we provide novel
interaction methods that allow users to directly and intuitively modify
the resulting illustration. �is interaction capability improves upon the
static nature of previous methods.
We can reproduce some of the characteristics of the example illustra-

tions. Our method can transfer directional characteristics with the help
of an example-based patch-wise stroke direction �eld. Our method can
also reproduce patterns of patch-wise and local stroke distance relation-
ships, which results in hatching strokes that are less uniform and regular
than the hatching strokes generated by existing methods. �e transfer
of global characteristics incorporated in the surface patches has some
limitations. �erefore, our method does not produce as highly accurate
results as the method of Kalogerakis et al. [2012] with respect to a fully
automatic style transfer. We propose possible ways of improving upon
this limitation. We also provide a brushing interaction that copes with
this problem and that gives direct and intuitive control over hatching
regions to the users of our system. Together, the proposed methods allow
us to generate computer hatchings that arguably exhibit more ‘character’
than the results of previous techniques.

So far, we judge upon the quality of the results only by subjective rea-
soning. It would require more extensive evaluation to be able to judge
upon the results less subjectively. One could envision a statistical as-
sessment of the hatching properties as done for stippling by example
[Kim et al., 2009]. But it would be even more interesting to conduct a
�eld experiment designed as sort of a visual Turing test as proposed
by Salesin [2002], reviewed by Gooch et al. [2010], and performed to
a certain extent by Isenberg et al. [2006]. Showing the participants a
set of hand-drawn and computer-generated illustrations, one would ask
the participants whether the images were drawn by hand or generated
by an algorithm. In this way one could examine how successfully the

5.9 conclusions and future work 105

hand-drawing characteristics can be reproduced, i. e., how well the hu-
man rendering process can be simulated, although the validity of such a
visual Turing test is debatable [Isenberg, 2012; Hall and Lehmann, 2012].
Its validity is particularly debatable in our case because of the human
intervention that happens in the image synthesis. Our results are not a
sole product of computer generation due to this human intervention,
which spoils the validity of a visual Turing test even more.

It would be interesting for future work to improve upon the described
shortcomings of our style transfermodel.With an enhanced style transfer,
the visual appearance of the examples can be simulated evenmore closely.
An improved automatic style transfer can further enhance the aesthetic
quality of the results. An improvedmodelwould also allow for capturing a
wider variety of hatching styles. We outline possibilities for improvement
of our style transfer model in Section 5.8.
�e possibility to brush with patches of hatching strokes onto a 3d

model is a novel way of interacting with hatching renderings. It allows
users to directly specify the desired hatching regions. �e brushing in-
teraction is very e�ective and pleasant to work with. �e possibility for
adjusting the illustration contrasts the static results of many compara-
ble techniques. �is creative freedom o�ered by our semi-automatic
example-based approach makes it more likely that it is employed in a
creative environment than it is likely for a fully automatic and static
approach. We believe the proposed brushing interaction has the poten-
tial to serve as the basis for a tool for artists and illustrators. For future
work, it would be interesting to further explore the interactive creation of
hatching illustrations. �e brushing of hatching patches can be extended
with brushing metaphors to modify stroke properties such as distance,
randomness, width, shape, etc. High-level brushes can be used for ac-
centuation and abstraction as well as for modifying material properties.
Integrating a layer support for multiple layers of hatching strokes can
allow users to achieve various hatching e�ects. A design gallery showing
previews for the result of using di�erent example stroke patches can assist
users to conveniently select the type of hatching patch to brush with.
Furthermore, we believe that the notion of explicitly represented dy-

namic patches embedded on the surface can be generalized to other
illustrative rendering styles. Many methods for stylized rendering create
such patches implicitly in image space, e. g., regions of homogeneous
shading in cartoon rendering. An explicit patch representation, how-
ever, provides control over the type and location of patches. �is control
can be used by automatic methods, such as our automatic prediction of
patches. And the control can also be employed for realizing user interac-
tions with the illustration, such as our brushing tools. We are convinced
that the notion of adaptive surface patches has great potential for future
developments within illustrative rendering.

106 interactive example-based pen-and-ink hatching

Wediscussmore ideas for future work as well as present some thoughts
on potential applications of our interactive example-based hatching
method in more detail in Chapter 6.

5.10 acknowledgments

We would like to thank the artists and illustrators that provided valu-
able feedback on our project. We also thank the Aim@Shape, VAKHUN,
Google, and Polhemus repositories as well as the Princeton Graphics
Group for the 3d models we used in this work. We also thank the devel-
opers of dlib, CGAL, and VolumeShop for their so�ware.

�is chapter is based on a previously published article [Gerl and Isenberg, 2013]. Moritz
Gerl and Tobias Isenberg. Interactive Example-Based Hatching. InComputers & Graphics,
2013. In press.

6CONCLUSION & FUTURE WORK

I n this thesis we discuss two distinct methods for illustrative ren-
dering. �e two methods work with di�erent input data, generate
di�erent rendering styles, and use di�erent means of interaction.

�e two distinct methods are linked by being situated in the �eld of
illustrative rendering and by being dedicated to large parts to the prob-
lem of implementing a useful and e�ective control over the result. We
explore two di�erent strategies for realizing control over the result in
this thesis. In this chapter, we summarize the contributions of this thesis,
draw conclusions from our most important �ndings, and present ideas
for future work. Let us begin with concluding on Chapter 3.

6.1 semantics by analogy

�e interactive semantics-driven volume visualization framework de-
scribed in Chapter 3 improves upon the �exibility and usability of the
semantic-layers approach by Rautek et al. [2007, 2008a]. It facilitates the
injection of rule-based rendering functionality into arbitrary shader pro-
grams.�is opens up the possibility to realize semantics-drivenmappings
based on arbitrary inputs and outputs with minimal implementation
overhead. Furthermore, the graphical rule speci�cation interface im-
proves upon the shortcomings of a rule speci�cation in natural language
and permits users to intuitively and quickly explore di�erent rule-based
mappings assisted by visual feedback. An evaluation with two di�erent
potential target user groups indicated that the proposed concepts of pa-
rameter speci�cationmight be useful andwell applicable in the examined
target areas of radiology, neuroscience, and medical illustration.

In conclusion, the graphical approach for de�ning semantic mappings
seems promising to us. We think that our graphical approach makes the
power of semantics-driven volume rendering more readily accessible to
the user than a textual rule formulation. Our graphical user interface also
extends the original semantic-layersmethodwith the capability to explore
di�erent semantic mappings. �e evaluation with domain experts and
medical illustrators con�rmed that the graphical and brushing-centered
interface is indeed promising for future development. We learned that
using visual feedback in the form of previews and design galleries to assist
the user in the parameter speci�cation is bene�cial for the usability and
e�ciency of a visualization system. Furthermore, the creative freedom

107

108 conclusion & future work

and possibility for local adjustments given by the brushing metaphor
that we use for interaction is particularly interesting for artists and il-
lustrators. �e concepts that we propose in Chapter 3 can be improved
and extended to create a direct volume illustration system suitable for
artists and illustrators. �e proposed concepts could, thus, help bridg-
ing the gap between illustrative rendering and �ne arts, resp. between
computer-generated and computer-assisted illustration.
Furthermore, it was interesting and informative to develop the con-

cept of semantic shader augmentation. First, an automatic shader code
generation during run-time was fascinating for us, as we are used to
o�ine development with long compile times. �us, we found it intrigu-
ing to modify a shader program and to directly see the impact of the
modi�cation without having to recompile and restart the framework
so�ware (VolumeShop [Bruckner and Gröller, 2005]). Note that the
modi�cation of the input shader results in updating both the graphical
user interface as well as the result. Second, the possibility to realize a
visualization mapping on arbitrary inputs and outputs was both fascinat-
ing and challenging for us. In the process of experimenting with various
input properties for visualization rules (e. g., normal, di�use illumination,
etc.), we learnedmuch about the behavior and usefulness of di�erent data
properties and data derivatives for rendering purposes. �is learning
process also informed the selection of surface features that we use as
input to the rendering function in our hatching method (Chapter 5).
An interesting direction for future research in interactive semantics-

driven volume rendering is to apply machine learning to automatically
learn meaningful visualization mappings. Given a target output illus-
tration style and a large set of input properties, one can apply machine
learning to learn which input properties, parameters, and weights are
decisive for achieving the target illustration style.�e corresponding visu-
alization rules can then be inferred automatically. �is learned mapping
can be provided to the user to be applied interactively without requiring
the user to specify the input parameters and visualization rules that result
in the desired illustration style. �is user assistance by machine learning
is similar to the style transfer via machine learning that we presented
in Chapter 5. We think that such an automatic user-assistance would
improve upon our semantics-by-analogy approach due to the follow-
ing experiences with the interactive and �exible system. �e concept
of arbitrary inputs and outputs is so �exible that it was di�cult for us
to devise suitable mappings. We learned that the �exibility o�ered by
the semantics-by-analogy approach o�ers a wide range of illustration
possibilities, but is quite challenging to make use of in a meaningful
way. Even for visualization experts it is not straightforward to come up
with input parameters that are both intuitive to use and e�ective for
illustration purposes. Drawing from our experiences gained in develop-

6.1 semantics by analogy 109

- flexible
- wide range of styles

+

- flexibility burdens user
- visualization knowledge required

- integrate with machine learning
- realize direct brushing

Figure 6.1: Conclusions on Chapter 3. An unextensive list of the bene�ts, disadvantages,
and the most important ideas for improvement of the method in Chapter 3.

ing the example-based hatching approach described in Chapter 5, we
are convinced that an integration of machine learning and interactive
illustrative visualization would help alleviating the described drawback
brought by the �exibility of the semantics-by-analogy approach. At the
same time, the �exibility of the approach would still be made use of, only
in a more automated manner.
�e automatic inference of semantic mappings as outlined above can

be complemented by replacing the brushing on intermediate data rep-
resentations (i. e., the visualizations of semantic data properties) with
brushing directly on the result image. In conclusion, we learned that
brushing directly on the result is preferable to brushing in an interme-
diate domain. Our user evaluation also informed us that such a direct
brushing would be useful and bene�cial. Furthermore, the brushing of
hatching patches developed in Chapter 5 con�rmed our assumption that
the direct application of a visual abstraction on the result is superior
to the brushing on an intermediate domain. In the current form pre-
sented in Chapter 3, the intermediate domain is necessary because the
data ranges intended to be included in the mapping have to be speci�ed
by the user. With the automatic learning of parameter con�gurations
outlined here, however, this speci�cation would no longer be necessary.
�e user could simply select a target rendering style and brush with this
rendering style directly on the result.
To summarize our �ndings (see Fig. 6.1), we think that the approach

presented in Chapter 3 is promising but would need to be further ex-
tended to be really applicable by the targeted user groups. Our main
�nding is that it would be bene�cial to complement the interactive user
control over the result by adding more automated control to the system.
An integration with machine learning to automatically infer meaningful
rules would improve upon the usability of the approach without limit-

110 conclusion & future work

ing its �exibility. Finally, brushing directly on the result would improve
upon the directness of the approach and make it even more intuitive to
use. �is direct brushing behavior is similar to the brushing of hatching
patches that we discussed in Chapter 5. Let us proceed with concluding
on our hatching method.

6.2 interactive example-based hatching

�e fully interactive approach to controlling the result that we chose for
the work presented in Chapter 3 is �exible but demands user interaction
and an initial preparation of rendering parameters by a visualization
expert. �e example-based hatching method presented in Chapter 5,
in contrast, was initially intended as a fully automatic method. In the
process of developing the hatching method we learned, however, that our
fully automatic approach in its presented form does not achieve the aes-
thetic quality at which we aimed.�is quality issue is due to limitations of
our style transfer model. �e described limitation was the reason that we
extended the fully automatic method with user interactions that allow to
directly and locally adjust the generated hatching illustration. �e result-
ing semi-automatic system enables user interaction but is still based on
the automatic learning of a hatching style.�is interactive example-based
system did turn out to be quite e�ective in creating illustrative renderings
that resemble hand-drawn examples. Let us recapitulate our explorations
in implementing control over the result in illustrative rendering as the
following. We explored a fully interactive illustration system in Chapter 3
and started out with a fully automatic system in Chapter 5. As a result of
these explorations, we learned that the best solution for our goals was the
‘golden mean’ between these two strategies in the form of an interactive
example-based illustration system.

Let us brie�y summarize the contributions of the hatching technique
presented in Chapter 5. Our approach to hatching by example comprises
the novelty of learning hatching styles from ‘real-world’ hand-drawn
example illustrations. �is is made possible by employing image pro-
cessing to detect the strokes in the example and by using a 3d object
registered with the example illustration. �is setup allows us to include
object-space measurements in learning the example drawing style. We
further present a hierarchical style transfer model that learns and repro-
duces drawing characteristics in four di�erent levels of abstraction (i. e.,
global, patch, stroke, and pixel level). We introduce the usage of adaptive
surface patches as the basis for generating hatching strokes. �ese sur-
face patches allow us to transfer global drawing properties and provide a
robust control over hatching areas and the hatching properties applied
in each individual area. Furthermore, we present an analytic representa-

6.2 interactive example-based hatching 111

- reproduction of hatching style
- interaction capabilities

+

- user interaction required
- limited style transfer accuracy

- improve automatic style transfer
- extend editing possibilities

Figure 6.2: Conclusions on Chapter 5. An unextensive list of the bene�ts, disadvantages,
and the most important ideas for improvement of the hatching method in Chapter 5.

tion of hatching strokes which, in combination with locally modeling
the distances between hatching strokes along their extent, allows us to
improve upon the regular hatching patterns generated by previous meth-
ods. �e results presented in Chapter 5 demonstrate that our method
can successfully transfer many characteristics of the example styles to
a variety of target meshes. Furthermore, we complement the fully auto-
matic style transfer of our approach with interaction capabilities. �e
key interaction of our approach is the brushing with hatching patches,
which provides users with novel and e�ective possibilities to adjust the
illustration according to their requirements and aesthetic judgment. Ad-
ditional interactions allow users of our system to adjust the type, the
general hatching direction, and the trajectories of the hatching strokes.
In conclusion (see Fig. 6.2), we learned that user interaction was the

key to substantially increase the aesthetic and illustrative quality of the
computer-generated hatching illustrations. �e interaction possibilities
presented in Chapter 5 are crucial for creating result images of the pre-
sented quality. At the same time, the automatic methods for realizing the
hatching by example are just as important to achieve this visual quality.
We learned that the combination of an automatic control over the result
with an interactive control by the user does best meet our demands. �e
resulting system is a classical example for a semi-automatic system with
high-level user control and low-level automated control. �e user of our
system can de�ne the hatching regions (high level), while the computer
automatically takes care of the details and generates the hatching strokes
in the user-de�ned regions (low level). �is semi-automatic approach
distributes the control over the result in a way that allows for creating
visually pleasing and e�ective illustrations. �e high-level decisions that
are most di�cult to automate or are undesired to be automated, for ex-
ample the decisions involved in determining the hatching regions, are
put into the hands of the human. �e low-level decisions and motor

112 conclusion & future work

controls that are most di�cult to execute for the untrained human, for
example the drawing of stroke trajectories that well describe the target
surface, are put into the ‘hands’ of the machine. �e lowest-level control
in our hatching system currently is the �ne-grained adjustment of stroke
trajectories via retouching the reference stroke direction �eld. It would
be desirable to extend the system with more low-level user interactions
such as interactions for removing individual strokes or locally modifying
the distances between neighboring strokes.

Furthermore, we learned that it is important to allow the user to work
in various levels of detail. A �exible adjustment of the interaction granu-
larity enhances the interaction e�ciency and is necessary to adjust the
user control to the current task. In our hatching system, this adjustment
is particularly important for retouching the reference direction �eld to
modify stroke trajectories. We allow the user to work in arbitrary levels
of detail for this interaction.�e level of detail can be adjusted by varying
the brush size and by zooming. By making use of these adjustments the
user can, e. g., rotate the reference �eld on the entire visible part of the
surface with a single click, but can also zoom in and locally re�ne the
trajectory of a singular hatching stroke. Up to now, we provide only a
basic set of user interactions. It would be interesting to further exploit
the potential of our hatching method in future developments.

�e goal of the research presented in Chapter 5 was to improve upon
the aesthetic quality of the results of existing hatching methods, which
su�er from an overly regular and synthetic appearance. By our subjective
judgment, we achieved this goal at least to a certain extent. We unfor-
tunately had to discontinue the research on this project on hatching
by example due to time and resource constraints. Up to this point, we
have only partially tapped the potential of the described methods. Minor
extensions to our technique in its current form can further improve
the synthesis performance, the style transfer accuracy, the inter-frame
coherence, the usability and editing possibilities, as well as the range of
achievable rendering styles of our technique.

Synthesis performance: In the current formof our algorithms, the execu-
tion time spent on rendering the hatching strokes is negligible compared
to the time needed for calculating the strokes. We give an example to
illustrate the computational load of our method. A current bottleneck is
the inference of the local stroke distance at each new stroke control point
during the tracing of the stroke trajectories (see Fig. 5.14). �is operation
requires a projection to 2d, an intersection with the neighbor stroke, an
evaluation of the stroke distance function (which implies an interpola-
tion of the surface features), a spatial neighbor search to check if the new
control point is too close to another stroke, as well as a reprojection to

6.2 interactive example-based hatching 113

3d. Note that these computations have to be performed for each new
control point of every stroke. �e proposed synthesis procedures can,
however, be parallelized to some extent in order to increase the synthesis
performance. A partial gpu implementation of our synthesis algorithms
would most probably result in real-time frame rates.

Style transfer accuracy:�emachine learning methods that we make
use of can be replaced by other, more sophisticated learning methods.
�e parameters of the machine learning methods can be further opti-
mized for our learning problem. Using a larger set of surface features
would make the style transfer more robust, while the rendering perfor-
mance issue would be alleviated by the gpu implementation described
before. �e over�tting problem can be tackled by using more extensive
training data, i. e., by learning an illustration style from a multitude of
illustrations instead of from only a single one. Together, these e�orts
would result in achieving a higher style transfer accuracy.

Temporal coherence:We did not work on achieving temporal coher-
ence with our hatching method. �e method in its current form cannot
generate animations with temporal coherence. �e proposed concepts of
using adaptive surface patches as a basis for hatching strokes and of using
the mesh geometry to trace stroke trajectories on the surface, however,
are a solid basis for an inter-frame coherent hatching of 3dmodels.�ese
analytic descriptions of drawing elements give a tangible control over
the drawing elements, which is bene�cial for achieving coherent anima-
tions. Further, the similarity of the hatching regions and hatching strokes
between neighboring viewpoints can be exploited to achieve hatching
animations with temporal coherence. One can reuse the hatching patches
and strokes from the previous frame and adjust them to the view in the
new frame, instead of re-generating the entire set of strokes for each
frame. �is would also further improve the rendering performance of
our hatching technique.

Usability and editing possibilities: Our proposed user interactions can
form the basis of an illustration system to be used by artists and illustra-
tors. Our hatching method could as well form the basis for an illustration
tool to be used by people without an artistic background. To realize these
applications, however, the usability and the editing possibilities of our
system would have to be extended. Our prototype system would have
to be extended with functionality that is standard to graphics editing
packages. �is standard functionality includes, e. g., undo and editing
history support, layer management, a graphical interface for selecting
hatching style templates, etc. Furthermore, our basic set of user inter-
actions can be extended with additional interactions. Brushing tools to

114 conclusion & future work

locally adjust stroke properties such as stroke width and distances would
give additional low-level control. In addition to this, high-level brushing
tools for accentuation and abstraction, for darkening and brightening,
for adjusting material properties, etc. can be introduced.

Range of rendering styles:�e concept of adaptive patches embedded
on the surface can be extended and/or generalized to realize illustrative
rendering styles other than hatching. For example, the surface patches
can be combined with a texture-based npr method for pencil or wa-
tercolor rendering. Regions or patches of similar visual attributes are
inherently generated by many illustrative rendering methods (e. g., car-
toon rendering creates images that consist of areas of one solid color).
Representing the patches explicitly as we do in our hatching technique,
however, has the great advantage that it provides full computational con-
trol over the location and shape of the patches, as well as control over the
type and parameters of the visual abstraction that is generated within
the patches. �is control together with the possibility to transfer global
style characteristics and the inter-frame stability of the adaptive surface
patches in our opinion bears great potential for further developments
within illustrative rendering.

Feedback learning: Finally, one can integrate a feedback loop in the
learning procedure. A learned hatching style can be incrementally re�ned
by re-running the learning algorithms on an illustration that has been
adjusted with the proposed interaction tools. �is feedback loop would
make it possible to combine machine learning with human creativity in
an even more powerful way than we do up to now.

6.3 illustrative rendering & control over the result

Let us summarize our �ndings on automation and interaction in illustra-
tive rendering. In general, we found that non-photorealistic or illustrative
rendering methods can be enhanced by sophisticated means of imple-
menting control over the result.
Providing the user with control over the result is particularly chal-

lenging in illustrative visualization because of the need of specifying the
visibility of structures in addition to controlling the usually numerous
npr parameters. A commonly chosen approach in illustrative rendering
of giving control over the result to the user is to provide users with a set
of global rendering parameters. �e adjustment of computer-generated
illustrations by means of global parameters is, however, limited to a mod-
i�cation of the entire result and restricted in the range of visual e�ects
that can be achieved. �is restricts the creative freedom of the user and

6.3 illustrative rendering & control over the result 115

prohibits an application of such npr methods in creative environments.
�e described limitation can be dealt with by providing user interac-
tions that allow users to directly, locally, and �exibly adjust the computer
illustrations according to their requirements and aesthetic judgment.

Reserving the control over the result solely to the computer is the more
traditional approach to implementing control over the result in illustra-
tive rendering as compared to user interaction. Recent developments
in these automatic methods focus on example-based approaches [Kim
et al., 2009; Martín et al., 2011; Kalogerakis et al., 2012]. Such approaches
perform an automatic learning of visual mappings from hand-cra�ed
examples. �ese example-based approaches make it easier to use a multi-
tude of inputs and outputs in visual mappings. As described in Chapter 2,
the usage of multiple inputs and outputs allows to realize more sophis-
ticated visual mappings, what improves upon the accuracy in which
drawing, painting, or illustration styles can be simulated. In automatic
approaches that do not perform any kind of parameter space analysis as
well as in fully interactive approaches, the control of a multitude of input
and output properties gets increasingly complex with an increasing num-
ber of inputs and outputs. �e increasing complexity of the parameter
space makes the parameter space more and more unintuitive to navigate
for the programmer or the user. In example-based approaches, in con-
trast, the mapping of input properties to a rendering output is learned
automatically. �is automatic learning takes the burden of specifying
adequate mappings away from the programmer or the user. �e complex
parameter space is then navigated automatically by the computer. �is
computer assistance enables the programmer or user to realize advanced
illustrative visual mappings, which enhances the aesthetic and illustra-
tive quality of the results. Apart from the pre-processing of the input
image that is performed by Martín et al. [2011], previous example-based
approaches for illustrative rendering are fully automatic. Fully automatic
example-based approaches, however, lack the creative freedom and pos-
sibility for adjustments that is inherent to interactive approaches for
illustrative rendering.
In the course of working on this thesis, we learned that the combina-

tion of the two di�erent described approaches of implementing control
over the result to an interactive example-based solution ismost promising
according to our experiences.�is combination leverages the advantages
of both an automated and an interactive control over the result. An inter-
active example-based approach allows for a twofold in�uence of human
virtuosity on the rendering result. On the one hand, an example-based
approach does capture and reproduce human virtuosity algorithmically.
On the other hand, an interactive approach allows the human user to
apply his or her virtuosity during the creation of the result.

116 conclusion & future work

user assistance

production speed

interaction simplicity

creative freedom

automatic semi-automatic interactive

tradeoff

Figure 6.3: Tradeo� of advantages achieved by semi-automatic methods for illustrative
rendering. �e major advantage of interactive methods is the creative freedom they pro-
vide to the user (bottom row). �is creative freedom is achieved, however, by sacri�cing
the advantages of automatic methods (top three rows). Semi-automatic methods partially
leverage the advantages of both types of methods.

�e proposed fusion of the two kinds of approaches for implementing
control over the result to an interactive example-based system combines
both of these in�uences. Such an interactive example-based system does
improve upon the aesthetic and illustrative quality that is achievable
with computer-generated illustrations. Furthermore, we believe that the
described combination can help bridging the gap between illustrative
rendering and �ne arts, respectively between computer-generated and
computer-assisted illustration. �is bridging can help in �nally putting
the artist in the loop as proposed by Seims [1999], which would support
the spreading of illustrative rendering methods in creative environments.
Furthermore, the proposed notion of interactive example-based illustra-
tion systems can also inform the development of tools that allow people
without an artistic background to interactively create visually appealing
and e�ective renderings.

Furthermore, semi-automatic systems for illustrative rendering achieve
a tradeo� of the advantages and disadvantages of automatic and interac-
tive methods (see Fig. 6.3).�emajor bene�t of fully interactive methods
is the creative freedom that such methods provide to the user. �is cre-
ative freedom is, however, achieved at the expense of sacri�cing the
bene�ts of fully automatic methods. �ese sacri�ced bene�ts are proper-
ties such as user assistance, production speed, and interaction simplicity.
Semi-automatic methods such as our hatching method include a tradeo�
of the described properties and partially leverage the advantages of both
automatic and interactive methods.

6.3 illustrative rendering & control over the result 117

�e combination of automatic and interactive control over the re-
sult allows non-experts in illustration to bene�t from expert illustration
knowledge and skills. �e methods presented in this thesis allow people
without an illustration background to create illustrations that they would
otherwise not be able to create. By providing people without an illus-
tration background hands-on access to illustration expertise we make
illustrative rendering available in domains where it was not available be-
fore. Apart from this application by non-experts in illustration, our meth-
ods can also be applied by professional illustrators. We envision several
potential application domains for the interactive illustrative rendering
tools presented in this thesis. Fig. 6.4 shows an overview of potential
application domains and some exemplary use cases of our methods. Let
us conclude with outlining some of the potential applications.

Illustrators:One application domain for ourmethods is the application
by professional illustrators, in particular by scienti�c and biomedical
illustrators. Our methods can speed up the production process and there-
fore lower the expenses for producing scienti�c and medical illustrations.
Furthermore, the employment of illustrative rendering methods by pro-
fessional illustrators does harness the potential of themethods to a higher
degree than the employment of suchmethods by computer scientists who
develop the methods, as illustrators are skilled and trained in �ne arts.
We see two implications of this circumstance. First, the aesthetic quality
and illustration e�ectiveness that is achieved with the illustrative render-
ing methods increases. Second, the exchange between the two disciplines
of illustration and computer science fosters a mutual development that
can result in even more sophisticated tools for computer-generated illus-
tration. �e interaction capabilities of the illustrative rendering methods
that we present in this thesis make an employment of our methods by
illustrators possible and feasible, as described in both Chapter 3 and
Chapter 5. An employment of fully automatic methods by illustration
experts would, in contrast, be highly unlikely due to the lack of possi-
bilities for adjustment. We got this initial assumption con�rmed from
correspondence with professional illustrators.

Artists: Apart from the application for illustration purposes, the pre-
sented tools can also be applied for art creation. �e result images de-
picted in this thesis are demonstrations of the technical capabilities of
our methods and do have only little artistic value. Giving our tools in
the hands of artists would result in tapping the creative potential of the
tools and can lead to the creation of pieces of a novel art form.

118 conclusion & future work

Application domains
of our interactive illustrative rendering methods

Illustrators Artists Domain experts Laypeople

illustrations
 from 3D data

rapid generation
of illustrations

art creation

novel form
of 3D art

case-specific
illustrations

saving of
resources

encouragement
to be creative

ease of creating
illustrations

Figure 6.4: Application domains of our interactive illustrative rendering methods.

Domain experts: �e previously described merit that our methods
make illustration expertise accessible to non-illustrators facilitates an
application of our methods by domain experts. Experts in various profes-
sions and disciplines can generate illustrations with the tools presented
in this thesis instead of hiring professional illustrators. �ese can be
illustrations for either publication or teaching purposes. �e application
of our methods by domain experts can increase the quality of the gen-
erated illustrations and allow domain experts to save the expenses for
ordering professional illustrations. Let us back this claim up with the
following comment of a professional medical illustrator on our work:
‘I see a lot of bad and ugly illustration work, o�en made in powerpoint and
then published in scienti�c publications. �ere will always be scientists that
produce their own artwork instead of hiring an illustrator to do that for
them. With an automatically generated image of this quality the visuals
would be much better and thus improve the scienti�c publication.’

6.3 illustrative rendering & control over the result 119

Laypeople: Finally, the methods presented in this thesis can be applied
by people without an artistic background, and other than domain ex-
perts, to interactively create illustrative renderings. One may argue that
the prototype implementations of our methods are not yet applicable
by laymen due to a lack of editing functionality. �e proposed concepts
can, however, inform the implementation of so�ware products that are
well applicable by laymen. �is application by laypeople can serve two
di�erent purposes. �e �rst purpose is to create illustrations to visually
record and communicate ideas. �e second purpose is to be creative and
to generate art for the mere sake of pleasure and artistic expression. �e
interactivity and directness of our tools combined with the algorithmic
image synthesis capabilities allow laypeople to create images and interac-
tive renderings that they are otherwise not able to create. �is computer
assistance can stimulate the creativity of laypeople and increase their
enjoyment of creating illustrations and art.

AAPPENDIX: SUPPLEMENTAL IMAGES

N ow thatwe have discussed ourmethodswewant to present some
larger depictions of already shown results. We �rst show some
enlarged versions of results of Chapter 3 and then of Chapter 5.

Figure A.5: Enlarged depiction of the hand visualization in Fig. 3.11g.

121

122 appendix: supplemental images

Figure A.6: Enlarged depiction of the brain visualization in Fig. 3.14d

appendix: supplemental images 123

Figure A.7: Enlarged depiction of the venus illustration in Fig. 5.20.

124 appendix: supplemental images

Figure A.8: Enlarged depiction of the pitcher plant illustration in Fig. 5.24a.

appendix: supplemental images 125

Figure A.9: Enlarged depiction of the scapula illustration in Fig. 5.24b.

126 appendix: supplemental images

Figure A.10: Enlarged depiction of the two box cloth illustration in Fig. 5.27b.

BAPPENDIX: SUPPLEMENTAL VIDEOS

A ccompanying the presented still imageswe also generated videos
that demonstrate our approaches and that contain animations.
Below we provide links to these videos as qr-codes and as urls.

Figure B.11: qr-code that links to a video demonstrating
the volume illustration method presented in Chapter 3.
url: http://www.youtube.com/watch?v=Mq_qDqPjgQI

Figure B.12: qr-code that links to a video demonstrating
the interactive hatching method presented in Chapter 5.
url: http://www.youtube.com/watch?v=IuvUC3HFP44

127

http://www.youtube.com/watch?v=Mq_qDqPjgQI
http://www.youtube.com/watch?v=IuvUC3HFP44

BIBLIOGRAPHY

K.-i. Anjyo, S. Wemler, and W. Baxter. Tweakable Light and Shade for
Cartoon Animation. In Proc. NPAR, pages 133–139, New York, 2006.
ACM. doi> 10.1145/1124728.1124750

P. Barla, S. Breslav, J. �ollot, F. X. Sillion, and L. Markosian. Stroke
Pattern Analysis and Synthesis. Computer Graphics Forum, 25(3):
663–671, September 2006. doi> 10.1111/j.1467-8659.2006.00986.x

P. Bénard, J. Lu, F. Cole, A. Finkelstein, and J. �ollot. Active Strokes:
Coherent Line Stylization for Animated 3D Models. In Proc. NPAR,
pages 37–46, Goslar, Germany, 2012. Eurographics Association. doi>
10.2312/pe/npar/npar12/037-046

S. Bischo�, T. Wey, and L. Kobbelt. Snakes on Triangle Meshes. In
Bildverarbeitung für die Medizin, pages 208–212, Berlin/Heidelberg,
2005. Springer-Verlag. doi> 10.1007/3-540-26431-0_43

S. Breslav, K. Szerszen, L. Markosian, P. Barla, and J. �ollot. Dynamic
2D Patterns for Shading 3D Scenes. ACM Transactions on Graphics,
26(3):Article No. 20, July 2007. doi> 10.1145/1275808.1276402

S. Bruckner. Interactive Illustrative Volume Visualization. PhD thesis,
Institute of Computer Graphics and Algorithms, Vienna University
of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, 3
2008.

S. Bruckner and M. E. Gröller. VolumeShop: An Interactive System for
Direct Volume Illustration. In Proc. Visualization, pages 671–678, Los
Alamitos, 2005. IEEE Computer Society. doi> 10.1109/vis.2005.135

S. Bruckner and M. E. Gröller. Style Transfer Functions for Illustrative
Volume Rendering. Computer Graphics Forum (Proceedings of Eu-
rographics 2007, Prague, Czech Republic, September 3–7, 2007), 26(3):
715–724, September 2007. doi> 10.1111/j.1467-8659.2007.01095.x

S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller. Illustrative
Context-Preserving Exploration of Volume Data. IEEE Transactions
on Visualization and Computer Graphics, 12(6):1559–1569, November
2006. doi> 10.1109/tvcg.2006.96

S. Carpendale. Evaluating Information Visualizations. In Informa-
tion Visualization: Human-Centered Issues and Perspectives, volume

129

http://doi.acm.org/10.1145/1124728.1124750
http://doi.acm.org/10.1145/1124728.1124750
http://doi.acm.org/10.1145/1124728.1124750
http://dx.doi.org/10.1111/j.1467-8659.2006.00986.x
http://dx.doi.org/10.1111/j.1467-8659.2006.00986.x
http://dx.doi.org/10.1111/j.1467-8659.2006.00986.x
http://dx.doi.org/10.2312/PE/NPAR/NPAR12/037-046
http://dx.doi.org/10.2312/PE/NPAR/NPAR12/037-046
http://dx.doi.org/10.2312/PE/NPAR/NPAR12/037-046
http://dx.doi.org/10.2312/PE/NPAR/NPAR12/037-046
http://dx.doi.org/10.1007/3-540-26431-0_43
http://dx.doi.org/10.1007/3-540-26431-0_43
http://doi.acm.org/10.1145/1275808.1276402
http://doi.acm.org/10.1145/1275808.1276402
http://doi.acm.org/10.1145/1275808.1276402
http://www.cg.tuwien.ac.at/research/publications/2008/bruckner-2008-IIV/
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.135
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.135
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.135
http://dx.doi.org/10.1111/j.1467-8659.2007.01095.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01095.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01095.x
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.96
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.96
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.96
http://dx.doi.org/10.1007/978-3-540-70956-5_2

130 bibliography

4950/2008 of Lecture Notes in Computer Science, pages 19–45. Springer-
Verlag, Berlin/Heidelberg, 2008. doi> 10.1007/978-3-540-70956-5_2

X. Chen, A. Golovinskiy, and T. Funkhouser. A Benchmark for 3D Mesh
Segmentation. ACM Transactions on Graphics, 28(3):Article No. 73,
2009. doi> 10.1145/1531326.1531379

F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros, A. Finkelstein,
T. Funkhouser, and S. Rusinkiewic. Where Do People Draw Lines?
ACMTransactions on Graphics, 27(3):Article No. 88, August 2008. doi>
10.1145/1360612.1360687

B. Coyne and R. Sproat. WordsEye: An Automatic Text-to-Scene Con-
version System. In Proc. SIGGRAPH, pages 487–496, New York, 2001.
ACM. doi> 10.1145/383259.383316

B. Csébfalvi, L. Mroz, H. Hauser, A. König, and M. E. Gröller. Fast visu-
alization of object contours by non-photorealistic volume rendering.
Computer Graphics Forum, 20(3):452–460, 2001.

W. Dauber, G. Spitzer, and H. Feneis. Feneis’ Bild-Lexikon der Anatomie.
Georg�ieme Verlag, 9th edition, 2005. ISBN 3-13-330109-8.

O. Deussen, S. Hiller, C. van Overveld, and T. Strothotte. Floating Points:
A Method for Computing Stipple Drawings. Computer Graphics Fo-
rum, 19(3):40–51, August 2000. doi> 10.1111/1467-8659.00396

D. Ebert and P. Rheingans. Volume Illustration: Non-Photorealistic
Rendering of VolumeModels. In T. Ertl, B. Hamann, and A. Varshney,
editors, Proceedings Visualization 2000, pages 195–202. IEEEComputer
Society Technical Committee on Computer Graphics, 2000. doi> 10.
1109/visual.2000.885694

G. Elber. Line Art Rendering via a Coverage of Isoparametric Curves.
IEEE Transactions on Visualization and Computer Graphics, 1(3):231–
239, September 1995. doi> 10.1109/2945.466718

W. T. Freeman, J. B. Tenenbaum, and E. Pasztor. An Example-Based
Approach to Style Translation for Line Drawings. Technical Report
TR-99-11, MERL – A Mitsubishi Electric Research Laboratory, 1999.

W. T. Freeman, J. B. Tenenbaum, and E. C. Pasztor. Learning Style
Translation for the Lines of a Drawing. ACMTransactions on Graphics,
22(1):Article No. 2, January 2003. doi> 10.1145/588272.588277

R. Fuchs, J. Waser, and M. E. Gröller. Visual Human+Machine Learning.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1327–
1334, November/December 2009. doi> 10.1109/tvcg.2009.199

http://dx.doi.org/10.1007/978-3-540-70956-5_2
http://doi.acm.org/10.1145/1531326.1531379
http://doi.acm.org/10.1145/1531326.1531379
http://doi.acm.org/10.1145/1531326.1531379
http://doi.acm.org/10.1145/1360612.1360687
http://doi.acm.org/10.1145/1360612.1360687
http://doi.acm.org/10.1145/1360612.1360687
http://doi.acm.org/10.1145/383259.383316
http://doi.acm.org/10.1145/383259.383316
http://doi.acm.org/10.1145/383259.383316
http://dx.doi.org/10.1111/1467-8659.00396
http://dx.doi.org/10.1111/1467-8659.00396
http://dx.doi.org/10.1111/1467-8659.00396
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2000.885694
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2000.885694
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2000.885694
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2000.885694
http://dx.doi.org/10.1109/2945.466718
http://dx.doi.org/10.1109/2945.466718
http://www.merl.com/papers/docs/TR99-11.pdf
http://www.merl.com/papers/docs/TR99-11.pdf
http://doi.acm.org/10.1145/588272.588277
http://doi.acm.org/10.1145/588272.588277
http://doi.acm.org/10.1145/588272.588277
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.199
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.199

bibliography 131

R. Gasteiger, C. Tietjen, A. Baer, and B. Preim. Curvature- and Model-
Based Surface Hatching of Anatomical Structures Derived from Clini-
cal Volume Datasets. In Proc. of Smart Graphics, volume 5166, pages
255–262, Berlin/Heidelberg, 2008. Springer-Verlag. doi> 10.1007/978
-3-540-85412-8_25

R. Gasteiger, M. Neugebauer, O. Beuing, and B. Preim. The FLOWLENS:
A Focus-and-Context Visualization Approach for Exploration of
Blood Flow in Cerebral Aneurysms. IEEE Transactions on Visual-
ization and Computer Graphics, 17(12):2183–2192, December 2011. doi>
10.1109/tvcg.2011.243

M. Gerl. Volume Hatching for Illustrative Visualization. Master’s thesis,
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Favoritenstrasse 9-11/186, A-1040Vienna, Austria, Novem-
ber 2006.

M.Gerl andT. Isenberg. Interactive Example-BasedHatching. Computers
& Graphics, 2013. In press. doi> 10.1016/j.cag.2012.11.003

M. Gerl, P. Rautek, T. Isenberg, and M. E. Gröller. Semantics by Analogy
for Illustrative Volume Visualization. Computers & Graphics, 36(2):
201–213, May 2012. doi> 10.1016/j.cag.2011.10.006

A. Girshick, V. Interrante, S. Haker, and T. Lemoine. Line Direction
Matters: An Argument for the Use of Principal Directions in 3D Line
Drawings. In Proc. NPAR, pages 43–52, New York, 2000. ACM. doi>
10.1145/340916.340922

A. A. Gooch, J. Long, L. Ji, A. Estey, and B. S. Gooch. Viewing Progress
in Non-Photorealistic Rendering Through Heinlein’s Lens. In Proc.
NPAR, pages 165–171, New York, 2010. ACM. doi> 10.1145/1809939.
1809959

B. Gooch and A. A. Gooch. Non-Photorealistic Rendering. A K Peters,
Ltd., Natick, 2001. doi> 10.1145/558817

S. Greenberg and B. Buxton. Usability Evaluation Considered Harmful
(Some of the Time). In Proc. SIGCHI, pages 111–120, New York, 2008.
ACM. doi> 10.1145/1357054.1357074

P. Hall and A.-S. Lehmann. Don’t Measure—Appreciate! NPR Seen
through the PrismofArtHistory. In P. Rosin and J. Collomosse, editors,
Image and Video based Artistic Stylisation, chapter 16. Springer-Verlag,
Berlin/Heidelberg, 2012. to appear.

http://dx.doi.org/10.1007/978-3-540-85412-8_25
http://dx.doi.org/10.1007/978-3-540-85412-8_25
http://dx.doi.org/10.1007/978-3-540-85412-8_25
http://dx.doi.org/10.1007/978-3-540-85412-8_25
http://dx.doi.org/10.1007/978-3-540-85412-8_25
http://dx.doi.org/10.1109/TVCG.2011.243
http://dx.doi.org/10.1109/TVCG.2011.243
http://dx.doi.org/10.1109/TVCG.2011.243
http://dx.doi.org/10.1109/TVCG.2011.243
http://dx.doi.org/10.1109/TVCG.2011.243
http://www.cg.tuwien.ac.at/research/publications/2006/gerl-2006-vhi/
http://dx.doi.org/10.1016/j.cag.2012.11.003
http://dx.doi.org/10.1016/j.cag.2012.11.003
http://dx.doi.org/10.1016/j.cag.2011.10.006
http://dx.doi.org/10.1016/j.cag.2011.10.006
http://dx.doi.org/10.1016/j.cag.2011.10.006
http://doi.acm.org/10.1145/340916.340922
http://doi.acm.org/10.1145/340916.340922
http://doi.acm.org/10.1145/340916.340922
http://doi.acm.org/10.1145/340916.340922
http://doi.acm.org/10.1145/340916.340922
http://doi.acm.org/10.1145/1809939.1809959
http://doi.acm.org/10.1145/1809939.1809959
http://doi.acm.org/10.1145/1809939.1809959
http://doi.acm.org/10.1145/1809939.1809959
http://doi.acm.org/10.1145/558817
http://doi.acm.org/10.1145/558817
http://doi.acm.org/10.1145/1357054.1357074
http://doi.acm.org/10.1145/1357054.1357074
http://doi.acm.org/10.1145/1357054.1357074

132 bibliography

J. Hamel and T. Strothotte. Capturing and Re-Using Rendition Styles
for Non-Photorealistic Rendering. Computer Graphics Forum, 18(3):
173–182, September 1999. doi> 10.1111/1467-8659.00338

S. Hargreaves. Generating Shaders from HLSL Fragments. In W. En-
gel, editor, ShaderX3: Advanced rendering with DirectX and OpenGL,
chapter 7.3, pages 555–568. 2005.

T. Hastie and R. Tibshirani. Classi�cation by Pairwise Coupling. In Proc.
NIPS, pages 507–513, Cambridge, MA, USA, 1998. MIT Press. doi>
10.1214/aos/1028144844

H. Hauser, L. Mroz, G.-I. Bischi, and M. E. Gröller. Two-Level Volume
Rendering. IEEETransactions onVisualization andComputer Graphics,
7(3):242–252, July–September 2001. doi> 10.1109/2945.942692

A. Hertzmann. A Survey of Stroke-Based Rendering. IEEE Computer
Graphics and Applications, 23(4):70–81, July/August 2003. doi> 10.
1109/mcg.2003.1210867

A. Hertzmann and D. Zorin. Illustrating Smooth Surfaces. In Proc. SIG-
GRAPH, pages 517–526, New York, 2000. ACM. doi> 10.1145/344779.
345074

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin.
Image Analogies. In Proc. SIGGRAPH, pages 327–340, New York,
2001. ACM. doi> 10.1145/383259.383295

A. Hertzmann, N. Oliver, B. Curles, and S. M. Seitz. Curve Analogies.
In Proc. EGWR, pages 233–246, Goslar, Germany, 2002. Eurographics
Association. doi> 10.1145/581896.581926

E. R. S. Hodges. The Guild Handbook of Scienti�c Illustration. JohnWiley,
2nd edition, 2003. ISBN 9780471360117.

A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation for
Nonorthogonal Problems. Technometrics, 12(1):69–82, February 1970.
doi> 10.2307/1271436

T. Isenberg. Evaluating and Validating Non-Photorealistic and Illustra-
tive Rendering. In P. Rosin and J. Collomosse, editors, Image and
Video based Artistic Stylisation, chapter 15. Springer-Verlag, Berlin/
Heidelberg, 2012. to appear.

T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T. Strothotte.
A Developer’s Guide to Silhouette Algorithms for Polygonal Models.
IEEE Computer Graphics and Applications, 23(4):28–37, July/August
2003. doi> 10.1109/mcg.2003.1210862

http://dx.doi.org/10.1111/1467-8659.00338
http://dx.doi.org/10.1111/1467-8659.00338
http://dx.doi.org/10.1111/1467-8659.00338
http://dx.doi.org/10.1214/aos/1028144844
http://dx.doi.org/10.1214/aos/1028144844
http://dx.doi.org/10.1214/aos/1028144844
http://doi.ieeecomputersociety.org/10.1109/2945.942692
http://doi.ieeecomputersociety.org/10.1109/2945.942692
http://doi.ieeecomputersociety.org/10.1109/2945.942692
http://dx.doi.org/10.1109/MCG.2003.1210867
http://dx.doi.org/10.1109/MCG.2003.1210867
http://dx.doi.org/10.1109/MCG.2003.1210867
http://doi.acm.org/10.1145/344779.345074
http://doi.acm.org/10.1145/344779.345074
http://doi.acm.org/10.1145/344779.345074
http://doi.acm.org/10.1145/383259.383295
http://doi.acm.org/10.1145/383259.383295
http://doi.acm.org/10.1145/581896.581926
http://doi.acm.org/10.1145/581896.581926
http://dx.doi.org/10.2307/1271436
http://dx.doi.org/10.2307/1271436
http://dx.doi.org/10.2307/1271436
http://doi.ieeecomputersociety.org/10.1109/MCG.2003.1210862
http://doi.ieeecomputersociety.org/10.1109/MCG.2003.1210862

bibliography 133

T. Isenberg, P. Neumann, S. Carpendale, M. C. Sousa, and J. A. Jorge.
Non-Photorealistic Rendering in Context: An Observational Study.
In Proc. NPAR, pages 115–126, New York, 2006. ACM. doi> 10.1145/
1124728.1124747

B. Jobard andW. Lefer. Creating Evenly-Spaced Streamlines of Arbitrary
Density. In Proc. VisSci, pages 45–55, Berlin/Heidelberg, 1997. Springer-
Verlag.

P.-M. Jodoin, E. Epstein,M.Granger-Piché, andV.Ostromoukhov. Hatch-
ing by Example: a Statistical Approach. In Proc. NPAR, pages 29–36,
New York, 2002. ACM. doi> 10.1145/508530.508536

R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C. Lee, P. L.
Davidson,M.Webb, J. F. Hughes, and A. Finkelstein. WYSIWYGNPR:
Drawing Strokes Directly on 3D Models. In Proc. SIGGRAPH, pages
755–762, New York, July 2002. ACM. doi> 10.1145/566654.566648

E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3D Mesh Seg-
mentation and Labeling. ACM Transactions on Graphics, 29(4):Article
No. 102, July 2010. doi> 10.1145/1778765.1778839

E. Kalogerakis, D. Nowrouzezahrai, S. Breslav, and A. Hertzmann. Learn-
ing Hatching for Pen-and-Ink Illustration of Surfaces. ACM Trans-
actions on Graphics, 31(1):Article No. 1, 2012. doi> 10.1145/2077341.
2077342

S. Kim, R. Maciejewski, T. Isenberg, W. M. Andrews, W. Chen, M. C.
Sousa, and D. S. Ebert. Stippling by Example. In Proc. NPAR, pages
41–50, New York, 2009. ACM. doi> 10.1145/1572614.1572622

Y. Kim, J. Yu, X. Yu, and S. Lee. Line-art Illustration of Dynamic and Spec-
ular Surfaces. ACM Transactions on Graphics, 27(5):Article No. 156,
December 2008. doi> 10.1145/1457515.1409109

D. E. King. Dlib-ml: A Machine Learning Toolkit. Journal of Machine
Learning Research, 10:1755–1758, 2009.

J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional Transfer
Functions for Interactive Volume Rendering. IEEE Transactions on
Visualization and Computer Graphics, 8(3):270–285, July–September
2002. doi> 10.1109/tvcg.2002.1021579

J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg. State of the
‘Art’: A Taxonomy of Artistic Stylization Techniques for Images and
Video. IEEE Transactions on Visualization and Computer Graphics,
2012. To appear.

http://doi.acm.org/10.1145/1124728.1124747
http://doi.acm.org/10.1145/1124728.1124747
http://doi.acm.org/10.1145/1124728.1124747
http://web.univ-pau.fr/~bjobard/Research/Publications/index.htm
http://web.univ-pau.fr/~bjobard/Research/Publications/index.htm
http://doi.acm.org/10.1145/508530.508536
http://doi.acm.org/10.1145/508530.508536
http://doi.acm.org/10.1145/508530.508536
http://doi.acm.org/10.1145/566654.566648
http://doi.acm.org/10.1145/566654.566648
http://doi.acm.org/10.1145/566654.566648
http://doi.acm.org/10.1145/1778765.1778839
http://doi.acm.org/10.1145/1778765.1778839
http://doi.acm.org/10.1145/1778765.1778839
http://doi.acm.org/10.1145/2077341.2077342
http://doi.acm.org/10.1145/2077341.2077342
http://doi.acm.org/10.1145/2077341.2077342
http://doi.acm.org/10.1145/2077341.2077342
http://doi.acm.org/10.1145/1572614.1572622
http://doi.acm.org/10.1145/1572614.1572622
http://doi.acm.org/10.1145/1457515.1409109
http://doi.acm.org/10.1145/1457515.1409109
http://doi.acm.org/10.1145/1457515.1409109
http://jmlr.csail.mit.edu/papers/v10/king09a.html
http://doi.ieeecomputersociety.org/10.1109/TVCG.2002.1021579
http://doi.ieeecomputersociety.org/10.1109/TVCG.2002.1021579
http://doi.ieeecomputersociety.org/10.1109/TVCG.2002.1021579

134 bibliography

A. Lu, C. J. Morris, D. S. Ebert, P. Rheingans, and C. D. Hansen. Non-
Photorealistic Volume Rendering Using Stippling Techniques. In
R. Moorhead, M. Gross, and K. I. Joy, editors, Proceedings of IEEE
Visualizaton 2002 (Boston, Massachusetts, October 2002, pages 211–218,
Piscataway, NJ, 2002. IEEE Press. doi> 10.1109/visual.2002.1183777

E. B. Lum and K.-L. Ma. Lighting Transfer Functions Using Gradient
Aligned Sampling. In Proc. Visualization, pages 289–296, Los Alamitos,
2004. IEEE Computer Society. doi> 10.1109/visual.2004.64

E. B. Lum and K.-L. Ma. Expressive Line Selection by Example. �e
Visual Computer, 21(8–10):811–820, September 2005. doi> 10.1007/
s00371-005-0342-y

J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hod-
gins, T. Kang, B. Mirtich, H. P�ster, W. Ruml, K. Ryall, J. Seims, and
S. Shieber. Design Galleries: A General Approach to Setting Param-
eters for Computer Graphics and Animation. In Proc. SIGGRAPH,
pages 389–400, New York, 1997. ACM. doi> 10.1145/258734.258887

D. Martín, G. Arroyo, M. V. Luzón, and T. Isenberg. Scale-Dependent
and Example-Based Stippling. Computers & Graphics, 35(1):160–174,
February 2011. doi> 10.1016/j.cag.2010.11.006

P. McCormick, J. Inman, J. Ahrens, C. Hansen, and G. Roth. Scout: A
Hardware-Accelerated System for Quantitatively Driven Visualization
andAnalysis. In Proc. Visualization, pages 171–178, Los Alamitos, 2004.
IEEE Computer Society. doi> 10.1109/visual.2004.95

M.McGuire. The SuperShader. InW. Engel, editor, Shader X4: Advanced
Rendering Techniques, chapter 8.1, pages 485–489. 2006.

T. Mertens, J. Kautz, J. Chen, P. Bekaert, and F. Durand. Texture Trans-
fer using Geometry Correlation. In Proc. EGSR, pages 273–284,
Goslar, Germany, 2006. Eurographics Association. doi> 10.2312/egwr/
egsr06/273-284

M. Neugebauer, G. Janiga, O. Beuing, M. Skalej, and B. Preim. Anatomy-
GuidedMulti-Level Exploration of Blood Flow inCerebral Aneurysms.
Computer Graphics Forum, 30(3):1041–1050, June 2011. doi> 10.1111/j.
1467-8659.2011.01953.x

M. Nijboer, M. Gerl, and T. Isenberg. Exploring Frame Gestures for Fluid
Freehand Sketching. In E. Y.-L. Do and M. Alexa, editors, Proc. SBIM,
pages 57–62, Goslar, Germany, 2010. Eurographics Association. doi>
10.2312/sbm/sbm10/057-062

http://dx.doi.org/10.1109/VISUAL.2002.1183777
http://dx.doi.org/10.1109/VISUAL.2002.1183777
http://dx.doi.org/10.1109/VISUAL.2002.1183777
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.64
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.64
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.64
http://dx.doi.org/10.1007/s00371-005-0342-y
http://dx.doi.org/10.1007/s00371-005-0342-y
http://dx.doi.org/10.1007/s00371-005-0342-y
http://doi.acm.org/10.1145/258734.258887
http://doi.acm.org/10.1145/258734.258887
http://doi.acm.org/10.1145/258734.258887
http://dx.doi.org/10.1016/j.cag.2010.11.006
http://dx.doi.org/10.1016/j.cag.2010.11.006
http://dx.doi.org/10.1016/j.cag.2010.11.006
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.95
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.95
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.95
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.95
http://dx.doi.org/10.2312/EGWR/EGSR06/273-284
http://dx.doi.org/10.2312/EGWR/EGSR06/273-284
http://dx.doi.org/10.2312/EGWR/EGSR06/273-284
http://dx.doi.org/10.2312/EGWR/EGSR06/273-284
http://dx.doi.org/10.1111/j.1467-8659.2011.01953.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01953.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01953.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01953.x
http://dx.doi.org/10.2312/SBM/SBM10/057-062
http://dx.doi.org/10.2312/SBM/SBM10/057-062
http://dx.doi.org/10.2312/SBM/SBM10/057-062
http://dx.doi.org/10.2312/SBM/SBM10/057-062

bibliography 135

V. Ostromoukhov. Digital Facial Engraving. In Proc. SIGGRAPH, pages
417–424, New York, 1999. ACM. doi> 10.1145/311535.311604

E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-Time Hatching.
In Proc. SIGGRAPH, pages 581–586, New York, 2001. ACM. doi> 10.
1145/383259.383328

P. Rautek, S. Bruckner, andM. E. Gröller. Semantic Layers for Illustrative
Volume Rendering. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1336–1343, November–December 2007. doi> 10.1109/
tvcg.2007.70591

P. Rautek, S. Bruckner, andM. E. Gröller. Interaction-Dependent Seman-
tics for Illustrative Volume Rendering. Computer Graphics Forum, 27
(3):847–854, May 2008a. doi> 10.1111/j.1467-8659.2008.01216.x

P. Rautek, S. Bruckner, M. E. Gröller, and I. Viola. Illustrative Visual-
ization: New Technology or Useless Tautology? ACM SIGGRAPH
Computer Graphics, 42(3):4:1–4:8, August 2008b. doi> 10.1145/1408626.
1408633

C. Rezk-Salama, M. Keller, and P. Kohlmann. High-Level User Interfaces
for Transfer Function Design with Semantics. IEEE Transactions on
Visualization and Computer Graphics, 12(5):1021–1028, September/Oc-
tober 2006. doi> 10.1109/tvcg.2006.148

P. Rheingans and D. Ebert. Volume Illustration: Nonphotorealistic Ren-
dering of Volume Models. IEEE Transactions on Visualization and
Computer Graphics, 7(3):253–264, July–September 2001. doi> 10.1109/
2945.942693

T. Ritschel, T. Grosch, and H.-P. Seidel. Approximating Dynamic Global
Illumination in Image Space. In Proc. I3D, pages 75–82, New York,
2009. ACM. doi> 10.1145/1507149.1507161

P. Rosin and J. Collomosse, editors. Image and Video based Artistic
Stylisation. Springer-Verlag, Berlin/Heidelberg, 2012. To appear.

C. Rössl and L. Kobbelt. Line Art Rendering of 3D-Models. In Proc.
Paci�c Graphics, pages 87–96, Los Alamitos, 2000. IEEE Computer
Society. doi> 10.1109/pccga.2000.883890

F. Rössler, R. P. Botchen, and T. Ertl. Dynamic Shader Generation for
GPU-Based Multi-Volume Ray Casting. IEEE Computer Graphics
and Applications, 28(5):66–77, September/October 2008. doi> 10.1109/
mcg.2008.96

http://doi.acm.org/10.1145/311535.311604
http://doi.acm.org/10.1145/311535.311604
http://doi.acm.org/10.1145/383259.383328
http://doi.acm.org/10.1145/383259.383328
http://doi.acm.org/10.1145/383259.383328
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70591
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70591
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70591
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70591
http://dx.doi.org/10.1111/j.1467-8659.2008.01216.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01216.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01216.x
http://doi.acm.org/10.1145/1408626.1408633
http://doi.acm.org/10.1145/1408626.1408633
http://doi.acm.org/10.1145/1408626.1408633
http://doi.acm.org/10.1145/1408626.1408633
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.148
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.148
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.148
http://doi.ieeecomputersociety.org/10.1109/2945.942693
http://doi.ieeecomputersociety.org/10.1109/2945.942693
http://doi.ieeecomputersociety.org/10.1109/2945.942693
http://doi.ieeecomputersociety.org/10.1109/2945.942693
http://doi.acm.org/10.1145/1507149.1507161
http://doi.acm.org/10.1145/1507149.1507161
http://doi.acm.org/10.1145/1507149.1507161
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2000.883890
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2000.883890
http://dx.doi.org/10.1109/MCG.2008.96
http://dx.doi.org/10.1109/MCG.2008.96
http://dx.doi.org/10.1109/MCG.2008.96
http://dx.doi.org/10.1109/MCG.2008.96

136 bibliography

T. Saito and T. Takahashi. Comprehensible Rendering of 3-D Shapes.
In Proc. SIGGRAPH, pages 197–206, New York, 1990. ACM. doi>
10.1145/97880.97901

D. H. Salesin. Non-Photorealistic Animation & Rendering: 7 Grand
Challenges. Keynote talk at NPAR, 2002.

M. P. Salisbury, S. E. Anderson, R. Barzel, and D. H. Salesin. Interactive
Pen-and-Ink Illustration. In Proc. SIGGRAPH, pages 101–108, New
York, 1994. ACM. doi> 10.1145/192161.192185

M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin. Orientable
Textures for Image-Based Pen-and-Ink Illustration. In Proc. SIG-
GRAPH, pages 401–406, New York, 1997. ACM. doi> 10.1145/258734.
258890

Y. Sato, C.-F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura,
and R. Kikinis. Tissue Classi�cation Based on 3D Local Intensity
Structures for Volume Rendering. IEEE Transactions on Visualization
and Computer Graphics, 6(2):160–180, April–June 2000. doi> 10.1109/
2945.856997

J. Seims. Putting the Artist in the Loop. ACM SIGGRAPH Computer
Graphics, 33(1):52–53, February 1999. doi> 10.1145/563666.563685

D. D. Seligmann and S. K. Feiner. Automated Generation of Intent-Based
3D Illustrations. ACM SIGGRAPH Computer Graphics, 25(4):123–132,
July 1991. doi> 10.1145/127719.122732

A. Shamir. A Survey on Mesh Segmentation Techniques. Computer
Graphics Forum, 27(6):1539–1556, 2008. doi> 10.1111/j.1467-8659.2007.
01103.x

B. Shneiderman and C. Plaisant. Strategies for Evaluating Information
Visualization Tools: Multi-Dimensional In-Depth Long-Term Case
Studies. In Proc. BELIV 2006, New York, 2006. ACM. doi> 10.1145/
1168149.1168158

P. Soille. Morphological Image Analysis: Principles and Applica-
tions. Springer-Verlag, Berlin/Heidelberg, 2nd edition, 2003. ISBN
3540429883.

K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel. Query-Driven Visual-
ization of Large Data Sets. In Proc. Visualization, pages 167–174, Los
Alamitos, 2005. IEEE Computer Society. doi> 10.1109/vis.2005.84

T. Strothotte and S. Schlechtweg. Non-Photorealistic Computer Graphics.
Modeling, Animation, and Rendering. Morgan Kaufmann Publishers,
San Francisco, 2002. doi> 10.1145/544522

http://doi.acm.org/10.1145/97880.97901
http://doi.acm.org/10.1145/97880.97901
http://doi.acm.org/10.1145/97880.97901
http://www.research.microsoft.com/~salesin/NPAR.ppt
http://www.research.microsoft.com/~salesin/NPAR.ppt
http://doi.acm.org/10.1145/192161.192185
http://doi.acm.org/10.1145/192161.192185
http://doi.acm.org/10.1145/192161.192185
http://doi.acm.org/10.1145/258734.258890
http://doi.acm.org/10.1145/258734.258890
http://doi.acm.org/10.1145/258734.258890
http://doi.acm.org/10.1145/258734.258890
http://doi.ieeecomputersociety.org/10.1109/2945.856997
http://doi.ieeecomputersociety.org/10.1109/2945.856997
http://doi.ieeecomputersociety.org/10.1109/2945.856997
http://doi.ieeecomputersociety.org/10.1109/2945.856997
http://doi.acm.org/10.1145/563666.563685
http://doi.acm.org/10.1145/563666.563685
http://doi.acm.org/10.1145/127719.122732
http://doi.acm.org/10.1145/127719.122732
http://doi.acm.org/10.1145/127719.122732
http://dx.doi.org/10.1111/j.1467-8659.2007.01103.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01103.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01103.x
http://doi.acm.org/10.1145/1168149.1168158
http://doi.acm.org/10.1145/1168149.1168158
http://doi.acm.org/10.1145/1168149.1168158
http://doi.acm.org/10.1145/1168149.1168158
http://doi.acm.org/10.1145/1168149.1168158
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.84
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.84
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.84
http://doi.acm.org/10.1145/544522
http://doi.acm.org/10.1145/544522
http://doi.acm.org/10.1145/544522

bibliography 137

N. Svakhine, D. S. Ebert, and D. Stredney. Illustration Motifs for Ef-
fective Medical Volume Illustration. IEEE Computer Graphics and
Applications, 25(3):31–39, May/June 2005. doi> 10.1109/mcg.2005.60

C. Tietjen, R. P�sterer, A. Baer, R. Gasteiger, and B. Preim. Hardware-
Accelerated Illustrative Medical Surface Visualization with Extended
Shading Maps. In Proc. Smart Graphics, pages 166–177, Berlin/
Heidelberg, 2008. Springer-Verlag. doi> 10.1007/978-3-540-85412-8_15

M. E. Tipping and A. Faul. Fast Marginal Likelihood Maximisation for
Sparse Bayesian Models. In Proc. Arti�cial Intelligence and Statistics,
pages 3–6, Key West, Florida, 2003. Society for Arti�cial Intelligence
and Statistics.

H. Todo, K.-i. Anjyo, W. Baxter, and T. Igarashi. Locally Controllable
Stylized Shading. ACM Transactions on Graphics, 26(3):Article No. 17,
July 2007. doi> 10.1145/1275808.1276399

F.-Y. Tzeng, E. B. Lum, and K.-L. Ma. An Intelligent System Approach
to Higher-Dimensional Classi�cation of Volume Data. IEEE Transac-
tions on Visualization and Computer Graphics, 11(3):273–284,May/June
2005. doi> 10.1109/tvcg.2005.38

I. Viola, M. E. Gröller, M. Hadwiger, K. Bühler, B. Preim, M. C. Sousa,
D. Ebert, and D. Stredney. Illustrative Visualization. In Proc. Visual-
ization, number 5 in Tutorials. IEEE Computer Society, Los Alamitos,
2005. doi> 10.1109/vis.2005.57

G. A.Winkenbach and D. H. Salesin. Computer-Generated Pen-and-Ink
Illustration. In Proc. SIGGRAPH, pages 91–100, New York, 1994. ACM.
doi> 10.1145/192161.192184

G. A. Winkenbach and D. H. Salesin. Rendering Parametric Surfaces in
Pen and Ink. In Proc. SIGGRAPH, pages 469–476, New York, 1996.
ACM. doi> 10.1145/237170.237287

J. Woodring and H.-W. Shen. Multi-Variate, Time Varying, and Com-
parative Visualization with Contextual Cues. IEEE Transactions on
Visualization and Computer Graphics, 12(5):909–916, September/Octo-
ber 2006. doi> 10.1109/tvcg.2006.164

S. Zachow, P.Muigg, T. Hildebrandt, H. Doleisch, andH.-C. Hege. Visual
Exploration of Nasal Air�ow. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1407–1414, November/December 2009. doi>
10.1109/tvcg.2009.198

http://doi.ieeecomputersociety.org/10.1109/MCG.2005.60
http://doi.ieeecomputersociety.org/10.1109/MCG.2005.60
http://doi.ieeecomputersociety.org/10.1109/MCG.2005.60
http://dx.doi.org/10.1007/978-3-540-85412-8_15
http://dx.doi.org/10.1007/978-3-540-85412-8_15
http://dx.doi.org/10.1007/978-3-540-85412-8_15
http://dx.doi.org/10.1007/978-3-540-85412-8_15
http://research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/123.pdf
http://research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/123.pdf
http://doi.acm.org/10.1145/1275808.1276399
http://doi.acm.org/10.1145/1275808.1276399
http://doi.acm.org/10.1145/1275808.1276399
http://doi.ieeecomputersociety.org/10.1109/TVCG.2005.38
http://doi.ieeecomputersociety.org/10.1109/TVCG.2005.38
http://doi.ieeecomputersociety.org/10.1109/TVCG.2005.38
http://dx.doi.org/10.1109/VIS.2005.57
http://dx.doi.org/10.1109/VIS.2005.57
http://doi.acm.org/10.1145/192161.192184
http://doi.acm.org/10.1145/192161.192184
http://doi.acm.org/10.1145/192161.192184
http://doi.acm.org/10.1145/237170.237287
http://doi.acm.org/10.1145/237170.237287
http://doi.acm.org/10.1145/237170.237287
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.164
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.164
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.164
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.198
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.198
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.198
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.198

138 bibliography

J. Zander, T. Isenberg, S. Schlechtweg, and T. Strothotte. High Quality
Hatching. Computer Graphics Forum, 23(3):421–430, September 2004.
doi> 10.1111/j.1467-8659.2004.00773.x

M. Zhao and S.-C. Zhu. Portrait Painting usingActive Templates. In Proc.
NPAR, pages 117–124, New York, 2011. ACM. doi> 10.1145/2024676.
2024696

http://dx.doi.org/10.1111/j.1467-8659.2004.00773.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00773.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00773.x
http://doi.acm.org/10.1145/2024676.2024696
http://doi.acm.org/10.1145/2024676.2024696
http://doi.acm.org/10.1145/2024676.2024696

LIST OF FIGURES

Figure 1.1 �e interactive volume illustration system pre-
sented in chapter 3. 2

Figure 1.2 Vertebra illustration created with the hatching
method in chapter 5. 3

Figure 2.1 Fully automatic real-time hatching [Praun et al.,
2001] 6

Figure 2.2 Freehand sketching [Nijboer et al., 2010] 7
Figure 2.3 Interaction continuum. 8
Figure 2.4 Global parameter adjustment [Gerl, 2006] 9
Figure 2.5 Adjustable stippling [Deussen et al., 2000] 10
Figure 2.6 Stippling by example [Kim et al., 2009; Martín

et al., 2011] 11
Figure 2.7 Semantics-driven visualization [Rautek et al.,

2008a] 14
Figure 2.8 A result of the interactive volume illustration

system in chapter 3. 15
Figure 2.9 A result of the interactive example-based hatch-

ing system in chapter 5. 17
Figure 3.1 A direct volume illustration system [Bruckner

and Gröller, 2005] 24
Figure 3.2 Visual exploration of nasal air�ow [Zachow et al.,

2009] 25
Figure 3.3 Schematic overviewof the semantics-by-analogy

framework 27
Figure 3.4 Overviewof semantic shader augmentation 29
Figure 3.5 Overviewof graphical interactionswith semantics-

driven visualizations 33
Figure 3.6 Brushing ofmembership functions by analogy 35
Figure 3.7 Graphical rule speci�cation interface 37
Figure 3.8 Interaction sequence for rule speci�cation. 38
Figure 3.9 Design gallery for logical operators 40
Figure 3.10 Design gallery for visual attributes 40
Figure 3.11 Sparseness based on z-coordinate (ct hand) 42
Figure 3.12 Control over two rendering modes based on the

gradient (ct head) 43
Figure 3.13 Opacity modulation based on lighting (Visible

human head) 44
Figure 3.14 Brain visualization in mr head 46
Figure 3.15 Brain visualization in mr head 47

139

140 list of figures

Figure 4.1 Our approaches in the interaction continuum. 58
Figure 5.1 Smooth direction �eld hatching [Hertzmann

and Zorin, 2000] 64
Figure 5.2 Object-space hatching [Zander et al., 2004] 65
Figure 5.3 Example-based hatching in image space [Kaloger-

akis et al., 2012] 66
Figure 5.4 Interactively generated pen-and-ink illustration

[Salisbury et al., 1997] 67
Figure 5.5 Overviewof hatching-by-example approach 69
Figure 5.6 Input to learning of a hatching style 71
Figure 5.7 Stroke detection 73
Figure 5.8 Learning patch properties 75
Figure 5.9 Learning stroke directions 79
Figure 5.10 Learning stroke distances 80
Figure 5.11 Adaptive surface patches 81
Figure 5.12 Example-based direction �eld 82
Figure 5.13 Stroke distance control 83
Figure 5.14 Stroke distance control in 2D 84
Figure 5.15 Stroke rendering 86
Figure 5.16 Patches mapping interaction 87
Figure 5.17 Hatching rotation interaction 88
Figure 5.18 Direction �eld retouching sequence 89
Figure 5.19 Brushing interaction sequence 90
Figure 5.20 Shoulder blade and venus statue illustrations us-

ing the hatching style learned from the shoulder
blade illustration 92

Figure 5.21 Vertebra illustration using the hatching style
learned from the shoulder blade illustration 93

Figure 5.22 Hip bone illustration using the hatching style
learned from the shoulder blade illustration 94

Figure 5.23 Pitcher plant illustration and learning input 95
Figure 5.24 Pitcher plant and shoulder plant illustrations

using the hatching style learned from the pitcher
plant illustration 96

Figure 5.25 Rocker arm illustration using the hatching style
learned from the pitcher plant illustration 97

Figure 5.26 Hand and venus statue illustrations using the
hatching style learned from the pitcher plant
illustration 98

Figure 5.27 Klein bottle and two box cloth illustrations using
the hatching style learned from the pitcher plant
illustration 99

list of figures 141

Figure 5.28 Crosshatching illustration of a vertebra using
the hatching style learned from the pitcher plant
illustration 101

Figure 6.1 Conclusions on chapter 3. 109
Figure 6.2 Conclusions on chapter 5. 111
Figure 6.3 Tradeo� achieved by semi-automatic methods

for illustrative rendering. 116
Figure 6.4 Application domains 118
Figure A.5 CT hand visualization 121
Figure A.6 MRI brain visualization 122
Figure A.7 Venus illustration 123
Figure A.8 Pitcher plant illustration 124
Figure A.9 Scapula illustration 125
Figure A.10 Scapula illustration 126
Figure B.11 qr-code that links to demo video accompanying

chapter 3 127
Figure B.12 qr-code that links to demo video accompanying

chapter 5 127

PUBLICATIONS RELATED TO THIS THESIS

journal papers

Moritz Gerl, Peter Rautek, Tobias Isenberg, and Meister Eduard Gröller.
Semantics by Analogy for Illustrative Volume Visualization. In Com-
puters & Graphics, 36(2):201–213, 2012.

Moritz Gerl and Tobias Isenberg. Interactive Example-Based Hatching.
In Computers & Graphics, 2013. In press.

peer-reviewed conference paper

Menno Nijboer, Moritz Gerl, and Tobias Isenberg: Exploring Frame Ges-
tures for Fluid Freehand Sketching. In Ellen Yi-Luen Do and Marc
Alexa, eds., Proc. of the Sketch Based Interfaces and Modeling Sympo-
sium (SBIM 2010, June 7–10, 2010, Annecy, France). Goslar, Germany.
Eurographics Association, pages 57–62, 2010.

peer-reviewed conference poster

Menno Nijboer, Moritz Gerl, and Tobias Isenberg: Interaction Concepts
for Digital Concept Sketching. In Holger Winnemöller and Marc Nien-
haus, eds., Posters of the Seventh International Symposium on Non-
Photorealistic Animation and Rendering (NPAR 2009, August 1–2,
New Orleans, USA). 2009. Extended abstract and poster.

national symposium poster and paper

Moritz Gerl and Tobias Isenberg: Image Analysis on Hatching Drawings.
In SIREN: Scienti�c ICT Research Event Netherlands, (November 5,
2009, University of Twente, �e Netherlands). 2009. Poster.

Menno Nijboer, Moritz Gerl, and Tobias Isenberg: Interaction Concepts
for Fluid Freehand Sketching. In Proc. of the Sixteenth Annual Con-
ference of the Advanced School for Computing and Imaging (ASCI
Conference 2010, November 1–3, 2010, Veldhoven, �e Netherlands).
2010. Paper number 12.

143

SAMENVATTING

T egenwoordig veranderen illustratietechnieken steeds sneller.
Dit proefschri� neemt deel aan dit proces van verandering en
bestudeert de interactieve computergesteunde creatie van illustra-

ties. Illustraties zijn e�ectieve middelen om informatie op een visuele
manier vast te leggen en over te dragen. Het gebruik van illustraties
reikt terug tot in de prehistorie, toen de prehistorische mens begon zijn
omgeving af te beelden in vorm van grotschilderingen. Sinds toen hee�
de kunst van de illustratie een lange evolutie doorlopen. Maar illustra-
ties zijn nog steeds een belangrijke vorm van visuele communicatie. De
ontwikkeling van illustratietechnieken is nauw verbonden met de ont-
wikkeling van nieuwe technologieën voor de beeldende vormgeving.
Tegenwoordig zijn illustratietechnieken in een staat van verandering.
Mensen gebruiken heden ten dage meer en meer digitale technieken
voor het creëren van illustraties.

De digitale technieken die hierbij worden gebruikt zijn óf technieken
voor de automatische beeldvorming óf technieken voor het interactieve
digitale tekenen of schilderen. Beide deze soorten digitale illustratieve
technieken zijn alleen toepasbaar voor specialisten in illustratie. Professi-
onele illustrators zijn meestal mensen met een hoog artistiek talent, een
opleiding tot beeldend kunstenaar, en vaak een speciale opleiding tot
illustrator. Niet iedereen die een illustratie nodig hee� beschikt over de
middelen om deze door een professionele illustrator te laten maken. Om
deze reden zijn mensen die op zoek zijn naar een illustratie genoodzaakt
om af te zien van de illustratie, om een bestaande illustratie te gebruiken
die niet goed geschikt is, of om de illustratie zelf te creëren. Al deze
oplossingen hebben een negatief e�ect op de kwaliteit van de illustratie
en op het bereiken van het doel van de illustratie.
Dit proefschri� bestudeert technieken die expertise in illustratie be-

schikbaar en toepasbaar maken voor mensen zonder een creatieve achter-
grond. Bovendien zijn de technieken die in dit proefschri� voorgesteld
worden ook toepasbaar voor professionele illustrators. We behandelen
in dit proefschri� technieken voor de interactieve illustratieve beeldvor-
ming. Illustratieve of niet-fotorealistische beeldvorming is een deelgebied
van de computergra�ek dat zich voornamelijk bezighoudt met het ge-
nereren van plaatjes in de stijl van met de hand gemaakte beelden. Een
centraal oogmerk van de methoden in dit proefschri� is het verkrijgen
van controle over de resultaten van illustratieve beeldvorming. Wij spre-
ken hier van controle in de zin van invloed en besturing en niet in de zin

145

146 samenvatting

van test en toetsing. Methoden voor de illustratieve beeldvorming zijn
meestal volledig automatisch, of stellen alleen beperkte mogelijkheden
ter beschikking om de resultaten te controleren. Dit soort automatisering
staat in contrast met de artistieke natuur van de plaatjes die gegenereerd
worden. Bovendien belet het ontbreken van mogelijkheden voor ingrij-
pen, dat methoden voor illustratieve beeldvorming toegepast worden in
creatieve omgevingen. De technieken die wij in dit proefschri� bestude-
ren kunnen helpen om deze toestand te verbeteren.

In hoofdstuk 2 onderzoekenwe het onderwerp van controle over het re-
sultaat in de illustratieve beeldvorming. Verder leggen we de samenhang
uit van de twee verschillende methoden van illustratieve beeldvorming
die in dit proefschri� worden voorgesteld.
In hoofdstuk 3 presenteren wij een methode voor de interactieve il-

lustratieve visualisatie van volumetrische gegevens. Deze methode is
gebaseerd op een techniek die het mogelijk maakt om visualisaties met
behulp van regels te beïnvloeden. In dit proefschri� introduceren we
een gra�sche methode om dit soort visualisatieregels te formuleren en te
exploreren. Verder stellen we een mogelijkheid voor om de visualisatiere-
gels lokaal aan te passen op een intuïtieve en gra�schemanier. Bovendien
stellen wij een concept voor dat het mogelijk maakt om regel-gebaseerde
visualisatiefunctionaliteit automatisch toe te voegen aan willekeurige
shader-programmas. Dit is een erg �exibel concept dat het mogelijk
maakt om willekeurige variabelen in shader-programmas als input en
output voor visualisatieregels te gebruiken. De methode in hoofdstuk
3 maakt regel-gebaseerde visualisaties beter toegankelijk en toepasbaar
voor de gebruiker en verbetert de mogelijkheden om dit soort visualisa-
ties interactief te exploreren.
In hoofdstuk 4 gaan we dieper in op de inzichten met betrekking tot

controle over het resultaat die we in hoofdstuk 3 hebben verworven.
Gebaseerd op deze inzichten motiveren wij vervolgens de strategie voor
controle over het resultaat voor hoofdstuk 5.
In hoofdstuk 5 introduceren wij een methode voor het interactieve

genereren van plaatjes die op arceringen met pen en inkt lijken. Deze
methode maakt het mogelijk om 3d modellen te renderen in de stijl van
klassieke medische illustraties met pen en inkt. De techniek die wij in
hoofdstuk 5 presenteren verbetert de esthetische kwaliteit van met de
computer gegenereerde arceringen. Wij bereiken deze verbetering door
de combinatie van twee strategieën voor controle over het resultaat: het
automatische leren van voorbeelden en het interactieve ingrijpen door
de gebruiker. Ten eerste stellen wij een voorbeeldgebaseerde methode
van arcering voor. We maken gebruik van beeldverwerking en machine
learning om de arceringsstijl van met de hand getekende illustraties te
leren. Wij bespreken een model dat het mogelijk maakt om de geleerde
arceringsstijl over te dragen op nieuwe 3d objecten. Dit model bevat

samenvatting 147

meerdere technische noviteiten op het gebied van voorbeeldgebaseerde
illustratieve beeldvorming. Ten tweede presenteren wij interactietech-
nieken die de gebruiker van het arceringssysteem de mogelijkheid bie-
den om het resultaat te veranderen. De combinatie van automatische
voorbeeldgebaseerde controle en interactieve controle over het resultaat
maakt het mogelijk om de esthetische kwaliteit en de doeltre�endheid
van met de computer gegenereerde arceringen te verbeteren. Bovendien
maakt de techniek expertise in arcering toepasbaar voor mensen zonder
kennissen in arcering. Daardoor woord het voor leken mogelijk gemaakt
om illustraties te creëren die ze anders niet in staat zouden zijn te creëren.
Verder maakt de interactiviteit van onze techniek het mogelijk dat hij
gebruikt kan worden door kunstenaars en illustrators.

Tenslotte vatten we in hoofdstuk 6 de belangrijkste inzichten en tech-
nische bijdragen van dit proefschri� samen en trekken conclusies uit
ons onderzoek. Bovendien presenteren wij ideeën en richtingen voor
toekomstig werk. We sluiten dit proefschri� af met het omlijnen van
mogelijke toepassingen van onze methoden.

ACKNOWLEDGMENTS

I am very grateful for being granted the privilege of conducting the re-
search work presented in this thesis. I thank all the people whomade
this work possible, who contributed to my research, who supported

me, and those who helped to accomplish my aims.
First of all, I thank my supervisor Dr. Tobias Isenberg for taking me as

his PhD student and for his brilliant supervision. Dear Tobias, thank you
for sharing your skills, knowledge, and wisdom. You helped me improve
myself in many di�erent ways. �ank you for investing that much time
in my supervision and always being available for questions and advise.
�anks for your trust. �ank you for letting me develop my own ideas
while giving competent advise in important strategic decisions as well as
in sorting out all the tricky details of our techniques. It was a real pleasure
to work with you. I feel honored by being your �rst PhD student.
Second of all, I thank my promotor Prof. Dr. Jos Roerdink for his

calm and friendly leadership. Dear Jos, thank you for your guidance,
support and advice. You taught me a lot about approaching problems
with calmness, diligence, and consideration without loosing the touch to
the eagerness brought by scienti�c curiosity and challenge. I also thank
you for teaching me the importance of scienti�c rigor.

Furthermore, I thank Prof. Dr. Eduard Gröller for his advice and his
support. Dear Meister, thank you for sharing your wisdom and expertise.
I learned a lot from you about leadership and group dynamics. �ank
you for o�ering me the great opportunity to collaborate with you and
Peter Rautek. I also thank you, as well as Stefan Bruckner, for introdu-
cing me to the world of academic research during my master’s thesis.
visible facimvs qvod ceteri non possvnt.

Next, I very much thank the other members of my doctoral committee,
Prof. Dr. Oliver Deussen and Prof Dr.-Ing. Bernhard Preim for their
interest, time, and valuable comments on my thesis. I feel honored by
having such brilliant people in my doctoral committee.
I also want to thank Dr. Peter Rautek for sharing his ideas and his

knowledge. Dear Peter, thank you for the collaboration. It was great fun,
very inspiring, and a real pleasure to work with you.

Furthermore, I thank the participants of our user studies for their
time and for sharing their expertise. Many thanks to Peter van Ooijen
from the umcg radiology department and Aditya Hernowo from the
bcn Neuroimaging Center. I also thank the artists and illustrators that
gave me valuable advice and opinions on my projects. In particular, I

149

150 acknowledgments

thank Avik Maitra, Sahal Merchant, Maartje Kunen, and Karin Spijker
for their collaboration, interest, and feedback.
Next, I thank my fellow PhD student Lingyun Yu for being such a

great person and o�cemate. Dear Yun, thank you for being there, for
always having an open ear, and for your advice. It was a delight sharing
the o�ce with you. I wish you all the best.
I also thank my other fellow PhD students Wladimir van der Laan,

Ronald van den Berg, Heorhiy Byelas, Bilkis Ferdosi, Alessandro Crippa,
Maarten Everts, Ozan Ersoy, Deborah Mudali, Matthew van der Zwan,
Jasper van de Gronde, and Andre Sobiecki for some interesting discussi-
ons and for creating a pleasant working atmosphere. �e same goes to
some of my fellow PhD students from other disciplines, Giulio Iacobelli,
Ivan Vujacic, Hildeberto Jardon, and Ugo Moschini.
Many thanks to Esmee Elshof, Ineke Scheelhas, and Desiree Hansen

for their administration, support, and help. Also thanks to Prof. Dr. Henk
Bekker and Prof. Dr. Alexandru Telea for their comments and advice.
I thank all the people that I met, spent time with, and made friends

with outside of the university during my stay in Groningen. Especially
Julien, Oliver, Michael, Tino, and Jonas. �ank you for being my friends
and for the good times together. All of you made it a very enjoyable time.

Also many thanks to my friends from home for supporting me and for
not letting our friendship fade out despite the distance and little contact.
�anks and kisses to Moni for your support and love during two years

in which I worked on our relationship, myself, and this thesis.
�anks to my brother Hannes for his advice and support. �anks to

Mika for being with Hannes. Also thanks to Markus for being there.
Finally, I thank my parents for making me, for raising me with so

much love, and for supporting me all the time. Danke!

Moritz Gerl Groningen, 23.09.2012

en taro adun

colophon

�is thesis was typeset with LATEX2ε using Robert Slimbach’sMinion Pro
font. �e typesetting is based on the classicthesis style by André Miede.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/
http://www.miede.de/

	Dedication
	Contents
	1 Introduction
	2 Illustrative Rendering & Control over the Result
	2.1 Non-Photorealistic Rendering
	2.2 Illustrative Visualization
	2.3 Interactive Semantics-driven Volume Rendering
	2.4 Interactive Example-based Hatching
	2.5 Summary

	3 Interactive Semantics-driven Volume Rendering
	3.1 Introduction
	3.2 Related Work
	3.3 A Framework for Semantics by Analogy
	3.3.1 Semantic Shader Augmentation
	3.3.2 Semantics by Analogy
	3.3.3 Graphical Rule Specification

	3.4 Results and Discussion
	3.5 Evaluation
	3.5.1 Feedback from Medical Experts
	3.5.2 Feedback from Medical Illustrators

	3.6 Limitations
	3.7 Conclusions and Future Work
	3.8 Acknowledgments

	4 From Interactive To Semi-Automatic Control over the Result
	5 Interactive Example-based Pen-and-Ink Hatching
	5.1 Introduction
	5.2 Related Work
	5.3 Overview
	5.4 Learning a Hatching Style
	5.4.1 Image Analysis
	5.4.2 Patch Properties and Surface Features
	5.4.3 Stroke Directions
	5.4.4 Stroke Distances
	5.4.5 Summary

	5.5 Hatching Synthesis
	5.5.1 Adaptive Patches
	5.5.2 Example-based Direction Field
	5.5.3 Stroke Tracing and Distances
	5.5.4 Stroke Rendering

	5.6 Interaction with the Hatching Illustration
	5.7 Results and Discussion
	5.8 Limitations
	5.9 Conclusions and Future Work
	5.10 Acknowledgments

	6 Conclusion & Future Work
	6.1 Semantics by Analogy
	6.2 Interactive Example-based Hatching
	6.3 Illustrative Rendering & Control over the Result

	A Appendix: Supplemental Images
	B Appendix: Supplemental Videos
	Bibliography
	List of Figures
	Publications related to this thesis
	Samenvatting
	Acknowledgments
	Colophon

