Illustrative Molecular Visualization with Continuous Abstraction

Matthew van der Zwan Wouter Lueks Henk Bekker Tobias Isenberg

Molecular Visualization

Crystal structure of a molybdenum oxide nanowheel.
Science 327(1), January 2010

Ribbon diagram of the EspG structure. Biochemistry 50(21)

Space-fill

Balls-and-sticks

Licorice

Backbone

Ribbon

Molecular Visualization

Goodsell, 2005

Molecular Visualization

Lampe et al., 2007

Support of spatial perception

Tarini et al., 2006

Illustrative rendering

Weber, 2009

Challenges

- Continuous transition from volumetric primitives to line primitives
- Choice and order of depth cueing techniques
- Large datasets (≥ 10⁴ atoms)

Abstraction Space

Abstraction Space

- Structural abstraction
- Abstraction through the visual style
 - Support of spatial perception
 - Illustrativeness

- Transition from Space-fill to balls-and-sticks
 - Reduce atom radii

- Transition from balls-and-sticks to licorice
 - Reduce atom radii to zero and remove atoms

- Transition from licorice to backbone
 - Remove bonds which are not part of the backbone
 - Start with bonds which are furthest away
 - Shorten bonds and remove when length is zero

Atom rank

$$\operatorname{rank}(a) = \begin{cases} 0 & \text{if } a \in \operatorname{backbone} \\ 1 + \min_{b \in \operatorname{conn}(a)} \{ rank(b) \} & \text{else} \end{cases}$$

$$\operatorname{conn}(a) \text{ are all the atoms which are connected to atom } a$$

- Transition from backbone to ribbons
 - Interpolate between (linear) bond position and smooth ribbons
 - Also modify orientation for helices

Support of spatial perception

Ambient Occlusion

Following Tarini et al., 2006

Object attenuation / Dolly zoom

Following Everts et al., 2009

Halos

Following Tarini et al., 2006 and Everts et al., 2009

Ordering of effects

- Apply halos last, because of blocking effect
- Combine ambient occlusion and object attenuation/dolly zoom to avoid gaps in the abstraction space

Support of spatial perception

'Illustrativeness'

Photorealistic

- Realistic shading
- Colors indicate atom type
- "Normal" visualization

Cartoon

- Cel shading
- Pastel colors based on the photorealistic colors
- Colors indicate atom types
- Shows less details
- Flattens the image, shows overall shape of molecule

Black-and-white

- Flat shading
- Hatching patterns indicate atom types
- For black-and-white printing
- Black-and-white and intermediate stages for visual de-emphasis

Visual Style - Illustrativeness

Beyond global abstraction

Local structural abstraction

Local 'illustrativeness'

Focus and context

Feedback

- Combining styles prefered over blending
- Continuity is useful for teaching
- Intermediate stages might provide new inside
- Easier than PyMol

Contributions

- Abstraction space for molecular visualization
- Seamless transformation of
 - Structural abstraction
 - Support of spatial perception
 - 'Illustrativeness'
- GPU shader implementation of transitions
- Dedicated interactive control of abstraction in illustrative visualization

Result

Illustrative Molecular Visualization with Continuous Abstraction

Matthew van der Zwan Wouter Lueks Henk Bekker Tobias Isenberg

