
EUROGRAPHICS 2004 / M.-P. Cani and M. Slater
(Guest Editors)

Volume 23 (2004), Number 3

High Quality Hatching

Johannes Zander, Tobias Isenberg, Stefan Schlechtweg, and Thomas Strothotte

Department of Simulation and Graphics
Otto-von-Guericke University of Magdeburg, Germany

jzander@cs.uni-magdeburg.de, {isenberg|stefans|tstr}@isg.cs.uni-magdeburg.de

Abstract
Hatching lines are often used in line illustrations to convey tone and texture of a surface. In this paper we present
methods to generate hatching lines from polygonal meshes and render them in high quality either at interactive
rates for on-screen display or for reproduction in print. Our approach is based on local curvature information
that is integrated to form streamlines on the surface of the mesh. We use a new algorithm that provides an even
distribution of these lines. A special processing of these streamlines ensures high quality line rendering for both
intended output media later on. While the streamlines are generated in a preprocessing stage, hatching lines are
rendered either for vector-based printer output or on-screen display, the latter allowing for interaction in terms of
changing the view parameters or manipulating the entire line shading model at run-time using a virtual machine.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve gener-
ation

Keywords: non-photorealistic rendering, high quality
hatching, line rendering, line shading

1. Introduction

The area of non-photorealistic rendering (NPR) has become
a rapidly growing field in computer graphics over the last
two decades. The main goal behind NPR is to enrich the ex-
pressiveness of computer graphics techniques by generating
synthetic images that embody qualities of hand-drawn im-
agery. One of the techniques receiving high interest is the
creation of line drawings. Here, two classes of lines need to
be generated and, thus, distinguished. First, there is the out-
line or silhouette that closes an object and segregates it from
the surrounding. Second, there are hatching lines that collec-
tively convey tone as well as texture of an object’s surface.

In this paper we present a way to generate and render
hatching lines based on a three-dimensional polygonal mesh
(in particular, we use triangle meshes). Most approaches for
line rendering today aim for a fast generation and render-
ing of lines possibly exploiting capabilities of graphics hard-

ware. These methods compute the lines on the surface of the
model in order to avoid artifacts such as incoherence and
shower-door-effect but keep the speed. However, the lines
are finally output in pixel images yielding sampling artifacts
and reducing the quality of the images. Other techniques gen-
erate the lines after the model has been projected into 2D
which resembles the traditional way of generating line draw-
ings, for example, in engravings, copper plates, or pen-and-
ink drawings.

Our method aims for the generation of vector oriented
hatching in order to yield line renditions with a higher qual-
ity. Since we compute the lines directly in 3D, additional pro-
cedures are needed to achieve high quality, rendering speed,
and aesthetic appeal of the resulting images. Our approach
not only allows us to reproduce images in an appropriate
quality for printing. We also give the designer of the draw-
ings the opportunity to interactively work with the rendition
when creating it. This comprises being able to manipulate
the view on the model as well as adapting parameters of the
hatching process including the shading model.

c© The Eurographics Association and Blackwell Publishing 2004. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

http://isgwww.cs.uni-magdeburg.de/isg/isenberg.html
http://isgwww.cs.uni-magdeburg.de/isg/stefans.html
http://isgwww.cs.uni-magdeburg.de/isg/tstr.html
http://isgwww.cs.uni-magdeburg.de/index.html.en
http://www.uni-magdeburg.de/unv_eng.html
mailto:jzander@cs.uni-magdeburg.de
mailto:isenberg@isg.cs.uni-magdeburg.de
mailto:stefans@isg.cs.uni-magdeburg.de
mailto:tstr@isg.cs.uni-magdeburg.de
mailto:isenberg@isg.cs.uni-magdeburg.de

Zander et al. / High Quality Hatching

Our method does therefore not achieve the frame-rates of
the aforementioned real-time hardware shading techniques
but does, nonetheless, allow for interactive rendering. At the
same time we also have the possibility to create versions of
the rendition adapted to the desired reproduction quality. We
use OpenGL lines (or similar technologies) for rendering on
screen but change to a vector based description for high qual-
ity output.

The main contributions of this paper are therefore:

• object-space generation of streamlines to allow for gener-
ation of hatching illustrations with interactive frame-rates
as well as off-line,

• a new algorithm to achieve an even distribution of the
object-space streamlines computed from a polygonal
mesh,

• the use of a virtual machine to replace the formulas of the
line shading model at run-time allowing for changes that
go beyond a mere parameter adjustment, and

• techniques to render hatching lines in high quality by pro-
cessing the streamlines specifically with respect to print
media, in particular to requirements resulting from using
monochrome ink.

The paper is organized as follows. Section 2 describes re-
lated work in the field of computer generated hatching lines.
In Section 3 we give an outline of our algorithm to create the
lines and describe the main steps in detail. Section 4 is de-
voted to the actual rendering, i. e., the adaptive visualization
of the lines. We discuss a number of examples in Section
5 and finally conclude the paper with some ideas for future
work.

2. Related Work

Traditional line renditions that employ hatching are quite
commonly used in arts and for illustration purposes. Hatch-
ing lines fill an area of an image by collectively convey-
ing texture and tone. While these lines may vary in their
length, they typically follow some geometric features of the
object being depicted and they may be layered to produce
cross-hatching. Considering hand-made drawings, hatching
is not a drawing style or technique in itself, instead it is used
and achieved with several different techniques. Therefore, a
wealth of methods have been developed also in computer
graphics to achieve the same or similar effects.

In the first of a series of papers, SALISBURY et al. show
how to use stroke textures to convey a certain darkness for
shading with pen-and-ink lines [SABS94]. When interac-
tively drawing an illustration, the algorithms selects strokes
from the stroke texture until a desired shading has been
achieved. WINKENBACH and SALESIN introduce the con-
cept of prioritized stroke textures [WS94]. This allows the
resolution dependent placement of pre-recorded strokes to
achieve the same perceived grey value. If the resolution
changes, their method places more or fewer strokes until the

desired tone is achieved yielding a rendition that is appropri-
ate for the specific resolution. SALISBURY et al. further dis-
cuss the scale-dependence of pen-and-ink drawings in terms
of perceived darkness of the hatched areas [SALS96]. In par-
ticular, they demonstrate how to maintain sharp discontinu-
ities of the textures across various resolution levels.

Being the first to create hatching renditions from 3D
scenes, LEISTER bases his approach on modified ray trac-
ing [Lei94]. He uses an additional direction that is defined
for each object’s surface and a parameter to determine the
distance between two hatches, similar to the u-v parameter
field defined for texturing. Being a ray tracing adaption, his
method can emulate reflections and refractions. The algo-
rithms produces image-space results which means that they
cannot easily be processed any further using stroke manipu-
lations. In addition, the appearance of the created images is
rather clean and artificial.

PNUELI and BRUCKSTEIN present their DigiDürer sys-
tem that uses greyscale images as input and creates a
halftoned output image that resembles the style of engrav-
ings [PB94]. It computes level contours of a potential field
and is based on a curve evolution algorithm that controls the
density of line elements.

WINKENBACH and SALESIN introduce a technique for
generating hatching renditions from parametric surfaces by
employing isoparametric curves [WS96]. They use priori-
tized stroke textures and align the strokes according to these
curves. They achieve a quite natural look by using long
and short strokes as well as adding small alterations to the
strokes. Additionally they used randomized dots on lines to
stipple an area with a desired tone. SALISBURY et al. use a
2D greyscale image as input and require the user to specify a
direction field as well as example strokes [SWHS97]. Their
system then generates hatch line textures that reproduce the
shading of the original image while conveying the impres-
sion to be attached to the surface of the object and following
its features.

In a completely image-based approach, OSTRO-
MOUKHOV presents an algorithm that uses a 2D source
image and so called engraving layers—basic dither screens
that are combined to form hatching specific dither patterns
[Ost99]. He requires user-interaction in order to specify how
these layers have to be deformed by image warping in order
to follow certain features of the image. A screening process
computes the final rendition, that possesses a very clean and
artificial appearance.

In an object-space approach, DEUSSEN et al. use inter-
nal skeletons created from triangle meshes using progressive
meshes [DHR∗99]. The skeletons are used to determine a di-
rection perpendicular to which the object is sliced. The slice
curves are then used as hatching lines for the objects again
producing a very clean and artificial appearance. By adding
line styles and thus changing the appearance of the hatch-

c© The Eurographics Association and Blackwell Publishing 2004.

Zander et al. / High Quality Hatching

ing lines based on shading or other geometric information, a
more natural look can be achieved.

The technique presented by RÖSSL and KOBBELT works
in image-space and also uses triangle meshes [RK00]. They
first compute an approximation of curvature directions and
normals for each vertex and do a linear interpolation for the
values on the faces. They then render G-buffers for both nor-
mal and curvature direction vectors. Afterwards, they use
streamlines for following the hatching lines in 2D. Interac-
tion is required for specifying homogeneous parts of curva-
ture directions as well as reference lines in the projection.
Although the shading they used in the given examples could
be improved, they achieve a fairly natural look of the images.

HERTZMANN and ZORIN also work in image-space and
base their method on smooth surfaces given by a polygonal
control mesh [HZ00]. Similar to the previously discussed ap-
proach, they also use approximated principal curvature lines
in 3D that are projected into image-space. They add some
preprocessing of the direction field in order to avoid artifacts
in the hatching lines and also create a fairly natural look of
the renditions.

There are a number of approaches that generate lines on
3D shapes for rendering based on some features of the model.
For example, in [ARS79], [Elb95b], [Elb95a], and [Elb98]
the generation of isoparametric lines on freeform surfaces is
discussed and it is demonstrated how to enhance them with,
e. g., line haloes. ELBER [Elb99] and RÖSSL et al. [RKS00]
discuss how to use lines on the surface of objects to visualize
vector or curvature direction fields.

INTERRANTE uses principal curvature directions for vi-
sualizations of volumetric data using lines on the surface
[Int97]. In a subsequent paper [GIHL00], GIRSHICK et al.
discuss the use of principal curvature directions for 3D line
drawings in general. They state that there are, for exam-
ple, psychological reasons for employing principal curva-
ture lines in order to enhance shape recognition where, e. g.,
silhouette lines are not enough. However, the example ren-
ditions they present, both generated from volumetric and
polygonal data, do not resemble what is traditionally consid-
ered to be hatching style. Also using principal curvatures for
line orientation, DONG et al. apply the generation of hatch-
ing lines that are computed for volumetric data to the area
of medical illustration [DCLK03]. By taking the local char-
acteristics of the volume data into account they are able to
improve the quality of the rendition.

Summarizing these findings, we come to the conclusion
that we can successfully use principal directions for the gen-
eration of hatching lines. Principal directions are defined ev-
erywhere on a surface except in isolated singularities, they
are not dependent on a parameterization of the surface and
they are known to convey the form of an object to the viewer.
Our observations have also shown that ray-tracing, semi-
automatic methods with manually fitted parametric curves,
and skeleton approaches produce very sterile lines. The use

of principal curvatures gives the possibility to create a more
hand-crafted appearance if we compare the results of the
aforementioned techniques to hand-made engravings. How-
ever, a post processing of the direction field obtained from
principal direction vectors is necessary in order to avoid too
many distracting details and to generate a more homoge-
neous field.

3. Algorithm Overview

Our algorithm to produce high quality hatching uses triangu-
lar meshes as input. The whole process comprises two stages:
a preprocessing phase where lines are computed in 3D and
a rendering phase where these lines are visualized. In the
first stage, we start with the generation of a direction field
based on curvature information. We then process the curva-
ture field in order to enhance its quality before 3D stream-
lines are generated. These streamlines are the input to the
second stage where they are rendered according to the de-
sired output device. In the following we will describe each
of these steps in more detail.

3.1. Generation of a Curvature Field

Hatching lines, as already stated above, follow some geomet-
ric feature of an object. To achieve this, the first step in the
preprocessing phase is to establish direction information for
the lines. We therefore generate a direction field, consisting
of a unit direction vector for each vertex of the model, laying
in the appropriate tangent plane. As has been argued before,
e. g., by INTERRANTE [Int97], GIRSHICK et al. [GIHL00],
and HERTZMANN and ZORIN [HZ00], principal curvature
values are well suited. Indeed, it has been found that in tradi-
tional illustrations hatching lines are frequently used to em-
phasize curvature. Therefore, we approximate the principal
curvature directions using a method introduced by RÖSSL

AND KOBBELT [RK99] and store these values in the direc-
tion field. For each vertex, there are two possible vectors
following the maximal and minimal curvature direction κ1
and κ2 as can be seen in Figure 1. The curvature κi with
the higher absolute value (indicated by the sign of the mean
curvature 1

2 (κ1 +κ2)) determines the more curved direction
which will then be used. In most cases this is a good heuristic
to emphasis cylindrical structures.

Figure 1: Approximated principal curvature directions for a
vertex of the polygonal model. In this case the direction of
κ2 is chosen in order to hatch around the cylinder’s circum-
ference.

c© The Eurographics Association and Blackwell Publishing 2004.

Zander et al. / High Quality Hatching

3.2. Processing of the Curvature Field

The quality of the resulting direction field directly depends
on the underlying algorithm for curvature computation (see
GOLDFEATHER [Gol01]) and on the properties of the mesh.
Noise and high levels of detail easily introduce unwanted ar-
tifacts. To avoid these, a simplification algorithm can be ap-
plied to the mesh (see PRAUN et al. [PHWF01]) or the mesh
can be smoothed before curvature is computed. However, no
reliable curvature information can be extracted from flat or
spherical surfaces. Therefore, too smooth surfaces tend to
result in poorly aligned direction vectors.

Since the resulting direction field relies solely on local cur-
vature information, is not very homogeneous. To improve
this, we have gone a similar route as HERTZMANN and
ZORIN [HZ00]: an energy term is defined that measures the
deviation of a direction vector to the ones located on its inci-
dent edges. In contrast to HERTZMANN and ZORIN [HZ00]
this is done for 180◦ and not 90◦ symmetries. Our algorithm
only wants to wrap up the surface with evenly distributed
parallel lines. Cross-hatching is then achieved by repeating
the process with rotated lines (see Figure 10 for an example).
This allows to generate cross-hatchings with arbitrary angles
whereas Hertzmann et al. only generate orthogonally cross-
ing lines. To achieve almost parallel lines, directions within a
homogeneous neighborhood are used as a basis for fitting the
other directions using a global non-linear optimization tech-
nique (cf. [HZ00]), which is applied on all regions which do
not satisfy a user selectable level of homogeneity.

3.3. Generation of 3D Streamlines

After a smooth direction field has been computed, stream-
lines are generated by integrating the direction vector field
on the surface of the model. In contrast to the technique sug-
gested in [ACSD∗03] that solves the problem in 2D, we em-
ploy a version of the original algorithm presented in [JL97]
and adapt it for the third dimension. Therefor it is neces-
sary to determine direction vectors not only at the individ-
ual vertices, but for every point on the surface. This is done
by a spherical-linear interpolation of the respective direction
vectors using the barycentric coordinates of a position as
weights. The seeding strategy was also modified from the
original paper. Since it is not always possible to reach all
parts of a model from a single initial seed point, each face
centroid is used as a possible seeding point. Starting from
there, the algorithm tries to reach as much area as possible.
While a streamline is growing through the direction vector
field, new possible seed points are generated alongside. Only
if none of these can be used to create a new streamline, the
next face centroid is used as a new possible seeding point.

To prevent line crossings, streamlines are only inte-
grated until they meet each other. Instead of the grid-based
streamline-proximity scheme, cylinders are used to compute
streamline distances and to end a streamline if it closes in on

another one (see Figure 2). The cylinders are generated along
the growing directions of the streamlines and are stored in
all the faces they intersect. This helps to prevent streamlines
from influencing each other on opposite sides of thin regions
in the mesh.

Figure 2: A new streamline (black) is terminated at the cylin-
der surrounding a previously computed streamline (white).
The endpoint of the new streamline is kept on a distance
which equals the cylinder’s radius.

In order to find the distance, a lookup is done for all cylin-
ders that are stored in the according face and the nearest inter-
section in the growing direction of a streamline is computed.
As long as the size of the faces is less or roughly equal to
the intended distance between two streamlines, this is very
fast because, in average, there is only one cylinder per face.
The computational overhead only grows for large faces. Us-
ing cylinders has another advantage. Streamlines are allowed
to come very close with their tips, removing wide gaps that
otherwise tend to occur (see Figure 3).

Figure 3: The use of cylinders allows a new streamline
(black) to come closer to an existing streamline (white) than
the cylinder’s radius, if it approaches its tip.

A property that is needed later is that the streamlines have
to follow the surface of the mesh closely. So while integrat-
ing the direction field, new points are inserted each time an
edge is crossed, moving from one face to the next. This en-
sures that even with a wide step size, streamlines will not
poke through the surface. The quality of the integrator also
needs further observation. First, we used a very simplistic

c© The Eurographics Association and Blackwell Publishing 2004.

Zander et al. / High Quality Hatching

Euler integrator, but changing to a fourth order Runge-Kutta
allowed a wider step-size. This drops the number of seg-
ments that are needed to represent the streamlines. Nonethe-
less, the quality continues to be very high, resulting in de-
creased time needed for the preprocessing stage.

3.4. Line Tapering

In the final phase of the preprocessing stage data for line ta-
pering is gathered. The process differs slightly from [JL97]
since we use a different distance metric for streamline colli-
sions. In our implementation it is possible that streamlines
can get very close with their tips. This effect should not be
impaired by line tapering. So closeness of nearby stream-
lines is not measured omni-directional, but parallel to the di-
rection of the streamline (see Figure 4). This aligns with the
streamline generation process using cylinders as described
above. For each point on a streamline, first the local average
direction is calculated. This is then used in combination with
the normal of the face below the point to construct a plane or-
thogonal to that direction. To measure the distance of nearby
streamlines the intersection points of all nearby streamlines
with this plane are computed and the minimal distance is
stored. Finally, this minimal distance is employed to calcu-
late the tapering value that is needed in the rendering stage
as a multiplicative modulator for the line width.

Figure 4: Computing streamline distances omni-
directionally results in gaps between the tips of nearby
streamlines as can be seen on the left. Using our approach
these gaps are minimized resulting in the image on the right.

4. Rendering in High Quality

After the preprocessing stage has been completed, the sec-
ond phase begins—visualizing the streamlines as hatching
lines. The major goal in this step is to render the streamlines
with high quality in order to be able to use the generated
images, for example, for reproduction in print media. There-
fore, three goals have to be accomplished:

• a fast and effective line processing including hidden line
removal (HLR) that removes the silhouette strokes and
streamlines not visible from the given viewpoint while
still offering interactive frame-rates,

• an appropriate NPR line shading for the hatching strokes
in order to produce a smooth transition between fully
drawn and not drawn lines according to the specific light-
ing condition, and

• a high quality line output that produces vector-oriented
data for reproduction including, for example, the transfor-
mation of a shaded line into a monochrome representa-
tion.

4.1. HLR and Line Processing

The generated streamlines are inserted into a stroke render-
ing pipeline that first uses a hybrid hidden line removal al-
gorithm (we employ the z-buffer based method presented by
ISENBERG et al. [IHS02]) in order to remove the occluded
parts. The mentioned HLR algorithm was originally con-
ceived to clip object silhouettes, but it works very well un-
der these new requirements. There are only minor artifacts at
the object’s silhouette due to z-buffer imprecisions as shown
in Figure 5. This can be resolved by simply removing all
strokes on backfaces. A welcome side-effect of this proce-
dure was a noticeable frame-rate improvement because the
backfacing test is cheaper than feeding segments through the
HLR algorithm.

Figure 5: If only the z-buffer based HLR scheme is used,
small tickmarks will appear near the silhouette. These have
to be removed.

Using a hybrid HLR scheme also enables us to achieve
interactive frame-rates when rendering the images. This re-
sults from computing the streamlines in the preprocessing
stage off-line and only performing the HLR test at run-time.
Being able to render the images at interactive rates is very
important for illustration designers to directly see the effects
of changes they made.

In addition, we do not use advanced line stylization with
the generated hatching and silhouette lines. In general, for
producing hatching renditions it is not necessary to follow
a style based approach as discussed by various authors (see,
e. g., NORTHRUP and MARKOSIAN [NM00] or ISENBERG

et al. [IHS02]). In contrast, when examining cross-hatched
images created by artists one finds that they only consist
of monochrome lines. Thus, advanced stylization that intro-
duces structure to the lines (as, e. g., by using textures or

c© The Eurographics Association and Blackwell Publishing 2004.

Zander et al. / High Quality Hatching

applying path variations) is not necessary in this case. This
has many advantages, for example, faster rendering and less
artifacts. In particular, we achieve frame-coherency since the
hatching lines are attached to the surface of the objects. In ad-
dition, there are no artifacts created by the stylization when
it comes to generating high quality output.

4.2. Line Shading

In order to limit the number of lines that are drawn and
to convey a specific illumination condition it is now neces-
sary to apply line shading. We opted for a rich NPR centric
shading model that features effects like rim shading or curva-
ture lighting (see, e. g., STROTHOTTE and SCHLECHTWEG

[SS02]). To provide more flexibility to the user for adapting
this shading model and to allow easier experiments with dif-
ferent effects, it was not implemented as a “hardwired” for-
mula. Instead, it is generated by a virtual machine (bytecode
interpreter). This is a very elegant way of allowing the user
to make changes to the expressions and by that to control the
two main parameters: stroke width and stroke density. These
changes are possible at run-time and avoid tedious recom-
piles. At run-time, the formulas are being compiled into byte
code that is executed by a small stack-based interpreter in or-
der to obtain the shading values. This is achieved by parsing
the expression and breaking it down into constants, symbols,
and operators. The whole expression is converted into Re-
verse Polish Notation in order to simplify the evaluation of
the term because in this representation brackets and operator
precedence are of no importance. Later, the term is evalu-
ated for each vertex of a streamline and symbols are substi-
tuted with their associated value which changes depending
on view direction or local surface orientation. The speed im-
pact of the interpretation is negligible.

4.3. Line Output

When closely examining real hatched drawings, we found
that monochrome lines are used with the two properties: vari-
able width and the possibility to dissolve solid lines into dots.
Therefore, we have two parameters—line width and line den-
sity. Because speed is not an issue when creating output for
high quality reproduction, we made sure that line caps and
bends are round. Another noteworthy feature is the possibil-
ity to use negative values for the line width. This helps to
seamlessly blend out strokes because visible line tips can
now appear in the middle of a stroke segment. This decou-
ples the visual occurrence of a line end from the positions
of the individual stroke vertices. This means that a line may
now also terminate in the middle of a stroke segment (see
lower two examples in Figure 6).

The use of dotted lines in hand-made hatching is caused
by the limitation to monochrome primitives. In addition, it
is also in part caused by restrictions of reproduction tech-
niques that can only handle monochrome ink. When trying

Figure 6: Decreasing the width of the line first results in ta-
pering and later also in shortening the visible portion when
the width gets negative.

to reproduce grey values, these would be dithered into black
and white pixels which would destroy the appearance of a
hatching (see Figure 7(a)). In order to avoid this to occur
for shaded hatching lines, we also represent line density by
a form of one-dimensional stippling (see Figure 7(b)). This
one-dimensional line stippling is, therefore, not intended or
used to simulate regular two-dimensional stippling as done
in previous approaches. Instead, we use it as an alternative to
change the tone of a line, which does not rely on line width.
To accomplish this the line is broken down into a string of
dots that are placed to locally approximate the required den-
sity of the specific stroke. The distance of two dots is chosen
in a way to match the ratio of black and white space inside
the quadrilateral spanned through their centers to the average
density value for that region. This can be further controlled
by specifying a minimum distance between dots. In order
to draw segments in full color where the computed distance
would lead to distances smaller than desired, the segment is
subdivided at places where exactly this minimum distance is
reached.

(a) Desired density of the
stroke.

(b) Approximation of the line
density using dots.

Figure 7: Achieving a desired line density using line halfton-
ing using one-dimensional stippling along the stroke.

We implemented two specific renderers with respect to
the two different goals for the images to be created. The first
is able to output lines and arcs to create the final rendition
as PDF files for high resolution and high quality reproduc-
tion. The second is for WYSIWYG-purposes and supports
designers that want to interactively create hatching illustra-
tions. This second renderer triangulates the strokes into tri-
angle strips that can afterwards be rendered at interactive
frame-rates using OpenGL.

In addition to producing single hatched images, it is also
possible to combine multiple rendering passes. This is fre-
quently used in hand-made images as shown in Figure 8(a).

c© The Eurographics Association and Blackwell Publishing 2004.

Zander et al. / High Quality Hatching

It is easily possible to generate cross-hatching effects by ro-
tating the whole direction field around arbitrary angles and
compositing several layers of differently shaded strokes (see
Figure 8(b)).

(a) Closeup of a real artistic
rendition (from [Hod89]).

(b) Three layers of strokes re-
sulting from a rotated direc-
tion field.

Figure 8: Comparison of hand-made hatching with a magni-
fied section of a computer-generated image (Figure 8(b) is a
detail from Figure 10(b)).

As we have outlined above, the hatching lines are gen-
erated on the object’s surface and, thus, in object-space. A
disadvantage of working in object-space that has to be con-
sidered for high-quality rendering is that shading not only
depends on the width of the lines but also on their distance
to each other after the projection to screen space. If the lines
get closer to each other, the perceived brightness of these
regions will be darker (see Figure 9(a)). This is particularly
noticeable close to the silhouette or if the scene is scaled.
Solutions have been thoroughly discussed in, for example,
[SABS94], [WS94], and [SALS96]. We determine a correc-
tion factor for each vertex of a stroke. Specifically, a nor-
malized vector perpendicular to the line direction and the
surface normal is computed using the cross product. This is
a local estimate of the distance to imaginary nearby hatch-
ing lines. The length of the projection of this vector onto
the viewplane is measured and used as the correction factor
for the line width. It reduces the unwanted effect of differ-
ences in the perceived brightness of strokes with different
distances to each other (see Figure 9(b)). Therefore, the line
shading can now be determined depending entirely on the
parameterized NPR shading model.

5. Examples

Now we will give a number of specific examples along with
descriptions of how the effects in the images were achieved.

A first example compares single and multiply hatched il-
lustrations of the same object. Figure 10(a) shows the illustra-
tion of a tropical pitcher plant’s trap with only single hatch-
ing applied. Note that small details such as the small ridge
that runs at the front side of the pitcher are still clearly visible
because they are emphasized through the line shading model.
In the second version of the same object in Figure 10(b),
three layers of hatching have been combined and emphasize
the details even more.

(a) Without a correction factor. (b) With the correction factor.

Figure 9: Use of a correction factor that compensates differ-
ences in the perceived brightness. Unfortunately, the print-
ing process may weaken the correction due to, for example,
a minimum possible line width or effects related to dot gain.

(a) Single hatching. (b) Triple hatching.

Figure 10: Single hatching and triple hatching of the model
of a tropical pitcher plant’s trap. Note that the hatching is
able to effectively convey the small ridge that runs at the
front side of the pitcher. This is done by varying line width
or by employing triple hatching.

Instead of just using black and white, background and
foreground colors can be changed in order to create a com-
posed rendition. Figure 11 shows an example where several
layers of hatching in different colors have been composited
along with certain background colors. This method can eas-
ily be applied to create illustrations for use in colored print-
ing. If spot colors are used, no unwanted dithering artifacts
are created when the rendition is reproduced and printing
cost can often be lowered in contrast to the usual four color
printing process.

Figure 12 demonstrates that line stippling alone can be
used to convey shading information. Therefore, the line

c© The Eurographics Association and Blackwell Publishing 2004.

Zander et al. / High Quality Hatching

Figure 11: Compositing a number of hatching layers in dif-
ferent colors and background colors in order to create a
multi-color illustration (five colors and black).

width has been set to constant in the example. This way not
only shading information is transported but also the form of
the individual leaves is accentuated, which would be not as
clear with pure two-dimensional stippling.

Figure 12: Orchid-backside with quasi constant line width.
Shading has been achieved by varying line density.

Figure 13 demonstrates the effect of varying line widths.
In Figure 13(a), the line width is used to convey shading
information and the line ends are rounded without using
separate dots. In contrast, Figure 13(b) shows the use of
sharp line tips while the individual lines are placed closer
to each other. Making use of cross-hatching, the statue in
Figure 13(c) is rendered using lines that are dissolved into
individual dots in order to show the shading effects. Finally,
Figure 13(d) makes use of fairly wide lines that overlap each

other. This produces a very sharp contrast between shaded
and lit areas.

(a) (b) (c) (d)

Figure 13: Different effects that can be achieved by varying
the number and the distance between neighboring hatching
lines.

Figure 14 illustrates how the appearance of an object
changes while the user adapts the two shading formulas at
run-time. In Figure 14(a) the raw strokes can be seen with
constant terms for line width and density. This results in
a quasi-constant tone. The use of a single light source as
a modulator for the linewidth adds depth as seen in Fig-
ure 14(b). To enhance the edges, rim shadow lighting has
been added in Figure 14(c). Using the light to also modu-
late the line density as seen in Figure 14(d) creates a fairly
contrastless halftoning-like effect. If the density term is fur-
ther changed this can be constrained to a rather small band
(Figure 14(e)). The addition increase of the contrast may be
used to eliminate lines and as a means to place highlights
(Figure 14(f)).

6. Conclusion

In this paper we have presented a hatching method for gen-
erating high quality vector-oriented images mainly aimed
at reproduction in print media. Our technique computes the
hatching lines in object-space in a pre-processing step which
gets rid of frame-incoherences and the shower-door effect
as well as allows for fast rendering of the lines at run-time.
Therefore, we can offer interactive frame-rates for designing
the hatching illustration using a hybrid HLR technique. We
have shown that the illumination model can be modified at
run-time giving the designer a great freedom of expression.
Using the examples shown in the paper, we demonstrated
that this allows a wide range of different effects that can be
achieved by parameterizing this model.

We have demonstrated how to solve a variety of issues
that may occur when attempting high-quality reproduction

c© The Eurographics Association and Blackwell Publishing 2004.

Zander et al. / High Quality Hatching

(a) Line width = 1
Line density = 1

(b) Line width = light
Line density = 1

(c) Line width = light + rim
Line density = 1

(d) Line width = light + rim
Line density = light

(e) Line width = light + rim
Line density = 5rim

(f) Line width = light + rim
Line density = (5rim)50

Figure 14: The process of altering the two line shading for-
mulas until a desirable result is achieved.

in print. Those are, in particular, the possibility to use nega-
tive line widths to allow for a more flexible line tapering, the
use of dotted lines in order to avoid the dithering effects from
line shading, the removal of small artifacts that result from
HLR, and employing a correction factor for achieving an ap-
proximately equal perceived grey value across the object to
account for different viewing angles on the surface.

In addition, we provide two renderers for these two goals
for the presentation of the hatching illustration. The first is
designed for interactive on-screen display (see Figure 15(a))
while the second aims at generating the high-quality rendi-
tions for reproduction in print media (see Figure 15(b)).

(a) On-screen rendition. (b) Vector graphic output.

Figure 15: The two output media used compared on the ba-
sis of Figure 14(f).

For future work we plan to further improve the computa-
tion of the streamlines in order to create a more aesthetic
line placement. An hierarchic construction-order should get
rid of some of the more striking placement artifacts and at
the same time keep the uniformity of line distances after
projecting to screen-space. In addition, a downside of the
on-screen renderer is the lack of anti-aliasing, which is a se-
rious disadvantage because line art needs good anti-aliasing
for lower resolutions. However, on newer graphics hardware
it is possible to use full scene anti-aliasing but the resulting
frame-rate drop is severe in our implementation. This will
be improved in future versions of the software so that the
on-screen version better resembles the printed version of the
line drawing. We also envision an easier and more intuitive
interface to adjust the settings of the illumination model so
that non-technical people (e. g., designers) can easier adjust
the parameters that influence the appearance of the rendering.
Improvements of the interface will also include possibilities
for creating composed drawings in one step rather than com-
positing them afterwards. Finally, we want to integrate ways
that let the system suggest additional cross-hatching direc-
tions automatically rather than specifying them manually.

Acknowledgments

We would like to thank Petra Neumann for the model of the
tropical pitcher plant’s trap in Figure 10. Specifically, the
model represents the upper trap of a Nepenthes alata plant.

References

[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEVILLERS

O., LÉVY B., DESBRUN M.: Anisotropic
Polygonal Remeshing. ACM Transactions on
Graphics 22, 3 (July 2003), 485–493.

[ARS79] APPEL A., ROHLF F. J., STEIN A. J.: The
Haloed Line Effect for Hidden Line Elimina-
tion. In Proceedings of SIGGRAPH’79 (New
York, 1979), ACM Press, pp. 151–157.

[DCLK03] DONG F., CLAPWORTHY G. J., LIN H.,
KROKOS M. A.: Nonphotorealistic Render-
ing of Medical Volume Data. IEEE Computer
Graphics and Applications 23, 4 (July/Aug.
2003), 44–52.

[DHR∗99] DEUSSEN O., HAMEL J., RAAB A.,
SCHLECHTWEG S., STROTHOTTE T.: An
Illustration Technique Using Hardware-Based
Intersections and Skeletons. In Proceedings
of Graphics Interface’99 (1999), Morgan
Kaufmann Publishers Inc., pp. 175–182.

[Elb95a] ELBER G.: Line Art Rendering via a Coverage
of Isoparametric Curves. IEEE Transactions
on Visualization and Computer Graphics 1, 3
(Sept. 1995), 231–239.

c© The Eurographics Association and Blackwell Publishing 2004.

http://doi.acm.org/10.1145/882262.882296
http://doi.acm.org/10.1145/882262.882296
http://doi.acm.org/10.1145/800249.807437
http://doi.acm.org/10.1145/800249.807437
http://doi.acm.org/10.1145/800249.807437
http://doi.ieeecomputersociety.org/10.1109/MCG.2003.1210864
http://doi.ieeecomputersociety.org/10.1109/MCG.2003.1210864
http://doi.acm.org/10.1145/351631.351683
http://doi.acm.org/10.1145/351631.351683
http://doi.acm.org/10.1145/351631.351683
http://doi.ieeecomputersociety.org/10.1109/2945.466718
http://doi.ieeecomputersociety.org/10.1109/2945.466718

Zander et al. / High Quality Hatching

[Elb95b] ELBER G.: Line Illustrations ∈ Computer
Graphics. The Visual Computer 11, 6 (June
1995), 290–296.

[Elb98] ELBER G.: Line Art Illustrations of Paramet-
ric and Implicit Forms. IEEE Transactions on
Visualization and Computer Graphics 4, 1 (Jan.
1998), 71–81.

[Elb99] ELBER G.: Interactive Line Art Rendering of
Freeform Surfaces. Computer Graphics Forum
18, 3 (Sept. 1999), 1–12.

[GIHL00] GIRSHICK A., INTERRANTE V., HAKER S.,
LEMOINE T.: Line Direction Matters: An Ar-
gument for the Use of Principal Directions in
3D Line Drawings. In Proceedings of NPAR
2000 (New York, 2000), ACM Press, pp. 43–
52.

[Gol01] GOLDFEATHER J.: Understanding Errors
in Approximating Principal Direction Vectors.
Tech. Rep. 01-006, University of Minnesota –
Computer Science and Engineering, 2001.

[Hod89] HODGES E. R. S. (Ed.): The Guild Handbook
of Scientific Illustration. Van Nostrand Rein-
hold, New York, 1989.

[HZ00] HERTZMANN A., ZORIN D.: Illustrating
Smooth Surfaces. In Proceedings of SIG-
GRAPH 2000 (New York, 2000), ACM Press,
pp. 517–526.

[IHS02] ISENBERG T., HALPER N., STROTHOTTE T.:
Stylizing Silhouettes at Interactive Rates: From
Silhouette Edges to Silhouette Strokes. Com-
puter Graphics Forum 21, 3 (Sept. 2002), 249–
258.

[Int97] INTERRANTE V.: Illustrating Surface Shape
in Volume Data Via Principal Direction-Driven
3D Line Integral Convolution. In Proceedings
of SIGGRAPH’97 (New York, 1997), ACM
Press, pp. 109–116.

[JL97] JOBARD B., LEFER W.: Creating Evenly-
Spaced Streamlines of Arbitrary Density. In
Proceedings of the 8th Eurographics Work-
shop on Visualization in Scientific Computing
(1997), pp. 45–55.

[Lei94] LEISTER W.: Computer Generated Copper
Plates. Computer Graphics Forum 13, 1 (Mar.
1994), 69–77.

[NM00] NORTHRUP J. D., MARKOSIAN L.: Artistic
Silhouettes: A Hybrid Approach. In Proceed-
ings of NPAR 2000 (New York, 2000), ACM
Press, pp. 31–37.

[Ost99] OSTROMOUKHOV V.: Digital Facial Engrav-

ing. In Proceedings of SIGGRAPH’99 (New
York, 1999), ACM Press, pp. 417–424.

[PB94] PNUELI Y., BRUCKSTEIN A. M.: Digi
Dürer –

A Digital Engraving System. The Visual Com-
puter 10, 5 (Apr. 1994), 277–292.

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKEL-
STEIN A.: Real-Time Hatching. In Proceed-
ings of SIGGRAPH 2001 (New York, 2001),
ACM Press, pp. 581–586.

[RK99] RÖSSL C., KOBBELT L.: Approximation and
Visualization of Discrete Curvature on Triangu-
lated Surfaces. In Vision, Modeling, and Visu-
alization (VMV) ’99 Proceedings (St. Augustin,
Germany, 1999), infix, pp. 339–346.

[RK00] RÖSSL C., KOBBELT L.: Line-Art Render-
ing of 3D-Models. In Proceedings of Pa-
cific Graphics 2000 (Los Alamitos, CA, 2000),
IEEE Computer Society Press, pp. 87–96.

[RKS00] RÖSSL C., KOBBELT L., SEIDEL H.-P.: Line
Art Rendering of Triangulated Surfaces Using
Discrete Lines of Curvature. In Proceedings
of WSCG’2000 (2000), The University of West
Bohemia, Plzeň, Czech Republic, pp. 168–175.

[SABS94] SALISBURY M. P., ANDERSON S. E.,
BARZEL R., SALESIN D. H.: Interactive Pen-
and-Ink Illustration. In Proceedings of SIG-
GRAPH’94 (New York, 1994), ACM Press,
pp. 101–108.

[SALS96] SALISBURY M. P., ANDERSON C., LISCHIN-
SKI D., SALISIN D. H.: Scale-Dependent Re-
production of Pen-and-Ink Illustration. In Pro-
ceedings of SIGGRAPH’96 (New York, 1996),
ACM Press, pp. 461–468.

[SS02] STROTHOTTE T., SCHLECHTWEG S.: Non-
Photorealistic Computer Graphics: Modeling,
Rendering, and Animation. Morgan Kaufmann
Publishers, San Francisco, 2002.

[SWHS97] SALISBURY M. P., WONG M. T., HUGHES

J. F., SALESIN D. H.: Orientable Textures for
Image-Based Pen-and-Ink Illustration. In Pro-
ceedings of SIGGRAPH’97 (New York, 1997),
ACM Press, pp. 401–406.

[WS94] WINKENBACH G., SALESIN D. H.: Computer-
Generated Pen-and-Ink Illustration. In Pro-
ceedings of SIGGRAPH’94 (New York, 1994),
ACM Press, pp. 91–100.

[WS96] WINKENBACH G., SALESIN D. H.: Render-
ing Parametric Surfaces in Pen and Ink. In Pro-
ceedings of SIGGRAPH’96 (New York, 1996),
ACM Press, pp. 469–476.

c© The Eurographics Association and Blackwell Publishing 2004.

http://dx.doi.org/10.1007/s003710050022
http://dx.doi.org/10.1007/s003710050022
http://doi.ieeecomputersociety.org/10.1109/2945.675655
http://doi.ieeecomputersociety.org/10.1109/2945.675655
http://dx.doi.org/10.1111/1467-8659.00322
http://dx.doi.org/10.1111/1467-8659.00322
http://doi.acm.org/10.1145/340916.340922
http://doi.acm.org/10.1145/340916.340922
http://doi.acm.org/10.1145/340916.340922
http://www.cs.umn.edu/research/technical_reports.php?page=report&report_id=01-006
http://www.cs.umn.edu/research/technical_reports.php?page=report&report_id=01-006
http://www.wiley.com/remtitle.cgi?isbn=0471360112
http://www.wiley.com/remtitle.cgi?isbn=0471360112
http://doi.acm.org/10.1145/344779.345074
http://doi.acm.org/10.1145/344779.345074
http://dx.doi.org/10.1111/1467-8659.00584
http://dx.doi.org/10.1111/1467-8659.00584
http://doi.acm.org/10.1145/258734.258796
http://doi.acm.org/10.1145/258734.258796
http://doi.acm.org/10.1145/258734.258796
http://citeseer.ist.psu.edu/jobard97creating.html
http://citeseer.ist.psu.edu/jobard97creating.html
http://dx.doi.org/10.1111/1467-8659.1310069
http://dx.doi.org/10.1111/1467-8659.1310069
http://doi.acm.org/10.1145/340916.340920
http://doi.acm.org/10.1145/340916.340920
http://doi.acm.org/10.1145/311535.311604
http://doi.acm.org/10.1145/311535.311604
http://dx.doi.org/10.1007/BF01901584
http://dx.doi.org/10.1007/BF01901584
http://doi.acm.org/10.1145/383259.383328
http://domino.mpi-sb.mpg.de/intranet/ag4/ag4publ.nsf/AuthorEditorIndividualView/4b20860705fc4393c1256895005832f7
http://domino.mpi-sb.mpg.de/intranet/ag4/ag4publ.nsf/AuthorEditorIndividualView/4b20860705fc4393c1256895005832f7
http://domino.mpi-sb.mpg.de/intranet/ag4/ag4publ.nsf/AuthorEditorIndividualView/4b20860705fc4393c1256895005832f7
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2000.883890
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2000.883890
http://citeseer.nj.nec.com/ossl00line.html
http://citeseer.nj.nec.com/ossl00line.html
http://citeseer.nj.nec.com/ossl00line.html
http://doi.acm.org/10.1145/192161.192185
http://doi.acm.org/10.1145/192161.192185
http://doi.acm.org/10.1145/237170.237286
http://doi.acm.org/10.1145/237170.237286
http://books.elsevier.com/us/mk/us/subindex.asp?isbn=1558607870
http://books.elsevier.com/us/mk/us/subindex.asp?isbn=1558607870
http://books.elsevier.com/us/mk/us/subindex.asp?isbn=1558607870
http://doi.acm.org/10.1145/258734.258890
http://doi.acm.org/10.1145/258734.258890
http://doi.acm.org/10.1145/192161.192184
http://doi.acm.org/10.1145/192161.192184
http://doi.acm.org/10.1145/237170.237287
http://doi.acm.org/10.1145/237170.237287

	Introduction
	Related Work
	Algorithm Overview
	Generation of a Curvature Field
	Processing of the Curvature Field
	Generation of 3D Streamlines
	Line Tapering

	Rendering in High Quality
	HLR and Line Processing
	Line Shading
	Line Output

	Examples
	Conclusion
	References

