

informatics / mathematics

CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds

Lingyun Yu, Konstantinos Efstathiou Petra Isenberg, Tobias Isenberg

 3D spatial data—basis of many visualization research questions

• problem: how to efficiently select particles in 3D?

[Wingrave & Bowman, 2005]

 3D spatial data—basis of many visualization research questions

• problem: how to efficiently select particles in 3D?

[Lucas & Bowman, 2005]

 3D spatial data—basis of many visualization research questions

 3D spatial data—basis of many visualization research questions

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

- spatial, structure-aware 3D selection techniques
- 2D lasso interaction:
 - particle density or the scalar properties of volume data
 - Select all dense clusters through the 3D space that is enclosed by the drawn lasso

require a good point of view

Cast

- spatial, context-aware selection techniques
 - input : 2D lasso / point
 - location or shape
 - output: *intended* 3D selection

SpaceCast

Cast

- spatial, context-aware selection techniques
 - input : 2D lasso / point
 - location or shape
 - output: *intended* 3D selection

TraceCast

Cast

- spatial, context-aware selection techniques
 - input : 2D lasso / point
 - location or shape
 - output: *intended* 3D selection

PointCast

SpaceCast

data: Aquarius simulation

 selecting the candidate cluster whose 2D projection is best approximated by the drawn stroke.

PointCast shown at 2x speed data: Millennium-II simulation

Evaluation & Validation: User Study

- quantitative study to confirm
- compare five selection methods
 - CylinderSelection (Tablet Freehand Lasso)
 - CloudLasso (best results)
 - three Cast members
- trackball rotation
- undo/redo
- density threshold slider
- boolean operations possible:
 - union (+): same technique
 - intersection (\cap) and subtraction (–): CylinderSelection

Study Design

• 20 participants (6 female)

4 selection tasks (datasets)

measurement of time and error

questionnaire for subjective opinion

Study Results

Cast techniques were much

faster than CylinderSelection

and CloudLasso.

- both PointCast and TraceCast outperform SpaceCast
- some indication that PointCast may outperform TraceCast
- all five techniques got very accurate results.
- PointCast and TraceCast were the preferred techniques.

Study Results

Cast techniques were much

faster than CylinderSelection

and CloudLasso.

- both PointCast and TraceCast outperform SpaceCast
- some indication that PointCast may outperform TraceCast

Datasets 15 - Cluster Shell 10 - Rings 5 - Cylinder CloudLasso SpaceCast PointCast TraceCast

- all five techniques got very accurate results.
- PointCast and TraceCast were the preferred techniques.

Discussion - Selection Scenarios (1)

• multiple clusters

PointCast

CloudLasso

Discussion - Selection Scenarios (2)

partial selection

CloudLasso

SpaceCast

TraceCast

PointCast

Discussion - Selection Scenarios (3)

occlusion

CloudLasso

TraceCast

Discussion - Selection Scenarios (3)

occlusion - PointCast

PointCast

shown at 2x speed

data: Gravitas galaxy simulation

Structure finding

PointCast

shown at 2x speed

interactive adjustment of the selection threshold to select connected components that originate from the cluster picked with PointCast

data: Millennium-II simulation

Application Domains / Future work

- any particle-based dataset
- use other edge-detection algorithms to determine an appropriate density isosurface
- combine different selection techniques

Conclusion

- Cast: a new family of context-aware interactive selection techniques
- input: lasso drawn / clicking in 2D; output: 3D space
- effective: cover a wide range of possible selection goals
- efficient: allow users to arrive at selections faster than standard techniques

Thank you for your attention!

Video & demo: http://yulingyun.com/projects/cast

Additional Slides

SpaceCast-Exception

situation:

- VA: small and being in the front
- *V_B*: larger and being in the back
- user intention: V_A
- user interaction:
 - $S_A < S_L$ but $S_B = S_L$
- result:
 - If S_A > 0.8S_B, then choose the one closest to the eye

PointCast - Two exceptions

• The target cluster is behind a very faint cluster.

• The target cluster is behind another cluster V_B and the selection ray passes nearby, but outside, V_B .

Synthetic Dataset

Clusters dataset

Technique	Time	CI	F1	CI	MCC	CI
Cylinder	65s	[53,80]	.99	[.98,.99]	.99	[.98,.99]
CloudLasso	41s	[36,48]	.99	[.98,.99]	.99	[.98,.99]
SpaceCast	18s	[14,24]	.99	[.98,.99]	.99	[.98,.99]
PointCast	10s	[8.8,12]	.99	[.95,.99]	.99	[.96,.99]
TraceCast	12s	[11,14]	.99	[.98,1]	.99	[.98,1]

Synthetic Dataset

Shell dataset

Technique	Time	CI	F1	CI	MCC	CI
Cylinder	86s	[71,105]	.97	[.97,.97]	.96	[.96,.97]
CloudLasso	46s	[49,54]	.95	[.92,.96]	.94	[.91,.96]
SpaceCast	21s	[17,25]	.95	[.86,.98]	.94	[.82,.97]
PointCast	10s	[8.2,13]	.97	[.93,.98]	.97	[.93,.98]
TraceCast	11s	[9.6,14]	.98	[.97,.98]	.97	[.97,.98]

Synthetic Dataset

Rings dataset

Technique	Time	CI	F1	CI	MCC	CI
Cylinder	66s	[55,87]	.96	[.96,.97]	.96	[.94,.96]
CloudLasso	35s	[27,45]	.98	[.97,.98]	.97	[.96,.98]
SpaceCast	16s	[13,19]	.98	[.97,.98]	.97	[.96,.98]
PointCast	10s	[7.9,13]	.97	[.91,.99]	.97	[.91,.98]
TraceCast	11s	[9.7,13]	.98	[.97,.99]	.98	[.96,.98]

Real Dataset

N-body mass simulation

Technique	Time	CI	F1	CI	MCC	CI
Cylinder	161s	[134,192]	.92	[.91,.93]	.92	[.91,.93]
CloudLasso	50s	[43,59]	.94	[.93,.95]	.94	[.93,.95]
SpaceCast	49s	[41,57]	.94	[.93,.95]	.94	[.93,.95]
PointCast	58s	[51,65]	.94	[.89,.96]	.95	[.90,.96]
TraceCast	60s	[51,70]	.95	[.93,.96]	.95	[.93,.96]

Completion times

Ratios between mean completion times for the simulation dataset.

Application Domains

• Hurricane Isabel dataset - SpaceCast

