
Illustration Watermarks for Vector Graphics

Henry Sonnet Tobias Isenberg Jana Dittmann Thomas Strothotte

Department of Simulation and Graphics
Otto-von-Guericke University of Magdeburg

{sonnet@isg|isenberg@isg|jana.dittmann@iti|tstr@isg}.cs.uni-magdeburg.de

Abstract

Digital watermarking is a technique for embedding infor-
mation into data, such as images, 3D models, or audio files,
such that some properties (i. e., security, imperceptibility, ro-
bustness) are maintained. While most of the existing wa-
termarking techniques focus on encoding copyright infor-
mation where security is one of the most important proper-
ties, we have developed algorithms for embedding Illustra-
tion Watermarks, i. e., content-related annotations for the
image. Robustness against common media transformations,
high capacity, and blind detection are our aspired proper-
ties while security and the usage of secure keys are less
important. The medium that we are using for embedding
data are 2D vector graphics. We introduce algorithms that
change line attributes, introduce new vertices in certain pat-
terns, and replace existing stroke segments by new lines in
a stylistic way. Based on the modification they introduce,
we categorize our techniques into whether they change the
appearance of the image or not and whether the changes
are perceivable by the naked eye or not. We demonstrate
our techniques with silhouette lines obtained from 3D mod-
els. Such line drawings are a very common style utilized in
many illustrations, in particular in the medical and techni-
cal domain.

1. Introduction

Digital watermarking techniques based on steganographic
systems offer the possibility of embedding information di-
rectly into the media data (see, for example, COX et al. [4]
or DITTMANN [5]). Digital watermarking represents an ef-
ficient technology to ensure both data integrity and data ori-
gin authenticity known as copyright or authentication water-
marking. Watermarking techniques are usually used for dig-
ital imagery while audio and 3D-models are relatively new
application domains. Besides embedding copyright, cus-
tomer, or integrity information as transparent patterns using
a secret key, digital annotation watermarking becomes pop-

ular to integrate additional data into the media itself, e. g.,
in smart images as shown by ALATTAR [1]. The most im-
portant properties of digital watermarking techniques are ro-
bustness, security, imperceptibility/transparency, complex-
ity, capacity, and possibility of verification. Although a
wide variety of techniques have been proposed, there are no
accepted standards as to their classification nor their quality
measurement. Depending on the application these parame-
ters differ and cannot be optimized separately. For our illus-
tration scenario, high transparency of the embedded infor-
mation, robustness against common media transformations,
high capacity (payload), and blind detection (watermark re-
trieval without original) are key issues while security of the
watermark and the usage of secure keys are less important.
Therefore, our goal is to design an appropriateIllustration
Watermarkfor 2D vector data.

Line drawings as representatives of 2D vector data are a
very common style used in illustrations [6], particularly in
the medical and technical domain. In recent years, a wide
variety of techniques have been proposed for the automatic
generation of, for example, silhouette line drawings from
three-dimensional geometric models [8, 18]. Many of these
algorithms produce the silhouette lines in analytic form, i. e.,
these lines are not hidden in a pixel image and can be used
for further processing. Usually, line styles are applied to the
silhouettes used in interactive applications [9, 10]. However,
since the silhouettes are available in an analytic form, they
can also be used to create vector graphics.

The advantages of vector graphics in terms of typically
small storage costs and high reproduction quality are widely
known not only with respect to print but also on-screen.
However, when vector graphic illustrations are processed
(import, export, and manipulation in vector graphics pack-
ages such as CORELDRAW), potentially attached informa-
tion in form of text files about what is depicted will most
certainly get lost. Thus, it is of great benefit if this addi-
tional information can be embedded within the graphic it-
self. The embedded information has to be stored in such a
way that it does not get lost when applying common geomet-
rical transformations. For example, typical transformations

http://wwwisg.cs.uni-magdeburg.de/isg/sonnet.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/isenberg.html.en
http://wwwiti.cs.uni-magdeburg.de/~jdittman/
http://wwwisg.cs.uni-magdeburg.de/isg/tstr.html.en
http://isgwww.cs.uni-magdeburg.de/index.html.en
http://www.uni-magdeburg.de/unv_eng.html
mailto:sonnet@isg.cs.uni-magdeburg.de
mailto:isenberg@isg.cs.uni-magdeburg.de
mailto:jana.dittmann@iti.cs.uni-magdeburg.de
mailto:tstr@isg.cs.uni-magdeburg.de
mailto:sonnet@isg.cs.uni-magdeburg.de
http://www.corel.com/coreldraw/

used in vector graphics processing such as translation, rota-
tion, scaling, and even partial zooming must not destroy the
information embedded within the graphic. The additional
information should also not get lost when changing from
one standard format to another (e. g., PDF to POSTSCRIPT).

We demonstrate the suggested methods forIllustration
Watermarking for vector graphics by applying them to
computer-generated silhouette line drawings. However,
they can be used with any vector graphic based on lines.
Our main goal is to embed information without actually al-
tering the visual appearance of the graphic or at least with-
out changing it perceivably. We also introduce a method
which does change the visual appearance of the graphic per-
ceivably but does it in a stylistic way.

As shown in Figure 1, our techniques are based on the
following procedure. We start with a 3D geometric model
and first compute its visible silhouette. The visible silhou-
ette lines serve as the input for theIllustration Watermark-
ing algorithms. The information is embedded by adding or
altering the positions of vertices within a stroke or by chang-
ing the line attributes at certain vertex positions. The result-
ing data is output into a PDF file in order to allow further
processing of the vector graphic (e. g., transformations into
other vector graphic formats).

In the remainder of this paper, we first analyze related
work in Section 2. Afterwards, we introduce the termIllus-
tration Watermarkand discuss what this special kind of wa-
termarks might be used for in Section 3. A detailed descrip-
tion of our introduced algorithms and their categorization is
presented in Section 4. An evaluation of our algorithms re-
garding their amount of encodable data, perceivability, and
robustness is carried out in Section 5. Section 6 comprises
conclusions to this paper.

2. Related Work

There are a wide variety of watermarking techniques in the
domains of audio, video, and image processing [4, 5, 3, 15,
19]. The number of watermarking techniques for 3D geo-
metric models has been continuously increasing since about
1997. The techniques introduced in this paper benefit to a
great extent from these methods. Hence, we survey a selec-
tion of 3D and 2D approaches in the object space which are
mainly used for copyright issues without giving a complete
overview which would be beyond the scope of this paper.

OHBUCHI et al. were the first to embed digital water-
marks into 3D geometric models [12]. The first algorithm
they describe searches sequentially for four adjacent trian-
gles sharing edges. The data is embedded by changing
the ratio of specific edges and heights. Other algorithms
vary the ratio of volumes of a pair of tetrahedrons or peel
off triangle strips from a given triangle mesh, whose adja-
cency embed binary data. In one of their latest publications,

OHBUCHI et al. modify the amplitude of mesh spectral coef-
ficients and hence change mesh shapes in their transformed
domain [13]. The first digital watermarking technique for
3D polygonal meshes using a domain transformation (based
on wavelet transform and multiresolution representation)
was introduced by KANAI et al. [11]. The embedded wa-
termark is imperceptible and invariant to affine transforma-
tions. In 1999, BENEDENS described an algorithm whose
primary aim was to be robust against point randomization,
mesh altering operations, and polygon simplification [2]. In
order to embed binary data, he computed groups of similar
normals of the model in advance (so-calledbins) and moves
them slightly.

A watermarking technique based on 2D vector data for
Geographical Information Systems (GIS) is presented by
VOIGT and BUSCH [20]. They add pseudo-noise (PN) to
the obtained coordinates within a certain tolerance of the
data. Their method is robust against attackers as long as
they change the coordinates within the tolerance range. In
order to detect those attacks and the embedded information,
the PN-sequence has to be known by the embedder and the
decoder. OHBUCHI et al. also address the subject of water-
marking 2D vector maps in the geographical data domain
[14]. After creating a single mesh of the collection of poly-
gons and polylines using delaunay triangulation, they com-
pute multiple watermarking patches. In order to embed wa-
termarking signals, the calculation of mesh spectral coeffi-
cients and their modification is necessary. As a result, they
adopted their aforementioned approach ([13]) for geometri-
cal 3D models and applied it to 2D vector data. Their pro-
cedure shows that there is some similarity in watermarking
between 3D and 2D data in object space. Thus, methods
based on 3D data are easier to apply to 2D vector data than
to raster graphics. SOLACHIDIS et al. introduce another ap-
proach that utilizes a domain transformation [17]. They first
combine the coordinates of a polygonal line to represent the
computed signals by their Fourier descriptors (FD) before
they change the magnitude of theFD to embed watermark-
ing signals. In the broader course, the invariance of their
algorithm to a number of geometric manipulations (transla-
tion, rotation, scaling, change of starting point, and inver-
sion of traversal direction) is shown. Very closely related
is also the approach by SCHMUCKER who embeds water-
marks in music scores by modifying features of the notation
[16] or the work by HUANG and YAN who alter the spacing
of texts in order to embed additional information [7].

3. Illustration Watermarks

We defineIllustration Watermarksas a representation of in-
formation within an image which enables end-user interac-
tion with the image. In this section, we will discuss the
purpose of such watermarks and their necessity, while the

http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/postscript/
http://www.adobe.com/products/acrobat/adobepdf.html

Rendered 3D model Silhouette of 3D model
(Vector-oriented line drawing)

Watermarked silhouette
(Encoding not recognizable)

Watermarked silhouette
(Stylized lines)

Figure 1: Starting from a 3D model, the silhouette is computed and used to embed data with or without recognizable changes of the graphic. Other sources
for 2D vector graphics are possible as well.

remainder of the paper will then focus on algorithms for
creating such illustration watermarks.

Interaction with an image is to serve one or more of sev-
eral purposes:

• Image Enrichment: A single image may not contain
the information which an end-user needs for a partic-
ular context. At the same time, the author of the im-
age may have additional information at their disposal
which could augment it. Such information is to be in-
cluded in the image as a watermark.

• Context Dependent Visualization: A fixed image can-
not change its appearance depending on the context in
which it is being used. However, there are situations
in which slight changes may be foreseen by the author
of the image or the end-user, depending on how the im-
age is to be used. Such changes in the visualization of
the underlying image data can be included as an illus-
tration watermark and selectively extracted to tune the
image to the context of its use.

Examples of image enrichment include information about
what is happening in the image what certain objects may
be used for. For example, if the image contains an image
of a heart, it may be useful to provide information about
the direction of the flow of blood should the user want it.
Such information can be encoded within the image as a wa-
termark and extracted by the user on demand. The informa-
tion could then be visualized as arrows temporarily placed
within the image.

An example of a context dependent visualization is the
rendition style to be used. For example, an engineering

drawing generally contains information as to the sizes of ob-
jects, while a rendition of the same object intended for end-
user documentation might typically be required in a photo-
realistic manner. Alternative visualizations of one and the
same object can be encoded within an image as a watermark
and activated by the user as needed.

Such additional information about an image contained
within an illustration watermark can be extracted by the user
with an appropriate browser. Each image has its “normal”
appearance which is visualized with any browser support-
ing the image’s format. The watermarks now provide the
end-user with the ability to extract additional information
which (hopefully) will be useful in their dialogue context.
A specially equipped browser will enable the end-user to
inspect what watermarks are present and to see their effect.

This methodology raises a number of questions. Perhaps
the most compelling is why the information needed for the
dialogue should be encoded as a watermark within the im-
age rather than simply being supplied with an additional
data structure. The main reason for exploring watermarks
in this context is that an encoding as an image enables users
to work with all the information pertaining to it in a uni-
form and systematic manner. It enables end-users to use
standard tools for image manipulation (like file format con-
version, and cut-and-paste operations) rather than having to
deal with a separate tool for the additional information. It
ensures the consistency of the image and its additional in-
formation which was intended by the image author, as it is
not possible to inadvertently alter or remove the additional
information. The technology for robustness and security de-
veloped for watermarks in general apply to illustration wa-
termarks, also.

Of course, the use of illustration watermarks also has its
disadvantages. Perhaps the most important is the limited
amount of information which can be encoded within a wa-
termark. However, as we shall see in the remainder of this
paper, indeed that amount is substantial (at least a few thou-
sand bytes), which is sufficient for many applications. It
may also be that the amount of memory needed to encode
the additional information as a watermark is greater than as
a simple and separate data structure. However, the overall
amount of memory needed is also not really an issue any-
more today in many applications. Hence there are a variety
of situations in which the advantages far outweigh the dis-
advantages, making this a viable technology to investigate.

In this paper we focus on illustration watermarks for vec-
tor graphics. Certainly, vector graphics which lead to line-
drawings as a style of non-photorealistic rendering is a class
of graphics in which illustration watermarks are of particu-
lar value. An illustration consisting of a line drawing as its
basis will often be augmented by various different pieces
of information, depending on the context of the end-user re-
quirements. Hence, vector graphics are an important class
of graphics for which illustration watermarks will form an
important basis for encoding information which should not
appear within the illustration all at once.

The end-user issues of illustration watermarking are be-
yond the scope of this paper and will be dealt with by the
authors elsewhere. The remainder of this paper focuses on
algorithms for encoding information as illustration water-
marks in vector graphics.

4. Implementation Details

In this section, we propose four different algorithms de-
signed for embedding binary data in line graphics. We clas-
sify these algorithms according to whether they change the
appearance of the image or not. Algorithms which do not
change the appearance of images only enlarge the graphic
by introducing additional points. In contrast, algorithms
which change the appearance of images work by modifying
line properties such that they may change the perception of
the graphic or replace existing line strokes by new lines. For
the algorithms which do change the appearance, we also
make the distinction whether this modification is perceiv-
able or not. The binary data that is to be embedded within
the vector graphic can be represented as bi-level pictures as
well as character strings.1 We use a bit stream generated
from this input data to embed it in the image.

Besides the data to be embedded, we use a vector-
oriented line drawing as input for each algorithm. As shown
in Figure 1, we interactively generate such a line drawing by
rendering a 3D model, moving the camera to get a suitable

1Of course, other types of data may be used. We chose to restrict ourselfs
to use ASCII text and dither images for demonstration purposes, only.

view onto the model, and finally compute the silhouette of
the model (see e. g., [8]). The silhouette (a polyline) is com-
posed of a number of line segments that can be stored in a
vector-oriented file format, in our case the (ASCII based)
PDF file format.

4.1. Algorithms That Do Not Change the Images’
Appearance

The first group of techniques illustrates two algorithms
which modify the original line graphic in such a way that
is not perceivable to the viewer. The embedding of binary
data into the image only causes an enlargement of the given
graphic data in terms of storage costs.

4.1.1. Additional Points Per Segment

The first algorithm is based on inserting additional points
into the image. Figure 2 illustrates the main steps:

• Subdivision. Each line segment of the given original
polyline (the silhouette) is subdivided such that none
of the computed line segments is longer than a specific,
user definable length. This is an optional step which
increases the number of segments that can be used for
embedding data.

• Insertion. After the two vertices of each new line seg-
ment, an additional vertex is inserted. However, the
new vertex is located between those two vertices. The
distance to the first of the two vertices mirrors the en-
coded binary data.

The illustration of Figure 2(b) shows the subdivision step af-
ter which each line segmentLj (j = {1, ...,M} with M =
number of line segments) consists ofNLj vertices; possi-
ble vertex positions for encoding binary data can be seen in
the enlargement of Figure 2(b) (only one of the positions
is used). Accordingly,P̃i,j is the inserted vertex between
Pi,j andPi+1,j (i = {1, ..., NLj}). For example, ifP̃i,j is
equal toPi,j , bit 0 is encoded; ifP̃i,j is in the middle be-
tweenPi,j andPi+1,j it encodes bit 4. Since we only code
bits which equal 1, we have to specify when the next byte
starts. We do so by adding a vertexPi+1,j at the end of the
list in order to signal the end of the current byte. In general,
the position of the inserted vertex can be computed by the
following equation based on the binary data to be encoded:

P̃i,j = Pi,j +
bit

8
· (Pi+1,j − Pi,j) (0 ≤ bit ≤ 8)

bit ranges from 0 to 7 specifying the according bit and is
equal to 8 if the start of the next byte should be indicated.

http://www.adobe.com/products/acrobat/adobepdf.html

Bit 0
1

4

2
3

5
6

7
Next Byte

P2,1

P5,1

P4,1

P3,1

P1,1

~
P =1,1 P1,1

~
P2,1P + 5/8 (P - P) =2,1 3,1 2,1

~
P3,1P + 6/8 (P - P) =3,1 4,1 3,1

~
P =5,1 P4,1

Original polyline Subdivision of each line
segment and calculation of
possible Bit-Point-Position

Encoding the character a

Line segment
L1

L2
L3

a = 01100001^

L = {P , P , P , P , P , P , P , P , P }1,1 2,1 1,1 3,1 2,1 4,1 3,1 5,1 4,1

~ ~ ~ ~
1

(a) (b) (c)

Figure 2: A given polyline is subdivided before the line segment points are used to insert additional points responsible for embedded binary data. The
modification is not visible to the viewer.

As an example, the charactera is encoded into the line
segmentL1 in the illustration of Figure 2(c). The associated
binary code (01100001) yields the new point field:

L1 = {P1,1, P2,1, P̃1,1, P3,1, P̃2,1, P4,1, P̃3,1, P5,1, P̃4,1}

The watermark detection and retrieval is designed as a
blind watermarking scheme. This means that for decoding
the embedded information neither the original line drawing
nor encoding details regarding any point distances are nec-
essary. The line segment points are only traversed and ana-
lyzed if they are positioned between the two points belong-
ing to the subdivided line segment and are located to the
left in the point field. If they are between them or equal
to one of them, the distance to the first of the two points
is calculated and converted to binary data. This means that
the coefficientc (c = bit/8) has to be computed before the
encoded bit can be extracted:

c =
P̃ − Pi,j

Pi+1,j − Pi,j
(for both components (x,y))

bit = floor(c · 8 + 0.5) (floor: greatest integral value)

Figure 3(b) shows an example. The enlargement demon-
strates that there is no difference detectable compared to the
original part in Figure 3(a).

One modification of the algorithm which does not re-
quire drawing back on the original segment would simply
switch the last two points of each segment. I. e., instead of
drawing two points of original segment followed by the ad-
ditional vertex, the first original vertex is drawn followed
by the vertex carrying the information which is followed by
the second original vertex. This way, a stroke consisting of
a series of segments would not need to be split into several
small strokes each consisting of only two segments. Instead,
the long stroke would be preserved saving storage costs.

4.1.2. Line Segment Length

The second algorithm that does not modify the appearance
encodes binary data by varying the length of the line seg-
ments. Thereby, we use a different line subdivision scheme
than before in order to embed the binary data into the
lengths of the subdivided line segments. Given a specific
base lengthl which is typically at least about a magnitude
smaller than the length of the smallest line segment, the sub-
division of the original line segments is performed as fol-
lows:

1. Determine the lengthlLj
of the current original line

segment and add its first point to the point fieldFP . FP

is a field which contains all points which result from
line subdivision. The current length of the subdivided
line segmentlcur is 0.

2. The new length̃l is calculated according to the bit posi-
tion to be encoded (again, we only encode the bits that
are 1):

l̃ =
1
8
· (bit + 1) · l (0 ≤ bit ≤ 7)

l̃ = l +
1
8
· l (next byte)

If this lengthl̃ plus the current segment’s lengthlcur is
less or equal tolLj

, we add a new point toFP located
on the original line segment with the distancel̃ to the
last point ofFP . Then we add̃l to lcur.

If lcur + l̃ happens to be larger than the total length of
the segmentlLj , no more data can be embedded into
this segment. However, just adding the last point of
the segment to the list of points would possibly encode
a bit which was not intended. In order to avoid this,

Coded silhouette
(Additional Points Going Back)
Encoded bytes: 188
Line segments #: 1644

Coded silhouette
(Line Segment Length)
Encoded bytes: 14480
Line segments #: 109564

Original silhouette

Encoded image(a) (b) (c)

Figure 3: The bunny in (b) was coded by the algorithm that adds points between the endpoints of a line segment; the graphic in (c) was coded by adapting
the line segment lengths. During subdivision, more points than in (b) were added with smaller distances such that more data could be embedded,
enough to encode the dithered image in the corner right (255x247 pixels).

we continuously add points toFP which are 1
16 l apart

while lcur < lLj
− 1

8 l.

3. Finally the last point of the original line segment is
added toFP and steps 1 to 3 are repeated for the next
line segments.

This approach allows encoding binary data into each com-
puted line segment. Thereby, an amount of data compara-
ble to the algorithm of Section 4.1.1 can be embedded. But
the line graphic has not to be enlarged that much because
no additional points between the line segments are inserted.
The graphic of Figure 3(c) is coded using the algorithm de-
scribed. It contains an image of size 255 x 247 with a depth
of one bit. Encoding an image of this size requires at least
7874 bytes without any compression. The high number of
line segments in the image shown enables such an encoding.

When decoding the embedded information, the specific
lengthl has to be known which might be seen as a disadvan-
tage. Therefore, we modified the subdivision step in such a
way that the lengthl is encoded in the first line segment (be-
ing the length of this segment). The lengths of the following
segments correspond to this specified length. When comput-
ing the length̃l of each remaining line segment the encoded
bit can simply be decoded by the following equation:

bit = floor

(
l̃ · 8
l

+ 0.5

)
− 1

4.2. Algorithms That Change the Images’ Appear-
ance

While the previously discussed algorithms solely enlarge
the geometric data without any influence on the appearance

of the image, the following algorithms may change the view
of the line drawing.

4.2.1. Angled Lines

In this section, we describe an algorithm which changes the
appearance of the line drawing significantly but does so in
order to create a stylistic appearance for the rendition.

P

P2

1

v u1

v2

1

~
ß = const. given angle

ß = (v , u) = ß + t

t: according to encoded bit

Subdivided polyline New angulared line segments

Figure 4: The subdivided line segments are replaced by new, stylized line
segments pointing away from the original direction and which
carry the embedded data.

Similar to the previous approaches, the algorithm starts
by subdividing the original line segments. Nevertheless,
now the points of the subdivided line segments are utilized
as starting points of new line segments pointing away from
the original stroke. The binary data is encoded into the an-
gle β̃ between the newly added line segments and the orig-
inal, not divided line segment. Figure 4 illustrates this pro-

Original silhouette Coded silhouette
(Angled lines)
Encoded bytes: 556
Line segments #: 2463
ß = 60°, Line segment length: 0.05

Coded silhouette of a cube
(Angled lines)
Encoded bytes: 421
Line segments #: 1816
ß = 60°, Line segment length: 0.1

(a) (b)

Figure 5: The original line segments are replaced by new lines pointing in another direction. The viewer gets the impression of a line style.

cedure. Given an angleβ, the new anglẽβ is calculated by
adding a bit-specific amount toβ. Having determined the
angleβ̃ and the vector~u betweenPi+1 andPi, the vector of
the new line segment (e. g.,~v1 in Figure 4) can be computed
as follows:(

vi,jx

vi,jy

)
=
(

cos β̃ · ~ujx
− sin β̃ · ~ujy

sin β̃ · ~ujx
+ cos β̃ · ~ujy

)
Instead of using the original or subdivided line segments,

new line segments as a result of the computed vectorsvi,j

with a user-definable length are rendered (see Figure 5). Be-
sides the length, the distance between those line segments
(synonymous with the interval during subdivision) and the
angleβ can be diversified to get numerous variations among
the line drawings. In order to decode the embedded infor-
mation,β has to be known. Thus, it is to be specified by
the user or encoded as the first used angle. The vectors~uj

are computed as the difference between subsequent starting
points of the angled line segments. This way, the angles be-
tween the~uj and thevi,j can simply be calculated and be
used to determine the encoded binary data.

4.2.2. Changing Line Attributes

Another approach for embedding binary data in line graph-
ics is to change some of the line attributes, such as color
and width (see Figure 6). These attributes can be modified
before each of the line segments is characterized.

For example, in a gray-level image the gray valueG̃ can
be computed depending on the bit to be encoded as follows:

G̃ = 0.1 · 1/8 · bit + G − 0.05 (0 ≤ G ≤ 0.99)

or with somewhat more contrast as seen in the image of
Figure 6(a):

G̃ = 0.5 · 1/8 · bit + G − 0.2 (G = 0.5)

G is the base gray value; the modified gray values are com-
puted so that they are close toG. If G is not modified this
again signals the start of a new byte. Care has to be taken in
adjusting the two parameters whenG is set to be 0 (black)
or 1 (white) in order to avoid gray values greater than 1 or
less than 0. According to the range within the computed
gray values, the modification of the graphic is more or less
visible to the viewer.

It is relatively easy to manipulate these attributes and
thus the embedded data without changing the geometry data
at all. Indeed, this prompted OHBUCHI et al. to conjecture
that the geometry of objects is the best candidate for data
embedding, since it is the least likely to be removed [12].
However, the widths as well as the color values can be mod-
ified marginally such that no data encoding is detectable at
first sight.

5. Evaluation and Discussion

We were interested in how to appraise our presented algo-
rithms especially regarding a number of aspects. We ex-
amined how much data can be embedded and what addi-
tional storage space is needed. Second, we analyzed the
algorithms as to whether there are any differences between
the coded graphic and the original one. In addition, we ex-
amined our techniques regarding robustness against trans-

Coded silhouette
(Line color)
Encoded bytes: 157
Line segments #: 1219

Coded silhouette
(Line width)
Encoded bytes: 63
Line segments #: 510

(a) (b)

Figure 6: Line attributes are used to embed binary data. In (a), the color
attribute is modified whereas in (b) the line width was diversified
to encode information. In both graphics the attribute variations
are overstated in order to illustrate them in a better way.

formations such as translation, rotation, and scaling. In par-
ticular, we analyzed how import and export operations influ-
ence the decoding process and whether the encoded infor-
mation is at least partially accessible after removing parts
of the graphic.

5.1. Amount of Encodable Information

The amount of data that can be encoded depends on the num-
ber of line segments that can be increased by the subdivision
step (see Section 4.1.1). The smaller the distance between
two consecutive line segment points, the more binary data
can be embedded. Certainly, this causes an insertion of ad-
ditional points and consequently an increase in storage req-
uisition.

Table 1 shows measurements for each algorithm.2 The
number of line segments of the original line drawing and
the appropriate number after subdivision are shown as well
as the number of encoded data and the resulting size of the
PDF file. It is evident that the number of bytes encoded and
at the same time the size of the PDF file increases when the
distance between consecutive points is abbreviated result-
ing in more line segments. The largest number of bytes are
embedded using theLine Lengthalgorithm. The reason is
that during the subdivision more line segments, compared
to the other algorithms, are generated due to some shorter
segments holding the lower bit positions. The diagram of
Figure 7 illustrates that theLine Lengthalgorithm is also the
most efficient while theLine Color/Widthalgorithm yields
the largest PDF files. Further more, a nearly linear correla-

2Please note that we used ASCII-based PDF files. Using binary coding
will certainly improve the storage efficiency of Illustration Watermarks.

tion between the embedded amount of data and the resulting
data size of the PDF file is recognizable. It can also be ob-
served that there is a disproportion of theLine Lengthalgo-
rithm at the beginning. Indeed, theLine Lengthalgorithm
yields many more line segments but less encoded bytes com-
pared to the other algorithms. The explanation for this be-
havior is the insertion of very short line segments. These
line segments are inserted as long as the current bit-specific
line length exceeds the length of the original line segment
(recall Section 4.1.2).

Size of PDF-file
(in KB)

Encoded
bytes

10.000

5.000

7.500

0

2.500

500 1.000 1.500 2.000

15.000

Going Back

Line Length

Angled Lines

Line Color/Width

Figure 7: Memory requirements for embedding an amount of data (in
bytes) for each of the presented algorithms.

5.2. Recognizable Differences

When we presented the algorithmic details, we categorized
the Illustration Watermark algorithms into changing the ap-
pearance of the image or not according to the modifications
they introduce. The only algorithm that makes significant
changes to the appearance of the image is theAngled Lines
algorithm. When parameterized accordingly, the diversifi-
cation of line color and width does not cause recognizable
effects. In Figure 6, we have chosen two extreme examples
in order to better illustrate the techniques. Nevertheless, it
is usually sufficient to vary the color and width minimally
such that it is not detectable when viewing the image with
the naked eye (which is a subjective test, of course). How-
ever, when decoding the data algorithmically, even small
changes in attribute values are enough to be recognizable.

The modifications resulting from theGoing Backand
Line Lengthalgorithms are not perceivable by the viewer.
However, there is a problem that might occur due to numer-
ical roundoff errors. If the distance between the subsequent
points on a line segment during the subdivision is chosen

http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html

Algorithm # Lines (not # Lines Encoded Size of coded Ratio of data hidden
subdivided) (subdivided) bytes ASCII PDF file per storage cost (%)

Going Back 71 1226 157 35.0 KB 0.44
76 7135 1490 236.9 KB 0.61
79 67358 15113 2.2 MB 0.66
68 633878 143255 21.1 MB 0.65

Line Length 71 7437 134 129.1 KB 0.10
76 15537 2127 267.5 KB 0.78
79 104010 22200 1.7 MB 1.25
68 938895 211037 15.7 MB 1.28

Angled Lines 71 1226 276 45.4 KB 0.59
76 7135 1614 259.2 KB 0.61
79 67358 15236 2.4 MB 0.61
68 633878 143376 22.4 MB 0.61

Line Color/ 71 1226 157 42.7 KB 0.36
Line Width 76 7135 1490 394.1 KB 0.37

79 67358 15113 3.9 MB 0.37
68 633878 143255 36.8 MB 0.37

Table 1: Comparison of our algorithms regarding the number of line segments before and after subdivision, the amount of encoded bytes and the required
storage capacity.

too small (in our tests less than 0.001 units), the viewer
might detect some tiny interruptions on a printed copy of
the graphic depending on resolution and printer type.

The procedure of reconstructing the original vector
graphic from one with embedded data is very much straight-
forward. When theLine Color/Widthalgorithm was used,
the only thing to do is to remove the attributes which carry
the information. For the remaining algorithms, the decod-
ing techniques have to be applied which makes it possible
to reconstruct the start and end points of the original line.
However, an additional line subdivision which could have
been applied in order to store more data cannot easily be
removed other than searching for consecutive straight line
segments and merging those.

5.3. Robustness

To examine the robustness of our algorithms we carried
out a number of subjective tests. In order to verifying
the robustness against geometrical transformations, we im-
ported the PDF file into CORELDRAW, applied a number
of common transformations (translation, scaling, rotation),
exported the data as a EPS file, and transformed this file
back to PDF. Additional file conversions were done by open-
ing the PDF file in GSVIEW, converting it to another vector
format (POSTSCRIPTfile format), afterwards to the EPS file
format and in the end back to the PDF file format using
epstopdf under a UNIX operating system.

The information encoded by theAngled LinesandLine
Color/Width algorithms could be decoded after the afore-

mentioned transformations and conversions without any
problems. The information encoding done by the two other
algorithms (Going BackandLine Length) caused some de-
coding problems after the robustness tests. The first prob-
lem was that the last of two identical consecutive points was
removed by CORELDRAW’s export function when saving
the modified file. Recall, theGoing Backalgorithm where
the start of the next byte was signaled by inserting a point
which should be located between two of the previous points
(in the case of the start of the next byte it should be iden-
tical with the second one, see Section 4.1.1). As a result
of the removal of points, the starting of the next byte could
not be identified. To avoid this problem, we multiplied the
point to be inserted with a factor of0.9999 in order to get
a nearly exact copy of the previous point. Because of nu-
merical roundoff errors and minutely different scaled point
coordinates caused by internal system conversions (appear-
ing in CORELDRAW) as the second problem of both al-
gorithms, a small error tolerance was incorporated in the
decoding process. Introducing error tolerances solved both
the problem with the modification of points to avoid two
subsequent identical points as well as the problem caused
by internal system conversions.

After removing parts of the graphic most of the informa-
tion embedded in the remaining graphic was still decodable
since the beginning of each new byte is indicated. Therefore,
none of the bits encoded were associated with an incorrect
byte. However, our major goal was to embed a large amount
of connected data. If parts of the graphic were removed
the embedded data is incomplete and important information

http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.corel.com/coreldraw/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.cs.wisc.edu/~ghost/
http://www.adobe.com/products/postscript/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.corel.com/coreldraw/
http://www.corel.com/coreldraw/

might get lost. In addition, we optimized the algorithms in
order to provide higher capacity and robustness rather than
security. An observer who knows the applied algorithms
could easily figure out that there is information hidden in
the lines. However, the indended application does not re-
quire high security.

6. Conclusion

In this paper, we examined ways to embed Illustra-
tion Watermarks into vector graphics. Illustration Water-
marks were defined as additional, content-related informa-
tion which is added to an illustration. Instead of storing the
information separate from the image which carries the illus-
tration (where it could get lost through transformations on
the image) we embed the data into the image itself.

Illustrations are often created as line drawings. These,
in turn, can be represented as vector graphics which has
numerous advantages in terms of reproduction quality and
storage efficiency. We demonstrate how to embed Illustra-
tion Watermarks in those vector graphics using four differ-
ent approaches. We classify these approaches according to
their ability to preserve the image’s appearance. TheGoing
BackandLine Lengthalgorithms do not introduce any per-
ceivable changes whereas theLine Color/Widthalgorithm
can be parameterized so that the changes are not visible to
the naked eye. In contrast, theAngled Linesalgorithm ex-
changes the stroke segments by stylized lines which carry
the data. All our approaches store the embedded informa-
tion locally, i. e., this allows us to add annotiations specifi-
cally to those parts to which they belong. In addition, when
parts of the graphic are removed, the information of the re-
maining parts can still be recovered.

In all algorithms, we used the bit positions for encoding.
Other schemes for storing binary data as well as efficient
data compression can be used with only little changes to the
algorithms. In particular, the latter would greatly improve
the data efficiency of our algorithms.

We showed that the data embedding is robust against
common transformations and format conversions which are
often applied to vector graphics.

References

[1] A. M. Alattar. Smart Images Using Digimarc’s Watermark-
ing Technology. InProc. SPIE Security and Watermarking
of Multimedia Contents II, pages 264–273, 2000.

[2] O. Benedens. Geometry-Based Watermarking of 3D Mod-
els. IEEE Computer Graphics and Applications, 19(1):46–
55, 1999.

[3] B. Chen and G. W. Wornell. Quantization Index Modula-
tion: A Class of Provably Good Methods for Digital Water-
marking and Information Embedding.IEEE Transactions
on Information Theory, 47(4):1423–1443, May 2001.

[4] I. J. Cox, M. L. Miller, and J. A. Bloom, editors.Digital
Watermarking. Morgan Kaufmann, San Francisco, 2001.

[5] J. Dittmann.Digitale Wasserzeichen. Springer Verlag, Hei-
delberg, 2000.

[6] E. R. S. Hodges, editor.The Guild Handbook of Scientific
Illustration. John Wiley & Sons, 2nd edition, 2003.

[7] D. Huang and H. Yan. Interword Distance Changes Rep-
resented by Sine Waves for Watermarking Text Images. In
Proc. Pan-Sydney Area Workshop on Visual Information Pro-
cessing (VIP 2000), 2000.

[8] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and
T. Strothotte. A Developer’s Guide to Silhouette Algorithms
for Polygonal Models.IEEE Computer Graphics and Appli-
cations, 23(4):28–37, July/Aug. 2003.

[9] T. Isenberg, N. Halper, and T. Strothotte. Stylizing Silhou-
ettes at Interactive Rates: From Silhouette Edges to Silhou-
ette Strokes. Computer Graphics Forum, 21(3):249–258,
Sept. 2002.

[10] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowal-
ski, J. C. Lee, P. L. Davidson, M. Webb, J. F. Hughes, and
A. Finkelstein. WYSIWYG NPR: Drawing Strokes Directly
on 3D Models. InProc. SIGGRAPH 2002, pages 755–762,
Reading, MA, 2002. Addison Wesley.

[11] S. Kanai, H. Date, and T. Kishinami. Digital Watermarking
for 3D Polygons using Multiresolution Wavelet Decomposi-
tion. In Proc. 6th IFIP WG 5.2 International Workshop on
Geometric Modelling, pages 296–307, 1998.

[12] R. Ohbuchi, H. Masuda, and M. Aono. Watermarking Three-
Dimensional Polygonal Models. InProc. ACM Multimedia
1997, 5th ACM International Multimedia Conference, pages
261–272, 1997.

[13] R. Ohbuchi, A. Mukaiyama, and S. Takahashi. A Frequency-
Domain Approach to Watermarking 3D Shapes.Computer
Graphics Forum, 21(3):373–382, Sept. 2002.

[14] R. Ohbuchi, H. Ueda, and S. Endoh. Watermarking 2D
Vector Maps in the Mesh-Spectral Domain. InProc. Inter-
national Conference on Shape Modelling and Applications,
pages 216–225, 2003.

[15] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Infor-
mation Hiding – A Survey. InProc. IEEE, Special Issue on
Protection of Multimedia Content, pages 1062–1078, 1999.

[16] M. Schmucker. Using Musical Features for Watermarking
Music Scores. InProc. 1st Int. Conf. on WEB Delivering
of Music (Wedelmusic 2001), pages 20–25. IEEE Computer
Society, 2001.

[17] V. Solachidis, N. Nikolaidis, and I. Pitas. Watermarking
Polygonal Lines Using Fourier Descriptors. InProc. IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP’2000), pages 1955–1958, 2000.

[18] T. Strothotte and S. Schlechtweg.Non-Photorealistic Com-
puter Graphics: Modeling, Rendering, and Animation. Mor-
gan Kaufmann, San Francisco, 2002.

[19] M. D. Swanson, M. Kobayashi, and A. H. Tewfik. Mul-
timedia Data-Embedding and Watermarking Technologies.
In Proc. IEEE (Special Issue on Multimedia Signal Process-
ing), volume 86, pages 1064–1087, 1998.

[20] M. Voigt and C. Busch. Watermarking 2D-Vector Data for
Geographical Information Systems. InProc. IS&T/SPIE
Electronic Imaging 2002, volume 4675, pages 621–628,
2002.

http://citeseer.nj.nec.com/context/1725679/0
http://citeseer.nj.nec.com/context/1725679/0
http://www.computer.org/cga/cg1999/g1046abs.htm
http://www.computer.org/cga/cg1999/g1046abs.htm
http://citeseer.nj.nec.com/383551.html
http://citeseer.nj.nec.com/383551.html
http://citeseer.nj.nec.com/383551.html
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=1558607145
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=1558607145
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3540666613
http://www.wiley.com/cda/product/0,,0471360112,00.html
http://www.wiley.com/cda/product/0,,0471360112,00.html
http://www.cs.usyd.edu.au/~vip2000/papers/huang_watermark.doc
http://www.cs.usyd.edu.au/~vip2000/papers/huang_watermark.doc
http://csdl.computer.org/comp/mags/cg/2003/04/g4028abs.htm
http://csdl.computer.org/comp/mags/cg/2003/04/g4028abs.htm
http://www.eg.org/EG/CGF/volume21/issue3/abstracts/CGF584.HTML
http://www.eg.org/EG/CGF/volume21/issue3/abstracts/CGF584.HTML
http://www.eg.org/EG/CGF/volume21/issue3/abstracts/CGF584.HTML
http://doi.acm.org/10.1145/566570.566648
http://doi.acm.org/10.1145/566570.566648
http://citeseer.nj.nec.com/504450.html
http://citeseer.nj.nec.com/504450.html
http://citeseer.nj.nec.com/504450.html
http://citeseer.nj.nec.com/ohbuchi98watermarking.html
http://citeseer.nj.nec.com/ohbuchi98watermarking.html
http://www.eg.org/EG/CGF/volume21/issue3/abstracts/CGF597.HTML
http://www.eg.org/EG/CGF/volume21/issue3/abstracts/CGF597.HTML
http://citeseer.nj.nec.com/575092.html
http://citeseer.nj.nec.com/575092.html
http://citeseer.nj.nec.com/petitcolas99information.html
http://citeseer.nj.nec.com/petitcolas99information.html
http://syscop.igd.fhg.de/Publications/Schmucker01c.pdf
http://syscop.igd.fhg.de/Publications/Schmucker01c.pdf
http://citeseer.nj.nec.com/309890.html
http://citeseer.nj.nec.com/309890.html
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=1558607870
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=1558607870
http://citeseer.nj.nec.com/context/28354/0
http://citeseer.nj.nec.com/context/28354/0
http://syscop.igd.fhg.de/Publications/busch02c.pdf
http://syscop.igd.fhg.de/Publications/busch02c.pdf

	Introduction
	Related Work
	Illustration Watermarks
	Implementation Details
	Algorithms That Do Not Change the Images' Appearance
	Additional Points Per Segment
	Line Segment Length

	Algorithms That Change the Images' Appearance
	Angled Lines
	Changing Line Attributes

	Evaluation and Discussion
	Amount of Encodable Information
	Recognizable Differences
	Robustness

	Conclusion

