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Great popularity since [Gatys et al. 2015, arXiv]
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Input „The Starry Night“ „The Scream“

„Femme nue assis“ „The Shipwreck of

the Minotaur“
„Composition VII“



Great popularity since [Gatys et al. 2015, arXiv]

[Risser et al. 2017, arXiv] [Gatys et al. 2016, CVPR] [Selim et al. 2016, SIGGRAPH]

[Johnson et al. 2016, ECCV] [Prisma / iOS] [likemo.net]

13 conference papers / 16 arXiv.org reports (and counting), mobile apps / services
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So far, primarily explored in a computer vision context …

What impact does Neural Style Transfer has on

image-based artistic rendering and NPAR research?
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Deep neural 

networks

L. Gatys [arXiv 15, CVPR 16]

J. Johnson [ECCV 16]

20151990                                           1997  1998    2000     2002           2005      2006                2010

In image-based artistic rendering, we‘ve come a long way ...

[Kyprianidis et al. 2013, TVCG]

Semi-automatic 

painting systems

P. Haeberli (SIGGRAPH 90)

Perceptual UI & 

segmentation

D. DeCarlo [SIGGRAPH 02]

Automatic 

perceptual

J. Collomosse [EvoMUSART 05]

Anisotropy / filters

H. Winnemöller [SIGGRAPH 06]

J. Kyprianidis [TPCG 08]

User evaluation

T. Isenberg [NPAR 06]

NPAR 2010 

Grand challenges

Late 1980s

Advances in media 

emulation

D. Strassman (SIGGRAPH 86)

Video painting

P. Litwinowicz (SIGGRAPH 97)

Fully automatic 

painting

A. Hertzmann (SIGGRAPH 98)

Treveatt/Chen [EGUK 97]

P. Litwinowicz [SIGGRAPH 97]

Space-time 

video

J.

Wang [SIGGRAPH 04]

J. Collomosse [TVCG 05]

?
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NPAR Grand Challenges

[Salesin 2002, NPAR] [Gooch et al. 2010, NPAR] [Isenberg 2016, NPAR]
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Challenge 1: Algorithmic Aesthetics

How do you encode what makes something beautiful?

[Salesin 2002, NPAR] revisited by [Gooch et al. 2010, NPAR]

Two general categories of work [Gooch 2010, NPAR]:

▪ Simulate physical process of producing
a piece of artwork

▪ Derive algorithmic theory that approximates
the artwork itself

Neural Style Transfer: A Paradigm Shift for Image-based Artistic Rendering? 729.07.2017



Artwork Approximation – Examples

8

[DeCoro et al. 2007, NPAR]

[AlMeraj et al. 2009, CaG][Gooch et al. 2004, ToG]

[Kim et al. 2009, NPAR][Bousseau et al. 2006, NPAR]

[Baxter et al. 2004, NPAR]
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Kyprianidis et al.‘s IB-AR Taxonomy [2013, TVCG]
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Image Analogies [Hertzmann et al. 2001, SIGGRAPH]

Limitations: Requires analogous style and content pairs for training,

typically informs only low-level image features for texture transfer.
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Neural Algorithm of Artistic Style
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▪ Very deep convolutional 
neural networks (CNNs) 
can accurately classify 
high-level image 
contents [Simonyan & 
Zisserman 2015, arXiv]

▪ Layers of deep CNNs 
can be activated to 
match content and style 
statistics between 
arbitrary images
[Gatys et al. 2016, CVPR]

[Gatys et al. 2016, CVPR]



Neural Style Transfer and Pictorial Language
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How to define artistic style transfer in the context of „meaning
making“ and determine if it is successful ?

– in professional (e.g., for artists) as well as casual creativity (i.e., for general public) applications –



Artists work in a pictorial language by following a set of standards, 
basics and rules of picture-making.

Neural Style Transfer and Pictorial Language
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A Semiotic Structure for Artistic Style Transfer

Style Image: Franz Marc – “The Tower of Blue Horses” 



Visual Semiotics and Uncertainty Visualization
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▪ Study of symbols and how they convey 
information in a meaningful way

▪ Not a new endeavor, e.g., connected to 
visualization, art theory and cartography

“The Semiology of Graphics” [Bertin, 1983]

▪ Attempt to classify all graphics marks as 
to how they could express data

[MacEachren et al., 2012, TVCG]



Pictorial Semiotics – Design Aspects
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I. Modeling Aspects

▪ Color Maps

▪ Feature Maps

▪ Geometry Maps

29.07.2017

Color Depth

[http://phandroid.com]



Pablo Picasso [1945-46]

Pictorial Semiotics – Design Aspects
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I. Modeling Aspects

▪ Color Maps

▪ Feature Maps

▪ Geometry Maps

II. Filtering Aspects

▪ Location-based

▪ Color-based

▪ Feature-based
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Paul Signac [1917]

Pictorial Semiotics – Design Aspects
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I. Modeling Aspects

▪ Color Maps

▪ Feature Maps

▪ Geometry Maps

II. Filtering Aspects

▪ Location-based

▪ Color-based

▪ Feature-based

III. Graphical Elements

▪ Point

▪ Line

▪ Area

▪ 2D Element
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Ernst Ludwig Kirchner [1907]

Pictorial Semiotics – Design Aspects
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▪ Size

▪ Color

I. Modeling Aspects

▪ Color Maps

▪ Feature Maps

▪ Geometry Maps

II. Filtering Aspects

▪ Location-based

▪ Color-based

▪ Feature-based

III. Graphical Elements

▪ Point

▪ Line

▪ Area

▪ 2D Element
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IV. Graphical Variables

▪ Form

▪ Shape



[http://sketchingjourney.com]

Pictorial Semiotics – Design Aspects
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▪ Size

▪ Color

I. Modeling Aspects

▪ Color Maps

▪ Feature Maps

▪ Geometry Maps

II. Filtering Aspects

▪ Location-based

▪ Color-based

▪ Feature-based

III. Graphical Elements

▪ Point

▪ Line

▪ Area

▪ 2D Element
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IV. Graphical Variables

▪ Form

▪ Shape

V. Design Mechanisms

▪ Space/Texture

▪ Transparency/Blending

▪ Shading

▪ Shadows

▪ Crispness

▪ Resolution



Gustave Caillebotte [1877]

Pictorial Semiotics – Design Aspects
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▪ Size

▪ Color

I. Modeling Aspects

▪ Color Maps

▪ Feature Maps

▪ Geometry Maps

II. Filtering Aspects

▪ Location-based

▪ Color-based

▪ Feature-based

III. Graphical Elements

▪ Point

▪ Line

▪ Area

▪ 2D Element
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IV. Graphical Variables

▪ Form

▪ Shape

V. Design Mechanisms

▪ Space/Texture

▪ Transparency/Blending

▪ Shading

▪ Shadows

▪ Crispness

▪ Resolution

VI. Perceptional Aspects

▪ Flatness

▪ Motion Coherence

▪ Temporal Continuity

▪ Pictorial Cues



[Kyprianidis et al. 2013, TVCG]

Pictorial Semiotics – Design Aspects
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▪ Color

I. Modeling Aspects

▪ Color Maps

II. Filtering Aspects

III. Graphical Elements
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IV. Graphical Variables

V. Design Mechanisms

▪ Space/Texture

VI. Perceptional Aspects



Proposition: Neural style transfers need to mature from color and 
texture transfers to interactive tools that consider the design 

aspects and mechanisms involved in artwork production.
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A Semiotic Structure for Artistic Style Transfer

▪ User involvement a key mechanism to maintain an iterative feedback loop 
between a system—as design instance—and user’s requirements—as artist
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A Semiotic Structure – Review of Style Transfer Techniques *
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* non-exhaustive general picture as of 05/2017
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Proposal 1: Semiotics-based Optimization

Style Image: Vincent van Gogh – “Starry Night” 



Current Limitations

29.07.2017 Neural Style Transfer: A Paradigm Shift for Image-based Artistic Rendering? 27



Proposal – Use / Model additional Image Information
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Use additional information besides color to “separate style from content”:

▪ Modeling aspects: semantics, depth, shading/lighting, orientation, segmentation

▪ Use semiotics-based loss functions to weight aspects in optimization stage

“Single-Image Depth Perception in the Wild” [Chen et al. 2016, NIPS] “Intrinsic Images in the Wild” [Bell et al. 2014, SIGGRAPH]



Example – Image Masking [Gatys et al. 2017, CVPR]
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“Controlling Perceptual Factors in Neural Style Transfer”

- Use image masks to mix style representations, adjust color and spatial scale



Example – StyLit [Fišer et al. 2016, SIGGRAPH]

“Illumination-Guided Example-Based Stylization of 3D Renderings”

- Illuminations-specific guidance is necessary for faithful style transfer
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Challenges
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1. How to generally provide required modeling and filtering information
for style and content images?

2. How to optimally weight semiotic aspects, e.g., by loss functions?

3. To what degree does or should a semiotics-oriented style transfer
require supervision?

4. How to elementary control design aspects on low-level and high-level?



Proposal 2: Providing Interactivity

Style Image: Robert Delaunay – “Portrait de Jean Metzinger” 



Mapping the Interaction Spectrum [Isenberg 2016, NPAR]

29.07.2017 Neural Style Transfer: A Paradigm Shift for Image-based Artistic Rendering? 33



Build tools for “right-brained” thinking [Salesin 2002, NPAR]

NPAR for artists: Control needed at multiple levels
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[„IntuPaint“, Vandoren et al. 2008, TABLETOP][„IMPaSTo“, Baxter et al. 2004, NPAR]



Build tools for “right-brained” thinking [Salesin 2002, NPAR]

NPAR for non-artists: Simple UI with user-assisted control

29.07.2017 Neural Style Transfer: A Paradigm Shift for Image-based Artistic Rendering? 35

[Salisbury et al. 1997, SIGGRAPH] [Adobe PaintCan]

[Hertzmann 1998, SIGGRAPH]

[Schwarz et al. 2007, NPAR]

Techniques Interactive tools / devices



Example – StyLit [Fišer et al. 2016, SIGGRAPH]
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Interactive Tools For Low- and High-level Adjustment Required

How to locally adjust design aspects such as color, orientation, scale 
per „rendering primitive“ to adjust the final output ?
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Proposal – Modifying a Latent Encoding of Style
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[„Neural Photo Editing with Introspective Adversarial Networks“,

Brock et al. 2016, arXiv.org report]

▪ Try to build on Introspective 
generative adversarial 
networks (GANs)

▪ Challenge: Learning a latent 
encoding is unsupervised

Latent encoding for a Monet painting



Proposal – Parameter Maps
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▪ Feed parameter maps into 
optimization stage as 
additional constraints

▪ Example: Painterly rendering 
styles using stroke processes 
[Zhao and Zhu 2011, NPAR]

▪ Use intermediate results for re-
initialization and fine-tuning 
[Gatys et al. 2017, CVPR]

[Zhao and Zhu 2011, NPAR]



Proposal 3: Combining IB-AR Paradigms

Style Image: Gilles Vranckx – “Heisenberg” 



Limitations – Example: Image Stippling
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[Son et al. 2011, Graphical Models][Neural Style Transfer, Pikazo][Style Image by Randy Glass]

[Content Image]



Proposal: Use IB-AR Paradigms for Tasks They Are Good At
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[Kyprianidis & Kang 2011, Eurographics][Zeng et al. 2009, ToG] [Doyle & Mould 2016, CAe]

SBR: Blending, layering IPF: Noise reduction RBT: Segmentation



Case Study: Combining Neural Style Transfer and Image Filtering
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[Semmo et al. 2017, SIGGRAPH Appy Hour]
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Case Study: Combining Neural Style Transfer and Image Filtering
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Further Additions: Physically-based and Distortion Effects
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[Montesdeoca et al. 2017, NPAR]

Painting Rendering

[Li & Mould et al. 2015, CAe]

Substrate-based Effects Image Warping

Painting

Rendering



Proposal 4: New Forms of Art

Style Image: Francis Picabia – “Udnie” 
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[Salesin 2002, NPAR]



Large-scale Visual Recognition by Deep Neural Networks
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▪ First used in an artistic context by Google's Deep Dream engine

29.07.2017

[GoogLeNet / Deep Dream]



Large-scale Visual Recognition by Deep Neural Networks
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“Recognition AI” (Tate IK 2016): Matches old British art to new photojournalism



Use style descriptions to transfer style characteristics from rule-based 
sets and assets rather than style images to create new forms of art?
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Proposal: Use Classification to Inject Custom Style Representations
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[Image by Maurice Peemen]



Proposal 5: Supporting Visualization Tasks

Style Image: based on work by Alphonse Mucha



Style Transfer in Illustrative Visualization
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[Bruckner et al. 2007, Eurographics] [Gerl & Isenberg 2013, CaG]

[Everts et al. 2011, Pacific Graphics] [Duménieu & Christophe 2016 ,AGILE]



Key concept: Level of Abstraction
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[Gatys et al. 2016, CVPR]
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How to represent the spatial and thematic granularity of image 
contents according to user task, camera view and image resolution?
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Proposal: Focus+Context Visualization

Complies with information seeking mantra: “Overview first, zoom and filter, then 
details-on-demand” [Shneiderman, 1996]
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[DeCarlo & Santella 2002, SIGGRAPH] [Grabli et al. 2004, EGSR]



Proposal: Toolboxes of Illustration Styles
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[Martín et al. 2011, CaG]

Illustration Styles /

Texture Marks

[Bratkova et al. 2009, Tog]



Proposal 6: Evaluation

Style Image: Hokusai – “The Great Wave off Kanagawa” 



Visual Turing Test – Preliminary Choice Experiment
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▪ Participants had to select hand-painted images from 10 pairs with NST results

▪ Average of 45,000 participants answered 6.1 image pairs correctly

[turing.deepart.io]



Comparing Hand-Made Images with Computer-Generated NPR
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[Cole et al. 2008, SIGGRAPH] [Cole et al. 2009, SIGGRAPH]

How to feed-back gained knowledge into optimization process of style transfers?



Make Use of Benchmark Image Sets for Comparison!
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[Mould and Rosin 2016, NPAR]



Applications

Style Image: Prisma – “Dreams” 



1. Casual Creativity
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deepart.io



Prisma (60 million new users in three weeks)

1. Casual Creativity
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2. Art Productions
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[„Come Swim“, Joshi et al. 2016, arXiv] [„Loving Vincent“, BreakThru Films]



3. Teaching Art Classes
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[Left: Color Analysis of Henri de Toulouse-Lautrec, Right: Portrait in Style of Martin Kippenberger by Nele Zeyn.

In „Hands on: Kunstgeschichte“, 2017, Joachim Penzel (eds.)]

Style Analysis (13-14 years)Color Analysis (11-12 years)



4. Exhibitions and Art Installations
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[Adobe Artistic Eye] [„Imaging Novecento“, Becattini et al. 2016, EuroMed]



Wrap-up
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▪ Conceptual Shift in Artistic Style Transfer and Example-based Rendering

- Generalized style transfer that only depends on single style and content images

▪ A Semiotic Structure for Artistic Style Transfer

▪ 6 Proposals for NPAR Research

- Semiotics, Interactivity, Paradigm Combination, New Forms of Art, Visualization, Evaluation
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Shift in the Engineering Approach
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BACKUP SLIDES
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How to represent artistic style? [Li et al. 2017, arXiv]
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▪ Matching the Gram matrices of the neural activations can be seen as 
minimizing a specific Maximum Mean Discrepancy (MMD)

Style Image Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Linear

Poly

Gaussian

BN



Combine Deep Learning with Image Analogies
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[„Visual Attribute Transfer through Deep Image Analogy“, Liao et al. 2017, SIGGRAPH]



Example – Image Flow [Ruder et al. 2016, GCPR]
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“Artistic style transfer for videos”

- Introduce a temporal consistency loss function using optical flow information

Initialization After OptimizationOptical Flow Uncertainty



Iterative vs. Feed-forward Neural Style Transfer
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[deepart.io] [Pikazo] [Feed-forward Style Transfer, Ulyanov et al. 2017, arXiv]



Feed-forward Neural Style Transfer [Johnson et al. 2016, ECCV]
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Train feed-forward neural networks using test image sets (e.g., MS-COCO)


