
Modeling with Rendering Primitives:
An Interactive Non-Photorealistic Canvas

Martin Schwarz∗ Tobias Isenberg* Katherine Mason* Sheelagh Carpendale*

Department of Computer Science
University of Calgary

Abstract

We present an interactive approach to non-photorealistic rendering
that contrasts with the standard black box character of previous ren-
dering techniques in that observation and interaction take place dur-
ing rendering. Our technique is based on the idea of approaching
non-photorealistic rendering by modeling with rendering primitives.
This new approach supports interruption, tweaking, manipulation,
and re-direction of the rendering as it develops. While we draw
upon computational support for primitive placement to avoid hav-
ing to painstakingly place each pixel, we limit the computational
influence to enable freedom of interaction with the elements. We
implement this new paradigm in a stroke-based rendering applica-
tion using a stack of interaction buffers to store attributes of the
primitives during the rendering. By manipulating the data in these
buffers we affect the behavior of strokes on the canvas. This allows
us to create and adjust images in non-photorealistic styles such as
painterly rendering, pointillism, and decorative mosaics at interac-
tive frame rates.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.3.8 [Computer Graphics]:
Applications; I.3.m [Computer Graphics]: Miscellaneous—Non-
Photorealistic Rendering

Keywords: Non-photorealistic rendering (NPR), interaction tech-
niques, modeling with rendering primitives.

1 Introduction

As the field of computer graphics matures, the capabilities to create
rich and subtle digital visuals continue to expand. These range from
increasingly realistic results to a variety of more expressive and ab-
stract styles. Underlying this range of results are two basic types
of representations: vector-based or pixel-based. A vector-based
representation fairly readily affords subsequent adjustment but is
somewhat limited in its ability to represent visual richness due to
its algorithmic character. A pixel-based representation, in contrast,
can be adjusted on a large scale (e. g., globally using filters) or on a
very small scale (i. e., per one or a few pixels). Making changes to

∗e-mail: {maschwar | isenberg | katherim | sheelagh}@cpsc.ucalgary.ca

aspects of the pixel image in between these two extremes, however,
is much more challenging and raises many issues, including the se-
lection of appropriate aspects or regions that will make the desired
change possible. Still, pixel images afford a richness of visuals
which makes them a desirable choice. It is the problem of provid-
ing interactive freedom while retaining as much visual richness as
possible that we address.

While one could argue that any amount of richness is available if
one is prepared to place and color each pixel, realistically this in-
teraction needs to happen on a more meaningful level. One ex-
ample for this is the use of common artistic primitives such as
brush strokes because they represent elements of the depicted scene
(e. g., leaves of a tree or waves on water). This visual richness is
apparent in non-photorealistic rendering [Gooch and Gooch 2001;
Strothotte and Schlechtweg 2002], where many techniques simulate
traditional media, artistic techniques, and illustrative styles, produc-
ing astounding results. NPR research, however, tends to focus on
the algorithms needed to achieve a chosen style. Algorithms are
commonly presented as a “black box” to users of a system, allow-
ing interaction only through parameters, after which the rendering
produces a result. This common lack of interactive intervention
during the rendering process may be part of the reason why NPR
methods have had only limited adoption within the artistic commu-
nity. “In my experience with non-photorealistic rendering, I am
often frustrated by my inability to stop, reach into and tweak an
automatic process. To make painterly rendering techniques more
useful for production-quality work, we need to develop algorithms
and interfaces that get the artist in the loop” [Seims 1999].

In this work, we focus on the interaction rather than developing
correct simulations of traditional techniques. We contribute a new
paradigm for interactive image creation in which an image is con-
structed with pre-rendered primitives through an interactive process
that can call upon computational support rather than being con-
trolled by it. We think of this process of image construction as mod-
eling with rendering primitives. We illustrate the new paradigm us-
ing an interactive environment for working with non-photorealistic
rendering styles, such as painterly rendering, pointillism, and deco-
rative mosaics. The primitives can be modified after having being
created instead of being “cast in stone.”

The new possibilities for interacting with the rendering process en-
able a wide variety of ways to create images. Here is an example
illustrating a possible usage of our system (Figure 1). First, we
start by creating the background. In order not to have to paint the

http://www.martinschwarz.info.ms/
http://cpsc.ucalgary.ca/~isenberg/
http://cpsc.ucalgary.ca/~sheelagh/
http://cpsc.ucalgary.ca/
http://www.ucalgary.ca/
mailto:maschwar@cpsc.ucalgary.ca
mailto:isenberg@cpsc.ucalgary.ca
mailto:katherim@cpsc.ucalgary.ca
mailto:sheelagh@cpsc.ucalgary.ca
mailto:isenberg@cpsc.ucalgary.ca

(a) Source image to derive color distribution.

(b) Background layer.

(c) Middle layers added.

(d) Foreground layers added.

Figure 1: Walking through the creation of an example image.

color for each layer we load a source image to be used as a base
color distribution (Figure 1(a)). Next, we fill this first (background)
layer with strokes. The strokes created are relatively large and give
the general color impression as well as direction of painting (Fig-
ure 1(b)). For the middle layers, the source image is used again
to determine the color distribution. Here, smaller strokes are used
to give distinct regions more detail (Figure 1(c)). For example, the
strokes in the sky were given one unified direction and the steam

was portrayed using radial orientation in several places to work out
its dynamic character. This example nicely shows the advantage
of interactive stroke manipulation—it remains difficult for most au-
tomatic painterly rendering algorithms to reliably find orientations
for brush strokes in areas such as a clear sky [Park and Yoon 2004].
Finally, we create foreground layers capturing the highest level of
detail. Small, fine strokes are added to those layers (Figure 1(d)).
For example, we use a circular orientation effect to emphasize the
sun’s round shape. The color distribution was modified at all three
stages by painting over it where it seemed desirable to touch up re-
gions or add color effects. In this example we have used the same
source image as a reference for all three layers, although this is not
necessary. It is possible to use different degrees of Gaussian blur
on the same image for the different layers or use different images
altogether to achieve a specific effect.

The remainder of the paper is organized as follows. In Section 2
we review previous work in the areas of digital painting, NPR tech-
niques, and interaction with NPR. We then develop our concept for
supporting modeling with rendering primitives in Section 3. Based
on this concept, Section 4 introduces our system details and its im-
plementation aspects. In Section 5 we discuss artists’ reactions and
show example results. Finally, in Section 6 we conclude the paper.

2 Related Work

To contextualize this research with previous literature, we describe
recent digital painting systems, mention related NPR techniques,
and then discuss existing NPR interaction paradigms.

Digital painting systems (see [Smith 2001] for a historical
overview) are very heavily employed today in the creation of digital
art. There are two major categories of systems: pixel-based (e. g.,
Adobe® PhotoShop®, Corel® Paint Shop Pro®, TwistedBrush, and
Gimp) and vector-based (e. g., Adobe® Illustrator®, CorelDraw®,
and Inkscape). Systems in the first category allow users to draw one
stroke at a time using a variety of tools and each stroke is rasterized
and embedded in the canvas. In the second category, users can also
draw stokes but these are stored in a parametrized (vector) form that
is rasterized on-demand for display. The latter representation pro-
vides more freedom for subsequent changes than the first because
primitives are stored using their properties as opposed to being in
rasterized form. With respect to the representation of primitives,
our technique and system can be thought of as a hybrid of these
two approaches. From the pixel-based approach, we use painting
interaction techniques and rasterized primitives, but we maintain
all our primitives as actively adjustable, as with vector approaches.
In addition, we use painting interaction to manipulate properties of
primitives instead of applying filters locally.

Our work makes use of higher-level primitives as developed in non-
photorealistic rendering research. Such primitives include brush
strokes as in painterly rendering [Meier 1996; Hertzmann 1998;
Park and Yoon 2004], pointillism [Yang and Yang 2006], mosaic
tiles [Hausner 2001; Elber and Wolberg 2003; Di Blasi and Gallo
2005], graftals [Smith 1984; Kowalski et al. 1999; Markosian
et al. 2000], and stipple points [Deussen et al. 2000; Secord 2002;
Schlechtweg et al. 2005]. Together these are commonly referred
to as stroke-based rendering [Hertzmann 2003]. Most of these ap-
proaches strive to simulate traditional techniques of artistic expres-
sion or illustrative depiction. Some of these styles have been used
by artists to work around limitations of the chosen medium (e. g.,
stippling and hatching to represent gray scales in printing). The
computer has provided new ways to push the boundaries of pos-
sible depiction methods, for example, developing dynamic primi-
tives such as graftals [Kowalski et al. 1999; Markosian et al. 2000],

http://www.adobe.com/products/photoshop/
http://www.paintshoppro.com/
http://www.pixarra.com/
http://www.gimp.org/
http://www.adobe.com/products/illustrator/
http://www.corel.com/draw/
http://www.inkscape.org/

RenderingModel

Image/Shape

Parameters

Post-
Processing

Manipulation

Image

Observation

Figure 2: Traditional rendering: the rendering phase acts like a
black box, prohibiting direct interaction with the process.

which can algorithmically generate geometry in the rendering pro-
cess depending on the current view and other parameters.

While some NPR techniques are probing the possibilities of in-
creased interaction, most are still limited in the options provided.
An example of increased interactivity is the WYSIWYG-NPR sys-
tem [Kalnins et al. 2002] that allows changing the rendering style
by painting example strokes, which are then used as a template for
the algorithmic creation of all the strokes in the image. In a related
approach, Salisbury et al. [1997] allow users to paint the orienta-
tion of hatching strokes onto a 3D model. Deussen et al. [2000]
used brushes to interactively manipulate the relaxation of stipple
points as well as create new ones or delete them.

Most closely related to our work in terms of interactivity are
Haeberli’s Paint by Numbers [1990], the RenderBots system
[Schlechtweg et al. 2005], and Negotiating Gestalt [Mason et al.
2005]. Paint by Numbers used a source image and a canvas. One
could brush the source image, resulting in a stroke placed on the
canvas using the location and color collected from the source im-
age. While this provides considerable freedom, it was not possi-
ble to change the strokes or their properties after they had been
placed. RenderBots combine a multi-agent system with NPR ren-
dering. Here, a user can brush autonomous agents (RenderBots)
onto the canvas, which then read values from a stack of G-buffers
(created in pre-processing) and change their behavior depending on
these values. Even though this technique opens new avenues for
rendering, it is restricted in that it only uses pre-rendered buffers
for influencing the RenderBots’ actions. Negotiating Gestalt uses a
multi-agent system to model the image creation process as coalition
forming. It allows one to take direct control of agent or coalitions
during the process. This is a step away from the typical ‘black box’
rendering approach; however, interaction via agents is still indirect.

3 Modeling with Rendering Primitives

Our goal is to support interruption, tweaking, manipulation, and re-
direction of the rendering as it develops. We make this possible by
constructing a model with rendering primitives so that once the con-
struction is achieved the rendering is also complete. A parallel can
be drawn between this process and that of an artist creating a paint-
ing out of individual brush strokes. However, while an algorithm
should not make parts of the process inaccessible, neither should
it be necessary to painstakingly and manually place each rendering
primitive. We intend to draw upon computational support for place-
ment and adjustment of primitives while maintaining the possibility
of interaction during rendering.

Most techniques in NPR are roughly based on the following process
for generating images (see Figure 2). First, a model is constructed.
For our discussion, this model could be many things such as con-

structive solid geometry, a three-dimensional polygonal mesh with
its surface properties, a volume data structure, or a 2D digital im-
age. Choosing, developing, and generally working with the model
are usually possible. Once the model is ready to be rendered, there
are many choices of rendering methods, each method having many
possible parameters. After these choices are made, the rendering
proceeds. While in many cases the rendering process is not overly
long, it will proceed until it is completed. After the resulting im-
age has been created, once again there are a myriad of interaction
possibilities in terms of post-processing. If the results is not fully
satisfying, it is possible to revert to the modeling stage and restart
the rendering with new parameters. While some of the NPR tech-
niques, such as those that operate on images as input, can be seen
as post-processing techniques, they can also be considered to fol-
low the above process: starting with an image as the model, they
perform a rendering process using this model to produce another
image, which can then be subjected to post-processing.

In general, interactive input is only possible in the first and the
last stage of this pipeline because the algorithmic processing has
been defined by the programmer. Even though the algorithm may
have been artistically inspired, it can typically only be controlled
by setting its parameters. By turning the rendering into an inter-
active process some effects become more accessible. Examples in-
clude integrating more than one rendering style, tweaking brush
strokes that are not aligned with the intended artistic impact, find-
ing brush stroke arrangements where algorithmic approaches have
trouble such as unstructured sky regions, or where it is necessary to
experiment with how rendering primitives are placed. Thus, cre-
ative freedom at all stages of the image production process is a
worthwhile goal.

To make it possible to model with rendering primitives it is neces-
sary to both have an understanding of what is meant by rendering
primitives, and have a method by which it is possible to provide non-
controlling computational support for the process of modeling with
them. As stated before, our goal is to provide interactive control
over the process as a whole to provide freedom in image generation.
This cannot be achieved simply by making the algorithmic aspect
of the rendering stage more accessible by, for example, increasing
the number of parameters. Nor does this mean that algorithmic sup-
port should be removed altogether. Instead, computational support
for influencing the rendering process should be flexibly available,
leaving one free to choose the degree to which one will use it.

In our terms, a rendering primitive is simply a part of an image.
In its simplest computational form, a rendering primitive can be a
pixel—a single cell in a rasterized digital image. To be usable in
practice, a rendering primitive can be any small part from which
images can be created, including all sorts of brush strokes, such
as lines, points, dabs, dots, mosaic tiles, other images, parts of im-
ages, or any visual aspect from which another image can be created.
While the ability to create rendering primitives interactively is im-
portant to our approach, we make use of existing methods in current
paint systems as well as NPR approaches for physical simulation of
traditional media.

Therefore, starting from a collection of rendering primitives, we
approach the next problem: how to provide algorithmic support for
the modeling stage as an image is created from rendering primitives.
Once again there are interesting ideas in the literature from which
can be extrapolated. In particular, we consider Paint by Numbers
[Haeberli 1990] in which it is possible to create a differently-styled
version of a source image by iteratively painting on it. A second
source image may be used to influence the stroke style. While this
is, in effect, interactively creating a rendering, the possibilities are
limited in that only new stylizations of the source images are possi-
ble. Therefore, we consider the input images to be spatial informa-

Modeling with Rendering Primitives

Model

ObservationInteraction

Rendering Primitives

Post-
Processing

Figure 3: Modeling with rendering primitives.

tion that can be stored as buffers, and make these buffers interactive.
This leads to truly being able to take control of the rendering pro-
cess. We expand on this idea, integrating it with ideas of click-less
interaction and complex adaptive systems to create an interactive en-
vironment where it is possible to model with rendering primitives.

Figure 3 shows a diagram of the changed pipeline for our system.
By placing the rendering primitives and model into the interactive
stage, it is now possible to both observe what is happening and
work directly within that stage. Starting with a general concept, the
model can be built and adjusted as the work progresses. Since the
primitives are fully rendered, the image takes form though the in-
teraction. This concurrent modeling and rendering is essential: the
model is created and constantly updated with rendering primitives
as they are generated, manipulated, and removed.

4 An Interactive NPR Canvas

To enable modeling with rendering primitives, our system will re-
quire: (1) a mechanism that can efficiently support simultaneous
manipulation of many primitives, (2) tools to assign meaningful val-
ues and useful interactions, (3) an interface to coordinate the tools,
and (4) efficient rendering techniques to maintain interactive frame
rates. Since the challenge lies in providing interactive support of a
multitude of primitives, we focus our discussion there.

4.1 Affecting Primitive Properties

Affecting properties of a large number of primitives while main-
taining responsiveness of the system presents a challenge. As was
alluded to above and as is a common solution to graphic problems,
we use a stack of two-dimensional interactive buffers (i-buffers, as
opposed to static G-buffers) as the basic structure of our system to
address this issue. Each i-buffer holds information for the rendering
such as color, orientation, shape, or movement. The information is
placed into the i-buffers interactively through tools which locate the
data spatially within the i-buffer. Therefore, a primitive can deter-
mine how to render itself by looking up the data as stored in the
i-buffers. This way it is possible to manipulate the properties of
entire regions of primitives without having to select any of them in-
dividually. I-buffers are maintained as a separate spatial data struc-
ture that is easy to manipulate and fast to query. The respective
buffers are matrices of scalar values (e. g., for the size) or vectors
(e. g., for orientation and color), depending on the dimension of the
represented properties. An additional benefit of using this buffer
approach is that it incorporates improvements in interaction respon-
siveness [Isenberg et al. 2006].

In practice, there are two main categories of i-buffers that we main-
tain: persistent buffers and instantaneous buffers. Persistent buffers
represent actual property values such as color, size, orientation, and

(a) Original color. (b) Small change. (c) Drastic change.

Figure 4: Affecting the color of primitives.

shape. They exist for the entire run-time of the system and are
constantly updated in response to user interaction. Instantaneous
buffers, on the other hand, represent changes to properties that can-
not be maintained in persistent buffers. Such properties include
position and existence, since a primitive needs to exist at a position
in order to be able to query a buffer. Information in instantaneous
buffers, therefore, exists for one rendering step only and the buffer
is reset afterwards. For example, we may want to move primitives
in a region by a certain distance using a motion tool. A vector repre-
senting this motion could be rendered into a movement buffer and
primitives use that data to offset their position. It is, however, reset
after this frame’s animation has been completed so that primitives
do not keep moving even after the use of the motion tool is finished.

We support layering of strokes, inspired by the method artists em-
ploy to build their scenes from background to foreground. As
shown in the example in Figure 1, this allows us to isolate regions
on the canvas and to enable working with them independently. Lay-
ering requires that several stacks of buffers are used to control the
different layers of primitives. As we need only one active buffer
stack we store the remaining inactive buffer stacks on the hard drive,
saving memory. This means that primitives in inactive layers can no
longer read their properties from a buffer stack. This is not neces-
sary, however, since as long as they are inactive they are not chang-
ing their properties. Thus, inactive primitives can just use the prop-
erties from when they were last active and do not need to query any
data until they become active again.

4.2 Tools

Tools are the means by which the i-buffers are manipulated. This
manipulation, in turn, changes the behavior of the rendered primi-
tives. Similar to digital painting applications, they are inspired by
the brush-and-canvas metaphor from real painting. In contrast to
previous approaches, however, our tools manipulate primitives indi-
rectly by “painting” into the above mentioned i-buffer stack.

Our system provides tools (and, therefore, buffers) to manipulate
the color, size, orientation, and shape (e. g., of pointillism dots) of
rendering primitives as well as to create, move, and delete them. To
make changes a tool renders new values into the respective buffer
according to the area it covers on the canvas. A gradual change
from the previous values on the perimeter of the tool’s influence
range is achieved using attenuation. Depending on this attenuation,
the color tool mixes the new color with the previous color values
read from the color buffer (Figure 4). The 3D color vector is repre-
sented using the painterly Red-Yellow-Blue (RYB) model [Gossett
and Chen 2004] instead of the more common RGB model. RYB
was chosen because it allows color mixing that is inspired by what
is expected from mixing pigment colors. Primitives reading the
RYB color from the buffer then convert it to RGB for rendering.
Similar to the color tool, the size tool changes the size of objects
by reducing or increasing the local buffer values (Figure 5). The

(a) Strokes smaller. (b) Strokes larger.

Figure 5: Resizing elements.

(a) Following the tool. (b) Radially.

(c) Circumpolar. (d) Randomly.

Figure 6: Changing primitive orientations interactively.

(a) Following the tool. (b) Attraction. (c) Repulsion.

Figure 7: Circular motion tool affects the position of primitives.

orientation and motion tools both have effects either independent
from or dependent on the motion of the tool while it is being used
(Figures 6 and 7). The orientation tool changes the orientation to
follow its motion path (Figure 6(a)) or imposes motion-independent
orientations (Figures 6(b) to 6(d)). Likewise, the motion tool forces
primitives to follow the movement of the tool (Figure 7(a)) or ex-
erts an attraction (Figure 7(b)) or repulsion (Figure 7(c)) force on
primitives with respect to the tool’s current position. The eraser
tool slowly erases objects from the canvas (Figure 8). It renders
probabilities for primitives to delete themselves into the erase buffer.
Each primitive in turn computes a random number in [0,1] and com-
pares it with the read erasing probability to determine if it should
delete itself. This way we can specify a parameterizable deletion of
primitives as well as a gradual change of the probability across the
surface covered by the erasing tool. One final tool that has a special
behavior is the tool to create new strokes. It creates new primitives
at its location instead of rendering into a property buffer.

(a) Original. (b) Few strokes erased. (c) Continued erasing.

Figure 8: Gradually erasing elements by means of probabilities.

Primitive

Parameter Buffer

Palette

Tool

Property Buffer Stack

Canvas

Figure 9: Communication between interface elements.

(a) Color mixing. (b) Pie menu. (c) Slider.

Figure 10: Palette as a central control.

4.3 Interface Elements

In addition to the tools described above, our interface consists of
two more elements: (1) a canvas, where primitives are placed and
which holds the property buffers and (2) a palette to control the
tools, to specify what primitive properties to manipulate and with
what values. The communication between these is realized using
a parameter buffer (Figure 9) that maintains system state and tool
settings data. Using a parameter buffer instead of direct communi-
cation has the advantage that both tool and palette can be treated
as special primitives that also use buffer access to do their com-
munication. As the number of values needed for communication
does not depend on the canvas size, the parameter buffer is the only
buffer that has a fixed size, usually much smaller than the rest of
the buffers. Primitives also read from the parameter buffer to know
about the current layering state, causing them to either read from
the regular buffer stack or to use their stored property values.

The palette as the control center (Figure 10) provides means for
tool selection and parameter specification. It writes the appropriate
values into the parameter buffer where tools can access them. The
palette affords color mixing (Figure 10(a)). This process is initiated

by dragging color blobs from the perimeter to the inside (inspired
by [Meier et al. 2004]). Dropping one color onto a color blob al-
ready in the mixing area causes them to mix and a bar with color
gradients from the original color to the mixed one is shown. Colors
can now be chosen from any point on the color blobs or the gradi-
ents between them. The other interface elements on the palette are
represented by buttons, pie menus (Figure 10(b); [Hopkins 1991]),
and sliders (Figure 10(c)) to enable click-less operation using only
touch and move interactions.

4.4 Efficient Rendering

To maintain the system’s responsiveness, it is essential to render
efficiently. For our system this not only includes the rendering of
the primitives to the screen but also the rendering of values to the
property buffer stack. The former is realized through OPENGL, rep-
resenting the NPR strokes as semi-transparent textures, and pointil-
lism dots and decorative mosaics tiles as simple shapes. While it
would be possible to maintain the i-buffers in graphics memory
(to take advantage of hardware-accelerated rendering for this task),
the necessary read-backs from graphics memory for primitives to
look up i-buffers data would be expensive. Thus, we maintain the
i-buffers in main memory and use pre-computed stencils of tool val-
ues to facilitate fast i-buffer updates.

In practice, our system is able to manage a large number of prim-
itives simultaneously as well as allow interaction with them while
maintaining interactive rendering rates. We tested it both in a tradi-
tional desktop setting (1,400 × 1,050 pixels; 1.47 million pixels) as
well as on a large (146 cm × 110 cm), high-resolution (2,800 × 2,100
pixels; 5.88 million pixels) tabletop display that affords direct touch
input for interacting with the system. Both settings were driven
by the same 3 GHz dual core machine with 2 GB RAM and two
512 MB nVIDIA GeForce 7900 GTX. In the desktop setting, both
cards were combined in SLI mode (without bridge) to drive one
screen; in the table setting, the machine drove 4 projectors (2 × 2,
with simulated fullscreen mode). Table 1 gives timings for both

stroke stroke textures pointillism
count desktop table desktop table
1,000 177 29 159 31
2,000 96 24 86 27
4,000 51 19 32 21
8,000 26 13 16 15

16,000 13 8 8 10

Table 1: Timings in fps for both settings using 2562 mip-mapped
textures and pointillism blobs, each covering about 1282 pixels.

settings that include all strokes updating from the buffer stack. We
noticed that neither rendered primitives size nor the texture size af-
fected the frame rates much on this setup, while we saw differences
on other hardware. We were able to fill the entire tabletop screen
with about 4,000 strokes, each covering about 1282 pixels; for the
desktop setting, 1,000 strokes sufficed. For creating the images in
this paper, we used up to 16,000 strokes in several layers, which we
were able to display at interactive rates since not all were reading
from the buffer stack at the same time.

5 Using the Interactive NPR Canvas

Throughout the process of developing our system and after comple-
tion we asked our colleagues and four professional artists to evalu-

Figure 11: Wider strokes create an abstraction effect.

Figure 12: Longer strokes bring out the water reflections well as
well as pointillism to portray the land part.

ate it. This section reports on the results of this informal evaluation
and presents additional examples created with our system.

5.1 Example Images

Figure 11 shows how to use quite broad stroke textures to create an
abstract effect. To work out detail and to achieve a contrast to the
bold strokes in the background we adjusted the size of the strokes
interactively in some regions. In contrast, Figure 12 works with
very long and thin strokes as they capture the structure of the small
waves on the water and, thus, the character of the reflection very
well. The strokes were arranged parallel to the water line to produce
this effect. Since such long strokes caused undesirable artifacts in
the background, we used pointillism strokes for this region instead.
Figure 13 only makes use of the pointillism blobs. Here, orientation
of the strokes in the background was adjusted such that it gives
the impression of a larger green plant, maybe a bush, behind the
tiger lily. Figure 14 uses four differently colored versions of the
same source image as background and teapot shapes as primitives.
Figure 15 shows the use of mosaic tiles that have been manually
oriented to indicate groups of the surrounding water plants as well

http://www.opengl.org/

Figure 13: Pointillism using OPENGL shapes.

Figure 14: Teapot collage.

Figure 15: Decorative mosaics, tiles with shading effects.

as features of the fish itself. Finally, Figure 16 shows a painting
created without a source image using colored leaves as primitives.
The motif was inspired by works by Andy Goldsworthy Rowan.

Figure 16: Free-hand painting with leaves as primitives.

5.2 Comments from Artists

Artists using the program noted that it did not feel like a paint pro-
gram to them, rather it was an entirely new experience. One artist
said that it felt “like working with collage elements.” They liked the
effect that new strokes being added to the canvas “take on the range
of hue of the strokes already laid down below.” Loading images into
the color buffer caused “a subtle flow of hue with lots of variation
from stroke to stroke,” due to noise present in the color distribution
of the loaded image as well as the textures of the strokes. Artists
were intrigued by the effect that if single strokes were tossed across
the canvas they would “change hue along the way according to the
landscape below. A kind of chameleon element. I liked that.” In
general, artists appreciated the possibility of influencing the proper-
ties of elements on the canvas after these had been created, saying
that it “feels like an NPR filter that you can play with and change”
and that “the interactivity of the tool made working with it much
more interesting compared with traditional NPR filters.” One artist
reported that “the mobility of all the elements, as if suspended in
some kind of liquid surface is a rather unique aspect [...] but it is
not like the viscous surface of paint—more like a watery surface
where the individual elements retain their distinct edges (unlike wa-
tercolour painting). Like life underwater . . . ” However, artists also
felt that the ability to draw a line is missing which is an aspect that
will need to be added in the future. Users also missed the option
to create new stroke textures themselves to be used in the program.
In general, users initially had some difficulty adjusting to the new
paradigm of painting. One comment was, for example, that the new
paradigm feels “something like trying to compose a picture with
feathers that keep moving about in the air.” However, after getting
used to the new paradigm, people liked that it was very easy to cre-
ate images in a very short time.

We also received feedback from the artists about the interface. This
led us to change the interface several times, incorporating their in-
put to address their concerns. For example, the use of layers to sep-
arate regions from one another as well as the ability to temporally
remove layers altogether were included after comments from artists.
Similarly, they suggested showing inactive layers transparently to
improve the understanding of the active layer. The color mixing in-
terface using drag-and-drop color blobs was also improved accord-
ing to requests from users.

http://www.opengl.org/

6 Conclusion and Future Work

In summary, we have developed a new paradigm for creating and
interacting with non-photorealistic rendering. By opening up the
black box of rendering we make it possible to influence the prim-
itives as they are assembled on the canvas and to modify aspects
as desired. Modeling with rendering primitives opens up entirely
new possibilities for interaction with the image generation process,
making it possible “to stop, reach into and tweak [the] automatic
[rendering] process” [Seims 1999]. We have presented a system
that implements this new paradigm and explored how it enables
artists to take control of the image production process.

Our concept opens up new possibilities for building tools that en-
able interaction directly with the rendering process. Thus, our sys-
tem can be extended in a number of ways. As the interaction with
primitives through buffers is indirect, a more direct way would be
to only have instantaneous buffers to change properties of elements.
Even though this would remove an interesting aspect of the system
(that primitives change as they are moved across the buffers) this
may lead to a more direct form of interaction with the primitives.
Certainly, one could explore a more diverse set of tools, represent-
ing other primitive properties, as well as more powerful primitives
such as graftals to increase the power of expression. In this context,
it would also be challenging to incorporate larger primitives, rigid
or flexible, that have more than one point to query property buffers.
Similarly it would be interesting to load images into buffers other
than the color buffer, without limitations to G-buffers [Schlechtweg
et al. 2005] and to allow tools to do image processing on the buffers.

As we developed the system to also be applicable to large displays
with multi-touch input, it would be very interesting to explore the
use of multiple inputs in the interaction such as multi-finger paint-
ing. We are also interested in investigating the difference of use
of our system between traditional desktop environments and large,
high-resolution, direct-interaction tabletop or wall displays. Indi-
rect ways of interaction by showing the buffer that is being adjusted
on a separate screen while the rendering adjusts on the main screen
may be similarly exciting.

References

DEUSSEN, O., HILLER, S., VAN OVERVELD, C. W. A. M., AND
STROTHOTTE, T. 2000. Floating Points: A Method for Computing
Stipple Drawings. Computer Graphics Forum 19, 3 (Aug.), 40–51.

DI BLASI, G., AND GALLO, G. 2005. Artificial Mosaics. The Visual
Computer 21, 6 (July), 373–383.

ELBER, G., AND WOLBERG, G. 2003. Rendering Traditional Mosaics.
The Visual Computer 19, 1 (Mar.), 67–78.

GOOCH, B., AND GOOCH, A. A. 2001. Non-Photorealistic Rendering.
A K Peters, Ltd., Natick.

GOSSETT, N., AND CHEN, B. 2004. Paint Inspired Color Mixing and
Compositing for Visualization. In Proc. of InfoVis 2004, IEEE Computer
Society, Los Alamitos, CA, 113–117.

HAEBERLI, P. 1990. Paint By Numbers: Abstract Image Representations.
ACM SIGGRAPH Computer Graphics 24, 3 (Aug.), 207–214.

HAUSNER, A. 2001. Simulating Decorative Mosaics. In Proc. of SIG-
GRAPH 2001, ACM Press, New York, 573–580.

HERTZMANN, A. 1998. Painterly Rendering with Curved Brush Strokes
of Multiple Sizes. In Proc. of SIGGRAPH 1998, ACM Press, New York,
453–460.

HERTZMANN, A. 2003. A Survey of Stroke-Based Rendering. IEEE Com-
puter Graphics and Applications 23, 4 (July/Aug.), 70–81.

HOPKINS, D. 1991. The Design and Implementation of Pie Menus. Dr.
Dobb’s Journal of Software Tools 16, 12 (Dec.), 16–26, 94.

ISENBERG, T., MIEDE, A., AND CARPENDALE, S. 2006. A Buffer Frame-
work for Supporting Responsive Interaction in Information Visualization
Interfaces. In Proc. of C5 2006, IEEE Computer Society, Los Alamitos,
262–269.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A.,
LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND
FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing Strokes Directly
on 3D Models. ACM Transactions on Graphics 21, 3 (July), 755–762.

KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L.,
BARZEL, R., HOLDEN, L. S., AND HUGHES, J. F. 1999. Art-Based
Rendering of Fur, Grass, and Trees. In Proc. of SIGGRAPH 1999, ACM
Press, New York, 433–438.

MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., HOLDEN, L. S.,
NORTHRUP, J. D., AND HUGHES, J. F. 2000. Art-based Rendering
with Continouous Levels of Detail. In Proc. of NPAR 2000, ACM Press,
New York, 59–64.

MASON, K., DENZINGER, J., AND CARPENDALE, S. 2005. Negotiating
Gestalt: Artistic Expression by Coalition Formation between Agents. In
Proc. of Smart Graphics 2005, Springer-Verlag, Berlin, 103–114.

MEIER, B. J., SPALTER, A. M., AND KARELITZ, D. B. 2004. Interactive
Color Palette Tools. IEEE Computer Graphics and Applications 24, 3
(May/June), 64–72.

MEIER, B. J. 1996. Painterly Rendering for Animation. In Proc. of SIG-
GRAPH 1996, ACM Press, New York, 477–484.

PARK, Y. S., AND YOON, K. H. 2004. Adaptive Brush Stroke Generation
for Painterly Rendering. In Proc. of Eurographics 2004, Short Presenta-
tions, EUROGRAPHICS, Aire-la-Ville, Switzerland, 65–68.

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND SALESIN, D. H.
1997. Orientable Textures for Image-Based Pen-and-Ink Illustration. In
Proc. of SIGGRAPH 1997, ACM Press, New York, 401–406.

SCHLECHTWEG, S., GERMER, T., AND STROTHOTTE, T. 2005.
RenderBots—Multi Agent Systems for Direct Image Generation. Com-
puter Graphics Forum 24, 2 (June), 137–148.

SECORD, A. 2002. Weighted Voronoi Stippling. In Proc. of NPAR 2002,
ACM Press, New York, 37–44.

SEIMS, J. 1999. Putting the Artist in the Loop. ACM SIGGRAPH Computer
Graphics 33, 1 (Feb.), 52–53.

SMITH, A. R. 1984. Plants, Fractals, and Formal Languages. ACM SIG-
GRAPH Computer Graphics 18, 3 (July), 1–10.

SMITH, A. R. 2001. Digital Paint Systems: An Anecdotal and Historical
Overview. IEEE Annals of the History of Computing 23, 2 (Apr.–June),
4–30.

STROTHOTTE, T., AND SCHLECHTWEG, S. 2002. Non-Photorealistic
Computer Graphics. Modeling, Animation, and Rendering. Morgan
Kaufmann Publishers, San Francisco.

YANG, H.-L., AND YANG, C.-K. 2006. A Non-Photorealistic Rendering of
Seurat’s Pointillism. In Advances in Visual Computing, Part 2, Springer-
Verlag, Berlin, Heidelberg, 760–769.

http://dx.doi.org/10.1111/1467-8659.00396
http://dx.doi.org/10.1111/1467-8659.00396
http://dx.doi.org/10.1007/s00371-005-0292-4
http://dx.doi.org/10.1007/s00371-002-0175-x
http://doi.acm.org/10.1145/558817
http://doi.ieeecomputersociety.org/10.1109/INFOVIS.2004.52
http://doi.ieeecomputersociety.org/10.1109/INFOVIS.2004.52
http://doi.acm.org/10.1145/97879.97902
http://doi.acm.org/10.1145/383259.383327
http://doi.acm.org/10.1145/280814.280951
http://doi.acm.org/10.1145/280814.280951
http://dx.doi.org/10.1109/MCG.2003.1210867
http://doi.ieeecomputersociety.org/10.1109/C5.2006.4
http://doi.ieeecomputersociety.org/10.1109/C5.2006.4
http://doi.ieeecomputersociety.org/10.1109/C5.2006.4
http://doi.acm.org/10.1145/566654.566648
http://doi.acm.org/10.1145/566654.566648
http://doi.acm.org/10.1145/311535.311607
http://doi.acm.org/10.1145/311535.311607
http://doi.acm.org/10.1145/340916.340924
http://doi.acm.org/10.1145/340916.340924
http://dx.doi.org/10.1007/11536482_9
http://dx.doi.org/10.1007/11536482_9
http://dx.doi.org/10.1109/MCG.2004.1297012
http://dx.doi.org/10.1109/MCG.2004.1297012
http://doi.acm.org/10.1145/237170.237288
http://doi.acm.org/10.1145/258734.258890
http://dx.doi.org/10.1111/j.1467-8659.2005.00838.x
http://doi.acm.org/10.1145/508530.508537
http://doi.acm.org/10.1145/563666.563685
http://doi.acm.org/10.1145/964965.808571
http://doi.ieeecomputersociety.org/10.1109/85.929908
http://doi.ieeecomputersociety.org/10.1109/85.929908
http://doi.acm.org/10.1145/544522
http://doi.acm.org/10.1145/544522
http://dx.doi.org/10.1007/11919629_76
http://dx.doi.org/10.1007/11919629_76

	Introduction
	Related Work
	Modeling with Rendering Primitives
	An Interactive NPR Canvas
	Affecting Primitive Properties
	Tools
	Interface Elements
	Efficient Rendering

	Using the Interactive NPR Canvas
	Example Images
	Comments from Artists

	Conclusion and Future Work

