Interactive Pen-and-Ink Rendering for Implicit Surfaces

Ryan Schmidt
Tobias Isenberg
Brian Wyvill
Introduction: Implicit Surfaces

- many nice properties for shape modeling
 - CSG, blending, animation, non-linear editing, ...
- major drawback: visualization
 - finding the surface to render: expensive!
 - problematic for interactive editing
Implicit Surface Visualization

- ray-tracing
 - high quality but very slow
 - off-line only

- polygonization
 - coarse meshes interactively
 [Schmidt et al. 2005]
 - refinement expensive
What about NPR?

- non-photorealistic rendering
 - render “important” parts of the surface
 - less geometry \rightarrow potentially faster
- pen-and-ink [Foster et al. 2005]
- excellent results but still slow
 - ray-tracing
 - surface-particle walks, etc.

from [Foster et al. 2005], used with permission
Basic Idea of Our Approach for Fast Rendering of Implicit Surfaces

• use simplicity of polygonal NPR methods
• mesh provides sampling of implicit surface
• speed gains from using simple meshes
• goals:
 – approximate technique
 – high-quality rendering
 – dynamic meshes
Fast Approximate Implicit Silhouettes

- use coarse base iso-mesh
- compute sub-polygon silhouettes on that mesh [Hertzmann & Zorin 2000]
- project vertices to iso-surface using field gradient
- adaptively refine silhouette
Fast Approximate Implicit Silhouettes
Silhouette Precision

- fairly coarse iso-mesh usable ...
 ... as long as features are captured by it
Silhouette Precision

- high-res mesh silhouette vs. refined approximate silhouette of low-res mesh
Fast Approximate Implicit Silhouettes

- profit from simple mesh-based techniques
- fast for coarse meshes, even brute-force
- very few field evaluations necessary
Hidden Line Removal

- previous techniques too slow or inaccurate
 - implicit surface ray-intersection: expensive
 - filling z-buffer with coarse mesh: inaccurate
 - particle/surfel technique [Foster et al. 2005]: slow

- distribute points on coarse mesh triangles
- project them to implicit surface
- render small tangent disk into z-buffer
Hidden Line Removal

lo-res mesh

lo-res mesh HLR

lo-res surfel disc HLR
Suggestive Contours

- view-dependent non-silhouette feature lines
- radial curvature $k_r = 0$ [DeCarlo et al. 2003]
- finite differences method w/o third derivatives
Surface Stippling

- re-use surfel disks from HLR
 - k stipple points per disk
 - illumination regions following [Foster et al. 2005]
Geometry Hierarchy

- triangles → discs → stipple points
- visibility culling
 - at each level of hierarchy
 - back-face & illumination culling
- dynamic geometry generation
 - expand hierarchy only when required
 - minimizes setup time for dynamic surfaces
Example: Lines + Stippling
Performance: Video

machine:
1.6 GHz Centrino laptop
Video: Interactive Session
Contributions

- fast & efficient approximate silhouette extraction for implicit surfaces
- extended to suggestive contours & stippling
- faster than extraction of detailed iso-surface
- application: interactive modeling
- also works for other surfaces (e.g., NURBS)
Thanks for your attention!

download demo at: http://www.unknownroad.com/shapeshop/

Thanks to our funding providers: