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Abstract

We present an example-based approach to synthesizing stipple illus-
trations for static 2D images that produces scale-dependent results
appropriate for an intended spatial output size and resolution. We
show how treating stippling as a grayscale process allows us to both
produce on-screen output and to achieve stipple merging at medium
tonal ranges. At the same time we can also produce images with
high spatial and low color resolution for print reproduction. In addi-
tion, we discuss how to incorporate high-level illustration consider-
ations into the stippling process based on discussions with and ob-
servations of a stipple artist. The implementation of the technique
is based on a fast method for distributing dots using halftoning and
can be used to create stipple images interactively.

CR Categories: I.3.m [Computer Graphics]: Miscellaneous—
Non-photorealistic rendering (NPR); I.3.3 [Computer Graphics]:
Picture/Image Generation—Line and curve generation

Keywords: Stippling, high-quality rendering, scale-dependent
NPR, example-based techniques, illustrative visualization.

1 Introduction

Stippling is a traditional pen-and-ink technique that is popular for
creating illustrations in many domains. It relies on placing stipples
(small dots that are created with a pen) on a medium such as paper
such that the dots represent shading, material, and structure of the
depicted objects. Stippling is frequently used by professional illus-
trators for creating illustrations, for example, in archeology (e. g.,
see Fig. 2), entomology, ornithology, and botany.

One of the essential advantages of stippling that it shares with other
pen-and-ink techniques is that it can be used in the common bilevel
printing process. By treating the stipple dots as completely black
marks on a white background they can easily be reproduced with-
out loosing spatial precision due to halftoning artifacts. This prop-
erty and the simplicity of the dot as the main rendering elements
has lead to numerous approaches to synthesize stippling within
NPR, describing techniques for distributing stipple dots such that
they represent a given tone. Unfortunately, computer-generated
stippling sometimes creates distributions with artifacts such as un-
wanted lines, needs a lot of computation power due to the involved
computational complexity of the approaches, cannot re-create the
merging of stipple dots in middle tonal ranges that characterizes
many hand-drawn examples, or produces output with dense stipple
points unlike those of hand-drawn illustrations.

To address these issues, our goal is to realize a stippling process for
2D images (see example result in Fig. 1) that is easy to implement,
that considers the whole process of hand-made stippling, and that

Figure 1: An example stipple image created with our technique.

takes scale and output devices into account. For this purpose we do
not consider stippling to always be a black-and-white technique, in
contrast to previous NPR approaches (e. g., [Kim et al. 2009]). In
fact, we use the grayscale properties of hand-made stipple illustra-
tions to inform the design of a grayscale stipple process. This dif-
ferent approach lets us solve not only the stipple merging problem
but also lets us create output adapted to the intended output device.
To summarize, our paper makes the following contributions:

• an analysis of high-level processes involved in stippling and a
discussion on how to support these using image-processing,

• a method for example-based stippling in which the stipple dot
placement is based on halftoning,

• the scale-dependent treatment of scanned stipple dot exam-
ples, desired output, and stipple placement,

• a grayscale stippling process that can faithfully reproduce the
merging of stipples at middle tonal ranges,

• the enabling of both print output in black-and-white and on-
screen display in gray or tonal scales at the appropriate spatial
and color resolutions, and

• that the resulting technique is easy to implement and permits
the interactive creation of stipple images.

The remainder of the paper is structured as follows. First we re-
view related work in the context of computer-generated stippling
in Section 2. Next, we analyze hand-made stippling in Section 3,
both with respect to high-level processes performed by the illustra-
tor and low-level properties of the stipple dots. Based on this anal-
ysis we describe our scale-dependent grayscale stippling process in
Section 4 and discuss the results in Section 5. We conclude the
paper and suggest some ideas for future work in Section 6.

2 Related Work

Pen-and-ink rendering and, specifically, computer-generated stip-
pling are well-examined areas within non-photorealistic rendering
(NPR). Many approaches exist to both replicating the appearance of
hand-drawn stipple illustrations and using stippling within new con-
texts such as animation. In the following discussion we distinguish
between stipple rendering based on 3D models such as boundary
representations or volumetric data on the one side and stippling that
uses 2D pixel images as input on the other.



Figure 2: Hand-drawn stipple image by illustrator Elena Piñar of the Roman theater of Acinipo in Ronda, Málaga (originally on A4 paper).
This image is © 2009 Elena Piñar, used with permission.

The variety of types of 3D models used in computer graphics is also
reflected in the diversity of stipple rendering approaches designed
for them. There exist techniques for stippling of volume data [Lu
et al. 2002a; Lu et al. 2003] typically aimed at visualization appli-
cations, stipple methods for implicit surfaces [Foster et al. 2005;
Schmidt et al. 2007], point-sampled surfaces [Xu and Chen 2004;
Zakaria and Seidel 2004], and stippling of polygonal surfaces [Lu
et al. 2002b; Sousa et al. 2003]. The placement of stipple dots in 3D
space creates a unique challenge for these techniques because the
viewer ultimately perceives the point distribution on the 2D plane.
Related to this issue, animation of stippled surfaces [Meruvia Pas-
tor et al. 2003; Vanderhaeghe et al. 2007] presents an additional
challenge as the stipples have to properly move with the changing
object surface to avoid the shower-door effect. A special case of
stippling of 3D models is the computation in a geometry-image do-
main [Yuan et al. 2005] where the stippling is computed on a 2D
geometry image onto which the 3D surface is mapped.

While Yuan et al. [2005] map the computed stipples back onto the
3D surface, many approaches compute stippling only on 2D pixel
images. The challenge here is to achieve an evenly spaced distribu-
tion that also reflects the gray value of the image to be represented,
a optimization problem within stroke-based rendering [Hertzmann
2003]. One way to achieve a desired distribution is Lloyd’s method
[Lloyd 1982; McCool and Fiume 1992] that is based on iteratively
computing the centroidal Voronoi diagram (CVD) of a point dis-
tribution. Deussen et al. [2000] apply this technique to locally
adjust the point spacing through interactive brushes, starting from
initial point distribution—generated, e. g., by random sampling or
halftoning—in which the point density reflects the intended gray
values. The interactive but local application addresses a number of
problems: the computational complexity of the technique as well

as the issue that automatically processing the entire image would
simply lead to a completely evenly distributed set of points. Thus,
to allow automatic processing while maintaining the desired den-
sity, Secord [2002] uses weighted Voronoi diagrams to reflect the
intended local point density. A related way of achieving stipple
placement was explored by Schlechtweg et al. [2005] using a multi-
agent system whose RenderBots evaluate their local neighborhood
and try to move such that they optimize spacing to nearby agents
with respect to the desired point density.

Besides evenly-spaced distributions it is sometimes desirable to
achieve different dot patterns. For instance, Mould [2007] em-
ploys a distance-based path search in a weighted regular graph
that ensures that stipple chains are placed along meaningful edges
in the image. In another example, Kim et al. [2008] use a con-
strained version of Lloyd’s method to the arrange stipples along
offset lines to illustrate images of faces. However, in most cases
the distribution should not contain patterns such as chains of stip-
ple points—professional illustrators specifically aim to avoid these
artifacts. Thus, Kopf et al. [2006] use Wang-tiling to arrange stip-
ple tiles in large, non-repetitive ways and show how to provide a
continuous level of detail while maintaining blue noise properties.
This means that one can zoom into a stipple image with new points
continuously being added to maintain the desired point density.

In addition to stipple placement, another issue that has previ-
ously been addressed is the shape of stipple points. While most
early methods use circles or rounded shapes to represent stipples
[Deussen et al. 2000; Secord 2002], several techniques have since
been developed for other shapes, adapting Lloyd’s method accord-
ingly [Hiller et al. 2003], using a probability density function [Sec-
ord et al. 2002], or employing spectral packing [Dalal et al. 2006].



(a) Original photograph, Roman theater of Acinipo in Ronda, Málaga. (b) Interpreted regions.

Figure 3: Original photograph and interpreted regions for Fig. 2.

(a) Grayscale version of Fig. 3(a). (b) Adjusting global contrast and local detail of (a). (c) Manually added edges, inversion, local contrast.

Figure 4: Deriving the helper image to capture the high-level stippling processes.

It is also interesting to examine the differences between computer-
generated stipple images and hand-drawn examples. For example,
Isenberg et al. [2006] used an ethnographic pile-sorting approach
to learn what people thought about both and what differences they
perceive. They found that both the perfectly round shapes of stipple
dots and the artifacts in placing them can give computer-generated
images away as such, but also that people still valued them due
to their precision and detail. Looking specifically at the statistics
of stipple distributions, Maciejewski et al. [2008] quantified these
differences with statistical texture measures and found that, for ex-
ample, computer-generated stippling exhibits an undesired spatial
correlation away from the stipple points and a lack of correlation
close to them. This lead to the exploration of example-based stip-
pling, for instance, by Kim et al. [2009]. They employ the same sta-
tistical evaluation as Maciejewski et al. [2008] and use it to generate
new stipple distributions that have the same statistical properties as
hand-drawn examples. By then placing scanned stipple dots onto
the synthesized positions Kim et al. [2009] are able to generate con-
vincing stipple illustrations. However, because the technique relies
on being able to identify the centers of stipple points in the hand-
drawn examples it has problems with middle tonal ranges because
there stipple dots merge into larger conglomerates.

This issue of stipple merging in the middle tonal ranges is one
problem that remains to be solved. In addition, while computer-
generated stippling thus far has addressed stipple dot placement,
stipple dot shapes, and animation, other aspects such as how to
change an input image to create more powerful results (i. e., how

to interpret the input image) have not yet been addressed.

3 Analysis of Hand-Drawn Stippling

To inform our technical approach for generating high-quality
computer-generated stipple illustrations, we start by analyzing the
process professional stipple illustrators perform when creating a
drawing. For this purpose we involved a professional stipple artist
and asked her to explain her approach/process using the example
illustration shown in Fig. 2. From this analysis we extract a number
of specific high-level processes that are often employed by profes-
sional stipple artists that go beyond simple dot placement and use
of specific dot shapes. We discuss these in Section 3.1 before an-
alyzing the low-level properties of stipple dots in Section 3.2 that
guide our synthesis process.

3.1 High-Level Processes

The manual stipple process has previously been analyzed to in-
form computer-generated stippling. As part of this analysis and
guided by literature on scientific illustration (e. g., [Hodges 2003]),
researchers identified an even distribution of stipple points as one
of the major goals (e. g., [Deussen et al. 2000; Secord 2002]) as
well as the removal of artifacts (e. g., [Kopf et al. 2006; Maciejew-
ski et al. 2008]). Also, Kim et al. [2009] noted the use of tone maps
by illustrators to guide the correct reproduction of tone. While
these aspects of stippling concentrate on rather low-level proper-



ties, there are also higher-level processes that stipple artists often
employ in their work. Artists apply prior knowledge about good
practices, knowledge about shapes and properties of the depicted
objects, knowledge about the interaction of light with surfaces, and
knowledge about the goal of the illustration. This leads to an in-
terpretation of the original image or scene, meaning that stippling
goes beyond an automatic and algorithmic tonal reproduction.

To explore these processes further we asked Elena Piñar, a profes-
sional illustrator, to create a stipple illustration (Fig. 2) from a digi-
tal photo (Fig. 3(a)). We observed and video-recorded her work on
this illustration and also met with her afterwards to discuss her work
and process. In this interview we asked her to explain the approach
she took and the techniques she employed. From this conversation
with her we could identify the following higher-level processes (see
Fig. 3 for a visual explanation with respect to the hand-made illus-
tration in Fig. 2 and photograph in Fig. 3(a)). While this list is
not comprehensive, according to Elena Piñar it comprises the most
commonly used and most important techniques (some of these are
mentioned, e. g., by Guptill [1997]). Also, each artist has his/her
own set of techniques as part of their own personal style.

Abstraction: One of the most commonly used techniques is re-
moving certain parts or details in the image to focus the ob-
server’s attention on more important areas. In our example,
the sky and some parts of the landscape have been fully re-
moved (shown in violet in Fig. 3(b)). In addition, removing
areas contributes to a better image contrast.

Increase in contrast: Some parts of the original color image ex-
hibit a low level of contrast, reducing their readability when
stippled. To avoid this problem illustrators increase the con-
trast in such regions (green area) through global and local
evaluation of lightness, enhancing the detail where necessary.

Irregular but smoothly shaped outlines: If objects in an image
are depicted with a regular or rectilinear shape they are often
perceived as being man-made. To avoid this impression for
natural shapes, stipple artists eliminate parts of these objects
to produce an irregular form and add a tonal gradient (yellow).

Reduction of complexity: It is not always possible to remove all
unimportant areas. In these cases the complexity or amount of
detail is reduced. This effect is shown in orange in Fig. 3(b):
the artist has removed some small parts that do not contribute
to the illustration’s intended message.

Additional detail: As visible in the red areas in Fig. 3(b), some
parts that are not (or not clearly) visible in the original are still
shown in the illustration. Here, the illustrator has enhanced
details of the rocks based on her prior knowledge.

Inversion: Sometimes artists convert very dark zones or edges into
very clear ones to improve the contrast. This technique is ap-
plied subjectively to specific parts of the drawing rather than
to the image as a whole. In the hand-made stippled drawing
the cracks between rocks are shown in white while they are
black in the original photograph (blue in Fig. 3(b)).

Despite the fact that these high-level processes are an integral part
of hand-drawn stipple illustration, computer-generated stippling
techniques have largely concentrated on dot placement and dot
shapes. This is understandable as these low-level processes can
be automated while the higher-level processes to a large degree rely
on human intelligence and sense of aesthetics. To be able to incor-
porate higher-level interpretations of images, therefore, we manu-
ally apply global and local image processing operations to the input
image (Fig. 4). Instead of directly using a gray-level input image
(Fig. 4(a)) we first apply pre-processing to accommodate the iden-
tified high-level processes. Following the list of processes given

Figure 5: Enlarged hand-drawn stipple dots (scanned at 1200 ppi).

above (see Fig. 4(b)), we remove non-relevant parts from the image
such as the sky and parts of the background. Also, we increase the
contrast globally but also increase the brightness of some regions
locally. Next, we locally delete parts of natural objects and smooth
the border of these regions. To reduce the complexity of certain
parts such as the metal grid we select these regions and apply a large
degree of blur. Adding elements based on previous knowledge typi-
cally requires the artist painting into the image. Some additional in-
formation, however, can be added with algorithmic support, in par-
ticular edges that border regions that are similar in brightness such
as the top borders of the ruin. We support this by either extracting
an edge image from the original color image, taking only regions
into account that have not been deleted in Fig. 4(b) and adding them
to the helper image. Alternatively, artists can manually draw the
necessary edges as shown in Fig. 4(c). Finally, inversion can be
achieved by also manually drawing the intended inverted edges as
white lines into the touched-up grayscale image (see Fig. 4(c)).

While this interactive pre-processing could be included into a com-
prehensive stipple illustration tool, we apply the manipulations us-
ing a regular image processing suite (e. g., Adobe Photoshop or
GIMP). This allows us to make use of a great variety of image
manipulation tools and effects to give us freedom to achieve the
desired effects. The remainder of the process, on the other hand, is
implemented in a dedicated tool. Before discussing our algorithm
in detail, however, we first discuss some low-level aspects of hand-
drawn stipple dots that are relevant for the approach.

3.2 Low-Level Properties of Stipple Dots

Stipple dots and their shapes have been analyzed and used in
many previous computer stippling techniques, inspired by the tra-
ditional hand-drawn stippling. Hodges [2003] notes that each dot
should have a purpose and that dots should not become dashes. In
computer-generated stippling, therefore, dots have typically been
represented as circular or rounded shapes1 or pixels that are placed
as black elements on a white ground. However, each use of a pen
to place a dot creates a unique shape (e. g., Fig. 5) which is par-
tially responsible for the individual characteristics of a hand-made
stipple illustration. Thus, recent computer-generated stippling em-
ployed scans of dots from hand-made illustrations to better capture
the characteristics of hand-drawn stippling [Kim et al. 2009].

We follow a similar approach and collected a database of stipple
points from a high-resolution scan of a hand-drawn original illustra-
tion, a sample of which is shown in Fig. 5. These stipple dots are
not all equal but have varying shapes and sizes. One can also notice
that the stipples are not completely black but do exhibit a grayscale
texture. This texture is likely due to the specific interaction of the
pen’s ink with the paper and typically disappears when the stipple
illustration is reproduced in a printing process. This lead to the as-
sumption that stipple dots are always completely black marks on a
white background as used in much of the previous literature. How-
ever, the grayscale properties of real stipple dots are a characteristic

1Aside from more complex artificial shapes that have also been used but
that are not necessarily inspired by hand-drawn stippling, see Section 2.



of the real stippling process which one may want to reproduce pro-
vided that one employs an appropriate reproduction technology. In
addition, we also make use of these grayscale properties for realiz-
ing a technique that can address one of the remaining challenges in
stippling: the merging of dots in the middle tonal ranges.

4 A Grayscale Stippling Process

Based on the previous analysis we now present our process for high-
quality example-based stippling. In contrast to previous approaches,
our process captures and maintains the stipple image throughout the
entire process as high-resolution grayscale image, which allows us
to achieve both stipple merging for the middle tonal ranges and
high-quality print output. Also, to allow for interactive control of
the technique, we use Ostromoukhov’s [2001] fast error-diffusion
halftoning technique to place the stipples. Below we step through
the whole process by explaining the stipple placement (Section 4.1),
the stipple dot selection and accumulation (Section 4.2), and the
generation of both print and on-screen output (Section 4.3). In addi-
tion, we discuss adaptations for interactive processing (Section 4.4).

4.1 Stipple Dot Placement using Halftoning

Our stippling process starts by obtaining a grayscale version of
the target image using the techniques described in Section 3.1. In
principle, we use this image to run Ostromoukhov’s [2001] error-
diffusion technique to derive locations for placing stipple dots, sim-
ilar to the use of halftoning to determine the starting distribution in
the work by Deussen et al. [2000]. However, in contrast to their
approach that adds point relaxation based on Lloyd’s method, we
use the locations derived from the halftoning directly which allows
us to let stipple dots merge, unlike the results from relaxation. The
reason for choosing a halftoning technique over, for example, dis-
tributions based on hand-drawn stipple statistics [Kim et al. 2009]
is twofold. The main reason is that halftoning has the evaluation
of tone built-in so that it does not require a tone map being ex-
tracted from the hand-drawn example. The second reason lies in
that halftoning provides a continuum of pixel density representing
tonal changes as opposed to the approach of using both black pix-
els on a white background for brighter regions and white pixels on
a black background for darker areas as used by Kim et al. [2009].

Specifically, we are employing Ostromoukhov’s [2001] error-
diffusion, partially because it is easy to implement and produces
results at interactive frame-rates. More importantly, however, the
resulting point distributions have blue noise properties, a quality
also desired by related approaches [Kopf et al. 2006]. This means
that the result is nearly free of dot pattern artifacts that are present in
results produced by many other error-diffusion techniques, a quality
that is important for stippling [Hodges 2003].

Using a halftoning approach, however, means that we produce a
point distribution based on pixels that are arranged on a regular
grid, in contrast to stipples that can be placed at arbitrary positions.
In addition, we cannot use the grayscale input image in the same
resolution as the intended output resolution for the stipple image.
Let us use an example to better explain this problem and describe
its solution. Suppose we have a hand-stippled A4 image (in land-
scape) that we scan for analysis and extraction of stipple dot exam-
ples at 1200 ppi.2 This means that the resulting image has roughly
14,000 × 10,000 pixels, with stipple dot sizes ranging from approx-
imately 10 × 10 to 20 × 20 pixels.3 If we now were to produce

2Please notice that ppi stands for pixels per inch and is used intentionally
while dots per inch (dpi) is used when we discuss printing.

3These values are derived from the example in Fig. 2 (done with a pen
with a 0.2 mm tip) and can be assumed to be valid for many stipple images

an equivalent A4 output image at 1200 ppi, would hence use an
14,000 × 10,000 pixel grayscale image, and compute its halftoned
version at this size, each pixel in this image would represent one dot.
This means we would need to place scanned stipple dots (whose av-
erage size is 16 × 16 pixels, this is equivalent to a spatial size of
0.338 mm, slightly larger than the nominal size of 0.2 mm of the tip
of the used pen) at the pixel locations of the halftoned image. Con-
sequently, this would produce a result that is 16× larger than the
intended output image and reproducing it at A4 size would result in
the characteristics of the stipple dot shapes being lost because each
stipple would again be shrunken down to the size of ca. one pixel.

Therefore, for a given output resolution reso we compute the dot
distribution using error-diffusion halftoning at a smaller halftoning
resolution resht . Intuitively for our 1200 ppi example, one could
suggest a halftoning factor fht whose size is 1

/
16 of reso to com-

pute resht , using the average stipple’s diameter of 16 pixels:

resht = fht · reso ; fht = 1
/

16 ; reso = 1200 ppi . (1)

In a completely black region and for ideally circular stipples, how-
ever, this would result in a pattern of white spots because the black
dots on the grid only touch. To avoid this issue one has to use a
factor fht of

√
2/16 to allow for a denser packing of stipple points

such that they overlap. For realistic stipple points with non-circular
shapes one may even have to use a fht of 2

/
16 or more. On the

other hand, even in the darkest regions in our example the stipple
density is not such that they completely cover the canvas. Thus, we
leave this choice up to the user to decide how dense to pack the stip-
ples, and introduce a packing factor fp to be multiplied with fht to
control the density of the stipples:

fht = fp
/

16 . (2)

For fp = 1 and, thus, fht = 1
/

16 we would perform the halftoning
in our example on an image with size 875 × 625 pixels to eventually
yield a 1200 ppi landscape A4 output. For other output resolutions,
however, the situation is different. Because the stipples have to use
proportionally smaller pixel sizes for smaller resolutions to be re-
produced at the same spatial sizes, the factor between output image
and halftoning image has to change proportionally as well. For ex-
ample, for a 600 ppi output resolution the average stipple’s diameter
would only be 8 pixels, and consequently fht would only be 1

/
8 .

Thus, we can derive the halftoning resolution resht for a given out-
put resolution reso in ppi based on the observations we made from
scanning a sample at 1200 ppi as follows:

resht = fht · reso ; fht =
fp ·1200 ppi

16 · reso
resht = 75 ppi · fp . (3)

This means that the halftoning resolution is, in fact, independent of
the output resolution. Consequently, the pixel size of the halfton-
ing image only depends on the spatial size of the intended output
and the chosen packing factor (and ultimately the chosen scanned
example stippling whose stipple dot size depends on the used pen).

This leaves the other mentioned problem that arises from computing
the stipple distribution through halftoning: the stipple dots would be
arranged on a regular grid, their centers always being at the centers
of the pixels from the halftoning image. To avoid this issue, we
perturb the locations of the stipple dots by a random proportion of
between 0 and ±100% of their average diameter, in both x- and y-
direction. Together with the random selection of stipple sizes from
the database of scanned stipples and the blue noise quality of the dot
distribution due to the chosen halftoning technique this successfully
eliminates most observable patterns in dot placement (see Fig. 6).

as similar pen sizes are used by professional illustrators [Hodges 2003].



(a) Grid placement of stipples. (b) After random perturbation.

Figure 6: Magnified comparison of stipple placement before and
after random perturbation of the stipple locations.

4.2 Stipple Dot Selection and Accumulation

We begin the collection of computed stipple points by creating a
grayscale output buffer of the desired resolution, with all pixels hav-
ing been assigned the full intensity (i. e., white). Then we derive the
stipple placement by re-scaling the modified grayscale image to the
halftoning resolution and running the error-diffusion as described
in the previous section. Based on the resulting halftoned image and
the mentioned random perturbations we can now derive stipple lo-
cation with respect to the full resolution of the output buffer.

For each computed location we randomly select a scanned stipple
dot from the previously collected database. This database is orga-
nized by approximate stipple dot sizes, so that for each location
we first randomly determine the size class (using a normal distri-
bution centered on the average size) and then randomly select a
specific dot from this class. This is then added to the output buffer,
combining intensities of the new stipple dot is and the pixels previ-
ously placed into the buffer ibg using (is · ibg)/255. This not only
ensures that stipples placed on a white background are represented
faithfully but also that the result gets darker if two dark pixels are
combined (accumulation of ink).

Both the range of stipple sizes and the partially random stipple
placement ensure that stipples can overlap. This overlapping is es-
sential for our approach, it ensures the gradual merging of stipples
into larger conglomerates as darker tones are reproduced (see ex-
ample in Fig. 7). Therefore, we can for the first time simulate this
aspect of the aesthetics of hand-drawn stippling.

4.3 Generation of Print and Screen Output

One challenge that remains is to generate the appropriate output
for the intended device. Here we typically have two options: on-
screen display and traditional print reproduction. These two options
for output differ primarily in their spatial resolution and their color
resolution. While normal bilevel printing offers a high spatial res-
olution (e. g., 1200 dpi), it has an extremely low color resolution
(1 bit or 2) while typical displays have a lower spatial resolution
(ca. 100 ppi) but a higher color resolution (e. g., 8 bit or 256 per pri-
mary). These differences also affect the goals for generating stipple
illustrations. For example, it does not make much sense to print
a grayscale stipple image because the properties of the individual
stipple points (shape, grayscale texture) cannot be reproduced by
most printing technology, they would disappear behind the pattern
generated by the printer’s halftoning [Isenberg et al. 2005]. In con-
trast, for on-screen display it does not make sense to generate a very
high-resolution image because this cannot be seen on the screen.

Therefore, we adjust our stippling process according to the desired
output resolutions, both color and spatial. For output designed for
print reproduction we run the process at 1200 ppi, using a stipple
library from a 1200 ppi scan, and compute the scaling factor for the
halftoning process to place the stipples accordingly. The resulting

(a) Lighter region. (b) Darker region.

Figure 7: Merging of synthesized stipples at two tonal ranges.

1200 ppi grayscale output image is then thresholded using a user-
controlled cut-off value, and stored as a 1 bit pixel image, ready for
high-quality print at up to 1200 dpi (e. g., Fig. 8). These images, of
course, do no longer contain stipples with a grayscale texture but
instead are more closely related to printed illustrations in books.

For on-screen display, in contrast, we run the process at a lower res-
olution, e. g., 300 ppi (while 300 ppi is larger than the typical screen
resolution, it also allows viewers to zoom into the stipple image to
some degree before seeing pixel artifacts). For this purpose the
stipples in the database are scaled down accordingly, and the appro-
priate scaling value for the halftoning process is computed based
on average stipple size at this lower resolution. The resulting image
(e. g., Fig. 10) is smaller spatially but we preserve the texture infor-
mation of the stipples. These can then be appreciated on the screen
and potentially be colored using special palettes (e. g., sepia). In
addition, grayscale stipple images can also be used for special con-
tinuous tone printing processes such as dye-sublimation.

4.4 User Interaction and Interactive Processing

Several parameters of the process can be adjusted interactively ac-
cording to aesthetic considerations of the user, in addition to ap-
plying the high-level processes (parallel or as pre-processing). The
most important settings are the intended (spatial) size and output
resolution because these affect the resolutions at which the different
parts of the process are performed. For example, a user would select
A5 as the output size and 300 ppi as the intended resolution. Based
on this the (pixel) resolution of both output buffer and halftoning
buffer are derived as outlined in Section 4.1. To control the stipple
density, we let the users interactively adjust the packing factor (the
default value is 2). In addition we let users control the amount of
placement randomness as a percentage of the average size of the
stipple dots (the default value is 25%). This means that we specify
the packing factor and placement randomness based on the average
stipple size at the chosen resolution, which results in visually equiv-
alent results regardless of which specific resolution is chosen.

Another aspect of user interaction is the performance of the process.
While we can easily allow interactive work with the program at res-
olutions of up to 300 ppi for A4 output, the process is less respon-
sive for larger images. For example, stippling the image shown in
Fig. 4(c) takes approximately 0.51, 0.25, and 0.13 seconds for A4,
A5, and A6 output, respectively, while a completely black input im-
age requires 1.41, 0.70, and 0.36 seconds, respectively (Intel Core2
Duo E6600 at 3GHz with 2GB RAM, running Linux). However,
our approach can easily allow users to adjust the parameters inter-
actively at a lower resolution and then produce the final result at the
intended high resolution such as for print output. For example, stip-
pling Fig. 4(c) at A4 1200 dpi in black-and-white takes ca. 10.1 sec-
onds while a completely black image requires approximately 15.2
seconds. We ensure that both low- and high-resolution results are
equivalent by inherently computing the same halftoning resolution
for both resolutions using the resolution-dependent scaling factor
and appropriately seeding the random computations.



Figure 8: Example generated for A4 print reproduction at 1200 dpi resolution, using Fig. 4(c) as input.

(a) Detail from Fig. 2. (b) Detail from Fig. 8.

Figure 9: Comparison of stipple merging between a hand-drawn
and a synthesized sample, taken from the same region of the images.

5 Results and Discussion

Fig. 8 shows a synthesized stipple image based on the photo
(Fig. 3(a)) in its touched-up form (Fig. 4(c)) that was also used
to create the hand-drawn example in Fig. 2. Fig. 8 was produced
for print-reproduction at A5 and 1200 dpi. As can be seen from
Fig. 9, our process can nicely reproduce the merging of stipples in
a way that is comparable between the hand-drawn example and the
computer-generated result. In addition, this process preserves the
characteristic stipple outlines found in hand-drawn illustrations.

Fig. 10 shows an example produced for on-screen viewing. In con-
trast to the black-and-white image in Fig. 8, this time the grayscale
texture of the stipple dots is preserved. In fact, in this example we
replaced the grayscale color palette with a sepia palette to give the
illustration a warmer tone, a technique that is often associated with
aging materials. However, in typical print processes, images like

this will be reproduced with halftoning to depict the gray values.
These halftoning patterns typically ‘fight’ with the stipple shapes
and placement patterns. To avoid these, one has to produce b/w out-
put as discussed before or use dye-sublimation printing. Fig. 11–13
show two more black-and-white examples and one grayscale one.

Of course, our approach is not without flaws. An important prob-
lem arises from the use of halftoning on a lower resolution to derive
stipple distributions because this initially leads to the stipples being
placed on a grid. While we address this grid arrangement by intro-
ducing randomness to the final stipple placement, this also leads to
noise being added to otherwise clear straight lines in the input im-
age. This effect can be observed by comparing the upper edge of
the ruin in Fig. 8 with the same location in the hand-made example
in Fig. 2 where the line of stipple dots is nicely straight. This is-
sue could possibly be addressed by analyzing the local character of
the source image with an edge detector: if no edges are found use
randomness as before; otherwise reduce the amount of introduced
randomness for placing stipples.

One final aspect that we would like to discuss in the context stipple
placement the choice of halftoning in the first place. While we have
presented the reasons for our decision in Section 4.1, one may also
argue that it may be better to use other types of halftoning (e. g.,
[Chang et al. 2009]) or try to adapt Kim et al.’s [2009] technique
to fit our needs. To investigate this issue further, we took samples
from both Figures 2 and 8 and analyzed them using Maciejewski
et al.’s [2008] technique. The result of this analysis showed that
the examined hand-drawn and our computer-generated stippling ex-
amples exhibit almost identical statistical behavior when compared
with each other with respect to the correlation, energy, and contrast



Figure 10: Sepia tonal stipple example generated for A4 on-screen viewing at up to 300 ppi resolution, with slight gamma correction.

measures. Also, our computer-generated examples do not exhibit
the correlation artifacts described by Maciejewski et al. [2008] for
other computer-generated stippling techniques. Thus, our choice to
base the stipple distribution on halftoning seems to be justified.

6 Conclusion and Future Work

In summary, we presented a scale-dependent, example-based stip-
pling technique that supports both low-level stipple placement and
high-level interaction with the stipple illustration. In our approach
we employ halftoning for stipple placement and focus on the stip-
ples’ shape and texture to produce both gray-level output for on-
screen viewing and high-resolution binary output for printing. By
capturing and maintaining the stipple dots as grayscale textures
throughout the process we solve the problem of the merging of stip-
ple dots at intermediate resolutions as previously reported by Kim
et al. [2009]. The combined technique allows us to capture the en-
tire process from artistic and presentation decisions of the illustrator
to the scale-dependence of the produced output.

One of the interesting observations from this process is that the res-
olution at which the stipple distribution occurs (using halftoning in
our case) depends on the spatial size of the target image but needs to
be independent from its resolution, just like other pen-and-ink ren-
dering [Salisbury et al. 1996; Jeong et al. 2005; Ni et al. 2006]. For
example, there should be the same number of stipples for a 1200 ppi
printer as there should be for a 100 ppi on-screen display. However,
there need to be fewer stipples for an A6 image compared to an A4
image. This complements the observation by Isenberg et al. [2006]
that stippling with many dense stipple points is often perceived by

viewers to be computer-generated.

While our approach allows us to support the interactive creation of
stipple illustrations, this process still has a number of limitations.
Besides the mentioned limitations in stipple placement at edges in
the input image, one of the most important limitations concerns the
presentation of the interaction: the use of high-level processes as
described in Section 3.1 is currently a separate process that does
require knowledge of the underlying artistic principles—a better in-
tegration of this procedure into the user interface would be desir-
able. Also, we would like to investigate additional algorithmic sup-
port for these high-level interaction. This includes, for example, an
advanced color-to-gray conversion techniques [Gooch et al. 2005;
Rasche et al. 2005a; Rasche et al. 2005b] to support illustrators in
their work. In addition, an interactive or partially algorithmically
supported creation of layering or image sections according to the
discussed high-level criteria such as background, low or high detail,
level of contrast, or inversion would be interesting to investigate as
future work. For this automatic or salience-based abstraction tech-
niques [Santella and DeCarlo 2004] could be employed.
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Figure 11: A5 1200 dpi black-and-white stippling of a view of Venice.

Figure 12: A6 1200 dpi black-and-white stippling of flowers. Figure 13: A6 300 ppi grayscale stippling of a church.
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