

DiffFit: Visually-Guided Differentiable Fitting of Molecule Structures to a Cryo-EM Map

Deng Luo¹, Zainab Alsuwaykit¹, Dawar Khan¹, Ondřej Strnad¹, Tobias Isenberg², and Ivan Viola¹

- 1: King Abdullah University of Science and Technology
- 2: Inria

Introduction

ChimeraX Fit in Map

DiffFit

Introduction

Related Work

- Alnabati et al.: MarkovFit
 Frontiers in Molecular Biosciences (2022)
 - Benchmark table

EMDB ID	PDB ID	No. subunits	Res. (Å)	Voxel size (Å)	Best model by RMSD among top 10			Top-scored model	
					Rank	RMSD (Å)	APS (Å, °)	RMSD (Å)	APS (Å, °)
9108	6MEO	3	3.9	1.059	1	1.94	(0.42, 5.88)	1.94	(0.42, 5.88)
13508	7PM0	3	3.6	1.1	1	1.64	(0.18, 7.15)	1.64	(0.18, 7.15)
25368	7SP8	3	2.7	1.08	1	1.29	(0.32, 4.61)	1.29	(0.32, 4.61)
30093	6M5U	3	3.8	1.062	1	2.36	(0.17, 4.84)	2.36	(0.17, 4.84)
21897	6WTI	4	2.38	1.08	1	1.31	(7.78, 4.01)	1.31	(7.78, 4.01)
23827	7MGE	4	3.94	0.94	1	1.87	(0.17, 6.2)	1.87	(0.17, 6.2)
30614	7D8X	4	2.6	1.0825	1	1.96	(0.35, 4.86)	1.96	(0.35, 4.86)
22417	7JPO	5	3.2	1.07	1	2.54	(0.36, 6.17)	2.54	(0.36, 6.17)
25426	7STE	5	2.73	0.826	1	1.74	(0.21, 4.17)	1.74	(0.21, 4.17)

No. subunits, the number of subunits in the structure; Res., reported resolution of the maps; voxel size, the size of the grid voxels of the maps. As we showed in **Table 1**, two results are shown: the best RMSD, model among the top 10-scored models and the top-scored models.

Related Work

- ChimeraX "Fit in Map" functionality
 - Gao et al.:DomainFitStructure (2024)

Related Work

- ChimeraX "Fit in Map" functionality
 - Gao et al.:DomainFitStructure (2024)
 - Rantos et al.:
 Assembline
 Nature Protocols
 (2022)

Inspiration

Reddy et al.: Differentiable compositing, TOG 2020

Method

Method

Method

Method - Iterative Convolution

Image Source: Wikipedia - Pyramid (image processing)

Method - Negative Space $\hat{V}_{F_{-c}}^{G_j}$

Blue: Positive space

Method - Enveloped Initialization

Method - Optimization Loss Function

$$\underline{L}(\mathbf{p},\mathbf{q},\underline{\mathbf{X}_m},\underline{V}) = -\left(\frac{1}{N}\sum_{i}^{N}\underline{D}(\underline{T}(\mathbf{x}_i))\right) = -\frac{1}{N}\sum_{i}^{N}\underline{S}(\underline{M_{\mathbf{q}}}\cdot\mathbf{x}_i + \underline{\mathbf{p}},V)$$

$$\underline{L_m}([\mathbf{p},\mathbf{q}]) = \sum_{j=1}^n w_j \cdot \underline{L}(\mathbf{p},\mathbf{q},\mathbf{X}_m,\hat{V}_{\overline{F}_{-c}}^{G_j})$$

$$L_{\underline{par}}(\underline{m}) = \sum_{k=1}^{N_{\mathbf{q}} \cdot N_{\mathbf{p}}} L_{\underline{m}}([\mathbf{p}_k, \mathbf{q}_k]) \qquad L_{\underline{all}} = \sum_{l=1}^{M} L_{\underline{par}}(l)$$

Method - Fit Results Clustering and Filtering

Method - Tabular Browser for Fit Result Clusters

Method - Spatial Browser for Fit Result Clusters

Result - Use Case 1: Fit a single structure in sec

Result - Use Case 1: Fit a single structure in sec

C: ChimeraX
Fit in Map

D: DiffFit

G: Gain

M: MarkovFit

DC: DiffFit refined by ChimeraX

PDB	Res	Hit rate			Computing time			RMSD (Å)			
		С	D	G	C	D	G	M	C	D	DC
6WTI	2.38	0.0	136.8	n/a	150.3	3.8	39.7	1.310	n/a	0.942	0.037
7D8X	2.60	0.0	202.0	n/a	196.0	5.2	37.6	1.960	n/a	0.984	0.014
7SP8	2.70	4.6	188	40.9	130.6	2.6	50.5	1.290	0.996	0.969	0.025
7STE	2.73	14.0	110.4	7.9	806.1	12.1	66.6	1.740	0.062	0.662	0.058
7JPO	3.20	5.4	191.8	35.5	250.7	6.7	37.2	2.540	0.017	0.922	0.015
7PM0	3.60	44.0	195.4	4.4	352.4	4.1	86.7	1.640	0.030	0.907	0.024
6M5U	3.80	0.0	105.0	n/a	162.2	4.1	39.2	2.360	n/a	0.912	0.018
6MEO	3.90	7.4	116.0	15.7	128.2	3.2	40.1	1.940	0.489	0.786	0.488
7MGE	3.94	4.8	123.6	25.8	337.6	4.3	78.1	1.870	0.017	0.819	0.017
High-avg		8.9	152.1	21.7	279.3	5.1	52.8	1.850	0.268	0.878	0.077
5NL2	6.60	1.8	163.2	90.7	94.6	2.0	48.0	2.440	0.093	1.124	0.056
7K2V	6.60	49.0	165.6	3.4	240.6	4.1	58.2	25.290	0.338	1.323	0.338
7CA5	7.60	55.8	72.4	1.3	322.6	2.9	110.0	3.290	2.042	1.207	2.042
5VH9	7.70	68.6	158.0	2.3	1147.8	14.1	81.3	0.960	0.085	0.991	0.085
6AR6	9.00	78.0	182.6	2.3	74.9	1.5	49.3	2.200	0.123	2.617	0.117
3J1Z	13.00	138.6	172.2	1.2	64.4	2.0	33.0	32.330	0.396	2.612	0.388
Med-avg		65.3	152.3	16.9	324.1	4.4	63.3	11.085	0.513	1.646	0.504
All-av	g	31.5	152.2	19.8	297.3	4.9	57.0	5.544	0.366	1.185	0.248

Result - Use Case 2: Composite multiple structures in min

Optimization process

Result - Use Case 3: Identify unknown densities in min-hour

Result - Use Case 3: Identify unknown densities in hours

Result - Use Case 3: Identify unknown densities in hours

Structure	C Hit	D Hit	Gain
I7MLV6_D3	108	254	2.4×
I7M317_D1	127	240	1.9×

DomainFit: ~12 hours

DiffFit: ~7 minutes (103x)

Feedback

"Quite intuitive and easy to use"

 The automatic fitting and visual inspection approach "could be a key feature in ChimeraX that could become a standard in many pipelines" as well as "a key implementation for a standard modeling workflow."

Tool & Code

- Python command line script
- https://cxtoolshed.rbvi.ucsf.edu/
 - (The server is down for maintenance now as announced on X @UCSFChimeraX.)
 - 510 downloads

DiffFit

Rapid Fitting of Molecular Structures to a Cryo-EM Map on GPU

Next Steps

- Comprehensive visualization
- Deformable transformations
- Collision handling
- Splitting and splicing the Cryo-EM map and the structures

Thank You!

Zainab Alsuwaykit

Dawar Khan

Ondřej Strnad

Tobias Isenberg

Ivan Viola

