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Abstract
We introduce DiffFit, a differentiable algorithm
for fitting protein atomistic structures into ex-
perimental Cryo-Electron Microscopy (cryo-EM)
volume maps. This process is crucial in struc-
tural biology for reconstructing large meso-scale
models of complex protein assemblies and com-
plete cellular structures. Unlike current methods
requiring manual fitting followed by automated
fine-tuning, DiffFit enables automatic fitting with
visual inspection and interactive revision. Our
approach employs differentiable 3D rigid trans-
formations and a novel loss function based on
multi-resolution volume arrays and negative space
exploitation. Evaluations on three use cases using
realistic datasets demonstrate that DiffFit signif-
icantly outperforms previous methods. DiffFit
is available as an open-source plugin (github
.com/nanovis/DiffFitViewer) in ChimeraX,
with all supplemental materials accessible at
osf.io/5tx4q.

1. Introduction
In the field of structural biology, traditionally we have re-
lied on techniques such as X-ray crystallography or nuclear
magnetic resonance spectroscopy to understand the actual
molecular compositions of cells and organelles—yet with
the limitation that these could only provide (still impressive
and highly useful) estimates or manually constructed models
of the structure of actual biological samples (e.g., [1]–[6]).
In the recent few years, however, the cryo-EM approach
[7] has opened the doors to visualizing the biomolecules
within actual samples at near-atomic resolution. In addition,
the Protein Data Bank (PDB) initiative has over decades
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(a) Source structure. (b) Target map. (c) Fit result.

Figure 1. Fitting a single structure for 8JGF [8].

collected thousands of molecular models of the building
blocks of the cells or organelles studied in structural biology.
This new situation means that we are now at the brink of
reconstructing the molecular composition of actual samples
at a ground-truth level.

Yet to achieve this type of reconstruction we not only need
to interactively visualize molecular data, for which tools [9]
exist, but need to be able to faithfully place 3D models of
known molecular building blocks, such as from PDB data
and the AlphaFold predicted library [10], to the captured
cryo-EM datasets (Fig. 1 and Fig. 2). So far, the fitting pro-
cess involves a substantial time commitment and numerous
manual interventions by the domain experts—rendering this
process not very effective. The sheer complexity and size
of the involved molecules, combined with the variability
and noise inherent in cryo-EM data, pose substantial obsta-
cles. A fully automatic process, in contrast, is also not the
ideal solution because the existence of local minima (wrong
placement of the compositing proteins) requires the domain
experts to verify each placement where they utilize their
knowledge and experience. Fully automated methods are
currently far from feasible. Instead, we need the optimal
balance between user interaction and automation.

For this purpose, we developed DiffFit, an automated dif-
ferentiable fitting algorithm coupled with visual inspection
and decision making, designed to optimize alignment be-
tween protein structures and experimental reconstructions
of volumes (i. e., cryo-EM maps). Our technique works
in both one-to-one fitting scenarios and many-to-one sce-
narios, in which multiple protein subunit structures are
precisely aligned with a single, large, experimentally re-
constructed volume. The DiffFit method is iterative and
gradually brings the source protein structures into the tar-
get volumes to stepwise reconstruct the molecular-subunits
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alignment. By leveraging advanced strategies such as vol-
ume filtering, multi-resolution volumes, and negative space
utilization, we construct a loss function that allows us to
quantify the fitting accuracy both during the iterations and
for the final decision making. In this way we iteratively
reduce the differences between the two representations—
volumetric and atomistic—until we achieve the desired fit.
Through this visually-guided fitting procedure we thus re-
lieve the domain experts from manually placing structures
as they assemble the reconstruction of the cryo-EM map,
thus significantly speeding up the process into a manage-
able interactive procedure, that yields results at sufficient
precision for the visualization and analysis of complex, real-
world protein structures, ultimately facilitating large-scale
structural modeling initiatives. In summary, we contribute:

• a differentiable fitting algorithm designed to fit multi-
ple molecular subunits to a single reconstructed cryo-
EM volume;

• human-in-the-loop strategy providing visual inspec-
tion and decision-making within an iterative structure-
discovery cycle;

• a novel loss function and data processing that calculates
new updates in each iteration to expedite algorithm
convergence and quantify fitting accuracy; and

• three use-case scenarios of fitting either one or multiple
known subunits or identifying yet unknown subunits
being part of the molecular assembly.

The full paper describing the technique presented in this
workshop submission is currently under review for the IEEE
VIS 2024.

2. Inspiration
While we provide a detailed background and related work
section in Appendix B, here we describe an image registra-
tion technique that inspired our work. Reddy et al. proposed
a 2D differentiable compositing approach to identify pat-
terns in repetitive textures from elementary patches [11].
Their method estimates occurrences and placement param-
eters (type, position, orientation, depth) of each patch in
a composite image via a differentiable computing pipeline
and a loss function to compare the synthesized image with
the given input image to get the gradients to update the
placement parameters. Reddy et al.’s approach is similar
to our protein fitting problem, as both involve compositing
element instances into a scene. However, their method can-
not be directly applied to the protein fitting problem for the
following reasons:

1. the pattern image and the element patches are defined
in 2D with layers, while the cryo-EM map and protein
subunits are defined in 3D;

2. the pattern image and the element patches are of the
same representation, i.e., 2D grid data, while the

cryo-EM map and protein subunits are of different
representations—one is a 3D volume while the other
is a set of atom coordinates that can be regarded as a
point cloud;

3. the instance patches in differentiable compositing are
all of the same size, while the protein subunits differ
in numbers of atoms;

4. differentiable compositing expects the patches to over-
lap, while protein subunits do not spatially overlap;
and

5. forming 1000 layers of 2D images is possible to fit
into the current GPU memory, while forming 1000
3D volumes is prohibitive with the currently available
GPU memory.

We indeed tried to extend the differentiable compositing ap-
proach to 3D, but it only succeeded in trivial cases and often
fell into local minima in real-world scenarios. Examples are
available at osf.io/5tx4q. We then decided to develop a
new approach which we describe below.

3. Method
3.1. Differentiable structure fitting

Given a cryo-EM map, bioscientists often lack precise lo-
cation and orientation parameters for protein sub-structures
and may not even know which protein subunits are present
in some regions. Our goal is to develop a new approach
to address these challenges. For certain subunits where
bioscientists are confident of their presence, our technique
will help identify their placement parameters. For regions
with unknown subunits, our method will identify potential
candidates from a large database that best fit the cryo-EM
map.

3.1.1. SAMPLING OF ONE COORDINATE

Because our task is to find the optimal alignment of an
atomistic molecular structure to the reconstructed cryo-EM
volume map, we are searching for the optimal fit character-
ized by two rigid-body transformation parameters: a trans-
lational offset p and a rotation. The rotation is represented
by a quaternion q or its corresponding rotation matrix Mq.
The position xi corresponds to the center point of an atom i
within the molecular subunit for which we are finding the fit.
For the calculation of the fit, we transform every atom posi-
tion in one subunit according to the rotation and translational
offset: T (xi) = Mq ·xi +p. We Sample a density value D of
the atom to be placed at position T (xi) from a scalar volume
V by trilinear interpolation as: D(T (xi)) = S(T (xi),V ).

3.1.2. PLACEMENT OF ONE MOLECULE (OR SUBUNIT)

To find the best p and q parameters we formulate an initial
loss function L that gives us the minimum negative average
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density per atom for a molecular subunit with N atoms that
form the set Xm of all atom center points T(xi) ∈ Xm for a
particular molecular subunit m:

L(p,q,Xm,V ) =−

(
1
N

N

∑
i

D(T (xi))

)
=− 1

N

N

∑
i

S(Mq ·xi+p,V ).

(1)

For the optimization we rely on the calculation of the gra-
dient of our differentiable formulation and use it with the
Adam optimizer [12]. Despite the Adam optimizer being
known for robustness with respect to local minima, our ini-
tial loss function formulation frequently led to such a local
minimum, i.e., a place that is not an optimal placement of
the molecule in the map but from which the optimizer can-
not find better solution in the parameter-space neighborhood.
Such local minima are a common and severe problem that
is also manifested in the functionality of most commonly
used tools for molecular subunit fitting (e.g., ChimeraX’s
fit-in-map feature). We thus introduced several strategies
to form a novel loss function and, ultimately, make DiffFit
more robust.

A first strategy that we found to substantially contribute to
a good fitting performance is filtering and normalizing of
the input cryo-EM map volume V . For this purpose we
clamp the volume values based on a user-specified minimal
threshold and a minimum size of connected-voxels that
form a cluster. We also detect all voxels with a density value
smaller than a given threshold and set them to zero. The
size of the connected voxel cluster after thresholding has to
be bigger than the cluster size hyperparameter. Otherwise,
we set all the voxels in that cluster to zero. This step leads
to the filtered volume VF and ensures that only relevant
volume regions are considered for fitting, improving the
algorithm’s focus and efficiency. We then normalize the
filtered values to [0,1]—a typical practice in learning and
optimization approaches—, which leads to a volume V̂F and
which turns out to be essential for controlling the magnitude
of the calculations that lead to the loss function and hence
the settings of the hyperparameters in the workflow.

To accommodate the inherent noise and variability within
biological datasets, we also applied a series of convolution
iterations to the target volume, and capture each smoothing
as a separate volume. This iterative convolutional smoothing
leads to an array of volumes and we use each of these vol-
umes in the fitting process. This multi-resolution approach
enhances the robustness of the fitting process by mitigating
the impact of noise and data irregularities. We empirically
found that a 10-element array of increasingly smoothed vol-
umes, iteratively filtered with a Gaussian smoothing kernel,
performs well. We expose this array’s size as a hyperpa-
rameter to allow users to control it. We experimented with
Laplacian smoothing as well, which led to unsatisfactory
performance. We denote the non-smoothed volume as V̂ G0

F

and express the recurrent formulation of the iterative convo-
lution smoothing as: V̂ Gn

F = V̂ Gn−1
F ∗Gn. A third adaptation

we apply to the initial fitting process is a stricter penalization
of a mismatch. If an atom center is placed within the cryo-
EM map volume but outside the extent of the molecular
target structure, i.e., outside of the target footprint, where
normally the target density would be zero. To discourage
such misalignment even more, we assign these regions a
negative value. After smoothing, therefore, for those vox-
els with a density value of zero, we replace the zero with a
negative value. We experimented with varying the negative
values or creating a smooth gradient of negative values but
found a constant value of −0.5 outside the molecular foot-
print within the map performs well. We expose this value,
however, as a tunable hyperparameter. We denote the re-
sulting volume as V̂ Gn

F−c
with −c being the negative constant

value. Finally, we update the loss function formulation with
a volume smoothed after j iterations as: L(p,q,Xm,V̂

G j
F−c

).
We weigh each fit with a multi-resolution volume array el-
ement w j for a total number of resolutions n, and sum up
all the multi-resolution components to form the final loss
function for one p and q pair:

Lm([p,q]) =
n

∑
j=1

w j ·L(p,q,Xm,V̂
G j
F−c

). (2)

3.1.3. FITTING MULTIPLE PLACEMENTS OF ONE
MOLECULE

To start the optimization we need to initialize the position
offset p and the rotation quaternion q. We uniformly sample
Nq points on a unit sphere and then convert them into quater-
nions to be applied for each offseted position. Instead of
uniformly sampling positions from the volume’s bounding
box (as in ChimeraX), we uniformly sample Np positions
from the positive voxels in the filtered and normalized vol-
ume V̂F . This enveloped sampling increases our success
rate by a factor of two by searching from Nq ·Np initial
placements, as compared to ChimeraX’s.

To look for fits for multiple copies of a single molecule m,
we then take advantage of GPU parallelization and optimize
all Nq ·Np pairs of [p,q] of the molecule with atoms Xm
altogether in one single loss function:

Lpar(m) =
Nq·Np

∑
k=1

Lm([pk,qk]). (3)

3.1.4. FITTING MULTIPLE PLACEMENTS OF MULTIPLE
MOLECULES

Finally, as all subunit molecules have different numbers of
atoms, it is not easy to parallelize the treatment of multiple
molecules without overhead on the array padding of zeros.
And because, usually, the Nq ·Np initial placements of Xm
atoms would result in a total number of sampling operations
higher than the total number of GPU threads, we process
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Table 1. Performance results for fitting a single structure. Res
stands for resolution, C stands for ChimeraX, D stands for DiffFit,
M stands for MarkovFit, DC stands for DiffFit corrected by a
single ChimeraX fit; G stands for Gain and is D/C for Hit rate and
C/D for Time.

PDB Res Hit rate Time (sec) RMSD
C D G C D G C M D DC

6MEO 3.90 7.4 214.6 41.2 128.2 9.4 13.7 0.489 1.940 0.790 0.483
7PM0 3.60 44.0 195.2 4.5 352.4 7.0 50.3 0.029 1.640 0.976 0.027
7SP8 2.70 4.6 238.8 117.5 130.58 12.2 10.9 0.996 1.290 0.779 0.024
6M5U 3.80 0.0 277.0 INF 162.2 18.8 8.2 69.413 2.36 0.944 0.014
5NL2 6.60 0.6 179.6 200.0 92.8 9.6 10.4 23.110 2.440 1.903 0.047
7K2V 6.60 49 170.4 3.3 240.6 8.56 29.3 0.338 2.440 1.532 0.337
3J1Z 13.00 138.6 441.6 3.20 64.4 3.0 21.5 0.396 32.330 2.436 0.399

different subunits molecules sequentially in a for loop and
form an overall loss function for M molecules as

Lall =
M

∑
l=1

Lpar(l) (4)

3.1.5. QUANTIFY THE FIT QUALITY

By sampling in the simulated volume from the molecule,
we can get a weight for each atom coordinate as W (x) =
S(x,Vsim). Then, for all the atoms in a molecule, we can
form two vectors, one as sampled density vector D =
[D(x1),D(x2), ...,D(xN)] from the target volume, the other
as weight vector W = [W (x1),W (x2), ...,W (xN)] from the
simulated volume. We can then calculate three alignment
metrics, mean overlap µ , correlation ρ , and correlation
about the mean ρµ as

µ =
D ·W

N

ρ =
D ·W
|D||W|

ρµ =
(D−Dµ) · (W−Wµ)

|D−Dµ ||W−Wµ |
where the subtraction operator represents subtracting the
scalar average densities Dµ and Wµ from each component
of the sampled density vectors. We use these quality met-
rics during the interactive assessment by the bioscientist in
ChimeraX that we describe in Appendix C.

4. Use Case Scenarios
Scenario 1: Fit a single structure DiffFit efficiently fits a
single atomistic structure into a target volumetric map, as
shown in Fig. 1. Table 1 compares DiffFit’s performance
with ChimeraX and MarkovFit [13]. The hit rate and com-
putation time of DiffFit are significantly better than the
previous methods. More details are in Appendix D.

Scenario 2: Composite multiple structures Fig. 2 shows
an example of compositing multiple structures into a cryo-
EM volume map, for the PDB-protein 8SMK [14]. In the

Table 2. Performance results of identifying unknown structures. C
stands for ChimeraX, D for DiffFit; Gain = D/C.

Structure C Hit D Hit Gain

I7MLV6 D3 108 280 2.6×
I7M317 D1 127 163 1.3×

first row we show how the middle and bottom parts are
fitted in a first round of computation, with the remaining
top part of the protein being fitted in a second round of our
interactive process.

Scenario 3: Identify unknown densities By fitting struc-
tures from a library into unidentified densities and evaluat-
ing the fit quality, researchers can hypothesize the identity
of unknown components, aiding discovery-based research,
which can lead to significant biological insights. Using a
demo dataset (Fig. 3) from a recent automated domain-level
protein identification technique, DomainFit [15], we iden-
tified two protein domains (I7MLV6 D3 and I7M317 D1)
from 359 candidates with DomainFit, which took 12 hours.
DiffFit achieved the same results in 10 minutes, showing a
2× gain in hit rate (Table 2) and a 72× gain in computation
time.

5. Conclusion
DiffFit offers a novel and efficient solution to the challenges
of atom-to-map fitting that has recently arisen in structural
biology. We address these challenges with our differentiable
fitting algorithm along with a set of essential strategies that
make the algorithm robust for the domain problem, adding
a human-in-the-loop visual analytics approach to the work-
flow, and providing our approach as an open-source package
that is designed to work as part of a standard software tool
of the domain (ChimeraX). By switching from pixel-to-
pixel to point-to-volume fitting, we effectively addressed
the domain-specific challenges, suggesting Reddy’s [11]
original method could also be optimized by focusing on
essential pixels. Our performance metrics show significant
improvements over traditional methods, indicating DiffFit’s
potential to pave the way for new structural biology work-
flows focusing on aligning resolved or predicted structures
instead of de novo modeling. Current protocols like Assem-
bline [16] and DomainFit [15] rely on ChimeraX’s fitmap
command, which can now be replaced by our more effective
method. The speed of DiffFit also opens the possibility of
scanning the whole set of known and predicted molecules
with the current computational resources. In future work,
by allowing, for example, rotations for the sub-domains
and handling of collisions, DiffFit could also be applied for
refining the nuances between the predicted structures and
the experimental Cryo-EM map.
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tual environment for multiscale visualization and modeling
of DNA nanostructures,” IEEE Trans Vis Comput Graph,
vol. 28, no. 12, pp. 4825–4838, 2022. DOI: 10/mpwt.
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B. Background and related work
We rely on cryo-EM data, so below we first briefly provide essential relevant background. Then we describe past work on
image registration and model fitting and show how both relate to our own research.

B.1. Brief background

Structural biology employs various techniques to understand how atoms are arranged in macromolecular complexes, i. e.,
samples in the range of 60 kDa (i. e., 4,472 atoms; PDB 6NBD [17]) to 50,000 kDa (3,163,608 atoms; PDB 8J07 [18]) that
are essential for scientists to study processes in living cells—cryo-EM being a particularly powerful one [19]–[21]. With
cryo-EM, bioscientists capture images using an electron microscope of flash-frozen biological specimens, preserving their
natural structure without any staining or fixing [22], which would otherwise interfere with the sample. These images are
then used to construct cryo-EM 3D volumes or maps using the so-called single particle method that aligns thousands of
projections from structurally identical molecular instances into a single map (using the Fourier slice-projection theorem)
representing the electron density of the sample, which can be used to infer the atom positions within the molecule.

Subsequently, the bioscientists need to build accurate atomistic or molecular models that match the electron density map
obtained from the cryo-EM process to gain insight into molecular function and interactions. This process involves mapping
or fitting known sub-molecules into their corresponding positions within the map. The objective is to achieve an optimal
correspondence between the model and the experimental or simulated volume, revealing the organization of molecules
in 3D space, including single molecules, complexes, and the placement of small molecules and ligands into binding sites.
Molecular models are available in the Protein Data Bank (PDB, rcsb.org), accessible in various formats such as PDB,
Crystallographic Information File (CIF), and mmCIF (macromolecular CIF). The fitting itself is today typically achieved
through manual placement, alignment, and comparison with the density maps. The manual character of this process makes
it extremely time-consuming and tedious, and means that only expert biologists can complete it. To address this challenge,
numerous studies have aimed to automate the fitting process, focusing on image registration as the foundation and exploring
methods to streamline 3D model construction as we review below.

B.2. Image registration and geometric fitting

The fitting of 3D structures into captured or simulated volumes relates to the problem of image registration in image
processing. It entails aligning two images within a shared reference frame, regardless of whether they originate from the
same or different modalities [23], [24]. This process involves feature extraction, determining transformations, and assessing
accuracy through metrics. Scale-invariant features from images [25], for example, can facilitate matching across diverse
views, despite significant distortions or variations. This process involves detecting invariant keypoints using the difference-
of-Gaussian function, determining locations and scales, assigning directions based on local gradients, and measuring
gradients within selected scales around each keypoint. Extracted features are stored in a database and can then be matched
with new images using fast nearest-neighbor algorithms, with applications including object recognition. Among many
applications of the process, physicians rely on various imaging modalities to diagnose patients, each capturing images with
differing orientation. Image registration addresses this variability by aligning images within a unified frame by optimizing
parameters like orientation and translation. Medical image registration is an active research area which encompasses diverse
methods, including techniques based on cross-correlation [26], [27] and those based on mutual information [28]–[31].
Shang et al. [32], e.g., introduced a method for medical image registration using principal component analysis (PCA) neural
networks to extract feature images and compute rotation angles and translation parameters by aligning the first principal
directions and centroids in a simple and efficient way. For complex spatial transformations, another recent approach [33]
uses Kernel PCA and Teaching-Learning-based optimization (TLBO) for multi-modal image registration. Similar to these
methods, transformations and alignments need to be determined to fit the atomistic model into a volumetric map. We can
thus also use optimization techniques in cryo-EM map fitting to refine the fit and optimize parameters such as orientation
and translation—which is what we show with our work. The major difference to image registration is that, in our workflow,
we fit two different data representations and one is a sub-part of the whole that is potentially present at multiple locations in
the target volume.
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The model-to-data fitting that we need for cryo-EM data is a problem that has also been investigated in depth in computer
graphics and pattern recognition [11], [34]. It has applications not only in structural biology but is also needed in architectural
geometry, virtual and augmented reality, robotics, and various other fields [35]–[38]. The key challenges in geometric fitting
include accuracy, efficiency, robustness, and usability of the fitting module [36], [37]. Structural biology, in contrast, has
special challenges such as noisy data, non-geometric shapes, and large data sizes so that geometric fitting methods are not
directly applicable.

Yet our DiffFit algorithm still relates to techniques from computer graphics and pattern analysis. The differentiable
compositing technique proposed by Reddy et al. [11], in particular, offers valuable insights into addressing fitting challenges
as well as manipulating and understanding image patterns. With differentiable compositing we can handle patterns effectively,
outperforming state-of-the-art alternatives in pattern manipulation [39], [40]. Reddy et al.’s method [11] discovers complex
patterns by aligning elements with their own position and rotation, and facilitates refinement based on similarity to the target
for precise adjustment. In addition, Reddy et al. use a multi-resolution pyramid—relevant for handling the multi-resolution
volumetric data in our domain. Reddy et al.’s method [11], however, is restricted to certain pattern types, requires manual
element marking, and may not always find the best solution, leading to orientation errors and missed elements. Nevertheless,
we build our solution on top of their differentiable compositing.

Another approach, spline surface fitting [36], enhances the smoothness in aircraft engine geometry reconstruction by
concurrently approximating point and normal data, ensuring boundary smoothness and optimal convergence, while exploring
norm-like functions’ effects on error measurement. A further recently proposed adaptive spline surface fitting method [37]
employs surface meshes for high-precision CAD applications, supported by empirical evidence. The reliance on control
meshes of this approach, however, limits its applicability to irregular topologies and compromise the preservation of sharp
features. All these methods have common objectives and tasks such as similarity measures, pattern matching, fitting, and
geometric transformations and, thus, can serve as a motivation and starting point toward our goals in structural biology.
Since structural biology data often consists of large, complex structures without regular shapes like CAD models or easy
representations in geometric meshes with smooth surfaces, however, the aforementioned methods are not directly applicable
to our data.

B.3. Fitting in structural biology

Existing fitting methods for structural biology can roughly be categorized into manual, semi-automated, and automated
approaches, each with its own advantages and challenges when used for aligning molecular models with cryo-EM density
maps. Manual or semi-automated methods naturally involve human intervention, yet they provide control and precision—
which is particularly beneficial in the structural analysis of complex datasets or when specific adjustments are needed for
accuracy. For example, a popular tool for molecular manipulation and visualization, UCSF ChimeraX [41], includes the
fitmap technique [42]. It suggests multiple possible placements of the atomistic model on the density map and then asks the
user to make the final decision. The fitting process alternates between rigid-body rotation and gradient descent translation.
In this way it maximizes the alignment between the atomic model and the density data by optimizing the sum of density
values. Nonetheless, all of these manual or semi-automatic approaches are time-consuming and require a significant level of
expertise.

To tackle this challenge and to automate the fitting process, researchers have developed methods that rely on deep learning
(DL) [43]–[45]. A2-Net by Xu et al. [43], for example, uses DL to accurately determine amino acids within a 3D cryo-EM
density volume. It employs a sequence-guided Monte Carlo Tree Search (MCTS) to traverse candidate amino acids,
considering the sequential nature of amino acids in a protein. Here, the authors divide the problem of molecular structure
determination into three subproblems: amino acid detection in the density volumes, assignment of atomic coordinates to
determine the position of each amino acid, and main chain threading to resolve the sequential order of amino acids that form
each protein chain. Xu et al.’s method also demonstrates a remarkable speed improvement, being 100 times faster in finding
solutions at runtime than existing methods [46], [47], while achieving an excellent accuracy of 89.8%. In addition, they
introduced the A2 dataset with 250,000 amino acids in 1,713 cryo-EM density volumes, with a resolution of 3 A◦, pioneering
automated molecular structure determination training benchmarks.

Another recent method by Mallet et al. [48] for finding antibodies in cryo-EM densities CrAI uses machine learning
(ML). They formulate the objective as an object detection problem, using the structural properties of Fabs (Fragment
antigen-binding) and VHHs (single-domain antibodies). Furthermore, DeepTracer [49] is a fully automated DL-based
method designed to determine the all-atom structure of a protein complex using its high-resolution cryo-EM map and amino
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acid sequence. It employs a customized deep convolutional neural network primarily for precise prediction of the protein
structure, including the locations of amino acids, backbone, secondary structure positions, and amino acid types. The
reprocessed cryo-EM maps are the input to the neural network, which transforms the output into a protein structure. Despite
yielding accurate outcomes, the resulting atomstic structures may exhibit geometric issues, local fit to map discrepancies,
misplaced side chains, or errors in tracing and/or connectivity. All DL-based techniques, moreover, not only require a
substantial amount of time for the training (as opposed to the runtime) but also rely on large training datasets of cryo-EM
volumes and manually fitted sub-molecules—which is why we do not resort to DL approaches.

An alternative to DL is map-to-map alignment, which is used to accurately align two-dimensional or three-dimensional
maps to facilitate comparison and analysis of spatial structures or features within the maps. CryoAlign [50] is a cryo-EM
density map alignment method that achieves fast, accurate, and robust comparison of two density maps based on local
spatial feature descriptors. This approach involves sampling the density map to generate a point cloud representation and
extracting key points by clustering based on local properties. CryoAlign then calculates local feature descriptors to capture
structural characteristics, reducing the number of points considered and improving efficiency. By employing a mutual
feature-matching strategy, CryoAlign establishes correspondences between keypoints in different maps and uses iterative
refinement to enhance alignment. A combination of fast rotational matching search based on spherical harmonics and
translational scans [51] yields accurate fitting results in seconds to a few minutes. This ADP EM approach is reliable,
in particular, for fitting X-ray crystal structures to low-resolution density maps, with reduced docking times and while
maintaining a thorough 6D exploration with fine rotational sampling steps to find valid docking solutions.

In our work, we design a differentiable optimization method for fitting atomistic structures into volumetric data with the
goal of precise fitting with fast-enough computation to be applicable in semi-automatic fitting in the standard tool ChimeraX.
For this purpose we make use of the PyTorch capabilities for GPU parallel computing, trilinear interpolation sampling in
volumetric data, and auto differentiation.

C. Visually-guided fitting
A critical aspect of the post-processing of DiffFit involves the clustering and sorting of fitting results to facilitate user-guided
selection and refinement. After the optimization phase, the algorithm generates a vast array of potential fits, characterized by
their translation and rotation parameters. To manage this abundance of data and facilitate efficient result exploration, we
apply a clustering algorithm to group the fitting results based on their spatial and orientational similarity.

Each cluster represents a set of fits that are closely related, suggesting a consensus among them regarding the position and
orientation of the fitted structure within the target volume. We sort these clusters based on a defined metric, such as the
overall density overlap or correlation coefficient we just discussed, ensuring that the most promising fits are prioritized for
user review. This hierarchical organization allows researchers to quickly identify the most accurate and relevant fitting
results, streamlining the analysis process.

To further assist in the exploration of fitting results, we created an interactive visual browser as a comprehensive visualization
tool that presents the sorted clusters in a user-friendly format (Fig. 4). This browser displays key metrics for each cluster,
including the average correlation coefficient, density overlap, and a consensus error measure, providing a quick overview
of each cluster’s quality and relevance. The browser also allows users to select a cluster and visually inspect the fitting
results within the 3D context of the target volume. This interactive exploration is crucial for assessing the fit quality in
complex cryo-EM map regions, where subtle differences in position or orientation can substantially impact the biological
interpretation of the results.

An innovative feature of our approach is the ability to iteratively refine the fitting process through the selective exclusion
of already placed molecules’ densities. Once a cluster is selected and its fit (or multiple fits) is verified as accurate by the
bioscientist, the corresponding density within the target volume can be zeroed-out, effectively removing the respective
volume region from further consideration in the following part of the fitting process. This step is crucial for complex
volumes containing multiple closely situated structures, as it prevents the algorithm from repeatedly fitting structures to the
same volume region and reduces false positives when fitting the remaining region.

Thus by iteratively fitting and zeroing out densities, users can progressively shrink the target volume, isolating and identifying
individual structures within a dense or complex dataset. This iterative refinement approach ensures that the fitting process is
not only guided by the algorithm’s optimization but also by the user’s expert knowledge and visual assessment, ultimately
leading to more accurate and biologically meaningful results.
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Figure 2. Compositing a protein (PDB 8SMK [14]) from its three unique chains. Top row from left to right: three input chains, input
target volume, the best fits in the first fitting round, the remaining voxels after zeroing-out, and the fitted chains. Bottom row from left to
right: two remaining input chains, remaining region of interest in the target volume from the first round, the best fits in the second round,
the remaining voxels after zeroing-out, the fitted chains. Right: the final composited structure overlaid on the original target volume. The
involved computation takes 30 seconds in total, and the human-in-the-loop interaction takes ≈ 5 minutes.

Our resulting visually-guided fitting framework enhances the DiffFit algorithm by integrating clustering, sorting, and
interactive exploration tools. These features enable users to efficiently filter through large datasets of fitting results, identify
the most promising fits, and iteratively refine the fitting process based on visual assessment. The combination of automated
optimization with user-guided inspection and filtering addresses the challenge of accurately fitting molecular subunit
structures within volumetric data.

D. Benchmark results
We use the dataset reported in the recent MarkovFit work [13] to benchmark DiffFit’s performance and compare it with
ChimeraX and MarkovFit and report the results [the successful hit rate, computation time, and the root-mean-square
deviation (RMSD)] in Table 1. The DiffFit fitting process is automatic upon specifying a density threshold to differentiate
the background noise, removing the prerequisite of manually placing the structure at an approximate orientation close to the
final optimal. For each experiment run, we fit 1000 times to perform the search, and for each structure, we perform 5 runs
and average the metrics to obtain reliable results. The number of fits in the top-ranked cluster is regarded as the hit rate if the
representative fit of that cluster is within 3 Angstroms and 6 degrees (which is the same as ChimeraX’s threshold) from the
ground truth. We do not repeat MarkovFit’s computation as it takes an average of “7.7” + “6.25” hours to finish for each
structure but directly take the author-reported RMSD. We take the ”top-scored” model’s RMSD (although it is often the
same as that of the ”best model by RMSD among top 10”) because, in practice, there is no ground truth to compare with in
advance to get the best model. The hit rate of ChimeraX for PDB 5NL2 is less than 1 because out of 5 runs, there are 2
runs that could not find a reasonable fit within the threshold from the ground truth. This is also the reason why the average
RMSD is large. The hit rate and computation time of DiffFit are significantly better than those of previous methods. The
RMSD of DiffFit is also significantly better than MarkovFit but often very slightly worse than ChimeraX. However, this
can always be corrected (the last column in the table) by a single and automatic fit using ChimeraX’s fitting. The reported
performance values are based on a workstation that uses a Nvidia RTX 4090 GPU for DiffFit, and a single thread on an
AMD Ryzen Threadripper PRO 3995WX 2.70 GHz for ChimeraX (version 1.7.1 (2024-01-23)) fitmap command.

E. Supplementary figures
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(a) Library of structures to search against (subset).

(b) Unknown density identification; comparison of three potential fits which are overlaid on top of the target volumes.

Figure 3. Unknown density identification, where dozens to hundreds of molecular structures can be evaluated for potential fit.
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Figure 4. Our visual browser based on ChimeraX. The target volume in the left is overlaid with a fitted molecule corresponding to the
selected fit result in the table on the right (clustered fits, each row being the representative placement with the highest correlation from
that cluster). After inspection, users can save the placement and then select “Simulate volume” and “Zero density” to zero out the
corresponding voxels from the target volume.
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