Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

David López, Lora Oehlberg, Candemir Doger, and Tobias Isenberg

3D Data Visualization: Stereoscopy/VR

[image: Univ. Groningen]

3D Data Visualization: Stereoscopy/VR

\rightarrow visual immersion

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

Touch-Based 3D Data Exploration

[Sultanum et al. 2010/2011]

[Lundström et al., 2011]

Touch-Based 3D Data Exploration

[Sultanum et al. 2010/2011]

[Lundström et al., 2011]

\rightarrow immersion from interaction

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

Touch-based Navigation & Stereo?

Touch-based Navigation & Stereo?

Touch Navigation + Stereo View – Shallow 3D

Touch Navigation + Stereo View – SliceWIM

Coffey et al. 2011/2012]

(video) camera, taking pictures metaphor set correct view goal tablet camera \approx (VR) viewer cam ≈ viewer tablet position = tablet cam \approx viewer cam interaction focus tablet mapping clarity clear tablet handling awkward

metaphor still camera, after pictures controllable, stable interaction goal tablet camera \approx (VR) viewer cam ≈ viewer tablet position lower than tablet/viewer cams, only 1 rotation interaction focus tablet or stereo view mapping clarity clear tablet handling easy

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

still camera, touch interaction metaphor controllable, stable navigation goal tablet camera \approx (VR) viewer cam ≈ viewer tablet position lower than tablet/viewer cams, only 1 rotation tablet or stereo view interaction focus mapping clarity clear tablet handling easy

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

	metaphor	still camera, viewer moves	
goal		different view in 3D VR data space	
	tablet camera	≠ (VR) viewer cam ≠ viewer	
tablet position		lower than tablet/viewer cams, 2 rotations	
interaction focus		tablet or stereo view	
mapping clarity		unclear	
tablet handling		easy	

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

(video) camera, taking pictures metaphor set correct view goal tablet camera \approx (VR) viewer cam ≈ viewer = tablet cam tablet position \approx viewer cam interaction focus tablet mapping clarity clear tablet handling awkward

Virtual Video Camera

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

Synchronization: Tablet to Stereo Screen

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

Synchronization: Stereo Screen to Tablet

López et al.: Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration

Final Interaction Workflow

Final Interaction Workflow

Observational Study with Experts

- 8 participants (2f, 6m)
 - 2 types of experts: structural biology & fluid mechanics
 - median 9.5 years experience
- 2 interfaces: tBox & FI3D
- 2 datasets per domain
- both counter-balanced
- logging and video-capture

Observational Study with Experts

- 8 participants (2f, 6m)
 - 2 types of experts: structural biology & fluid mechanics
 - median 9.5 years experience
- 2 interfaces: tBox & FI3D
- 2 datasets per domain
- both counter-balanced
- logging and video-capture

Touch-Based 3D Navigation: tBox

Touch-Based 3D Navigation: FI3D

[Yu et al. 2010]

- start at A
 - training in interface (tBox or FI3D)
 - find view that is particularly interesting (view 1)

- start at A
 - training in interface (tBox or FI3D)
 - find view that is particularly interesting (view 1)
- move to B
 - data static in space, stereo view changed for new perspective
 - task: reproduce view 1 from point $B \rightarrow$ difficulties due to out of sync
 - discussion of out of sync issues, introduction of synchronization techniques and adding respective elements to interface
 - expected interaction: tablet to stereo synchronization

- move to C
 - even stronger interaction out-of-sync effect
 - task: manipulate data such that a person at point A would see view 1
 - discussion of difficulties
 - expected interaction: stereo to tablet, then additional interactions

- move to C
 - even stronger interaction out-of-sync effect
 - task: manipulate data such that a person at point A would see view 1
 - discussion of difficulties
 - expected interaction: stereo to tablet, then additional interactions
- repetition of these steps with second dataset, but with all interface elements enabled

questionnaire about study experience, semi-structured interview

Results & Observations (Highlights)

- switching between tablet and stereo views: no problems
- resolving reference frame issues:
 - 1^{st} iteration B: 4 identified problems, 4 focused on stereo screen C: 3 tablet \rightarrow stereo 2 stereo \rightarrow tablet 3 no sync
- all participants
 - considered sync to be important
 - appreciated both tablet and stereo views

Results & Observations (Highlights)

- tBox
 - preferred by 2 participants
 - perceived to be more precise (seen both as positive and as negative)
 - perceived implied order of operations
 - clearer interaction focus
- FI3D
 - preferred by 6 participants
 - perceived to be better for free exploration, but less precise
 - no implied order of operations

• each useful for different purposes/interaction goals

Conclusion

- interaction related to AR: but in visualization data is virtual
- stable reference frame essential for tablet-based 3D interface
- explanation of when relaxed interaction works, and when not
 - different frames of reference to consider
 - awkward interaction can be avoided
 - if one moves to far from initial view, sync is necessary
- extension of existing work on two-surface data exploration
- plenty of exciting future work on two-surface interfaces

Thanks

David López, Lora Oehlberg, Candemir Doger, and Tobias Isenberg: *Towards an Understanding of Mobile Touch Navigation in a Stereoscopic Viewing Environment for 3D Data Exploration*. IEEE Transactions on Visualization and Computer Graphics, 22, 2016. To appear.

DOI: 10.1109/TVCG.2015.2440233

URL: http://tobias.isenberg.cc/VideosAndDemos/Lopez2016TUM

