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Figure 1: Our results generated by synthesizing textures based on example textures extracted from stippling artist’ tone maps.

Abstract

In this work, we focus on stippling as an artistic style and discuss
our technique for capturing and reproducing stipple features unique
to an individual artist. We employ a texture synthesis algorithm
based on the gray-level co-occurrence matrix (GLCM) of a texture
field. This algorithm uses a texture similarity metric to generate
stipple textures that are perceptually similar to input samples, al-
lowing us to better capture and reproduce stipple distributions.First,
we extract example stipple textures representing various tones in or-
der to create an approximate tone map used by the artist. Second,
we extract the stipple marks and distributions from the extracted
example textures, generating both a lookup table of stipple marks
and a texture representing the stipple distribution. Third, we use
the distribution of stipples to synthesize similar distributions with
slight variations using a numerical measure of the error between the
synthesized texture and the example texture as the basis for repli-
cation. Finally, we apply the synthesized stipple distribution to a
2D grayscale image and place stipple marks onto the distribution,
thereby creating a stippled image that is statistically similar to im-
ages created by the example artist.
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1 Introduction

Stippling is an artistic technique that relies on numerous small,
repetitive marks (stipples) to visually describe forms and objects
[Hodges 1989]. It is a black-and-white technique, i. e., 100% black
marks are made on a 100% white ground (or vice versa); there are
no gray marks. However, because the size, shape and density of the
marks can be varied, shades of gray are perceived within the stip-
pled image. As such, stippling is capable of capturing a very wide
dynamic range of tones, from white to black. While stippling is a
well defined technique, choices in mark size, density, and irregular-
ities in shape can all lead to slight variations, giving rise to various
styles of stippling.

In the graphics community, many algorithms have been developed
in an attempt to approximate hand-drawn stippling (e. g., Deussen
et al. [2000], Secord [2002], Lu et al. [2003], Kopf et al. [2006]),
most relying on a procedural random distribution of stipple po-
sitions rendered as round marks. Recently, researchers started
comparing computer-generated pen-and-ink techniques to illustra-
tions hand-drawn by professional artists, including stippling. Isen-
berg et al. [2006] used a qualitative pile-sorting technique to de-
termine how participants understand and assess both hand-drawn
and computer-generated pen-and-ink illustrations. This study found
that participants, in general, could correctly distinguish between
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Figure 2: Conceptual diagram of our stippling system.

hand-drawn and computer-generated images. In addition, Isen-
berg et al. found several issues associated directly with stippling
techniques. One was that participants often noticed that computer-
generated stipple images employed a higher number of stipples per
unit area, and the stipple marks themselves were too regular in
comparison to their hand-drawn counterparts. Further work was
done on directly quantifying these differences by Maciejewski et al.
[2008]. This work employed statistical texture measures to quan-
tify the differences between hand-drawn and computer-generated
stipples and suggested that such texture measurements could be
employed in texture generation. Both studies indicate that subtle
variations of stippling are detectable and affect how images are per-
ceived.

Based on observations and discussions by Isenberg et al. [2006] and
Maciejewski et al. [2008], we have developed a novel stippling al-
gorithm to capture and reproduce these stylistic differences. The
goal of our work is to replicate the appearance of hand-drawn stip-
ple textures in scientific illustration. Our system takes a sample
stipple image and extracts example stipple textures. These extracted
samples are then used to generate new statistically similar textures,
which are in turn used to render 2D images in the same style as
the artist’s example image. Sample results of our stippling algo-
rithm are shown in Figure 1. To summarize, our method, shown in
Figure 2, consists of six major steps:

1. Automatic extraction of an artist’s tone map from an example
stipple image.

2. Extraction of the stipple distribution and stipple marks from
the tone textures.

3. Statistical analysis of texture properties.

4. Synthesis of stipple distribution to match the statistical texture
properties.

5. Given any gray-scale image, render the image using the syn-
thesized textures including stipple distributions.

6. Placement of stipple marks.

2 Related Work

There are a number of approaches in NPR that attempt to repli-
cate stippling using computer graphics. Generally, it is possible to
distinguish between techniques by the model representation being

used (i. e., images, surfaces, or volumes) as well as by the type of
output they produce: short strokes, analytic stipple points or a pixel
matrix. In this work, we focus on 2D image stippling.

Image-based stippling uses an image, typically in gray scale, as in-
put and tries to reproduce its tonal properties with stipple points
by choosing appropriate point placements, sizes, and shapes. Early
techniques used iterative relaxation approaches based on Lloyd’s
method which uses centroidal Voronoi diagrams to distribute the
generated stipple points. Deussen et al. [2000] presented an interac-
tive, tool-based method which allows users to manipulate and adjust
an initial point distribution. Secord [2002] showed an automatic
technique using weighted centroidal Voronoi diagrams. Hiller et al.
[2003] later extended the Lloyd’s method to place line segments or
polygons by using their Voronoi diagrams. Dalal et al. [2006] fur-
ther extended the centroidal Voronoi diagram technique to be based
on area and a primitive’s perimeter for re-centering, allowing them
also to stipple with arbitrary shapes.

Unfortunately, these image based approaches tend to exhibit certain
artifacts, such as the tendency to form lines of stipple points. Many
methods attempt to overcome these issues by incorporating more
randomness into the stipple placement. Schlechtweg et al. [2005]
used autonomous agents (RenderBots) to place stipple points based
on an input image using relatively simple behaviors such as try-
ing to go to dark areas and avoiding other RenderBots. Kopf et al.
[2006] used progressive and recursive Wang tiles to rapidly pro-
duce point distributions that exhibit blue noise qualities. Mould
[2007] demonstrated how to use path search in a weighted regular
graph to produce stipple point distributions that are more irregular
and follow linear features, albeit with a minimum point distance.
Vanderhaeghe et al. [2007] presented a point distribution method
for stroke-based rendering including stippling considering temporal
coherence for animation of 3D scenes and video input. Directional
stippling introduced by Kim et al. [2008] created points aligned to
edge features within an image in a structured manner that is differ-
ent from previous stippling research.

Our work differs from previous work in that we focus on synthesiz-
ing stipple distributions from example stipple textures while reusing
stipple marks. Tonal textures are extracted, the stipple distributions
of the tone textures are recreated based on texture statistics, and
the distributions are used for stipple rendering while preserving the
local tonal qualities of the image. In terms of an example-based
method, Barla et al. [2006a] focused on hatching and stippling by
example through analysis and synthesis of stroke patterns based on
the similarity between neighborhoods by Barla et al. [2006b]. Ijiri
et al. [2008] introduced a procedural system for the arrangement of
2D elements that is also based on matching neighborhoods by lo-
cal growth and relaxation methods. In contrast, we use the analysis
and synthesis of statistical characteristics of textures. Hatching by
example by Jodoin et al. [2002] presented a conceptually similar
approach to ours, which collects hatching strokes from an example
image, generates patches of synthetic strokes based on a statistical
model, and uses them to render 2D images or 3D objects. However,
they mainly focused on the synthesis of example strokes remaining
other parts such as automatically extracting strokes as a long term
goal. In contrast, we deal with the entire approach for example-
based stippling; from extracting example tone textures to rendering
images with our synthesized textures.

3 Stipple Extraction, Analysis and Synthesis

As previously stated, stippling is a technique that relies on repeti-
tive marks to create perceived shades of gray within an image, and
artists commonly use a tone map as a reference to block out an im-
age (determine the broad areas of same or similar tone). Figure 3



Figure 3: Tone maps created by artist William M. Andrews (©
William M. Andrews, used with permission). From left-top, it starts
from tone 0 to tone 9 in a clockwise direction.

shows a typical stippling tone map with 10 levels (including black
and white). When stippling, the artist will naturally dither the edges
between two adjacent tones to create a seamless transition.

Our method (depicted in Figure 2) utilizes the concept of an artist’s
tone map, taking an example stipple image and automatically ex-
tracting various tone levels. In each example tone, we capture the
statistics of the artist’s rendering style in terms of the distribution
of stipple marks. We synthesize a new texture to capture the artist’s
stipple distribution. Further, to maintain the stipple shape, we also
extract individual stipples from the example input and place these
marks based on the simulated distribution, thereby maintaining the
stipple distribution, size and shape used by the artist. Once new
synthesized textures are generated from the example distribution,
our system can take a grayscale image as input and stipple the im-
age in a style similar to the given stipple artist.

3.1 Extracting a Tone Map

In order to capture an artist’s tone map, we use a segmentation
method. We take an artist’s stipple drawing and divide the im-
age into equally sized N × N blocks. (N depends on the size of
the artist’s stipple image, and should be small enough to represent
a single tone. In Figure 4, we use N=30.) The average gray level in
each block is then calculated as the sum of all gray values over the
total number of pixels in the block. Since we use a stipple image
containing only black or white pixels, we can calculate the average
gray level as the ratio of black and white pixels in the block.

To group blocks that have similar average gray levels within a
threshold, T1, we perform a connected component analysis using
an 8-point neighborhood system. During the analysis, each block is
assigned a number in order to identify a segmented class of blocks,
and blocks assigned with the same number form one segmented re-
gion. We then sort the segmented regions by their average gray level
and determine the difference of gray levels between two neighbor-
ing regions. If the tonal values assigned to the segmented regions
are separated evenly within a threshold, T2, we extract a rectangular
texture from that segmented region. Figure 4 (middle) shows the
segmented regions identified by class numbers for a hand-drawn
stipple image (Figure 4 (left)) and shows eight example textures
(Figure 4 (right)) extracted from the stipple image. Although our
approach allows us to extract example textures from an artist’s stip-
ple image, this cannot be applied to all stipple images because our
method assumes that there exists large enough regions in the stip-
ple image for each tone level. In addition, the initial generation of
blocks may split across two apparent tones. Therefore, extraction
should be somewhat controlled by adjusting the size of a block and
the two thresholds. In the cases where our extraction method fails,
the tones may be manually extracted. In later parts of this paper,
we use William M. Andrews’ tone maps (Figure 3) as the example
stippling textures to explain our algorithm.

Figure 4: Left: blastoid shell (© Emily S. Damstra, used with per-
mission); middle: cell component values from our extraction al-
gorithm; right: extracted sample textures. Cells with neighboring
numbers join together to create a large sample from which to ex-
tract uniform texture tones.

3.2 Stipple Distribution and Marker Extraction

The next step in our process is to separate the stipple marks from
their distribution. To this end, we analyze the example stipple tex-
ture and create a new texture containing only the stipple distribu-
tion. Before starting an algorithmic method, we classify the exam-
ple stipple textures into three groups: light, merged, and dark level.
In the light level, example stipple textures have separate black stip-
ple marks on a white background (tones 1 to 4 in Figure 3), whereas
in the dark level, they contain separate white stipple marks on a
black background (tones 7 to 8). In the merged level, several stipple
marks merge together resulting in blobby shapes that are difficult to
analyze (tones 5 to 6). Tone 0 and 9 are pure white and black re-
spectively. In this work, we consider textures in this merged level
to have black stipple marks on a white background.

Our method for extracting the stipple distribution uses two differ-
ent techniques, depending on whether or not the stipples in a given
tone level can be considered as separate or conjoined entities. For
textures containing individual (non-merged) stipples, we perform a
connected component analysis using an 8-neighborhood system to
segment stipple marks. For each segmented stipple mark, a center
position is computed. The segmented stipples are then stored for
future use in the marker placement step (Section 4.2). The resulting
texture, the example distribution texture, includes all representative
positions of stipple marks as distribution information.

To create the example distribution texture in the merged level, we
use the constrained Lloyd algorithm proposed by Kim et al. [2008]
that aligns points to a feature area in an image. In our work, the
constraint is black stipple marks merged in an example stipple tex-
ture. We begin with an appropriate number of initial points selected
regularly, and then we generate the centroidal Voronoi diagrams to
spread the initial points. During optimization using the constrained
Lloyd algorithm, the points move toward the black stipple areas as
shown in Figure 5 (right) (see [Kim et al. 2008] for details).

We also perform a simple geometrical analysis for use in the synthe-
sis process (Section 3.4), calculating the average stipple size, Savg
and offsets between the positions of stipple marks: the minimum
(Omin), maximum (Omax), and average (Oavg) geometrical distances
from any stipple mark to the closest neighbor stipple mark.

3.3 Statistical Analysis

Once the tone maps are extracted and the stipple properties cap-
tured, the next step of our process is to use these example distribu-
tion textures to create synthetic distribution textures.



Figure 5: Distribution extracted from an example texture in a
merged level. Left is a tone 6 texture in William M. Andrews’ tone
maps. Middle shows the stipple centers (as white dots) found using
the constrained Lloyd algorithm. Right is the extracted distribution
texture with stipple centers represented as equally sized circles for
visualization purposes.

3.3.1 Texture Statistics

There are two common approaches to analyzing textures, the struc-
tural approach and the statistical approach. While the structural
approach works well for regular patterns, the lack of discernible
patterns in stippling requires using the statistical approach. There
are many statistical texture analysis algorithms designed to repre-
sent textures for comparison; for example, GLCM [Haralick et al.
1973], Fourier power spectra, and texture spectra are some of the
more common approaches. We have chosen the GLCM algorithm
to analyze stipple textures because perceptual psychology studies
[Julesz et al. 1973] have shown that GLCM closely matches levels
of human perception. Furthermore, previous research [Davis et al.
1979; Gotlieb and Kreyszig 1990; Lohmann 1994; Copeland et al.
2001] has shown that GLCM is a powerful tool for texture analysis,
synthesis, segmentation, and classification.

We use the GLCM algorithm to analyze texture statistics as opposed
to more recent algorithms, such as advanced implementations of the
Gray-Level Difference Histograms [Chetverikov 1994] and Gray-
Level Aura Matrices [Qin and Yang 2005] or the use of joint texture
statistics [Portilla and Simoncelli 2000]. While methods such as
those are appropriate for texture analysis and synthesis, their abil-
ity to identify structures in textures is not needed because stipple
artists try to avoid producing oriented textures or unintended pat-
terns [Hodges 1989]. As such, methods that measure the anisotropy
and texture symmetry are not necessary and may not be adequate
for comparing stipple textures.

A GLCM [Haralick et al. 1973] is a two-dimensional array L in
which the rows (r) and columns (c) represent a set of possible gray
values G. The value of L~d [i, j] indicates how many times value i
co-occurs with value j in a given spatial relationship defined by ~d.
If we set ~d to be a displacement offset vector [dr,dc] where dr is the
displacement in rows and dc is the displacement in columns, then
the co-occurrence matrix L~d [i, j] for some image, I, is defined by

L~d [i, j] = |{[r,c] | I[r, c] = i and I[r + dr, c+dc] = j}| (1)

Previous work in analyzing stipple textures [Maciejewski et al.
2008] demonstrated that GLCM statistics can be used to illustrate
the differences between hand-drawn and computer-generated stip-
ple images. The following three texture statistics were used: con-
trast, energy, and correlation:

Contrast = ∑
i

∑
j
(i− j)2N~d [i, j] (2)

Energy = ∑
i

∑
j

N2
~d
[i, j] (3)

Correlation =
∑

i
∑

j
(i−µi)( j−µ j)N~d [i, j]

σiσ j
(4)

where N~d is a normalized GLCM for ~d, µi, µ j are the means and
σi, σ j are the standard deviations of the row and column sums of
the normalized GLCM for ~d, N~d .

3.3.2 GLCMs for Stipple Textures

Our algorithm (Figure 2) uses a sample stipple texture representing
a single tone as an input. We refer to this input as the example stip-
ple texture. We then modify the example stipple texture to contain
only the stipple distribution resulting in the example distribution
texture (as described in Section 3.2). Next, our algorithm synthe-
sizes a new stipple distribution that is similar to the example distri-
bution texture with slight variations, allowing us to generate various
distributions from only one example distribution. To do this, our al-
gorithm requires another input texture, denoted as the seed texture,
that can be an empty white texture.

Given the example distribution and seed textures, the texture
GLCMs are calculated. Since the input textures are bitonal images,
we consider only two gray levels (black and white), meaning that
all GLCMs calculated will be of size 2 × 2 matrices. We calculate
(n−1) GLCMs for the n × n example distribution and seed textures
for a given displacement offset vector. Since the GLCM calculation
depends on the direction of the offset vector if only one direction is
used for the offset vector, undesired patterns can occur along other
directions during synthesis. To reduce this issue we need to com-
bine several different spatial relationships, linearly increasing the
number of GLCMs. Here, we use three different spatial relation-
ships; horizontal (0°), vertical (90°), and left-down diagonal (45°)
for GLCM generation. Therefore, we calculate 3 × (n−1) GLCMs
for each of the n × n example distribution and seed textures, and use
them for our synthesis process.

3.4 Synthesis of Stipple Distribution

Our synthesis step generates new distributions from the example
distribution textures by iteratively minimizing the error between the
example distribution texture and the seed texture’s GLCMs while
the current error between them is reduced within a maximum iter-
ation. This is very time-consuming step if an accelerating method
is not provided. In our work, combining geometrical information
such as Omin, Omax, Oavg, and Savg (computed while extracting the
stipple distribution from the example texture in Section 3.2) into the
synthesis process improves our performance by reducing the num-
ber of considered pixels.

Traditional 2D texture synthesis techniques can be roughly grouped
into two categories: non-parametric and parametric texture synthe-
sis. The former aims to directly fetch samples from the input tex-
ture in either a per-pixel [Efros and Leung 1999; Wei and Levoy
2000] or a per-patch approach [Liang et al. 2001; Cohen et al. 2003;
Kwatra et al. 2003]. Parametric texture synthesis constructs a gen-
erative model with a set of parameters to guide the synthesis pro-
cess. Representative work includes histogram matching [Heeger
and Bergen 1995], minimum entropy statistics [Zhu et al. 1997]
and GLCM/GLAM-based techniques [Copeland et al. 2001; Qin
and Yang 2005]. These works synthesize new textures by matching
the corresponding joint statistics of the input and output images.



Figure 6: Texture synthesis of example textures using Portilla and
Simoncelli’s [2000] method. Top: example stipple textures; bot-
tom: synthesized texture after 25 iterations. Obvious artifacts are
denoted with red rectangles in the synthesized textures.

While such an approach fails to properly capture the stipple shape,
the properties captured are sufficient. Other issues arise when try-
ing to capture stipple shape in non-parametric models. For exam-
ple, Figure 6 shows the texture synthesis results using the method
developed in Portilla and Simoncelli [2000]. The results are rep-
resentative of the known cases where the technique fails (e. g., a
set of ellipses in which the synthesis fails to close the ellipses).
Note the open stipples and smudges in the synthesized textures. As
such, synthesizing stipple textures with appropriate statistics is not
as straightforward as it may seem.

3.4.1 GLCM Error Minimization

We employ the average co-occurrence error (ACE) [Copeland et al.
2001] as a metric to minimize error between the GLCMs because it
has been found to be highly correlated with human judgments of the
visual distinctness between textures [Copeland and Trivedi 1998]:

ACE =
1

TNGLC
∑

~d∈D

1

∑
i=0

1

∑
j=0

|Nt,~d [i, j]−Ns,~d [i, j]| (5)

where TNGLC is the number of displacements, D is the set of dis-
placement offset vectors (see [Copeland et al. 2001] for details), and
Nt,~d [i, j] and Ns,~d [i, j] are the normalized GLCM values of the ex-
ample distribution texture and the synthesized texture respectively
for i, j, and ~d in the current iteration.

The ACE calculation is then performed for each GLCM directional
pair. We calculate the ACE between the GLCMs calculated with
a horizontal offset vector for both the example distribution texture
and the seed texture, and repeat this calculation for other displace-
ment offset vectors used in the GLCM calculations. This maxi-
mizes texture similarity in three directions and reduces the possi-
bility of unwanted patterns emerging. Using the ACE metric, we
employ the Metropolis Spin-Flip (MSF) algorithm in Metropolis
et al. [1953] to modify the seed texture. In the MSF algorithm, the
gray value of a random pixel, which is chosen from our seed tex-
ture, is changed from either black to white or white to black. Since
we are now modifying the seed texture, it is more appropriate to
refer to it as the synthesized texture. If the resultant ACE between
the example distribution texture and the newly synthesized texture
is lower than the ACE between the example distribution texture and
the previously synthesized texture for all displacement offset vec-
tors, the pixel remains flipped, otherwise, the pixel flips back and

the algorithm proceeds to the next randomly chosen pixel until all
pixels in the newly synthesized texture are considered. This pixel
flipping reduces the error between the GLCM values of our example
distribution texture and the synthesized texture, resulting in a newly
synthesized texture with a minimum error in terms of the GLCM-
based characteristics such as Equation (2), (3) and (4). This also in-
dicates our algorithm is a discrete grid-based method assuming that
all stipples are placed on discrete pixel positions such as black pix-
els on a white background or white pixels on a black background.

3.4.2 Combining geometrical information

During the GLCM error minimization phase, the pixels in the
newly synthesized texture are chosen randomly for flipping;
however, we constrain this random choice to maintain the average
offset (Oavg) computed in Section 3.2. Once a random pixel is
chosen, a stipple region around the pixel is determined with a
radius D as follows:

D = O + R
O = {Omin, Oavg or Omax}

R =

 random(0,Oavg-Omin) if O=Omin
0 if O=Oavg
random(Oavg-Omax,0) if O=Omax

where D is the radius of a circle for a stipple region, and O is as-
signed one of three offsets. The offset assigned is chosen based on
a probability distribution (we use 0.1, 0.1, and 0.8 for minimum,
maximum, and average offsets, respectively). R is a random fac-
tor based on the offset selected. Thus, D has the range of Omin to
Omax and tries to be close to Oavg. The offset information (Omin,
Oavg, and Omax) is updated whenever new stipple distribution is
placed into the synthesized texture. If the random pixel is flipped
in the MSF algorithm, we set all pixels within the radius D of the
newly flipped pixel to “considered,” meaning that the pixels cannot
be chosen for flipping during the current iteration. As such, we can
avoid random selections within any stipple regions. However, if all
pixels become marked as considered, no pixels are left for random
selection although the MSF algorithm may not yet have reached its
minimum or the average gray value of the example distribution tex-
ture. In this case, we arbitrarily assign Omin to D until pixel flipping
can occur in the GLCM error minimization. This stipple region de-
termination using geometrical information allows us to efficiently
reduce the number of pixels considered during the synthesis pro-
cess and maintains the geometrical information from the example
texture.

3.5 Synthesis Results and Analysis

In order to demonstrate our stipple texture synthesis process, we
have synthesized a series of textures from an artist’s example tex-
tures. Figure 7 illustrates several examples textures (top row), the
distributions extracted from the examples textures (middle row),
and our synthesized distributions (bottom row) corresponding to
the example distribution textures. To verify the accuracy of our
synthesis, we have performed a GLCM statistical analysis on the
textures, comparing the texture properties of the synthesized distri-
bution textures to the example distribution textures. Figure 8 shows
this analysis for the correlation texture statistics using a horizon-
tal offset vector. Results are comparable for other offset vectors
(e.g., vertical, diagonal). In Figure 8, our synthesized distribution
textures (indicated by light red boxes in Figure 7) for tones 1, 4,
6 and 8 are compared to their corresponding example distribution
textures (light blue boxes in Figure 7) in William M. Andrews’ tone



Figure 7: From top to bottom, hand-drawn stipple tone textures by William M. Andrews, example distribution extracted by our method in
Section 3.2, and our synthesized distribution textures by the algorithm in Section 3.4 corresponding to the example distribution textures.
The colored boxes at tones 1, 4, 6 and 8 indicate the textures used for comparison in Figure 8. (For visualization purpose, pixels for the
distribution are drawn larger than they actually are.)
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Figure 8: From left to right, comparison of texture correlations as a function of offset between artist’s stippling distribution and our synthe-
sized distribution for tones 1, 4, 6, and 8 in Figure 7.

maps. Here we see that the correlation property of the synthesized
distribution textures is similar to that of the example distribution
textures.

We also computed a correlation coefficient measure of the similar-
ity between the correlation statistics of the synthesized and example
distributions. This correlation coefficient measures the strength and
the direction of a linear relationship between two variables so that
its absolute value is 0 to 1, providing a simple metric for quick
analysis. Generally, the absolute value of a coefficient greater than
0.8 is described as strong, whereas the absolute value of a coeffi-
cient less than 0.5 is described as weak. From our computation, our
synthesized distribution textures (correlation coefficients = 0.9993,
0.9996, 0.9971, 1.0 for tones 1, 4, 6 and 8) are highly correlated
with those of the corresponding example distribution textures. Note
that the graphs represent the correlation of black and white pixels
with respect to their distance from the origin where as the corre-
lation coefficient denotes the similarity of the correlation statistics
between the synthesized and example distributions.

The performance of our synthesis step depends on the texture size
(n), the number of stipples, and the structural information. In our
system, the average synthesis time is approximately 12 minutes
for a 256 × 256 texture taken from a William M. Andrews’ tone
map (maximum iteration is set to 30, Omin = 14.3, Omax = 40.8,
Oavg = 29.7, and Savg = 33.7). Note that this synthesis only needs
to be performed once for each artist’s example stipple textures.
Once completed, the synthesized textures are used to render images
without repeating the synthesis.

4 Stipple Rendering

Having demonstrated that our stippling synthesis algorithm gener-
ates textures with texture statistics similar to the example stipple
textures given as input, we now proceed to use these textures to
create 2D stipple images in a manner similar to hand-drawn illus-
trations. Some artists use a continuous tone map as a reference, es-
pecially during the early development stages of a drawing when an
illustrator is blocking out while determining the broad areas of the
same or similar tone. For this purpose, we first create a distribution
image using only the synthesized distribution textures in per-pixel
rendering. Then, to render stipple marks, we use the stipple marks
extracted from example stipple textures in Section 3.2.

4.1 Rendering with stipple distribution

To render 2D stippling images, we approximate a technique used
by illustrators to match the continuous target tone by using discrete
tone maps as done in many previous NPR works (e. g., [Winken-
bach and Salesin 1994; Praun et al. 2001; Lee et al. 2006]). We uti-
lize the previously synthesized distribution textures and apply them
to grayscale images. However, the method in which we apply the
distribution texture differs from the previous methods that use tex-
ture mapping or blending: our method deals solely with pixels de-
scribing the distribution of stipple primitives. Thus, all synthesized
distribution textures are assigned their average gray value through
pre-simulation in which stipple marks are placed on the synthesized



tone 1 synthesized
distribution texture

tone N synthesized
distribution texture

distribution image
grayscale image

tone 2 synthesized 
distribution texture

tone 3 synthesized
distribution texture

pixel

Figure 9: Our rendering using stipple distribution textures.

distribution. We then fill every pixel in an input grayscale image
with our synthesized distribution textures by using our tone level
selection based on probability of the gray values within the input
image.

Our rendering from the stipple distribution is illustrated in Figure 9,
resulting in a distribution image as an output. In Figure 9, we de-
termine a tone level for each pixel based on a gray value in the
input image (light blue lines), and set a pixel value from our syn-
thesized distribution texture corresponding to the tone level into the
distribution image (red lines). In this manner, the distribution im-
age contains the entire distribution information of stipple marks for
a grayscale image.

Due to the limited number of tone levels, quantization artifacts may
be introduced during the selection of a tone level for each pixel
in a grayscale image. This is related to the difficulty of extracting
appropriate example textures from an artist’s work. To solve this
problem, we employ a method based on probability for a gray value
from an image. In Figure 10, gn is a gray value of a pixel n within an
input image, and gavg,i is the average gray value of the ith tone level.
We select either ith or (i+1)th distribution texture with probability
pl or pr respectively for the pixel n. This method preserves the
statistical characteristics in our synthesized distribution textures as
well as creates an image with continuous tones between discrete
tone levels.

Our method is resolution dependent. Hence, to insure high quality
results, the input grayscale images should have a similar resolution
to that of the example stipple image from which we extracted the
example stipple textures. Moreover, since we reuse stipple marks
extracted from the example stipple textures, the resolution of an
input grayscale image considerably affects the final image quality.
Another issue in terms of resolution is that our synthesized distri-
bution textures may be smaller than an input grayscale image. In
such cases, we generate larger distribution textures by using multi-
ple synthesized distribution textures. However, undesirable patterns
may emerge in such a method. Our synthesis process minimizes
these issues as each synthesized distribution texture will have slight
variations. We further minimize these patterns by applying a ran-
dom rotation to each small texture when merging them into their
larger counterparts. Other possible techniques that could be used
to minimize such patterns are image quilting by Efros and Freeman
[2001] and Wang tiles by Cohen et al. [2003]. In this work, all re-
sults are rendered with 4096 × 4096 distribution textures stitched by
randomly rotating 256 × 256 synthesized distribution textures.

4.2 Placement of Stipple Marks

For the placement of stipple marks into the distribution image from
Section 4.1, we use the stipple marks extracted from the exam-
ple stipple textures to better simulate actual hand-drawn stippling.
Since our method uses two colors of stipple marks (black and
white), we separate this stipple placement into two steps; first, we
place black stipple marks onto the distribution image, and then we

gavg,i gavg,(i+1)gavg,(i-1) gn

P
1.0
pl

pr

Figure 10: Probability-based tone level selection used in our ren-
dering step using distribution textures.

place white stipple marks. Therefore, we need to know which pixel
in the distribution image is assigned from which tone level. Strictly
speaking, we only need to know which pixel comes from the tone
levels using either black stipple marks or white stipple marks. Thus,
we use a level map that maintains a tone level for each stipple po-
sition to assign the appropriate stipple color. Finally, from a set of
stipple marks, a random mark is uniformly selected and placed onto
the distribution image, resulting in the final stipple image.

Our stipple marks placement, using the distribution image based on
the probability of the gray values, creates unnecessary black and
white pixels in the area rendered with middle level textures, al-
though the overall appearance shows a smooth tone transition as
shown in Figure 11 (left). In halftoning, there was also a simi-
lar problem, and there have been efforts such as Jodoin and Os-
tromoukhov [2001] and Zhou and Fang [2003] to solve this prob-
lem. We have tried to address this issue by identifying the small
pixel chunks, both white on a black background and black on a
white background, and moving them toward their true nearest stip-
ple mark (see Figure 11 for a before and after image). While this
removes the individual pixels successfully, it is not able to repro-
duce the blobby merging visible in hand-drawn stippling images.
A more advanced technique for reproducing this pattern is neces-
sary, which we leave for future work.

Figure 11: Limitation: middle tonal ranges are not yet true to
hand-drawn examples; before & after removing small pixel chunks.

5 Results and Discussion

To demonstrate our method, we used hand-drawn stipple images by
William M. Andrews, as sample inputs for our system. We generate
a set of textures based on these examples and apply the synthesized
textures to various grayscale images (see Figures 1, 12, and 13).Fig-
ure 12 compares our result to a similar hand-drawn stippling image.
Figure 13 shows our result compared to other computer-generated
stippling images by Secord [2002] and Schlechtweg et al. [2005].
The results illustrate the strength of our method in comparison to
other computer generated methods in terms of appearing to have
qualities similar to a hand-drawn image. Note that when comparing
our result to the other computer generated results, we have less in-
herent structure, providing a less rigid feel within the images. How-
ever, our is not without limitations; Figure 12 (right) presents more
chunky stipples than that of the original hand-drawn image, due
to the random selection of stipple marks without considering the
subtle size and orientation of stipple marks. Furthermore, the tone



Figure 12: Stipple result for a grayscale image (middle) of a polygonal rendering of a kidney model using textures synthesized from William
M. Andrews tone maps (right). The left image is an original hand-drawn stippled medical illustration by William M. Andrews of a kidney, not
based on the same model as our result (© William M. Andrews, used with permission).

Figure 13: Gallery of our stipple result using textures synthesized from William M. Andrews’ tone maps. Left image shows grayscale input,
middle-left is our result. Middle-right and right images are the computer-generated results by [Secord 2002] and [Schlechtweg 2005].

transition issue mentioned in Section 4.2 needs to be improved for
higher quality rendering.

6 Conclusions and Future Work

We have shown that our stippling by example technique is capa-
ble of capturing and reproducing stylistic variations of artists. Our

synthesized distributions are statistically similar to that of the ex-
ample textures as shown through the use of GLCMs, and our ren-
dering method creates stipple images while maintaining the statis-
tical characteristics, creating a perceptually similar appearance to
the example stipple work. Our results move past “machine” render-
ing and its mathematical precision to “emulative” rendering and its
subtle variations. Our technique can further be applied to computer-
generated stipple renderings and other hand-drawn images to cap-



ture any stippling style, whether it is mechanical or expressive. As
such, a system can be developed in which a user can extract stip-
ple samples from their favorite artist and reproduce their style on
any number of images. Furthermore, this technique bridges the gap
found between images rendered using current NPR techniques and
those rendered by hand.

Overall, our current results show that it is possible to capture and
replicate properties from example stipple inputs. However, our
method has several limitations. First, it is not always possible to ex-
tract example textures from hand-drawn stipple images as we men-
tion in Section 3.1. Moreover, there are issues with representing
the middle tonal ranges since we assume white stipple marks in a
dark tone level as mentioned in Section 4.2. However, it is reason-
able to do this algorithmically because stipple artists strive for the
same distributions of the white spots in dark regions as they do for
the black stipples on a white background. In addition, stippling is
more than statistics. Hence, there are many issues such as structure
awareness. However, in this work we focus on capturing and repro-
ducing statistical characteristics represented in hand-drawn stipple
images. Furthermore, in our method, support of resolution indepen-
dence, such as in the work by Kopf et al. [2006], and the represen-
tation of continuous positions of stipple marks on a discrete pixel
grid is left for future work.

Even with these limitations, our algorithm is able to better approxi-
mate hand-drawn stippling than other current comparable methods
as shown in Figure 13. Furthermore, once the texture synthesis has
been performed, rendering can be done on the fly. For example, Fig-
ure 1 (left) (4096 × 4096 resolution, stipple count = 33104 (black),
6064 (white)) takes less than 30 seconds (average 28.16 seconds)
on Intel Xeon(R) CPU 2.66GHz processor and 3 GB of RAM. As
such, our system is able to readily render any grayscale images in
an artist’s style once the tone map extraction and synthesis are com-
pleted.
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