The Gap between Visualization Research and Visualization Software (VisGap) (2022)

C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Guest Editors)

Personal Experiences of Providing and Using Research Prototypes

Tobias Isenberg

Université Paris-Saclay, CNRS, Inria, LISN, France

Abstract

I report on my personal experiences as a student, researcher, supervisor, and collaborator about providing and using research
prototype software (i. e., demos). Based on an analysis of my own research activities in computer graphics and visualization, 1
discuss problems of providing demo software for our own projects, problems of running such software years after the release, and
problems of accessing such prototypes after several years. I conclude that both source code and demos should be encouraged,
provide some recommendations on how to do the latter, and call for a more active support of sharing this part of a scientific

contribution within the Open Science movement.

1. Introduction: The Importance of Demos and Prototypes

Demos of research prototypes can have a lasting impact.” This
impact can be created by live or video-recorded demonstrations, but
also, in particular, by demo programs in the form of source code or
executables that allow others to independently replicate techniques.
Replication is essential: it means that a demo does not only serve as
an inspiration but also as a means for comparison and illustration. Fu-
ture work, e. g., may want to compare a previous approach with new
developments or provide overviews of different techniques. In both
of these cases it may be essential to create new visual artifacts (e. g.,
different visual representations of the same data for comparisons
or as examples) because the existing images published in scientific
papers cannot be used for several reasons. One of the reasons may
be that the data used in the past to create visuals is not available or
not applicable for the current work. Another reason, often even more
important, is that most papers including their visuals are typically
covered by copyright, and it is often a tedious process to obtain per-
mission from the copyright holders (i. e., from the publishers and not
from the original authors) to re-print such work. Some researchers
actually intentionally pre-record alternative images, yet more often
than not this is not done or the archives are lost. In all such cases an
executable demo can serve as a means to create new material.

In the past I often have been in the position to need visual ex-
amples from others for my own work, mostly when co-authoring
survey articles about a given field. For example, for various re-
search overviews (not only within the visualization field) I have
used the tools Irit* [EIb95], Taprats§ [Kap00], Secord’s [Sec02]
stipple demo,! the vIST/e project! [OVVDW10], OpenWalnut™*
[EHWS10,EHS13], and brainGLT [BSL*14]. In other cases I have
used publicly unavailable demos provided to me by the authors them-
selves such as the RenderBots demo [SGSO05]. I sometimes asked
colleagues directly to create new visuals for comparisons or as exam-
ples, such as Mould’s structure-preserving stippling [Mou07,LM11]

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

for a survey on stippling I co-authored [MARI17]. Occasionally
certain techniques also get independently re-implemented by others,
as demos or as part of larger tool suites. For instance, our depth-
depended halos approach [EBRIO9] was implemented as part of
version 3 of the Unreal Engine, or the previously mentioned stip-
pling by Secord [Sec02] has been re-implemented several times by
others and made publicly available.*

A demo can also be a powerful argument in the review process
of a scientific contribution. I vividly remember that, for one of
my first review assignments in a high-ranking venue in the early
2000s, I received an actual demo for a particular computer graphics
approach. I was blown away at the time—I thought the authors were
particularly courageous to have that much trust in their approach that
they allowed the reviewers of their paper to play with their software,
with the potential to discover bugs and unmentioned limitations.
Nonetheless, the demo at the time was convincing and supported the
written arguments in an excellent way, and as a result the respective
paper submission got accepted. Taking this case as inspiration, when
appropriate I also try to provide demos as part of paper submissions.

To set a good example for reproducible research, be able to pro-
vide demos for the review process, and sometimes also just for a

i See the “Mother of all Demos” (wikipedia.org/wiki/The_Mother_
of_Al1l_Demos and/or youtu.be/yIDv-zdhzMY).
 cs.technion.ac.il/~irit

§ cgl.uwaterloo.ca/~csk/washington/taprats (viaarchive.org)
1 es .nyu.edu/~ajsecord/stipples.html (via archive.org)

I sourceforge.net/projects/viste

** openwalnut.org

it code.google.com/archive/p/braingl

Exe e.g., github.com/azer89/Weighted_Voronoi_Stippling or
evilmadscientist.com/2012/stipplegen-weighted-voronoi
-stippling-and-tsp-paths-in-processing

https://tobias.isenberg.cc/
https://orcid.org/0000-0001-7953-8644
https://en.wikipedia.org/wiki/The_Mother_of_All_Demos
https://en.wikipedia.org/wiki/The_Mother_of_All_Demos
https://youtu.be/yJDv-zdhzMY
https://www.cs.technion.ac.il/~irit/
https://web.archive.org/web/20050207193847/http://www.cgl.uwaterloo.ca/~csk/washington/taprats/
https://web.archive.org/web/20070322000019/http://www.cs.nyu.edu/~ajsecord/stipples.html
http://sourceforge.net/projects/viste/files/
https://openwalnut.org/
https://code.google.com/archive/p/braingl/
https://github.com/azer89/Weighted_Voronoi_Stippling
https://www.evilmadscientist.com/2012/stipplegen-weighted-voronoi-stippling-and-tsp-paths-in-processing/
https://www.evilmadscientist.com/2012/stipplegen-weighted-voronoi-stippling-and-tsp-paths-in-processing/

Tobias Isenberg / Personal Experiences of Providing and Using Research Prototypes

Table 1: Own project websites with or without demos. Study projects
not listed, but would often benefit from the study program and data
being available. 33 additional project page entries not shown which
do not need a demo (studies, surveys, book chapters etc.). Executa-
bles (exe) for Windows, unless marked for Linux, MacOS, or iOS).
Color code: own project, supervised project (main supervisor on
the respective project), participation in a collaborative project, and
co-supervised collaborative project (not as primary supervisior, in-
cluding informal co-supervisory roles). Sorted first by participation
type (as color-coded) and then by year. For “(V/)” see Section 3.

project ID incl. year should have type of sources exeruns self- special HW
(project webpage link) a demo demo provided still (W) hosted required
Strothotte1999VKV v X X X
Isenberg200031E v X X X
Isenberg2002SSA v exe X v v X
Isenberg2003ADG X exe (partial) X v v X
Isenberg2004CTE v exe (partial) X v v X
Isenberg2006BFS v exe X v v X
Isenberg2006IAL v exe X v v V)
Isenberg2008IEV v exe X v v)
Isenberg2008MST v exe X v v)
Isenberg2013VAS v web + Java X v (offline) v X
Isenberg2022DYB v Python script v v v X
Zander2004HQH v exe X v v X
Isenberg2006GCS v exe X v v X
Schwarz2007MRP v exe X v v)
Grubert2008ISN v exe X v v)
Vlaming2008PTI v ExE X ? v v
Everts2009DDH v exe (W,L,M) X v v X
Svetachov2010DCI v exe (W,L) X v v GPU
Martin2010EBS v exe (W,L) X X v X
Nijboer2010EFG v exe X v v)
Postma2010EDS v exe (W,L) X v v GPU
Yu2010FDT v/ exe X v v W)
Zwan2011IMV v exe X v v GPU
Gerl2012SAT v X X GPU
Klein2012DSD v exe X v v)
Yu2012ESA v exe X v v)
Gerl2013IEH v X X X
Everts201SEBW v X X X
Everts20151IL v X X GPU
Besancon2017HTT v sources only v n/a X v
Besancon2017PGF v sources only v n/a X v
Besancon2018RAR v sources only v n/a X X
Besancon2019HTT v sources only v n/a X v
Wang2019AT3 v sources only (i0S) v n/a X v
Halladjian2020SIV v exe X v v GPU
‘Wang2020TUA v X X v
Halladjian2022MUI v exe X v v GPU
Sonnet2003TWF v X X X
Isenberg20031VD v X X X
Halper20030AS v exe (partial) X v v X
Jesse2003UOH v exe X v v X
Schmidt2007SSI 4 exe X v X X
Stamp2007CSP v web, Java applet v X v X
Neumann2007NLI v exe X v v X
Boukhelifa2012ESV v X X X
‘Wo0d2012SRI v library v v X X
Bach2013IDG v X X X
Willet2015LRS v web v v X X
Lawonn20160BF v X X GPU
Yu2016CEE v exe X v v)
Isenberg2017VST X dataset n/a n/a v n/a
Isenberg2017VMC X dataset n/a n/a X n/a
Martin2017SDS X exe (W,L; partial) v v v X
Isenberg2017VPS X dataset n/a n/a v n/a
Martin2019ADC X exe (W,L) X v v X
Chen2021VCF X dataset n/a n/a X n/a
Ling2021DDR v dataset n/a n/a X n/a
Tietjen2005CSS v X X X
Fanea2005131 v X X X
Meraj2008MHD v X X X
Kim2009SBE v exe X v v X
Hancock2010SST v X X v
Vlaming2010I12M v X X v
Chaboissier2011RTC v X X v
Zwan2012CNN v exe X v v GPU
Kim2013BMM v X X X
Issarte]2016TVP v X X v
Miao2018MVS v X X GPU
Miao2018DDS v X X GPU
Kouril2021HBD v X X GPU
Lu2021CCH v X X X
Kouril2022MAN v X X GPU

personal record/backup of the demos, I thus strongly encourage my
own students to provide demos for their projects if at all possible.
I usually ask them to create demos for the Windows operating sys-
tem, but some occasionally also produce Linux or MacOS versions
(more on this choice below). To better understand my own prac-
tices for the purpose of this opinion piece, I went through all the
project pages on my scientific website! and checked if a project
should contain a demo, does contain a demo (and in what form),
and if the potential demo still runs in today’s environments (Ta-
ble 1). In this overview I only include those projects in which a
demo is meaningful, thus mostly computer graphics and visualiza-
tion technique contributions. Other types of contributions such as
surveys typically do not need demos, even though for a few we also
collected or specifically re-implemented a subset of the surveyed
techniques (e. g., [[FH*03, MARI17]). Other papers such as studies
(which I also did not include in the table) are typically considered
to not need a demo, yet even these could often benefit from the
exact study program and the data analysis scripts being available, to
facilitate replication. I color-coded the table rows by contribution
type based on whether it was a project headed and implemented
primarily by myself (mostly early contributions, some recent), su-
pervised projects where I served as a main supervisor for the project,
projects in which I participated as a collaborator, and finally projects
where I served in some co-supervisory role (including various forms
of informal co-supervision arrangements for the specific projects).

Looking at the overview in Table 1, it seems that for a good
majority of projects in the first three participation types we either
produced an executable demo, provided source code, or both. Only
for the last type, the co-supervisions, only for 2 out of 15 projects we
actually produced a demo. What this overview essentially shows is
that I personally place more emphasis on providing demos compared
to others. Yet we should not point fingers at anyone! Instead, there
are several important difficulties at play that often prevent demos or
source code from being made available. And I personally also did
not provide demos for all projects, and in the remainder of the paper
I discuss the reasons that may be responsible for why providing
demos is difficult, why demos often do no longer work years later,
and why many demos cease to be accessible after some time.

2. Problems of Providing Demos Yourself

I believe that the main reason for most people today to not provide
a demo or to publish source code is that it is extra effort. Moreover,
this effort is typically needed after the publication is accepted or the
thesis is submitted—i. e., at a time when new tasks or goals have
become more important. So motivating (usually) students to provide
a demo at this time is difficult, in particular as they are typically
no longer paid for the extra work and the eternal fame and glory
argument may not be convincing for some.* And then the demo may
also be a low priority and simply get forgotten once the paper
is accepted and published. In the past it may also have played a
role that the practice of having project pages had not been as

i tobias.isenberg.cc/Main/VideosAndDemos (I also link to the indi-
vidual project webpages from the project ID in the first column of Table 1)
£ Also see the discussion of journal replicability stamps and the general

] p y p g
question of incentives in Section 5.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://tobias.isenberg.cc/VideosAndDemos/Strothotte1999VKV
https://tobias.isenberg.cc/VideosAndDemos/Isenberg20003IE
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2002SSA
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2003ADG
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2004CTE
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2006BFS
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2006IAL
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2008IEV
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2008MST
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2013VAS
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2022DYB
https://tobias.isenberg.cc/VideosAndDemos/Zander2004HQH
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2006GCS
https://tobias.isenberg.cc/VideosAndDemos/Schwarz2007MRP
https://tobias.isenberg.cc/VideosAndDemos/Grubert2008ISN
https://tobias.isenberg.cc/VideosAndDemos/Vlaming2008PTI
https://tobias.isenberg.cc/VideosAndDemos/Everts2009DDH
https://tobias.isenberg.cc/VideosAndDemos/Svetachov2010DCI
https://tobias.isenberg.cc/VideosAndDemos/Martin2010EBS
https://tobias.isenberg.cc/VideosAndDemos/Nijboer2010EFG
https://tobias.isenberg.cc/VideosAndDemos/Postma2010EDS
https://tobias.isenberg.cc/VideosAndDemos/Yu2010FDT
https://tobias.isenberg.cc/VideosAndDemos/Zwan2011IMV
https://tobias.isenberg.cc/VideosAndDemos/Gerl2012SAI
https://tobias.isenberg.cc/VideosAndDemos/Klein2012DSD
https://tobias.isenberg.cc/VideosAndDemos/Yu2012ESA
https://tobias.isenberg.cc/VideosAndDemos/Gerl2013IEH
https://tobias.isenberg.cc/VideosAndDemos/Everts2015EBW
https://tobias.isenberg.cc/VideosAndDemos/Everts2015IIL
https://tobias.isenberg.cc/VideosAndDemos/Besancon2017HTT
https://tobias.isenberg.cc/VideosAndDemos/Besancon2017PGF
https://tobias.isenberg.cc/VideosAndDemos/Besancon2018RAR
https://tobias.isenberg.cc/VideosAndDemos/Besancon2019HTT
https://tobias.isenberg.cc/VideosAndDemos/Wang2019AT3
https://tobias.isenberg.cc/VideosAndDemos/Halladjian2020SIV
https://tobias.isenberg.cc/VideosAndDemos/Wang2020TUA
https://tobias.isenberg.cc/VideosAndDemos/Halladjian2022MUI
https://tobias.isenberg.cc/VideosAndDemos/Sonnet2003IWF
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2003IVD
https://tobias.isenberg.cc/VideosAndDemos/Halper2003OAS
https://tobias.isenberg.cc/VideosAndDemos/Jesse2003UOH
https://tobias.isenberg.cc/VideosAndDemos/Schmidt2007SSI
https://tobias.isenberg.cc/VideosAndDemos/Stamp2007CSP
https://tobias.isenberg.cc/VideosAndDemos/Neumann2007NLI
https://tobias.isenberg.cc/VideosAndDemos/Boukhelifa2012ESV
https://tobias.isenberg.cc/VideosAndDemos/Wood2012SRI
https://tobias.isenberg.cc/VideosAndDemos/Bach2013IDG
https://tobias.isenberg.cc/VideosAndDemos/Willet2015LRS
https://tobias.isenberg.cc/VideosAndDemos/Lawonn2016OBF
https://tobias.isenberg.cc/VideosAndDemos/Yu2016CEE
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2017VST
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2017VMC
https://tobias.isenberg.cc/VideosAndDemos/Martin2017SDS
https://tobias.isenberg.cc/VideosAndDemos/Isenberg2017VPS
https://tobias.isenberg.cc/VideosAndDemos/Martin2019ADC
https://tobias.isenberg.cc/VideosAndDemos/Chen2021VCF
https://tobias.isenberg.cc/VideosAndDemos/Ling2021DDR
https://tobias.isenberg.cc/VideosAndDemos/Tietjen2005CSS
https://tobias.isenberg.cc/VideosAndDemos/Fanea2005I3I
https://tobias.isenberg.cc/VideosAndDemos/Meraj2008MHD
https://tobias.isenberg.cc/VideosAndDemos/Kim2009SBE
https://tobias.isenberg.cc/VideosAndDemos/Hancock2010SST
https://tobias.isenberg.cc/VideosAndDemos/Vlaming2010I2M
https://tobias.isenberg.cc/VideosAndDemos/Chaboissier2011RTC
https://tobias.isenberg.cc/VideosAndDemos/Zwan2012CNN
https://tobias.isenberg.cc/VideosAndDemos/Kim2013BMM
https://tobias.isenberg.cc/VideosAndDemos/Issartel2016TVP
https://tobias.isenberg.cc/VideosAndDemos/Miao2018MVS
https://tobias.isenberg.cc/VideosAndDemos/Miao2018DDS
https://tobias.isenberg.cc/VideosAndDemos/Kouril2021HBD
https://tobias.isenberg.cc/VideosAndDemos/Lu2021CCH
https://tobias.isenberg.cc/VideosAndDemos/Kouril2022MAN
https://tobias.isenberg.cc/Main/VideosAndDemos

Tobias Isenberg / Personal Experiences of Providing and Using Research Prototypes

established as it is now, such as in the 2000s for myself (I only
created the respective pages cited in Table 1 much later).

Another major reason that may prevent the release of a demo or
source code is problems with the licenses of used code, such as
from existing libraries or toolkits. During the actual developments
these licenses often matter much less, as the code is not public and
only the potential visual results are included in publications. Yet
when an executable demo or even source code of the developed tool
is to be published then one has to ensure that the requirements of
these licenses are met. Hopefully then it does not turn out that the
licenses of the used libraries are incompatible with the intended
type of release, as changing to an alternative license is usually not
possible at this time. Sometimes problems even arise in unexpected
places: a used toolkit may allow the release of executable demos but
may require that the used graphics shaders are not provided in clear
text but are compiled into the demo—which the student may not
have done when developing the respective demo and a recompilation
may be tricky if the student has already moved on to a new job. In
another example, in two of my earliest published projects [SMI99,
IMS00] we had used Smalltalk as a programming environment.
While it would technically be relatively easy to distribute such a
project demo by sharing the project’s cross-platform bytecode, at the
time we used a commercial Smalltalk implementation (Visual Works)
for which it was unclear how to legally distribute the projects.’

Even if the student spends the extra effort and the licenses of
included code are not problematic, another challenge is the need
to pick a suitable license for the distribution of the demo or the
sources. Again, the selected licenses have to be compatible with used
libraries or toolkits. There are many possible choices, from a large
selection of open source licenses* to creative common licenses® to
just a “feel free to use, but at your own risk” model. So which one
is best or most suitable? A big challenge here (at least for me) is
the lack of understanding of the legal implications of this choice,
and if I am even at the liberty to choose a given license. This choice
could be restricted by the licenses of the used libraries or even by
one’s employer—not to mention the potential problems if different
employers or universities are involved in a publication.

The question of license or usage rights also involves the in-
cluded data—which is often essential for both computer graphics
and visualization. Often we may use example data from collabora-
tors and need to make sure that we are even allowed to include this
data in the demo—yet without it the demo would usually not be
meaningful. And if these datasets involve information about people—
such as in many visual analytics approaches—, then we also have
to meet the requirements of national and international laws such
as the GDPR in Europe.T So ultimately it is not surprising that
researchers often do not have the time or resources to go the extra
mile to actually make a demo or source code available. Nonetheless,
even if they do, there are issues with running these demos a few
years after publication or even accessing them, as I discuss next.

3. Problems (and Solutions) for Demos to Run Years Later

From my own experience it seems that creating demos as self-
contained MS Windows™ executables seems to work reasonably
well to ensure a long survival of demos. Some of my own prototype

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

implementations from about 20 years ago [IHS02] are still running
on today’s Windows versions. And for this reason I always encour-
age students to provide demos of their implementation at least as
Windows executables, to put them on project pages.

What is problematic with this approach is the reliance on
dynamic-link libraries (DLLs). First, it is difficult for the peo-
ple who actively implement a project to actually determine which
DLLs are, in fact, needed for a demo—the program obviously runs
fine on their development environment because many DLLs are
installed at a central location. For example, the runtime DLLs for
Microsoft’s Visual Studio™ are often necessary for a program to
run, so it is important to test any demo on a virgin Windows installa-
tion to ensure that all needed DLLs are provided with the executable.
It is not enough to state in the readme file that some Visual Studio
runtime environment needs to be installed, as these may not easily
be accessible years down the road.

It is also problematic to rely on external libraries. For example,
Secord’s [Sec02] stippling demo relied on an old version of the
dynamically linked variant of the ImageMagick suite. Yet even such
open-source projects stop providing their old binaries at some point
in time. When I tried to run the Secord’s stippling demo a few years
ago it was close to impossible to find the old ImageMagick binaries
to make it work. Newer versions also did not work because the
DLL interface had changed to a degree that they were no longer
cornpatible.H In this specific case I was able to resurrect the needed
binaries with the help of the Internet Archive, which happened to
have backed-up some of the old installation files.**

Even if a demo includes all needed DLLs it may still be prob-
lematic to run them on modern versions of Windows. Either some
features no longer work (as with some of my own early demos)
or the executable refuses to execute some essential tasks (such as
loading the data files with Secord’s stippling demo). In such cases
in may be helpful to resort to virtual machines (or old hardware)
and install an old version of the operating system, which can then
allow you to run the demo as expected. It can therefore be useful to
keep old ISO files of Windows around.

An alternative to a one-off demo program for a single method is
the implementation of the technique as part of a comprehensive
software suite. This approach has the advantage that a larger system
is likely to be supported and actively developed for a longer time,
such that it can be adjusted to changing operating systems. For
example, our NPR-supported sketch-based modeling [SIJ*07] has
been implemented in such a larger system. " Within the visualization
domain, similar systems that focus on a particular sub-domain are

f And, again, having executable project demos available on project web-
pages was not as common at that time as it is today.

¥ opensource.org/licenses

§ creativecommons.org/about/cclicenses

{ gdpr.eu

I Adrian described it as “bit rot” and suggests to statically link libraries:
cs.nyu.edu:80/~ajsecord/downloads.html (via archive.org).

** In this case it is necessary to know the correct link of the page that
distributed the files, and then use web.archive.org’s “URLs” feature to
search for the archived files for a given directory.

¥ Implemented by Ryan Schmidt in his ShapeShop (shapeshop3d. com).

https://opensource.org/licenses
https://creativecommons.org/about/cclicenses/
https://gdpr.eu/
https://web.archive.org/web/20110126051034/http://cs.nyu.edu:80/~ajsecord/downloads.html
https://web.archive.org/
http://www.shapeshop3d.com/

Tobias Isenberg / Personal Experiences of Providing and Using Research Prototypes

OpenWalnut [EHWS10] and brainGL [BSL*14], or even general
toolkits such as VTK [SLMO04] or TTK [TFL*18].

Coming back to one-off demos, my experience is that pure CPU
realizations survive for longer times than GPU-based implementa-
tions. Hardware extensions or GPU APIs required for a particular
implementation may not be compatible between the competing GPU
architectures or they may be removed from future GPUs. This re-
moval of support also applies to or occasionally happens for CPU
extensions such as Intel’s recent removal of SGX, yet in my expe-
rience this occurs less frequently than for GPUs. Moreover, not all
current hardware has dedicated or full-featured GPUs—many of
today’s laptops seem to lack such support to the degree that many
of my old demos that rely on (basic) GPU support do not run on my
HP laptop which is my day-to-day computing platform, despite it
being equipped with an Intel GPU.

In addition to the need for GPU support, many of today’s visual-
ization approaches also rely on more than basic PC hardware. And
such proprietary special hardware often has an active life of only
a few years, such as with the touch platforms I worked on (Smart-
Board [SIMCO07,IEGCO08] or PQLabs screen overlay [KGP*12]).
Here we have both the challenge of the actual hardware to be avail-
able as well as the need for dedicated drivers (which one has to
archive as well as they, too, tend to quickly disappear from the Web)
to allow the operating system to interface with them. In such cases
I successfully maintained the usability of our demos by insisting
already at development time that the developers implemented sup-
port for common hardware such as mouse input as an alternative to
other techniques such as touch sensing (a feature that can also be
useful during the actual development phase). I marked such cases
in Table 1 with “(v")” to indicate that, while the project technically
relies and works best on dedicated hardware, its demo still provides
a way to interact with it using a generic PC setup.

In addition to this problem of dedicated hardware, a growing
number of approaches requires more than one computing device
to work in sync. This is often the case for large-screen interaction
or interactive data exploration in virtual (VR) or augmented reality
(AR). A demo here not only has to include the software for the
actual display platform, but also for the usually mobile secondary
device and, sometimes, even for a central managing server and/or
a dedicated networking setup. It is often virtually impossible to
provide a reproducible demo for such multi-platform setups, and in
those cases my students and I have occasionally resorted to provid-
ing source code on GitHub instead of demos (even if this code is
not as easy to run as executables as I had previously argued).

Connected to this issue is also the selection of architecture for
implementations for mobile devices. Some devices may support
a special type of input such as Huawei’s ‘force touch’t or Apple’s
“3D-touch.’* Those are certainly exciting opportunities to explore
as alternative means of controlling the visual exploration of data,
yet with Apple’s policy of closing their iOS ecosystem it makes
little sense to provide an executable demo app (outside of their app
store, such as on a research webpage) as it cannot easily be run by
others. In the one case where we used an iOS device as the platform
due to its unique sensing capabilities [WBAI19], we thus also only
provided source code that would have to be deployed to a target
device using xcode. An Android implementation, in contrast, can

be run much with much less effort (as an easily installable *.apk
file), which is why I would recommend to select Android over i0OS
devices for all mobile research prototypes.

One may argue that OS-independent implementations may
be the solution to be preferred, also for PC-based prototypes. For
example, one may argue that Java set out to become such an OS-
independent platform. Yet in my experiences the respective APIs
age faster than plain OS-dependent executables. For example, while
plain Java *. jar ‘executables’ such as my own map abstraction
implementation [Isel3] still run even with modern Java runtime
environments (RTE) when started locally, its Web-based Java Web-
starty no longer works due to the respective plugin no longer being
supported by modern browsers. I observed the same for other demos,
such as Kaplan’s [Kap00] Taprats that I mentioned in Section 1.

Another recommendation to avoid incompatibility issues that I
hear frequently is to use web-based solutions. In my view the sur-
vival rate of such demos is even lower than that of executable files,
mostly because their survival often relies on few or even single peo-
ple (students), after whose departure from a department the server
often dies. Not even the archiving marvels of the Internet Archive’s
WayBackMachine help in this case, as it cannot archive the needed
server infrastructure and implementation. Cipriano and Gleicher’s
excellent GRAPE web tool! for molecular visualization [CGO07],
e. g., unfortunately died only a few years after having been intro-
duced. When I tried a few years ago to use it to create visuals for an
article of my own for a technique comparison I had to rely on some
images they had created themselves for their own paper. Another
well-known example within the visualization field—one that was
even backed by a large company and not just by individuals—is
Viégas et al.’s [VWvH*07] Many Eyes system, that lived from 2007
t0 2015/ but then was retired by IBM. Java Applets that used to be a
recommended way for smaller web-based implementations are also
no solution [Skr20], these also no longer run even if the files are still
available and one attempts to run them locally.

4. Problems of Provided Demos to Remain Accessible

Ultimately the question of being able to try out a research prototype,
however, does not depend on whether one is able to run a specific
tool on a particular hardware setup, but whether one is able to
get access to the software in the first place. Even if demos of a
particular approach were provided on the Web at some point, it
is a question of support. Single-person initiatives (i. e., those that
rely on a single or on few students and their research work) often
loose support after the students graduate, and they then quickly
disappear from the Web. Ideally one has saved a local copy of
such demos in time to be able to use them later when needed (e. g.,
for technique comparisons or for examples for surveys). In other
cases the mentioned Internet Archive may be able to help, as it

i huawei.com/en/news/2015/09/hw_452909

% developer.apple.com/design/human-interface-guidelines/
ios/user-interaction/3d-touch

§ osmabstraction.isenberg.cc

{ grape.uwbacter.org (via archive.org)

I bewitched.com/manyeyes.html

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://www.huawei.com/en/news/2015/09/hw_452909
https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/3d-touch/
https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/3d-touch/
https://osmabstraction.isenberg.cc/
https://web.archive.org/web/20121115235209/http://grape.uwbacter.org/
http://www.bewitched.com/manyeyes.html

Tobias Isenberg / Personal Experiences of Providing and Using Research Prototypes

occasionally also archives the linked binaries. In such cases it helps
to store at least the URLs of the project pages, which are needed
to look up the stored files. For example, it can help to accompany
surveys of the research literature with links to the respective tools
that were used to create example images (e. g., in footnotes) as I
did for my illustrative DTI visualization techniques survey [Isel5]
or in this very paper. Alternatively, the same purpose can also be
served by a paper appendix that contains an overview of resources
for a particular topic at publication time, like we did for a survey of
digital stippling [MARI17].

As I had mentioned in the introduction, in lucky cases certain ap-
proaches also get picked up by others and are either re-implemented
as such or as part of a larger toolkit. An example is my colleague
Domingo Martin’s Stipple Shop tool” that he created as part of the
same survey of digital stippling [MARI17]. Yet this is rare overall
and even it if happens one cannot be sure that the re-implementation
is fully faithful to the original implementation or approach. Also,
the question of the long-term accessibility of the re-implementation
is the same as for the original tool, if it existed.

While there are certainly examples of single people hosting tools
over multiple decades,” modern source code archives such as
SourceForge and, more recently, GitHub promise to solve this host-
ing problem. They guarantee the availability over longer periods of
time compared to self-hosted software. Moreover, they not only pro-
vide means to share source code but also support software authors
with making binaries available, including hosting old releases for
extended periods of time. As such they seem to be better suited for
sharing one’s demos, and could also be a solution for cases where
sharing the source code is not an option. Nonetheless, even for large
hosting services they also rely on the continued financial support
of their backing companies or institutions. For example, Google’s
Code repository today only survives in form of a static archive.

5. Limitations, Summary, and Conclusion

With this opinion piece I have tried to provide an overview of my
own personal experiences concerning the creation, hosting, access-
ing, and use of research prototypes or demos of my own work
and of others. Naturally, this discussion is quite self-focused; yet
the mentioned issues and at least partial solutions also should ap-
ply to the visualization field at large or other fields where demos
would be helpful. Nonetheless, I want to point out again that I fo-
cused primarily on prototypical demos whose goal is to allow others
try out published techniques and/or produce additional results for
comparison—I have largely not been talking about the development
of real domain applications, which certainly have additional points
of concern to remain available, relevant, or usable.

I can thus summarize my experiences and advice as follows. I
would recommend to provide both, executable demos and source
code—both are needed yet for different forms and goals of replica-
tion. While I have not personally done the latter to a large degree
for my own work yet, it seems to be increasingly supported by
universities and institutions, which is great. But I also think that
my approach to provide executables still is important as they allow
others to replicate one’s approaches more easily than if only source
code is available. For such executables, I recommend Windows bi-
naries, for which all required libraries/DLLs should be included to

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

make it possible to run the demo at a later time on a pristine OS.
If special hardware is needed, it helps potential users to provide
work-arounds to make the tool usable on common hardware. When
you share demos or code, it may be better in the long run to rely
on established large platforms such as GitHub (and also research-
focused sites such as OSF®), as opposed to self-hosting. Also, as
a supervisor, regularly check if the respective demos are, in fact,
created—potentially using an ‘exit procedure’ for graduating stu-
dents that includes such a requirement. If a demo is not possible
for some reason, then provide a video and also create additional
visuals for colleagues who may need examples that are not covered
by copyright other than that of the original authors (who can give
permission for a later reuse by others relatively easily).

In conclusion, the question of whether source code is made avail-
able or demo programs are shared, maintained, and kept available
is ultimately primarily a question of the incentive to overcome the
described hurdles. In recent years, several journals (in our field, e. g.,
TVCG, CGF, TOG, C&G) have started to introduce what they call
“replicability stamps.”T While this is a nice initiative and may pro-
vide an additional incentive, it unfortunately still only boils down to
the eternal fame and glory argument I mentioned in Section 2. I As
others have discussed in detail (e. g., [Cro19]), in today’s scientific
publishing landscape the focus on established, easily measurable
quantitative quality metrics does not encourage reproducible work,
it encourages highly cited work and a high output. This leaves little
time for reproducibility (in the form of source code, demos, or oth-
erwise). Open science practices (e. g., [BPSS*21]) should further
be encouraged and expected by default, including not only the paper
itself, its data, and the respective source code but also binaries to
change the incentive from ‘eternal fame and glory’ to a prerequisite
for a paper being accepted—at least for the majority of publications.
Such a requirement for paper acceptance then may also change the
game overall and encourage the establishment of a default and long-
supported platform(s) of demos or implementations, such that many
or most of the issues I discussed become obsolete.

Full Disclosure

In the process of the navel-gazing for this write-up, I added six
more demo programs to my project pages, resulting in the summary
in Table 1. Specifically, I added three old demos, one of which I
found in my archives, while two others were provided to me by my
former students Angela Brennecke and Xiyao Wang (Ei&ig) from
their own archives. The other three demos I added were for projects
whose papers were just recently accepted. I also replaced another
old demo with a different executable I found in my archives because
the original one would only start under very specific circumstances.

f github.com/dmperandres/StippleShop and tobias.isenberg.
cc/VideosAndDemos/Martin2017SDS

 One example is Gershon Elber’s Irit rendering software that I mentioned
in Section 1, it has been available for more than 25 years.

§ Center for Open Science: osf.io and cos.io.

T Also see the Graphics Replicability Stamp Initiative (GRSI)
replicabilitystamp.org and sites.google.com/site/
drminchen/cgf-info/cgf-stamp.

I A small exception is TVCG: it promises faster acceptance-to-final-publi-
cation times for articles with the stamp, compared to those without it.

https://www.filmuniversitaet.de/portrait/person/angela-brennecke/
https://xiyaowang.net/
https://github.com/dmperandres/StippleShop
https://tobias.isenberg.cc/VideosAndDemos/Martin2017SDS
https://tobias.isenberg.cc/VideosAndDemos/Martin2017SDS
https://osf.io/
https://cos.io/
http://www.replicabilitystamp.org/
https://sites.google.com/site/drminchen/cgf-info/cgf-stamp
https://sites.google.com/site/drminchen/cgf-info/cgf-stamp

Tobias Isenberg / Personal Experiences of Providing and Using Research Prototypes

Acknowledgments

I am extremely grateful to all my past and current students and
collaborators who created demos and/or provided source code, data,
etc. that [am able to put on or reference from our research project
pages. Thanks a lot! Also thanks to Lonni Besancon for comments,
pointers to the literature, and the many discussions on the subject of
open science, to Mickaél Sereno for his compiler wizardry to finish
some recent demos, and to Raimund Dachselt for the idea of keeping
an archive of alternative/extra images for each publication. Finally,
thanks to Petra Isenberg for general comments and proof-reading.

References

[BPSS*21] BESANCON L., PEIFFER-SMADJA N., SEGALAS C., JIANG
H., MAsuzzo P., SMouUT C., BILLY E., DEFORET M., LEYRAT C.:
Open science saves lives: Lessons from the COVID-19 pandemic. BMC
Medical Research Methodology 21 (June 2021), 117:1-117:18. doi:
10.1186/s12874-021-01304-y.

[BSL*14] BOTTGER J., SCHAFER A., LOHMANN G., VILLRINGER A.,
MARGULIES D. S.: Three-dimensional mean-shift edge bundling for the
visualization of functional connectivity in the brain. IEEE Transactions
on Visualization and Computer Graphics 20, 3 (Mar. 2014), 471-480.
doi:10.1109/TVCG.2013.114.

[CGO07] CIPRIANO G., GLEICHER M.: Molecular surface abstraction.
IEEE Transactions on Visualization and Computer Graphics 13, 6
(Nov./Dec. 2007), 1608-1615. doi:10.1109/TVCG.2007.70578.

[Crol19] CRoOUS C. J.: The darker side of quantitative academic perfor-
mance metrics. South African Journal of Science 115, 7-8 (July 2019).
doi:10.17159/sajs.2019/5785.

[EBRIO9] EVERTS M. H., BEKKER H., ROERDINK J. B. T. M., ISEN-
BERG T.: Depth-dependent halos: Illustrative rendering of dense line
data. IEEE Transactions on Visualization and Computer Graphics 15, 6
(Nov./Dec. 2009), 1299-1306. doi:10.1169/TVCG.2009.138.

[EHS13] EICHELBAUM S., HLAWITSCHKA M., SCHEUERMANN G.:
LineAO—Improved three-dimensional line rendering. IEEE Transactions
on Visualization and Computer Graphics 19, 3 (Mar. 2013), 433-445.
doi:10.1109/TVCG.2012.142.

[EHWS10] EICHELBAUM S., HLAWITSCHKA M., WIEBEL A.,
SCHEUERMANN G.: OpenWalnut — An open-source visualization sys-
tem. In Proc. 6'" High-End Visualization Workshop (2010), Lehmanns
Media—LOB.de, Berlin, pp. 67-78.

[EIb95] ELBER G.: Line illustrations € computer graphics. The Visual
Computer 11, 6 (June 1995), 290-296. doi:10.1007/s003710050022.

[IEGCO08] ISENBERG T., EVERTS M. H., GRUBERT J., CARPENDALE S.:
Interactive exploratory visualization of 2D vector fields. Computer Graph-
ics Forum 27, 3 (May 2008), 983-990. doi:10.1111/j.1467-8659.
2008.01233.x.

[IFH*03] ISENBERG T., FREUDENBERG B., HALPER N.,
SCHLECHTWEG S., STROTHOTTE T.: A developer’s guide
to silhouette algorithms for polygonal models. IEEE Com-

puter Graphics and Applications 23, 4 (July/Aug. 2003), 28-37.
doi:10.1109/MCG.2003.1210862.

[IHS02] ISENBERG T., HALPER N., STROTHOTTE T.: Stylizing sil-
houettes at interactive rates: From silhouette edges to silhouette strokes.
Computer Graphics Forum 21, 3 (Sept. 2002), 249-258. doi:10.1111/
1467-8659.00584.

[IMS00] ISENBERG T., MASUCH M., STROTHOTTE T.: 3D illustrative
effects for animating line drawings. In Proc. IV (2000), IEEE Computer
Society, Los Alamitos, pp. 413—418. doi:10.1109/IV.2000.859790.

[Ise13] ISENBERG T.: Visual abstraction and stylisation of maps. The Car-
tographic Journal 50, 1 (Feb. 2013), 8-18. doi:10.1179/1743277412Y.
0000000007.

[Ise15] ISENBERG T.: A survey of illustrative visualization techniques for
diffusion-weighted MRI tractography. In Visualization and Processing
of Higher Order Descriptors for Multi-Valued Data, Hotz 1., Schultz T.,
(Eds.). Springer, Berlin/Heidelberg, 2015, ch. 12, pp. 235-256. doi:
10.1007/978-3-319-15090-1_12.

[Kap00] KAPLAN C. S.: Computer generated Islamic star patterns. In
Proc. Bridges (2000), Bridges Conference, pp. 105-112. URL: https:
//archive.bridgesmathart.org/2000/bridges2000-105.html.

[KGP*12] KLEIN T., GUENIAT F., PASTUR L., VERNIER F., ISENBERG
T.: A design study of direct-touch interaction for exploratory 3D scientific
visualization. Computer Graphics Forum 31,3 (June 2012), 1225-1234.
doi:10.1111/j.1467-8659.2012.03115.%.

[LM11] LI H., MouLD D.: Structure-preserving stippling by priority-
based error diffusion. In Proc. Graphics Interface (2011), CHCCS,
Canada, pp. 127-134. URL: https://graphicsinterface.org/
proceedings/gi2011/9i2011-17/.

[MARI17] MARTIN D., ARROYO G., RODRIGUEZ A., ISENBERG T.: A
survey of digital stippling. Computers & Graphics 67 (Oct. 2017), 24-44.
doi:10.1016/j.cag.2017.05.001.

[Mou07] MouLD D.: Stipple placement using distance in a weighted
graph. In Proc. CAe (2007), Eurographics Association, Goslar, pp. 45-52.
doi:10.2312/COMPAESTH/COMPAESTHO7/045-052.

[OVVDWI10] OTTEN R., VILANOVA A., VAN DE WETERING H.: Illus-
trative white matter fiber bundles. Computer Graphics Forum 29, 3 (June
2010), 1013-1022. doi:10.1111/3.1467-8659.2009.01688.x.

[Sec02] SECORD A.: Weighted Voronoi stippling. In Proc. NPAR (2002),
ACM, New York, pp. 37-44. doi:10.1145/508530.508537.

[SGS05] SCHLECHTWEG S., GERMER T., STROTHOTTE T.:
RenderBots—Multi-agent systems for direct image genera-
tion. Computer Graphics Forum 24, 2 (June 2005), 137-148.
doi:10.1111/j.1467-8659.2005.00838.x.

[SIJ*07] ScHMIDT R., ISENBERG T., JEPP P., SINGH K., WYVILL B.:
Sketching, scaffolding, and inking: A visual history for interactive 3D
modeling. In Proc. NPAR (2007), ACM, New York, pp. 23-32. doi:
10.1145/1274871.1274875.

[SIMCO7] SCHWARZ M., ISENBERG T., MASON K., CARPENDALE S.:
Modeling with rendering primitives: An interactive non-photorealistic
canvas. In Proc. NPAR (2007), ACM, New York, pp. 15-22. doi:
10.1145/1274871.1274874.

[Skr20] SKRODZKI M.: How the deprecation of Java applets affected
online visualization frameworks — A case study. In Proc. VisGap (2020),
Eurographics Association, Goslar, pp. 59-67. doi:10.2312/visgap.
20201111.

[SLM04] SCHROEDER W. J., LORENSEN B., MARTIN K.: The Visual-
ization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware,
New York, 2004. URL: https://vtk.org/vtk-textbook/.

[SMI99] STROTHOTTE T., MASUCH M., ISENBERG T.: Visualizing
knowledge about virtual reconstructions of ancient architecture. In Proc.
CGI (1999), IEEE Computer Society, Los Alamitos, pp. 36-43. doi:
10.1109/CGI.1999.777901.

[TFL*18] TIERNY J., FAVELIER G., LEVINE J. A., GUEUNET C.,
MicHAUX M.: The Topology ToolKit. IEEE Transactions on Visu-
alization and Computer Graphics 24, 1 (Jan. 2018), 832-842. doi:
10.1109/TVCG.2017.2743938.

[VWvH*07] VIEGAS F. B., WATTENBERG M., VAN HAM F., KRIss J.,
MCKEON M.: Many Eyes: A site for visualization at Internet scale. IEEE
Transactions on Visualization and Computer Graphics 13, 6 (Nov./Dec.
2007), 1121-1128. doi:10.1109/TVCG.2007.70577.

[WBAI19] WANG X., BESANCON L., AMMI M., ISENBERG T.: Aug-
menting tactile 3D data navigation with pressure sensing. Computer
Graphics Forum 38, 3 (June 2019), 635-647. doi:10.1111/cgf.13716.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://lonnibesancon.me/
https://aviz.fr/~sereno/
https://imld.de/en/our-group/team/raimund-dachselt/
https://petra.isenberg.cc/
https://doi.org/10.1186/s12874-021-01304-y
https://doi.org/10.1186/s12874-021-01304-y
https://doi.org/10.1109/TVCG.2013.114
https://doi.org/10.1109/TVCG.2007.70578
https://doi.org/10.17159/sajs.2019/5785
https://doi.org/10.1109/TVCG.2009.138
https://doi.org/10.1109/TVCG.2012.142
https://doi.org/10.1007/s003710050022
https://doi.org/10.1111/j.1467-8659.2008.01233.x
https://doi.org/10.1111/j.1467-8659.2008.01233.x
https://doi.org/10.1109/MCG.2003.1210862
https://doi.org/10.1111/1467-8659.00584
https://doi.org/10.1111/1467-8659.00584
https://doi.org/10.1109/IV.2000.859790
https://doi.org/10.1179/1743277412Y.0000000007
https://doi.org/10.1179/1743277412Y.0000000007
https://doi.org/10.1007/978-3-319-15090-1_12
https://doi.org/10.1007/978-3-319-15090-1_12
https://archive.bridgesmathart.org/2000/bridges2000-105.html
https://archive.bridgesmathart.org/2000/bridges2000-105.html
https://doi.org/10.1111/j.1467-8659.2012.03115.x
https://graphicsinterface.org/proceedings/gi2011/gi2011-17/
https://graphicsinterface.org/proceedings/gi2011/gi2011-17/
https://doi.org/10.1016/j.cag.2017.05.001
https://doi.org/10.2312/COMPAESTH/COMPAESTH07/045-052
https://doi.org/10.1111/j.1467-8659.2009.01688.x
https://doi.org/10.1145/508530.508537
https://doi.org/10.1111/j.1467-8659.2005.00838.x
https://doi.org/10.1145/1274871.1274875
https://doi.org/10.1145/1274871.1274875
https://doi.org/10.1145/1274871.1274874
https://doi.org/10.1145/1274871.1274874
https://doi.org/10.2312/visgap.20201111
https://doi.org/10.2312/visgap.20201111
https://vtk.org/vtk-textbook/
https://doi.org/10.1109/CGI.1999.777901
https://doi.org/10.1109/CGI.1999.777901
https://doi.org/10.1109/TVCG.2017.2743938
https://doi.org/10.1109/TVCG.2017.2743938
https://doi.org/10.1109/TVCG.2007.70577
https://doi.org/10.1111/cgf.13716

