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Motivation

research question: state of evaluation work in visualization?

most common evaluation goals/methods?

evaluation of what part of visualization process?

evaluation done similarly in different sub-areas of visualization?
history and current trends?
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Contributions

. classification of evaluation use in “scientific visualization”
. historical perspective of evaluation in visualization

. considerations for improvement of evaluation in visualization
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Our approach

literature review of IEEE Visualization/Scientific Visualization

581 papers
e 0
1997 2000 2003 2006 2007 2008 2009 2010 2011 2012

coding by the
5 co-authors
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Related work

» Lam et al. [2012]. state of evaluation
In

“Information visualization”
850 papers of 1995-2010

InfoVis, VAST, EuroVis,
Information Visualization Journal

/ scenarios of evaluation goals
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Empirical Studies in Information Visualization:
Seven Scenarios

Heidi Lam, Enrico Bertini, Petra Isenberg, Catherine Plaisant, and Sheelagh Carpendale

Abstract—We take a new, scenario-based look at evaluation in information visualization. Our seven scenarios, evaluating visual data
analysis and reasoning, evaluating user performance, evaluating user experience, evaluating environments and work practices,
evaluating communication through visualization, evaluating visualization algorithms, and evaluating collaborative data analysis were
derived through an extensive literature review of over 800 visualization publications. These scenarios distinguish different study goals
and types of research questions and are illustrated through example studies. Through this broad survey and the distillation of these
scenarios, we make two contributions. One, we encapsulate the current practices in the information visualization research community
and, two, we provide a different approach to reaching decisions about what might be the most effective evaluation of a given
information visualization. Scenarios can be used to choose appropriate research questions and goals and the provided examples can

be consulted for guidance on how to design one’s own study.

Index Terms—Information visualization, evaluation.

1 INTRODUCTION

EVALUATION in information visualization is complex
since, for a thorough understanding of a tool, it not
only involves assessing the visualizations themselves, but
also the complex processes that a tool is meant to
support. Examples of such processes are exploratory data
analysis and reasoning, communication through visualiza-
tion, or collaborative data analysis. Researchers and
practitioners in the field have long identified many of
the challenges faced when planning, conducting, and
executing an evaluation of a visualization tool or system
[10], [41], [54], [63]. Tt can be daunting for evaluators to
identify the right evaluation questions to ask, to choose
the right variables to evaluate, to pick the right tasks,
users, or data sets to test, and to pick appropriate
evaluation methods. Literature guidelines exists that can
help with these problems but they are almost exclusively
focused on methods—"“structured as an enumeration of
methods with focus on fww to carry them out, without
prescriptive advice for when to choose between them.”
([54, p.1], author’s own emphasis).

This paper takes a different approach: instead of
focusing on evaluation methods, we provide an in-depth
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discussion of evaluation scenarios, categorized into those
for understanding data analysis processes and those which
evaluate visualizations themselves.

The scenarios for understanding data analysis are

e Understanding environments and work practices

(UWP),
e evaluating visual data analysis and reasoning
(VDAR),
e evaluating communication through visualization
(CTV), and

e evaluating collaborative data analysis (CDA).
The scenarios for understanding visualizations are

e  Evaluating user performance (UP),

e evaluating user experience (UE), and

e evaluating visualization algorithms (VA).

Our goal is to provide an overview of different types of
evaluation scenarios and to help practitioners in setting the
right evaluation goals, picking the right questions to ask,
and to consider a variety of methodological alternatives to
evaluation for the chosen goals and questions. Our
scenarios were derived from a systematic analysis of 850
papers (361 with evaluation) from the information visuali-
zation research literature (Section 5). For each evaluation
scenario, we list the most common evaluation goals and
outputs, evaluation questions, and common approaches in
Section 6. We illustrate each scenario with representative
published evaluation examples from the information
visualization community. In cases where there are gaps in
our community’s evaluation approaches, we suggest ex-
amples from other fields. We strive to provide a wide
coverage of the methodology space in our scenarios to offer
a diverse set of evaluation options. Yet, the “Methods and
Examples” lists in this paper are not meant to be
comprehensive as our focus is on choosing among evalua-
tion scenarios. Instead, we direct the interested reader

Published by the IEEE Computer Society
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Results: evaluation scenarios (selection)

algorithmic performance

5% of scenarios
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{b) 20 Vostuity

(1) 30 Viscoay

Fig. 1 Vmul-ubov\l of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

data set

Compressed size (MB) and compression &

- Unique entropy range
'7) (bits) _(bits)

time
(sec)

2ib | [RKB2006) | [EFF2000] | [1L$2005]

m2d density 3.49 21.83 8.
m2d vorticity 31.05 -14E402 2. ")E +01

m3d density 6 23.60 1.0E+00 3.0E+00
m3d pressure 31.06 -3.7E+00 2.3E+403 :
m3d diffusivity 30.02 0.0E+00 6.8E+00
m3d viscocity 6 28.59 15 29E400 3

h3d temp +01 1.0E+35

h3d pressure 34E403 1.0E+435
hid x velocit, 5. ’H‘.+01 1.0E+35
hid y veloci 1.OE+35
had =z velocity 1.0E+35
M3d density 3.0E+00 1

2.2E+00 2
2.3E+00 288,
2.3E+00 28

9.0E+00
AGE+02

Mad pressure
M3d z velocity
M3d y velocity
M3d = velocity
atom = position
atom y position
atom z position
atom y velocity
atom temp
atom energy

1.6 086] 43 0.49] 44 056 1.3 1.08
184 214/ 118 1.21| 155 1.29
50.4 17.55/100.5  9.06 8.48’
956 9.31 8.87
19.09|: 15.02
18.95)2 14.68| :
4.27]
4.87
4.59
5.04
5.29]

2494

67.3 12.558] 686 9.07
47.0 10.49
75.7 13.80
84.3 14.93]
84.6 15.02]
60.8

§1.3 2118
65.9 30.76)
94.6 19.86
5.7 19.88]

Tucy 31.09 1.2E+03 73.6 -
david 3111 1.8E+03 3 108.6 -
torso 3108 -27E+02 5.8E+02 - L5 - 13 -
bl 2599 1.5E+00 3.6E+02 71 - 56 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first.crder entropy is limited by the number of samples in a data set

tation.) Arguably sucl ln data sets should use an integer rather
than floating-point Ithough for simplici

other reasons it is ce omumu practice m use Hoating-point.
trary to [16]. which entropy ¢ all bits of the residual, onr
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and unce
pressed form. However, the massive data sets from scientific
simulation that motivated our work on hig
as well as onr tetrahedral meshes, rarely
order redundancy, as also evidenced by our results.

7

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the lead! ro count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the specd of compressing from memory to disk,
uding disk write time. (Because of the simplicity of our
method. its decompression speed is similar to its compression
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single fwrite call. Timings

(lnln«pnml to the median of five runs. Whereas our compres-
sor is slightly slower than the less effective compresse
it is nearly twice as fast as [16] while producing similar con
pression rates. However, in more 1/O-intensive scenarios, such
as in massively parallel simulations dumping data to the same
file system (as is common), the improved compression of our
method over |7 results in a net gain in effective throughput.
We integrated our compression code with Miranda’s dump rou-
tines and ran performance tests on 256 nodes of LLNL's MCR
supereomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding

We compared the raw throughput of our range coder and
Schindler’s [23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our vxpvrum-lli\. Timings show that our coder
is lll/ faster for raw transmission and 28% faster for entropy
c iy of our coder due to loss of
preci reduction is only 26 bytes of overhead for
1.5 GB of coded data. Its raw throughput is only 20% less than
an furite call, while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

data set compressed size (MB) and compression time (seconds) |

name “‘(‘;l;"' ":‘I":’g‘ ::‘)‘I‘li‘; min max L;T;) (':"‘; 2lib [RKB2006] | [EFF2000] .u_wole *'?‘l(:":""<|

W2d density 389 349 2183 STE-01 12E00 196 071| 16 086| 43 0.49| 44 056] 1.3 1.08| 13 056

m2d vorticity 20 2225 3105 -LAE402 25E401 196 071| 184 214|118 1.21[ 155 1.29] 129 222 138 149

m3d dens 516 23.60 1.OE+00 3.0E+00 364.5 12.81] 50.4 17.55|100.5 9.06 96.3 8.48| 35.7 19.03| 35.5 9.25
m3d pressure 23.91 31.06 -3.7E+00 364.5 95.6 931 8.87| 40.1 18.79) 404

2

364.5 2
2494

364,

19.09|239.3 15.02|198.8 31.92| 203.0 18.47
18.95]246.1 14.68| 209.2 32.66/207.5 19.45

m3d diffusivity
m3d viscocity

23.19
24.86 1

h3d temp 23.54 59.3 4.27| 44.1 5.04] M1 5.06
hid pressure 4.87| 45.0 78| 45.2

hid x velocit, 1.0E+35 4.59 55.4

hid y veloci LOE+35 5.04| 53.5 864 538 ¢
had =z velocity 1.0E+35 5.29| 68.9 9.83| 69.1 6.65)
M3d density 3.0E+00 28 - 105.2 11.63
M3d pressure 2.2E+00 288, - 208.4 17.20,
M3d z velocity 2.3E+00 288, - 197.7 16.84
M3d y velocity 2.3E+00 28 - 197.7 16.65
M3d = velocity 9.0E+00 2 - 196.8 16.11
atom x position 4.6E+02 67.3 12.55] X .07

47.0 10.49
75.7 13.80
84.3 14.93]
84.6 15.02]

atom y position
atom z position
atom y velocity
atom temp

9.1E-05
b -1.5E-01

atom energy - 60.8

Tucy 31.09 -6.1E+02 1.2E+03 73.6 -
david 31.11 -4.4E4+03 1.8E+03 108.6 -
torso 3108 -2TE+02 5.8E+02 13 -
rbl 20.14 25.99 1.5E+00 3.6E+02 - - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

~ should use an mtegy
g ion. alth h for simplicity
other reasons it ce to use Hoating-point. Con-
trary to [16] of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and unce
pressed form. However, the massive data sets from sci
simulation that motivated our work on hi

as well as our tetrahedral meshes, rarel

order redundancy, as also evidenced by

correspond o the median of hve runs. WhHereas our compres-
i slower than the less effective compressors [7,22].
3 as fast as [16] while producing similar con
pression rates. However, in more 1/O-intensive scenarios, such
as in massively parallel simulations dumping data to the same
file system (as is common), the improved compression of our
method over |7 results in a net gain in effective throughput.
We integrated our compression code with Miranda’s dump rou-
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

than float

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entrop, ero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.3 Entropy Coding

We compared the raw throughput of our range coder and
Schindler’s [23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our exper Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
coding. Meanwhi icy of our coder due to loss of
Fig. 4 shows the specd of compressing from memory to disk,  prec reduction is only 26 bytes of overhead for
including disk write time. (Because of the simplicity of our 1.5 GB of coded data. Its raw thronghput is only 20% less than
method. its decompression speed is similar to its compression  an furite call, while its entropy coding throughput of 20 MB

5.2 Compression Speed

speed.) We also include the raw /O performance of dump-
ing the data uncompressed using a single furite call. Timings

per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]
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Fig. 1 Vmul-ta!ml of 2D data (as pseudocolored height IIM) and JD da!a {volume rendered) used in our cxpmmnh

m2d vorticity 99.20 2225 31.05 -1.4E402 2.5E+01
m3d dens 767 5.16 23.60 1.0E+00 3.0E+00
m3d pressure 27.29 2391 31.06 -3.7E+00 23E+03 3
m3d diffusivity  36.87  23.19 0.0E+00 6.8E+00 :
86E~15 29E+400 3
1.OE+35
1OE+35

mad viscocity 5007  24.86
h3d temp 6570 2351
2413

hid pressure

hid x velocit, E+01 1.0E+35
hid y veloci 8432 2418 5 -4.6E401 1.0E+35
had =z velocity 86.82 1.0E+35
M3d density 40.14 3.0E+00

2.2E+00 2
2.3E+00 3
2.3E+00 3
9.0E+00
T6ET02
2.1E+03
1.6E+02

Md pressure  100.00
M3d z \'Plbclt\‘ 100.00

¢ 100.00
atom r position  61.10
atom y position 45,90
atom : position  61.68
atom y velocity  64.65

10.32
7.07

Jata set Compressed size (MB) and compression time (seconds) |
Unique entropy range e = e T PR Tew
name O (it ity ™0 max N 2ib | [RKB2006) | [EFF2000] .u_s-oo,Ll schcm--ﬂl
W2d density 389 349 2183 STE-01 12E400 196 16 086 4.3 0.49] 44 056 1.3 108| 1.3 05

Zl-l 118 1.21] 155 1.29( 129 222| 138
5/1100.5  9.06| 96.3 8.48| 35.7 19.03| 35.5
9.31| 87.9 8.87| 40.1 18.79| 404
19.09]239.3 15.02|198.8 31.92| 203.0
18.95]246.1 14.68| 209.2 32.66|207.5
53.0 4.27| 44.1 aOl
529 4.87
63.3 4.59
623 5.04
76.9 5.29

47.0 10.49
75.7 13.80
84.3 14.93]

atom temp 64.91

atom energy 3.45

Tucy 6139 2438 6IE+02 1.2E+03
davidy 2523 17.08 3111 -4.4E403 LSE+03
torso 8172 848 3108 -2.7E102 58E102
rbl 71.90 2014 2599 1.5E+00 3.6E+02

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather
than floating-point it Itk h for simplicity or
other reasons it is ce oummn practice to use Hoating-point. Con-
trary to [16]. which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive data sets from «u-lmh:

correspond to the median of five runs. Whereas our compres-
sor i itly slower than the less effective compressors [7.22],
it is nearly twice as fast as [16] while producing
pression rates. However, in more 1/O-intensive sce
as in massively parallel simulations dumping data to the same
file system (as is common), the improved compression of our
method over [, results i in a net gain in effective thronghput.

simulation that motivated our work on high
as well as our tetrahedral meshes, rarel
order redundancy, as also evidenced by

«
hibit significant low-
results.

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory to disk,
including disk write time. (Becanse of the simpli of our
method. its decompression speed is similar to its mmpn\mm
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single fwrite call. Timings

We integ 1 our « S code with Miranda’s dump roy
tines and ran | nce tests on 256 nodes of LLNL's MCR
supercomputer. 5 on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding

We compared the raw throughput of our range coder and
Schindler’s [23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our experiments. Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
i ency of our coder due to loss of
reduction is only 26 bytes of overhead for
1.5 GB of coded da Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

volume rend

d [ m but its ugcmulnr\ are used in non-

(c) Hessians H on /" zero-crossing ui) Hc\smn\ H on V2 f zero-crossing

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬂerenl definitions of edges, zero-
of the d (c) and the Laplacian (d).

phot

e.g. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles), con-
cave (orange circles), and saddles (orange and bluc stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero-crossing on the second directional derivative along
the gradient direction, f” = n"Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the H eigen-
values is near zero even though this is not part of the edge defini-
tion. Another edge definition is the zero-crossing of the Laplacian
V'/ tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the gl)phs in a2 2-D visualization, hg 10
visualizes a cross-section of a of jet flow righ linto a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes too large, these glyphs can become so stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the locality normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
phs for tensors with larger norms, contrary to scale preservation (6).
. 10(b) uses our superquadric glyphs with s(||D||) o< |D||. The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
mdua\u the tensor m\nn and pointed glyph \h.\pu clearly commu-
nicate eig With of scale variation

These results use s(|D|[) = |D||'/% in (6).

(s(|ID]]) = |ID)|'/2). Fig. 10(c) better shows the dxmuoml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or comprcs\ion. especially along the bottom edge of the domain.
Finally, Fig. 11 dulkm\lmlc\ how our ncw !.vah performs trace-
less tensor visua ion, in a side-b; 1o the dedi-
cated traceless NLC tensor glyphs by ik Kgll\ etal. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale s(||D]]) = [|D||. Consequently. the traceless glyph requires pre-
of des (which are mapped
IU perfect sharpness), while our glyph can be used without such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

on research has made significant progress in visu:
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally, no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the IuIl \p.lu. of sy mmum second-order tensors.
Our glyph h in sign in a way that,
unlike the R\.Vllﬂld\ glyph [18], prevents small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.
Jata set Compressed size (MB) and compression time (seconds) |
Unique entropy range Sz time = e T L3008 new
name O (it ity ™0 max (U | AP | (RKB2006] | [EFF2000] | iLs2005) | e
W2d density 389 349 2183 STE-01 12E+00 196 071| 16 086 43 0.49 44 056] 1.3 1.08| 13 05

m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6
5.16 23.60 1.OE+00 3.0E+00
23.91 31.06 -3.7TE+00 23E+03 3

m3d pressure

m3d diffusivity 23.19 0.0E+00 6.8E-+00
m3d viscocity 24.86 29E+400
h3d temp 23.54 1.OE+35

h3d pressure 1LOE+35
h3d x velocit, 1.OE+35
h3d y veloci 1.OE+35

1.0E+35
3.0E+00
2.2E+00
2.3E+00 3
2.3E+00 3
9.0E+00
T6ET02
2.1E+03
1.6E+02

h3d z veloc

Mad density
Mad pressure
M3z velocity

¢ 100.00
atom r position  61.10
atom y position 45,90
atom : position  61.68

10.32[275.5 32.62|:
7.07] 84.3 2118

184 214|118 1.21] 155 1.29) 129 222 138
17.55/100.5  9.06( 96.3 8.48) 35.7 19.03| 35.5
87.9 8.87| 40.1 1879 404
239.3 15.02|198.8 31.92| 203.0
5[246.1 14.68( 209.2 32.66/207.5
53.0 4.27| 44.1 GOI
529 4.87
4.59
5.04
5.29]

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50

65.9 30.76,
19.86

atom y velocity  64.65 6 1. F;E ()l 9.65| 84.3 14.93
atom temp 64.91 3.0E~ 107.7 8.34

atom energy 3.45 -3.6E+ 00 - 107.7 7.01

Tucy 61. 39 .09 -6.1E+02 1.2E+03 160.5 g -

david 25,23 31.11 -44E4+03 1.8E403 3225 - [1449 - -

torso 84, 12 3108 -27E+02 5.8E4+02 1.9 - 17 - -

bl 7190 20.14 2599 15E+00 3.6E+02 84 - 71 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
tors0 and rbl tetrahedral meshes. All data but M2d is represented in single precision, The (ILS2005] scheme operates on single precision only, hence the missing values.

For the meshes we report only the compressed size of vertex coordinates; timings

are dominated by connectivity coding, and are hence excluded. The range measures

(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather
than floating-point ion, alth h for simplicity or
other roasons It fs comrion practice to use Hoating-point. Con-
trary to [16]. which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive data sets from «u-nuh:

correspond to the median of five runs. Whereas our compres-
itly slower than the less effective compressors [7.22],
it is nearly twice as fast as [16] while producing sim
pression rates. However, in more I/O-intensive scenarios, such
as in massively parallel simulations dumping data to the same
file system (as is common), the improved compression of our
method over [, results i in a net gain in effective thronghput.

sor i

1
hibit significant low-
results.

simulation that motivated our work on high
as well as our tetrahedral meshes, rarel
order redundancy, as also evidenced by

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory
including disk write time. (Becanse of the simpli
method. its decompression speed is similar to its (()mpn\\wn
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single furite call. Timings

We integy 1 our « code with Miranda’s dump roy
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding

ed the raw throughput of our range coder and
[23] by (1) passing raw bytes through it with no
v and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
nts. Timings show that our coder

coding. Meanwhi
precision and ran

reduction is only 26 bytes of overhead for
1.5 GB of coded da Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]
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IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2010

~——llll

RN

(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

2], DUTITS GIGEMVECTon & commonty Used in fof-
p dering. e.g. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles), con-
cave (orange circles), and saddles (orange and bluc stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero- uumng on (he second directional derivative along
the gradient direction, f” = n’ Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the H eigen-
values is near zero even though this is not part of the edge defini-
uun Another edge definition is the zero-crossing of the Laplacian
V2f = tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the gl)pl\~ in a2 2-D visualization, hg 10
visualizes a cross-section of a of jet flow righ linto a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes too large, these glyphs can become so stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the loca normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
phs for tensors with larger norms, contrary to scale preservation (6).
. 10(b) uses our superquadric glyphs with s(||D||) o< |D||. The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-

h

nicate eige Wit of scale variation

(c) Hessians H on f" zero-crossing ui) Hessians H on V2 f zero-crossing

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-

ro
These results use s(|D|[) = |D||'/% in (6).

(s(ID]]) = [[D]*/2), Fig. 10(c) better shows the d-muoml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 dulkm\lmlc\ how our ncw !.vah performs trace-
less tensor visua jon, in a side-b, 1o the dedi-
cated traceless NLC tensor glyphs by J;mLun Kgll\ etal. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale s(||D]]) = [|D||. Consequently. the traceless glyph requires pre-
of des (which are mapped
lu perfect sharpness), while our glyph can be used without such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

on research has made significant progress in visu:
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally, no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the IuIl \p.lu. ul \) mmum second-order tensors.
Our glyph h; sign in a way that,
unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6
516 23.60 1.OE+00 3.0E+00 364.5
23.91 31.06 -3.7TE4+00 2.3E+03 364.5

m3d pressure

mad diffusivity 23.19 0.0E+00 6.8E+00 364.5
m3d viscocity 24.86 1 29E400 3645
h3d temp 23.54 1.0E+35
hid pressure 2413 1LOE+35
h3d z velocity 8 1.0E+35
had y veloc 1.0E+35
h3d = velocity 1.0E+35
M3d density 3.0E+00

M3d pressure 2.2E400

M3d z velocity 2.3E+00 :
Md y velocity 2.3E+400
M3d = velocity  100.00 9.0E+400 2

4.6E+02
26.99 3.7E-02 2.1E+03
4.6E+02

atom r position  61.10
atom y position 45,90
atom : position  61.68
atom y velocity  64.65

Jata set Compressed size (MB) and compression time (seconds) |

unique entropy range 7 size time i PRSI Eree TG00 new
name (it (bity ™R max (S | AP | (RKB2006] | [EFF2000] .u_s.ole schc-n--J
m2d density 389 349 2183 STE-01 12E00 196 071| 16 086| 43 0.49| 44 056] 1.3 1.08| 13 056

11.8 1.21] 155 1.20] 129 222 138 149
55[100.5  9.06( 96.3 8.48) 357 19.03| 35.5 9.25
95.6 87.9 8.87| 40.1 1879 404 9.96]
250.8 239.3 15.02|198.8 31.92| 203.0
2494 246.1 14.68| 209.2 32.66/207.5
59.3 53.0 4.27| 44.1 5.04] M1
64.3 52.9 4.87| 45.0 775
67.4 4.59| 54.5 8.86
5.04| 53.5 8.64
5.29| 68.9 9.83]

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50
9.65| 84.3 14.93

84.3 2118
65.9 30.76,
946 1956

atom temp 64.91 8.34] 84.6 15.02
atom energy 3.45 7.01| 60.8 12.66
Tucy 61. 39 .09 -6.1E+02 1.2E+03 - - 73.6 -
david 25,23 31.11 -44E+03 1.8E+403 - - 108.6 -
torso 84, 12 3108 -27E+02 5.8E+02 - - 13 -
bl 7190 20.14 2599 1.5E+00 3.6E+02 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather
than floating-point ion, altl h for simplicity or
other roasons It fs comrion practice to use Hoating-point. Con-
trary to [16]. which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive dmu sets from wu-nnh:

correspond to the median of five runs. Whereas our compres-

i itly slower than the less effective compressors [7.22],
it is nearly twice as fast as [16] while prody
pression rates. However, in more 1/O-intensive scenarios, such
as in massively pum"l'l simulations dumping data to the same
file system (as is common), the improved compression of our
method over [, results i in a net gain in effective thronghput.

ing similar con

simulation that motivated our work on high
as well as our tetrahedral meshes, rarel
order redundancy, as also evidenced by

lc
hibit significant low-
results.

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory
including disk write time. (Becanse of the simpli
method. its decompression speed is similar to its (()mpn\\wn
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single furite call. Timings

We integy 1 our « code with Miranda’s dump roy
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding

ed the raw thronghput of our range coder and
Schindler’s (23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our experiments. Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
coding. Meanwhile, the inefficiency of our coder due to loss of
precision and range reduction is only 26 bytes of overhead for
1.5 GB of coded da Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

We comp

Linstrom et al. [2006]
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

» UL IS CIREIVGEION 15 COMMONTY Bscd 1 Aon-
p ing. e.g. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles). con-
cave (orange circles), and saddles (orange and blue stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero- uumng on (he second directional derivative along
the gradient direction, f” = n’ Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the Hi cigen-
values is near zero even though this is not part of the edge defini-
mm Another edge definition is the zero-crossing of the Laplacian
V2f = tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the glyphs in a 2-D visualization, hg 10
visualizes a cross-section of a of jet flow righ linto a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes too large, these glyphs can become so stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the locality normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like

phs for tensors with larger norms, contrary to scale preservation (6).

. 10(b) uses our superquadric glyphs with s([[D]|) o< D] The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-
nicate eig With of scale variation

© Hc\\un\ H on f" zero-crossing ui) Hessians H on V2 f zero-crossing

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-

Ire
These results use \(‘Du = |D}|'? in (6).

(s(ID]]) = [[D]*/2), Fig. 10(c) better shows the dm:guuml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 demonstrates lm\n our ncw !.Iyph performs trace-
less tensor visualization, in a sid 1o the dedi-
cated traceless NLC tensor glyphs hy J:mLun-KglI) etal. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale \(HDI\) o “D\| Consequently. the traceless glyph requires pre-
des (which are mapped
lu perfect \harpmsxl while our glyph can be used out such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION
on research has made significant progress in visu:

second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally, no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the rull \p.lu. ul \) mmum second-order tensors.
Our glyph h; sign in a way that,
unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6
516 23.60 1.OE+00 3.0E+00 364.5
23.91 31.06 -3.7TE4+00 2.3E+03 364.5

m3d pressure

mad diffusivity 23.19 0.0E+00 6.8E+00 364.5
m3d viscocity 24.86 1 29E400 3645
h3d temp 23.54 1.0E+35
hid pressure 2413 1LOE+35
h3d z velocity 8 1.0E+35
had y veloc 1.0E+35
h3d = velocity 1.0E+35
M3d density 3.0E+00

2.2E+00
2.3E+00 12
2.3E+400 2
9.0E+00 2
4.6E+02
26.99 3.7E-02 2.1E+03
4.6E+02

M3d pressure

M3d z velocity
Mad y velocity
M3d = velocity
atom = position  61.10
atom y position 45,90
atom : position  61.68
atom y velocity  64.65

100.00

data set Compressed size (MB) and compression time (seconds) |

unique entropy range 7 size time i PRSI Eree TG00 new
name (it (bity ™R max (S | AP | (RKB2006] | [EFF2000] .||_s.om|<| schc-n--J
m2d density 389 349 21.83 STE-01 12E+00 196 071 16 086 4.3 0.49| 44 056 1.3 1.08| 13 0.6

11.8 1.21] 155 1.20] 129 222 138 149
55[100.5  9.06( 96.3 8.48) 357 19.03| 35.5 9.25
95.6 87.9 8.87| 40.1 1879 404 9.96]
250.8 239.3 15.02|198.8 31.92| 203.0
2494 246.1 14.68| 209.2 32.66/207.5
59.3 53.0 4.27| 44.1 5.04] M1
64.3 52.9 4.87| 45.0 775
67.4 4.59| 54.5 8.86
5.04| 53.5 8.64
5.29| 68.9 9.83]

84.3 2118
65.9 30.76,
946 1956

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50
9.65| 84.3 14.93

atom temp 64.91 8.34] 84.6 15.02
atom energy 3.45 7.01| 60.8 12.66
Tucy 61. 39 .09 -6.1E+02 1.2E+03 - - 73.6 -
david 25,23 31.11 -44E+03 1.8E+403 - - 108.6 -
torso 84, 12 3108 -27E+02 5.8E+02 - - 13 -
bl 7190 20.14 2599 1.5E+00 3.6E+02 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather
than floating-point it Itk h for simplicity or
other roasons It fs comrion practice to use Hoating-point. Con-
trary to [16]. which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive dmu sets from wu-nnh:

correspond to the median of five runs. Whereas our compres-

i itly slower than the less effective compressors [7.22],
it is nearly twice as fast as [16] while prody
pression rates. However, in more 1/O-intensive scenarios, such
as in massively pum"l'l simulations dumping data to the same
file system (as is common), the improved compression of our
method over [, results i in a net gain in effective thronghput.

ing similar con

simulation that motivated our work on high
as well as our tetrahedral meshes, rarel
order redundancy, as also evidenced by

lc
hibit significant low-
results.

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory
including disk write time. (Becanse of the simpli
method. its decompression speed is similar to its (()mpn\\wn
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single furite call. Timings

We integy 1 our « code with Miranda’s dump roy
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding
We comp:

ed the raw thronghput of our range coder and
Schindler’s (23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our experiments. Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
coding. Meanwhile, the inefficiency of our coder due to loss of
precision and range reduction is only 26 bytes of overhead for
1.5 GB of coded da Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

volume rend I

d [ "J but its ugumunr\ are used in non-

© Hc\\un\ H on f" zero-crossing ui) Hessians H on V2 f zero-crossing

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬁerenl definitions of edges, zero-
of the d ive (c) and the Laplacian (d).

p eg. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles). con-
cave (orange circles), and saddles (orange and blue stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero- uumng on (he second directional derivative along
the gradient direction, f” = n’ Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the Hi cigen-
values is near zero even though this is not part of the edge defini-
mm Another edge definition is the zero-crossing of the Laplacian
V2f = tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the gl)phs in a2 2-D visualization, hg 10
visualizes a cross-section of a of jet flow righ linto a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes too large, these glyphs can become so stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the locality normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
phs for tensors with larger norms, contrary to scale preservation (6).
. 10(b) uses our superquadric glyphs with s([[D]|) o< D] The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-
nicate With of scale variation

These results use s(|D|[) = |D||'/% in (6).

(s(ID]]) = [[D]*/2), Fig. 10(c) better shows the dm:guuml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 demonstrates lm\n our ncw !.Iyph performs trace-
less tensor 2 jon, in a sid 1o the dedi-
cated traceless NLC tensor glyphs hy J:mLun-KglI) etal. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale \(HDI\) o “D\| Consequently. the traceless glyph requires pre-
des (which are mapped
lu perfect \harpmsxl while our glyph can be used out such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

on research has made significant progress in visu:
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally, no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the rull \p.lu. ul \) mmum second-order tensors.
Our glyph h; sign in a way that,
unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]
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Table 1. Hypothesis tests used to reach for the

Sharp readers will notice that one subject’s TLX ratings were

discarded due to not assigning any work to any of the factors, giving all techniques a workload rating of zero. Degrees of freedom for the 1-tesls are
clamped at two less than the number of cases yielded by the study design, in which all factors were crossed for error, response time, and answers.

Test and Factor(s) | Error Response Time Number of Answers Workload

ANOVA: MVV Technique F(3,33) =32.65,p =000 F(3,33) =3548,p =000 F(3,33) =45.57,p =0.00  F(3,30) = 19.20,p = 0.00
tHest: DDS vs. Slivers 1(106) = 6.59,p = 0.00 #(106) =3.14, p = 0.002 1{106) = 0.65,p = 0.52 1(9)=133,p=022
t-test: DDS vs. Att. Blocks £(106) = 5.20,p = 0.00 1(106) =3.23, p = 0.002 1{106) = 2.54,p = 0.01 1(9) =1.05,p =032
ANOVA: Num. of Layers 2)=7.45,p=0003 F(2,22)=537,p=0.01 1.80,p = 0.19

ANOVA: Target Size 80.92,p=000 F(
ANOVA: Experience F(1,10) = 1.83,p = 021 F(1,10)
ANOVA: MVV-by-Num. Layers | F(4,44) =8.79,p = 0.00 F(4,44)
ANOVA: MVV-by-Target Size F4,44) =35.64,p =000 F(4,44)

$.98,p = 0.001 4.30,p=0.03
617.p=003  F(1,10)=0.06,p =082
9.06,p = 0.00
3.15,p = 0.02

Table 2. The mean and standard deviation for each MVV technique for each of the three objecti and the workload
rating shows the difficulty users had in attempting to complete the task with the baseline technique. Error is expressed in units of layers (range:
0-6), time in seconds, answers in a count, and workload through NASA TLX.

Error Error Time Time Answers  Answers | Workload  Workload
Name (layers)  Std. Dev. | (sec)  Std. Dev. | (count)  Std. Dev. (TLX) Std. Dev.
JuxLayers 1.54 1.03 46.72 3644 8.87 8.09 65.53 15.40
DDSpots 0.09 0.21 7.33 6.01 1.09 0.28 40.74 23.17
Slivers 042 0.48 9.62 4.25 111 0.24 27.86 22.38
Attrib 047 0.73 9.74 5.27 1.20 0.37 31.79 16.24
07 70

WError  wAnswers  WTime  ®Workload

[ 60
s 4
H E
2% os 50
£z 3
Te =
_,%a 04 w0 2
58 3
5% <
£% 03 30 ’g
53 k4
SE ]
2 02 20 =
01 10
0 0
DDSpots Slivers Attribute
Fig. 6. Graph of for the MVV tech

niques. There was a main effect on error (red) and workload (green), but
not on time (blue) or answers selected (orange). Error and number of
changes 1o answers (i.e. one less than the number of answers selected,
to align the graphs better) are on the primary axis on the left. Response
time and workload are on the secondary axis on the right

that stated only that six layers would be the most difficult and not
predicted a complete ordering with respect to increasing number of
layers, Further, we found that users were 13% faster with six la; i
the target than with five layers, which is a bit counter-intuiti
It that we shall discuss in Section 4.

354 Effect of Size of Target
The size of the tz

 had a main effect on error, response time, and the
number of answers selected. However, the ¢ agai
the complete ordering predicted in Hypothesis 4 Ihc smallest target

355 Effect of User Experience

We expected (based on our past work) o see users who had partici-
pated in previous studies perform faster. We found a main effect of
(binary) user experience on response time (Table 1). Returning users
were on average 30.7% faster than subjects who were participating in
our sequence of studies for the first time. This confirms Hypothesis 5.

3.5.6 Other Findings

We found significant interactions between MVV Technique and the
number of target layers for error and for response time. We found
significant interactions between MVV Technique and the target size
for error and for response tiny these results (Table 1) give us
insight into the usability of the te and also implicitly show the
main effects of the number of yers and of the target size, we
graph these results in Figure 7.

There was a significant interaction between the number of target
layers and the target size for error - F(4,44) = 5.128,p = 0.002. Fi
all number of target layers, the smallest targets were most difficult, but
the magnitude of the increase in difficulty from the middle size down
to the smallest size was quite a bit lower for five layers than would be
expected looking at the jumps for four and six layers

We checked whether fatigue had an effect on error by running a 3
(MVV Technique) - 36 (Count) ANOVA with the MVV technique
and the count of questions as factors; we found no significant effect
of the count of questions completed — F(35,385) = 0.798,p — 0.789.
Similarly, we conducted a 3 (MVV Technique) ~ 3 (Target Layers)

3 (Target Size) -~ 4 (Repetition) ANOVA to see if repetition of the
combination of target size and number of target layers had a main ef-
; we found no significant effect — /(3,33) = 0.860,p — 0.472.
Analogous ANOVA calculations revealed that there was no significant
effect of trial count or repetition on the number of answers selected.

We ran a filter on the error to find trials where the response was
judged to be incorrect, but the error in pixels from the correct answer
was smaller than the size of the target. There were only nine such
errors in 494 trials that saw emors (out of 1728 total trials), so we

But we do find il

size was clearly more difficult, but there was no liffer
between the two larger sizes. Users were fastest with the largest ta
size, with a small but not significant difference between lhc allest
and middle sizes. Users changed their answers at a slightly increasing
rate with decreasing target size.

curious (o note that of the nine such erors, seven
saw selections that were no more than seven pixels away from the
target patch — and all of these were trials with Attribute Blocks and the
smallest target size (31 pixels). (Two trials saw selections that were
almost the size of Ih(‘ target patch — 61 or 91 pixels, respectively
with Oriented § ..

ton et al. [2012]
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Results: evaluation scenarios (selection)

ualitative result inspection user performance/experience
6% of scenarios 4% of scenarios

algorithmic performance
5% of scenarios
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Table 1. Hypothesis tests used to reach for the Sharp readers will notice that one subject’s TLX ratings we
discarded due to not assigning any work to any of the factors, giving all techniques a workload rating of zero. Degrees of freedom for the 1-tests ar|
clamped at two less than the number of cases yielded by the study design, in which all factors were crossed for error, response time, and answerg

Test and Factor(s) | Error Response Time Number of Answers Workload
d ANOVA: MVV Technique F(3,33) =32.65,p =000 F(3,33) =3548,p =000 F(3,33) =45.57,p =0.00  F(3,30) = 19.20,p = 0.00
test: DDS vs. Slivers 1(106) = 6.59,p = 0.00 #(106) = 3.14, p = 0.002 £(106) = 0.65,p = 0.52 19)=133,p=022
L_‘ test: DDS vs. Alt. Blocks 1(106) = 5.20,p = 0.00 1(106) =3.23, p = 0.002 1{106) = 2.54,p = 0.01 1(9) =1.05,p=032
(4) 0 Dermty (b) 20 Vorcity (€) 30 Denwty () 10 Presmre (e} 10 Oy (1) 30 Viscoony ANOVA: Num. of Layers 2)=7.45,p= 0003 F(2,22)=537,p =001 2 1.80,p = 0.19

Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6
516 23.60 1.OE+00 3.0E+00 364.5
23.91 31.06 -3.7TE4+00 2.3E+03 364.5

m3d pressure

mad diffusivity 23.19 0.0E+00 6.8E+00 364.5
m3d viscocity 24.86 1 29E400 3645
h3d temp 23.54 1.0E+35
hid pressure 2413 1LOE+35
h3d z velocity 8 1.0E+35
had y veloc 1.0E+35
h3d = velocity 1.0E+35
M3d density 3.0E+00

2.2E+00
2.3E+00 12
2.3E+400 2
9.0E+00 2
4.6E+02
26.99 3.7E-02 2.1E+03
4.6E+02

M3d pressure

M3d z velocity
Mad y velocity
M3d = velocity
atom = position  61.10
atom y position 45,90
atom : position  61.68
atom y velocity  64.65

100.00

data set Compressed size (MB) and compression time (seconds) |

unique entropy range 7 size time i PRSI Eree TG00 new
name (it (bity ™R max (S | AP | (RKB2006] | [EFF2000] .||_s.om|<| schc-n--J
m2d density 389 349 21.83 STE-01 12E+00 196 071 16 086 4.3 0.49| 44 056 1.3 1.08| 13 0.6

11.8 1.21] 155 1.20] 129 222 138 149
55[100.5  9.06( 96.3 8.48) 357 19.03| 35.5 9.25
95.6 87.9 8.87| 40.1 1879 404 9.96]
250.8 239.3 15.02|198.8 31.92| 203.0
2494 246.1 14.68| 209.2 32.66/207.5
59.3 53.0 4.27| 44.1 5.04] M1
64.3 52.9 4.87| 45.0 775
67.4 4.59| 54.5 8.86
5.04| 53.5 8.64
5.29| 68.9 9.83]

84.3 2118
65.9 30.76,
946 1956

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50
9.65| 84.3 14.93

atom temp 64.91 8.34] 84.6 15.02
atom energy 3.45 7.01| 60.8 12.66
Tucy 61. 39 .09 -6.1E+02 1.2E+03 - - 73.6 -
david 25,23 31.11 -44E+03 1.8E+403 - - 108.6 -
torso 84, 12 3108 -27E+02 5.8E+02 - - 13 -
bl 7190 20.14 2599 1.5E+00 3.6E+02 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather
than floating-point it Itk h for simplicity or
other roasons It fs comrion practice to use Hoating-point. Con-
trary to [16]. which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive dmu sets from wu-nnh:

correspond to the median of five runs. Whereas our compres-
i itly slower than the less effective compressors [7.22],
ing similar con

it is nearly twice as fast as [16] while prody
pression rates. However, in more 1/O-intensive scenarios, such
as in massively pum"l'l simulations dumping data to the same
file system (as is common), the improved compression of our
method over [, results i in a net gain in effective thronghput.

simulation that motivated our work on high
as well as our tetrahedral meshes, rarel
order redundancy, as also evidenced by

lc
hibit significant low-
results.

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory
including disk write time. (Becanse of the simpli
method. its decompression speed is similar to its (()mpn\\wn
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single furite call. Timings

We integy 1 our « code with Miranda’s dump roy
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding
We comp:

ed the raw thronghput of our range coder and
Schindler’s (23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our experiments. Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
coding. Meanwhile, the inefficiency of our coder due to loss of
precision and range reduction is only 26 bytes of overhead for
1.5 GB of coded da Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]

(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

volume rmd d [ h] but its ugumunr\ are used in non-
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Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬁerenl definitions of edges, zero-
of the d ive (c) and the Laplacian (d).

p eg. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles). con-
cave (orange circles), and saddles (orange and blue stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero- uumng on (he second directional derivative along
the gradient direction, f” = n’ Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the Hi cigen-
values is near zero even though this is not part of the edge defini-
mm Another edge definition is the zero-crossing of the Laplacian
V2f = tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the glyphs in a 2-D visualization, hg 10
visualizes a cross-section of a of jet flow righ linto a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes too large, these glyphs can become so stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the locality normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
phs for tensors with larger norms, contrary to scale preservation (6).
. 10(b) uses our superquadric glyphs with s([[D]|) o< D] The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-
nicate With of scale variation

These results use s(|D|[) = |D||'/% in (6).

(s(ID]]) = [[D]*/2), Fig. 10(c) better shows the dm:guuml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 demonstrates lm\n our ncw !.Iyph performs trace-
less tensor 2 jon, in a sid 1o the dedi-
cated traceless NLC tensor glyphs hy J:mLun-KglI) etal. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale \(HDI\) o “D\| Consequently. the traceless glyph requires pre-
des (which are mapped
lu perfect \harpmsxl while our glyph can be used out such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

on research has made significant progress in visu:
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally, no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the rull \p.lu. ul \) mmum second-order tensors.
Our glyph h; sign in a way that,
unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]

ANOVA: Target Size P 80.92,p=000 F(
ANOVA: Experience F(1,10) = 1.83,p = 021 F(1,10)

ANOVA: MVV-by-Num. Layers | F(4,44) =8.79,p = 0.00 F(4,44)
ANOVA: MVV-by-Target Size F4,44) =35.64,p =000 F(4,44)

$98,p=0001 F 4.30,p=0.03
617.p=003  F(1,10)=0.06,p =082
9.06,p = 0.00
3.15,p = 0.02

Table 2. The mean and standard deviation for each MVV technique for each of the three objecti and the workloa
rating shows the difficulty users had in attempting to complete the task with the baseline technique. Error is expressed in units of layers (rangd
0-6), time in seconds, answers in a count, and workload through NASA TLX.

Error Error Time Time Answers  Answers | Workload  Workload

Name (layers)  Std. Dev. | (sec)  Std. Dev. | (count)  Std. Dev. (TLX) Std. Dev.

TuxLayers | 1.34 103 | 4672 3644 587 800 6333 1540

DDSpots 0.09 0.21 7.33 6.01

0.28 40.74 23.17

Slivers 042 0.48 9.62 4.25 i 0.24 27.86 22.38
Attrib 047 0.73 9.74 5.27 .2 3 31.79 16.24

07 70
mError  wAnswers  WTime  ®Workload
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Fig. 6. Graph of for the MVV tech

niques. There was a main effect on error (red) and workload (green), but
not on time (blue) or answers selected (orange). Error and number of
changes 1o answers (i.e. one less than the number of answers selected,
to align the graphs better) are on the primary axis on the left. Response
time and workload are on the secondary axis on the right

that stated only that six layers would be the most difficult and not
predicted a complete ordering with respect to increasing number of
layers, Further, we found that users were 13% faster with six la; i
the target than with five layers, which is a bit counter-intuiti
It that we shall discuss in Section 4.

354 Effect of Size of Target
The size of the tz

 had a main effect on error, response time, and the
number of answers selected. However, the ¢ agai
the complete ordering predicted in Hypothesis 4 Ihc smallest target

355 Effect of User Experience

We expected (based on our past work) o see users who had partici-
pated in previous studies perform faster. We found a main effect of
(binary) user experience on response time (Table 1). Returning users
were on average 30.7% faster than subjects who were participating in
our sequence of studies for the first time. This confirms Hypothesis 5.

3.5.6 Other Findings

We found significant interactions between MVV Technique and the
number of target layers for error and for response time. We found
significant interactions between MVV Technique and the target size
for error and for response tiny these results (Table 1) give us
insight into the usability of the te and also implicitly show the
main effects of the number of yers and of the target size, we
graph these results in Figure 7.

There was a significant interaction between the number of target
layers and the target size for error - F(4,44) = 5.128,p = 0.002. Fi
all number of target layers, the smallest targets were most difficult, but
the magnitude of the increase in difficulty from the middle size down
to the smallest size was quite a bit lower for five layers than would be
expected looking at the jumps for four and six layers

We checked whether fatigue had an effect on error by running a 3
(MVV Technique) - 36 (Count) ANOVA with the MVV technique
and the count of questions as factors; we found no significant effect
of the count of questions completed — F(35,385) = 0.798,p — 0.789.
Similarly, we conducted a 3 (MVV Technique) ~ 3 (Target Layers)

3 (Target Size) -~ 4 (Repetition) ANOVA to see if repetition of the
combination of target size and number of target layers had a main ef-
; we found no significant effect — /(3,33) = 0.860,p — 0.472.
Analogous ANOVA calculations revealed that there was no significant
effect of trial count or repetition on the number of answers selected.

We ran a filter on the error to find trials where the response was
judged to be incorrect, but the error in pixels from the correct answer
was smaller than the size of the target. There were only nine such
errors in 494 trials that saw emors (out of 1728 total trials), so we

But we do find il

size was clearly more difficult, but there was no liffer
between the two larger sizes. Users were fastest with the largest ta
size, with a small but not significant difference between lhc allest
and middle sizes. Users changed their answers at a slightly increasing
rate with decreasing target size.

curious (o note that of the nine such erors, seven
saw selections that were no more than seven pixels away from the
target patch — and all of these were trials with Attribute Blocks and the
smallest target size (31 pixels). (Two trials saw selections that were
almost the size of Ih(‘ target patch — 61 or 91 pixels, respectively
with Oriented § ..

ton et al. [2012]
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

data set

Compressed size (MB) and compression time (seconds) |

Unique entropy range

z e
(%) (bits) (bits) ™" MAX (MB)

name

zlib RKB2006] | [EFF2000]

m2d density 3.89 3.49 21.83 8.TE-01 1.2E+00 19.6
m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6
767 516 23.60 L.OE+00 3.0E+00 364.5
2 6 -3.7TE4+00 2.3E403 364.5
0.0E+00 6.8E+00 364.5

m3d pressure
m3d diffusivity

m3d viscocity 2.9E400 364.5
h3d temp 1LOE+35
h3d pressure 1LOE+35
h3d x velocit, 1.OE+35
h3d y veloci 1.OE+35
h3d z wlocxl\ 1.0E+35
Mad density 3.0E+00

2.2E+00
2.3E+00 12
2.3E+400 2
9.0E+00 2
4.6E+02
26.99 3.7E-02 2.1E+03
4.6E+02

M3d pressure

M3d z velocity
Mad y velocity
M3d = velocity  100.00
atom x position G110
atom y position 45,90
atom : position  61.68
atom y velocity  64.65

i [RKB2006] | [EFF2 ‘|L<2005L| o 4
! v ! scheme
16 086 4.3 0.49] 44 056 1.3 108| 1.3 0.5,

lbl Zl-l 118 1.21] 155 129 129 222| 138 149
5/1100.5  9.06| 96.3 8.48| 35.7 19.03| 35.5 9.25]
95.6 87.9 8.87| 40.1 1879 404 9.96]
250.8 239.3 15.02|198.8 31.92| 203.0 18.47
2494 246.1 14.68| 209.2 32.66
59.3 53.0 4.27| 44.1 GOI

64.3 529 4.87
67.4 4.59
5.04
5.29]

10.94 -

16.59 -

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50
9.65| 84.3 14.93

atom temp 64.91 8.34] 84.6 15.02
atom energy 3.45 7.01| 60.8 12.66
lucy 61. 39 “6.1E+02 1.2E+03 - 73.6 -
david 25,23 -44E+03 1.8E+403 - 108.6 -
torso 84, 12 3108 -27E+02 5.8E+02 - [ 13 -
bl 7190 20.14 2599 1.5E+00 3.6E+02 56 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather
than floating-point ion, altl h for simplicity or
othier roaséis It 18 comerion prac o use Hoating-point. Con-
trary to [16]. which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive dmu sets from scie nnh:

correspond to the median of five runs. Whereas our compres-

i itly slower than the less effective compressors [7.22],
it is nearly twice as fast as [16] while prody
pression rates. However, in more 1/O-intensiv
as in massively ;uml"l'l simulations dumping data to the same
file system (as is common), the improved compression of our
method over [. 22| results i in a net gain in effective thronghput.

simulation that motivated our work on high
as well as onr tetrahedral meshes, rarely
order redundancy, as also evidenced by

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory
including disk write time. (Becanse of the simpli
method. its decompression speed is similar to its (()mpn\\wn
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single fwrite call. Timings

We integy 1 our comy; code with Miranda’s dump roy
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding
We comp:

ed the raw thronghput of our range coder and
Schindler’s (23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our experiments. Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
coding. Meanwhile, the inefficiency of our coder due to loss of
precision and range reduction is only 26 bytes of overhead for
1.5 GB of coded data. Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

volume rend

d [ "J but its ugumunr\ are used in non-

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬁerenl definitions of edges, zero-

p eg. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles). con-
cave (orange circles), and saddles (orange and blue stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero- uuwng on Iht.' second directional derivative along
the gradient direction, f” = n’ Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the H eigen-
values is near zero even though this is not part of the edge defini-
mm Another edge definition is the zero-crossing of the Laplacian
V2f = tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the gl)phs in a2 2-D visualization, hg 10
alizes a cross-section of a of jet flow rightward into a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes 100 large, these glyphs can become 30 stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the locality normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
phs for tensors with larger norms, contrary to scale preservation (6).
. 10(b) uses our superquadric glyphs with s([[D]|) o< D] The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-
nicate eig With of scale variation

of the d ive (c) and the Laplacian (d).
These results use s(|D|[) = |D||'/% in (6).

(s(ID]]) = [[D]*/2), Fig. 10(c) better shows the d-muuml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 demonstrates how our new glyph performs trace-
less tensor visualization, in a side-by-side comparison to the dedi-
cated traceless NLC tensor glyphs by Jankun-Kelly et al. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale \(unn) o “D\I Consequently. the traceless glyph requires pre-
des (which are mapped
lu perfect \harpm:\\l while our glyph can be used without such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

on research has made significant progress in visu:
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally. no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the rull \p.lu. ul \) mmum second-order tensors.
Our glyph h; sign in a way that,
unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]
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Table 1. Hypothesis tests used to reach for the

Sharp readers will notice that one subject’s TLX ratings we

discarded due to not assigning any work to any of the factors, giving all techniques a workload rating of zero. Degrees of freedom for the 1-tests ar|
clamped at two less than the number of cases yielded by the study design, in which all factors were crossed for error, response time, and answerg

Test and Factor(s) | Error

Response Time

Number of Answers

Workload

ANOVA: MVV Technique F(3,33) =3265,p =000 F(3,33) =

ANOVA: Num. of Layers F(2,22) =7.45,p = 0.003
ANOVA: Target Size F( 89.92,p=0.00
ANOVA: Experience F(1,10) = 1.83,p = 021 F(1,10)
ANOVA: MVV-by-Num. Layers | F(4,44) =8.79,p = 0.00 F(4,44)
ANOVA: MVV-by-Target Size F(4,44) =3564,p =000 F(4,44)

3548, p =000 F(3,33)

tHest: DDS vs. Slivers 1(106) = 6.59,p = 0.00 1(106) =3.14,p

t-test: DDS vs. Att. Blocks £(106) = 5.20,p = 0.00 1(106) =3.23,p
By

537,p
8.98.p
6.17.p
9.06,p
3.15,p

0.002 £(106)
0.002 1(106)
0.01
0.001
003 F H 10)
0.00
0.02

B3p
065,p =05

=000 F(3,30) = 19.20,p = 0.00

2 1(9)=133,p=022

254,p=001 19) = 1.05,p =032
1.80,p = 0.19
430,p=0.03
0.06,p = 0.82

Table 2. The mean and standard deviation for each MVV technique for each of the three objecti
rating shows the difficulty users had in attempting to complete the task with the basellne technique. Error is expressed in units of layers (rang
0-6), time in seconds, answers in a count, and workload through NASA TLX.

and the

Error Error Time Time

Name (layers)  Std. Dev. | (sec)  Std. Dev.

Al

nswers  Answers
(count)  Std. Dev.

(TLX)

Workload™ Workload

Std. Dev.

JuxLayers 1.54 1.03 46.72 3644
DDSpots 0.09 0.21 733 6.01
Slivers 042 0.48 9.62 4.25
Attrib 047 0.73 9.74 5.27

8.87 5.09
1.09 0.28
111 0.24
1.20 0.37

6553
40.74
27.86
31.79

15.40
23.17
22.38
16.24

WError  wAnswers  WTime  ®Workload

Error (Target Layers) and
Number of Changes to Answer

DDSpots

Fig. 6. Graph of for the MVV tech
niques. There was a main effect on error (red) and workload (green), by
not on time (blue) or answers selected (orange). Error and number d
changes to answers (i.e. one less than the number of answers selected
to align the graphs better) are on the primary axis on the left. Respons|
time and workload are on the secondary axis on the right

that stated only that six layers would be the most difficult and not
predicted a complete ordering with respect (o increasing number of

layers, Further, we found that users were 13%
the target than with five layers, which is a bit counter-intuiti
It that we shall discuss in Section 4.

354 Effect of Size of Target

The size of the target had a main effect on error, response time, and the
number of answers selected. However, the results again do not support
the complete ordering predicted in Hypothesis 4 I'hc \nulh \l target

355 Effect of User Experience

We expected (based on our past work) o see users who had partici-
pated in previous studies perform faster. We found a main effect of
(binary) user experience on response time (Table 1). Returning users
faster than subjects who were participating in
our sequence of studies for the first time. This confirms Hypothesis 5.

were

on average 30.7%

3.5.6 Other Findings

We found sign

nt interactions between MVV Technique and the

number of target layers for error and for response time. We found
significant interactions between MVV Technique and the target size

for error and for response tiny
insight into the usability of the te
main effects of the number of

graph these results in Figure 7.

Th
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layers and the target size for emor

these results (Table 1) give us
and also implicitly show the
s and of the target size, we

on between the number of target
F(4,44) =5.128,p = 0.002. F

t layers, the smallest targets were most difficult, but

the magnitude of the increase in difficulty from the middle size down
to the smallest size was quite a bit lower for five layers than would be
expected looking at the jumps for four and six layers

We checked whether fatigue had an effect on error by running a 3

(MVV Technique)

36 (Count) ANOVA with the MVV technique

and the count of questions as factors: we found no significant effect
of the count of questions completed

Similarly, we conducted a 3 (MVV Technique) ~ 3 (Target L:
get Size) < 4 (Repetition) ANOVA to see
et size and number of target layers had
; we found no significant effect — /(3,33) = 0.860,p — 0.472.

3(

B
combination of t

F(35,385) = 0.798,p — 0.789.

if repetition of the
ain ef-

Analogous ANOVA calculations revealed that there was no significant
effect of trial count or repetition on the number of answers selected.
We ran a filter on the error to find trials where the response was
Jjudged to be incorrect, but the error in pixels from the correct answer
was smaller than the size of the target. There were only nine such

errors in 494 tri

cannc

But we do find

ch st

ot all

istic

size was clearly more difficult, but there was no
between the two larger s Users were fastest with the largest targe!
size, with a small but not significant difference between lhc smallest
and middle sizes. Users changed their answers at a slightly increasing
rate with decreas
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

(4) 10 Presmre (e} 10 Ovtusmity (1) 30 Viscoarty

Compressed size (MB) and compression time (seconds) |

M3d = velocity

100.00

data set
unique entropy range 7
nowo (%) __(bits) (bits) ™" ™

m2d density 359 3.9 21.83 8.7E-01 1.2E+00
m2d vorticity  99.20  22.25 31.05 -1.4E+02 2.5E401

767 5.16 23.60 1.0E+00 3.0E+00
m3d pressure 6 -3.7E4+00 2.3E+03
m3d diffusivity 0. 0F+m 6.8E+00
m3d viscocity 29E+00
h3d temp 1LOE+35
h3d pressure 1.OE+35
h3d x velocit, 1.0E+35
h3d y veloc 1LOE+35
h3d z wlocxl\ 1.0E+35
Mad density 3.0E+00
M3d pressure 2.2E+00
M3d x velocity 2.3E400 2
Mad y velocity 23E400

9.0E+00 2

size
(MB)

19.6

19.6
364.5
364.5
364.5

zlib RKB2006] | [EFF2000]

364.5

i [RKB2006] | [EFF3 ;|L<eou=L| e 4
scheme

1.6 086 43 049 44  0.56] 1.3 1.08 1.3 0.56
lbl Zl-l 11.8 1.21| 155 129 129 222| 138 149
5(1005 9.06| 96.3 8.48| 35.7 19.03 355 9.25
95.6 87.9 8.87| 40.1 18.79| 404 996
250.8 239.3 15.02(198.8 31.92( 203.0 18.47
2494 246.1 14.68| 209.2 32.66
59.3 53.0 4.27| 44.1 ltOl

64.3 529 4.87
67.4 4.59
5.04
5.29]

10.94 -

16.59 -

atom r position G1.10 4.6E+02 7.61

atom y position 45,90 26.99 3.7E-02 2.1E+03 6.31| 47.0 10.49
atom z position  61.68 4.6E+02 8.25| 75.7 13.80
atom y velocity  64.65 9.65| 84.3 14.93
atom temp 64.91 8.34] 84.6 15.02
atom energy 3.45 7.01| 60.8 12.66
lucy 61. 39 “6.1E+02 1.2E+03 - 73.6 -
david 25,23 -44E+03 1.8E+403 - 108.6 -
torso 84, 12 3108 -27E+02 5.8E+02 - [ 13 -
bl 7190 20.14 2599 1.5E+00 3.6E+02 56 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.
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order redundancy. as also evidenced by

5.1.1 Lossy Compression

Fig,
levels of pre

the schemes |7,

leading zerc
low entropy

in the leadin;

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory
including disk write time. (B
method. its decompression speed is similar to its (()mpn\\wn
speed.) We also include the
ing the data uncompressed using a single fwrite call. Timings

for simplicity or
o use Hoating-point. Con-
s all bits of the residual, our
ial compression gains for speed
-order bits in raw and uncom-
However, the massive dmu sets from scie nnh:

correspond to the median of five runs. Whereas our compres-

i itly slower than the less effective compressors [7.22],
it is nearly twice as fast as [16] while prody
pression rates. However, in more 1/O-intensiv
as in massively ;uml"l'l simulations dumping data to the same
file system (as is common), the improved compression of our
method over [. 22| results i in a net gain in effective thronghput.

ise of the simpl

3 shows that our scheme gracefully adapts to decreasing
on when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
22| require log, n bits to code the number of
whereas our scheme exploits the combination of
ero count and the elimination of the
low-order bits that are most difficult to predict and compress.

¢ 1/0 performance of dump-

We integy 1 our comy; code with Miranda’s dump roy
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding

ed the raw thronghput of our range coder and
Schindler’s (23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our experiments. Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
coding. Meanwhile, the inefficiency of our coder due to loss of
precision and range reduction is only 26 bytes of overhead for
1.5 GB of coded data. Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

We comp:

Linstrom et al. [2006]
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

volume rend

d [ "J but its ugumunr\ are used in non-

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬁerenl definitions of edges, zero-

p eg. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles). con-
cave (orange circles), and saddles (orange and blue stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero- uuwng on Iht.' second directional derivative along
the gradient direction, f” = n’ Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the H eigen-
values is near zero even though this is not part of the edge defini-
mm Another edge definition is the zero-crossing of the Laplacian
V2f = tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the gl)phs in a2 2-D visualization, hg 10
alizes a cross-section of a of jet flow rightward into a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes 100 large, these glyphs can become 30 stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the locality normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
phs for tensors with larger norms, contrary to scale preservation (6).
. 10(b) uses our superquadric glyphs with s([[D]|) o< D] The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-
nicate eig With of scale variation

of the d ive (c) and the Laplacian (d).
These results use s(|D|[) = |D||'/% in (6).

(s(ID]]) = [[D]*/2), Fig. 10(c) better shows the d-muuml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 demonstrates how our new glyph performs trace-
less tensor visualization, in a side-by-side comparison to the dedi-
cated traceless NLC tensor glyphs by Jankun-Kelly et al. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale \(unn) o “D\I Consequently. the traceless glyph requires pre-
des (which are mapped
lu perfect \harpm:\\l while our glyph can be used without such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

on research has made significant progress in visu:
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally. no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the rull \p.lu. ul \) mmum second-order tensors.
Our glyph h; sign in a way that,
unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]
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Table 1. Hypothesis tests used to reach for the

Sharp readers will notice that one subject’s TLX ratings we

discarded due to not assigning any work to any of the factors, giving all techniques a workload rating of zero. Degrees of freedom for the 1-tests ar|

clamped at two less than the number of cases yielded by the study design,

Test and Factor(s) | Error Response

in which all factors were crossed for error, response time, and answerg

Time Number of Answers Workload

ANOVA: MVV Technique F(3,33) =3265,p =000 F(3,33) =
tHest: DDS vs. Slivers 1(106) = 6.59,p = 0.00 1(106) = 3.
ttest: DDS vs. Att. Blocks 1(106) = 5.20,p = 0.00 1(106) =3
ANOVA: Num. of Layers F(2,22) =7.45,p = 0.003 2,
ANOVA: Target Size F( 89.92,p=0.00

ANOVA: Experience F(1,10) = 1.83,p = 021 F(1,10)
ANOVA: MVV-by-Num. Layers | F(4,44) =8.79,p = 0.00 F(4,44)
ANOVA: MVV-by-Target Size F(4,44) =3564,p =000 F(4,44)

3548, p =000 F(3,33) =4557,p =000 F(3,30) = 19.20,p = 0.00
14,p=0.002  £(106) = 0.65,p = 0.52 19) =1.33,p =022

23, p=0002  1(106) =254,p =001 1#(9) =1.05,p =032
537,p=0.01 P 1.80,p = 0.19

$98,p=0001 F 4.30,p=0.03

617.p=003  F(1,10)=0.06,p = 0.82

9.06,p = 0.00

3.15,p = 0.02

Table 2. The mean and standard deviation for each MVV technique for each of the three objecti and the
rating shows the difficulty users had in attempting to complete the task with the basellne technique. Error is expressed in units of layers (rang
0-6), time in seconds, answers in a count, and workload through NASA TLX.

Error Error Time Time
Name (layers)  Std. Dev. | (sec)

Std. Dev.

Answers  Answers | Workload  Workload
(count)  Std. Dev. (TLX) Std. Dev.

JuxLayers 1.54 1.03 46.72 3644
DDSpots 0.09 0.21 733 6.01
Slivers 042 0.48 9.62 4.25
Attrib 047 0.73 9.74 5.27

887 8.00 65.53 15.40
1.09 0.28 40.74 23.17
111 0.24 27.86 22.38
1.20 0.37 31.79 16.24

WError  wAnswers  WTime  ®Workload

i
2<
e
ig
Es
£3
st

z

DDSpots

Fig. 6. Graph of for the MVV tech
niques. There was a main effect on error (red) and workload (green), by
not on time (blue) or answers selected (orange). Error and number d
changes to answers (i.e. one less than the number of answers selected
to align the graphs better) are on the primary axis on the left. Respons|
time and workload are on the secondary axis on the right

that stated only that six layers would be the most difficult and n
predicted a complete unlmm with respect (o increasing numln’r «
layers. Further, we found that users were 13%
the target than with five layers, which is a bit counter-intuiti

It that we shall discuss in Section 4.

354 Effect of Size of Target

The size of the target had a main effect on error, response time, and th
number of answers selected. However, the ¢ 4

the complete ordering predicted in Hypothesis 4. The smallest targ
size was clearly more difficult, but there was no significant differenc|
between the two larger si Users were fastest with the largest targ
size, with a small but not significant difference between the smalles
and middle sizes. Users changed their answers at a slightly increasin
rate with decreas

355 Effect of User Experience

We expected (based on our past work) to see users who had partic
pated in previous studies perform faster. We found a main effect d
(binary) user experience on response time (Table 1). Returning uses
were on average 30.7% faster than subjects who were participating i
our sequence of studies for the first time. This confirms Hypothesis §

3.5.6 Other Findings

We found significant interactions between MVV Technique and
number of target layers for error and for response time. We foun|
significant interactions between MVV Technique and the target siz
for error and for response tiny these results (Table 1) give
insight into the usability of the te

main effects of the number of

graph these results in Figure 7.

There was a significant interaction between the number of targ
layers and the target size for error - F/(4,44) = 5.128, p = 0.002. Fo
all number of target layers, the smallest targets were most difficult, by
the magnitude of the increase in difficulty from the middle size dow]
to the smallest size was quite a bit lower for five layers than would
expected looking at the jumps for four and six layers

We checked whether fatigue had an effect on error by running a
(MVV Technique) -~ 36 (Count) ANOVA with the MVV techniquf
and the count of questions as factors; we found no significant effe
of the count of questions completed — F(35,385) = 0.798, p = 0.784
Similarly, we conducted a 3 (MVV Technique) ~ 3 (Target Layes

3 (Target Size) - 4 (Repetition) ANOVA to see if repetition of th
combination of target size and number of target layers had i

: we found no significant effect — F/(3,33) = 0.860, p
Analogous ANOVA calculations revealed that there was no significa
effect of trial count or repetition on the number of answers selected.

We ran a filter on the error to find trials where the response wa
Jjudged to be incorrect, but the error in pixels from the correct answd
was smaller than the size of the target. There were only nine suc|

rrence of such an even
But we do find it curious to note that of the nine such errors, seve|
saw selections that were no more than seven pixels away from th
target patch — and all of these were trials with Attribute Blocks and th
allest target size (31 pixels). (Two trals saw selections that wes
almost the size of Ih(‘ target patch — 61 or 91 pixels, respectively
with Oriented §

ton et al. [2012]
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() 20 Dermty {b) 20 Vostuity

(e} 10 Oitusnity (1) 30 Viscoarty
Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6
5.16 23.60 1.OE+00 3.0E+00
23.91 31.06 -3.7TE+00 23E+03 3

m3d pressure

m3d diffusivity 23.19 0.0E+00 6.8E-+00
m3d viscocity 24.86 29E+400
h3d temp 23.54 1.OE+35

1LOE+35
1.0E+35
10E+35
1.0E+35
3.0E+00
2.2E+00
2.3E+00 3
2.3E+00 3
9.0E+00
T6ET02
2.1E+03
1.6E+02

hid pressure
h3d z velocity
had y veloc

had = velocity
Mad density
M3d pressure
\i3d x velocity

¢ 100.00
atom r position  61.10
atom y position 45,90
atom : position  61.68

10.32[275.5 32.62|:

Tata st compressed size (MB) and compression time (seconds) ]
Unique entropy range A Size  time = TSR] FSer PP new
hosme (%) (bits) (bits) ™ WX (\p) (see)| 7D | [RKB200G] | [EFF2000) -"‘"““Ll scncm--J
m2d density 3.89 3.49 21.83 8.TE-01 1.2E+00 19.6 7 1.6 086 4.3 0.49) 44  0.56] 1.3 1.08] 1.3 &

184 214|118 1.21] 155 1.29) 129 222 138
17.55/100.5  9.06( 96.3 8.48) 35.7 19.03| 35.5
87.9 8.87| 40.1 1879 404
239.3 15.02|198.8 31.92| 203.0
5[246.1 14.68( 209.2 32.66/207.5
53.0 4.27| 44.1 GOI
529 4.87
4.59
5.04
5.29]

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50

7.07] 84.3 2118
7 65.9 30.76,
19.86

atom y velocity  64.65 6 1. F;E ()l 9.65| 84.3 14.93
atom temp 64.91 3.0E~ 107.7 8.34

atom energy 3.45 -3.6E+ 00 - 107.7 7.01

Tucy 61. 39 .09 -6.1E+02 1.2E+03 160.5 g -

david 25,23 31.11 -44E4+03 1.8E403 3225 - [1449 - -

torso 84, 12 3108 -27E+02 5.8E4+02 1.9 - 17 - -

bl 7190 20.14 2599 15E+00 3.6E+02 84 - T -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
tors0 and rbl tetrahedral meshes. All data but M2d is represented in single precision, The (ILS2005] scheme operates on single precision only, hence the missing values.

For the meshes we report only the compressed size of vertex coordinates; timings

are dominated by connectivity coding, and are hence excluded. The range measures

(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather
than floating-point ion, alth h for simplicity or
other roasons It fs comrion practice to use Hoating-point. Con-
trary to [16]. which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive data sets from «u-nuh:

correspond to the median of five runs. Whereas our compres-
sor it itly slower than the less effective compressors [7.22],
it is nearly twice as fast as [16] while producing sim
pression rates. However, in more I/O-intensive scenarios, such
as in massively parallel simulations dumping data to the same
file system (as is common), the improved compression of our
method over [, results i in a net gain in effective thronghput.

simulation that motivated our work on high
as well as our tetrahedral meshes, rarel
order redundancy, as also evidenced by

1
hibit significant low-
results.

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory
including disk write time. (Becanse of the simpli
method. its decompression speed is similar to its (()mpn\\wn
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single furite call. Timings

We integy 1 our « code with Miranda’s dump roy
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding

ed the raw throughput of our range coder and
[23] by (1) passing raw bytes through it with no
v and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
nts. Timings show that our coder

coding. Meanwhi
precision and ran

reduction is only 26 bytes of overhead for
1.5 GB of coded da Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

volume rmd d [ D] butits ugumunr\ are used in non-

(c) Hessians H on f" zero-crossing ui) Hessians H on V2 f zero-crossing

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬁerenl definitions of edges, zero-
of the d (c) and the Laplacian (d).

phot

e.g. curvature-based strokes [11, 14, 19].
In\pcuing geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles), con-
cave (orange circles), and saddles (orange and bluc stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero- uumng on (he second directional derivative along
the gradient direction, f” = n’ Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the H eigen-
values is near zero even though this is not part of the edge defini-
uun Another edge definition is the zero-crossing of the Laplacian
V2f = tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the gl)pl\~ in a2 2-D visualization, hg 10
visualizes a cross-section of a of jet flow righ linto a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes too large, these glyphs can become so stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the loca normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
phs for tensors with larger norms, contrary to scale preservation (6).
. 10(b) uses our superquadric glyphs with s(||D||) o< |D||. The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-
nicate With of scale variation

These results use s(|D|[) = |D||'/% in (6).

(s(ID]]) = [[D]*/2), Fig. 10(c) better shows the d-muoml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 dulkm\lmlc\ how our ncw !.vah performs trace-
less tensor visua jon, in a side-b, 1o the dedi-
cated traceless NLC tensor glyphs by J;mLun Kgll\ etal. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale s(||D]]) = [|D||. Consequently. the traceless glyph requires pre-
of des (which are mapped
lu perfect sharpness), while our glyph can be used without such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

on research has made significant progress in visu:
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally, no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the IuIl \p.lu. ul \) mmum second-order tensors.
Our glyph h; sign in a way that,
unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]
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LUNDSTROM ET AL: MULTTOUCH TABLE SYSTEM FOR MEDICAL VISUALIZATION: APPLICATION TO ORTHOPEDIC.. 1781

two cases was not a factor that could affect the outcome of this study
negatively.

One i engaged in the of the table and in
assisting the participant when needed. A second experimenter took
notes and also documented the session by voice recording. A prepared
interview guide was used. It included a set of predefined questions that
covered various aspects of the design goals (section 5.1) and also a
number of potential questions used to prompt the participant to “think
aloud” when needed. Both experimenters engaged in the conversation
and made sure that all questions in the interview guide were covered
by the end of the session. Some questions were discussed while par-
ticipants worked on the cases and some were mxn\ ed .;fmr»\.mls

After using the table i

Overall impression

Willingness to use

Efficiency for planning

Efficiency for surgery

Quality of work
Learnability

Benefits over static imaging

questionnaire. The responses were zx\cn on a 5- pam\ rating scale:
Strongly unfavorable (1), Unfav umblu ), Unsure (3), Favorable (4)

[¢

Similarity to real situation

1
Interaction -l—
—t
_|_

toothers

and Strongly fa ble (5). The q covered the fc
issues:

. Overall impression: The overall impression of the table.

~

. Willingness to use: Whether the orthopedic surgeon would like
to use the table in their daily work.

. Efficiency for planning: Whether using the table would save
time for pre-operative planning.

. Efficiency for surgery: Whether using the table pre-operatively
would save time during actual surgery.

. Quality of work: Whether using the table would improve the

quality of clinical work.

Learnability: Ease of learning table usage for a novice user.

. Interaction: Ease of interacting with the table.

. Benefits over static imaging: Whether interactive 3D imaging
is superior 10 the series of static 3D snap-shots used today.

. Collaboration: Whether access to the table at work would facil-
itate collaboration between several people.

10. Similarity to real situation: Whether the similarity to a real sit-

uation (patient lying on a table) facilitates insights and decision

making.

. Recommend to others: Whether the orthopedic surgeon would
recommend colleagues to use the table at work.

[V I

® = o

Please note that while the list above well represents the statements
rated by the participants, the wording has been translated and slightly
changed to clarify reporting of the results. A full session lasted for
approximately 50 minutes including all parts.

7 RESULTS

The vser study proved effective for the objective of collecting distinct
and broad feedback from the orthopedic surgeons about how the visu-
alization table would fit in their application domain. They did not con-
sider the “think aloud” approach to be distracting from the evaluation
tasks. The overall sment from the surgeons is that the table would
be useful in their clinical work. This is illustrated by the numerical rat-
ings in the post-session questionnaire, see figure 12. Responses for the
eleven statements has a group mean value! of 3.8 (two statements), 4
(two statements) and above 4 (seven statements) respectively, all cor-
responding to a clearly favorable rating. Statistical significance was,
however, not achieved but this is to be expected for this small study.
There is only one example of a negative rating, one surgeon expressed
moderate disagreement with the table’s potential to improve efficiency
during surgery (ﬂ)ecl’\lﬁl age 50). There were three statements con-
cerning general of Overall i ssion, Will-
ingness to use, and Recommend to others, and in all three cases the
stady shows a >ll’\)l)gl\ ra\onblL mean rating of 4.4, Bolh the vnuugu
and less exp p and the older sp

11t can be discussed whether averaging in an ordinal scale is appropriate,
our conclusion is that in this case it is the best way to convey the results, in
combination with the min-max measures in figure 12,

Fig. 12. The quantitative results of the user study questionnaire. Sub-
Jective satisfaction regarding use of the table was measured for 11 ques-
tions, see section 6. The 5-point rating scale ranges from Strongly un-
favorable (1) through Unsure (3) to Strongly favorable (5). Vertical red
bars denote the mean value and horizontal bue lines denote the full
span of given ratings

to all levels of the rating scale (3-5). Hence, for this participant pool,
age and level of experience did not seem to affect the attitude towards
the technique.

The issues behind the rather general statements in the questionnaire
were discussed in greater detail during the sessions at the table and
these findings provide a more nuanced and informative view of opin-
ions. Below, these findings are summarized under the following four
subheadings: Ease of use and learnability, Clinical usefulness, Wor
flow, and Desired features.

7.1 Ease of use and learnability

Low learning threshold and high vsability were central objectives in
the design of the system, reflected by design requirements R1-R5. Re-
garding the overall impression of the table all participants expressed
positive statements. The interface was considered intuitive and con-
venient, and it was easy to learn how to use the basic functional-
ity. The comments about learning threshold expressed an anticipa-
tion that novice users would quickly learn the basic functionality, al-
though some of the more advanced functionality (activated via the
pucks) would require some practice. All appreciated the clean inter-
face with only a few visible GUI elements and emphasized the benefit
and importance of the screen being focused towards visualizing the 3D
image.

Regarding the interaction, the touch gestures were described as in-
tuitive and straightforward to use, also for one of the participants who
pointed out that he had never vsed a touch-controlled interface be-
fore (specialist, age 54). The surgeons were asked if they perceived
the interaction as robust and responsive. They all concurred, through
statemnents that the result of actions on the screen was what they ex-
pected and that they felt in control. Nobody mentioned that the level
of precision provided by the touch (echnolog\ and the RST interaction
was insufficient or ]ymhlenmu Even though the parlmpuulx dul lml
bring it up, the noted a few of
gestures due to holding the knuckles of inactive fingers too close to the
surface. The typical effect was that panning occurred instead of an in-
tended x-y-rotation, which the users dealt with by lifting the hand and
reapplying the rotation gesture. For the additional MPR slice views it
was commented that touch gestures were more efficient for transversal
browsing than using a mouse.

The pucks were, in general, described as a convenient approach for
reaching additional features. The interaction that caused some confu-
sion was the advanced parts of the clip plane functionality, namely to
control and understand slab clipping. The surgeons adopted the natural
size zoom as an integral part of the toolset and no usability obstacles

Lundstrom et al. [2011]
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

data set Compressed size (MB) and compression time (seconds) |

unique entropy range 7 size time i PRSI Eree TG00 new
name (it (bity ™R max (S | AP | (RKB2006] | [EFF2000] .||_s.om|<| schc-n--J
m2d density 389 349 21.83 STE-01 12E+00 196 071 16 086 4.3 0.49| 44 056 1.3 1.08| 13 0.6

11.8 1.21] 155 1.20] 129 222 138 149
55[100.5  9.06( 96.3 8.48) 357 19.03| 35.5 9.25
95.6 87.9 8.87| 40.1 1879 404 9.96]

m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6
516 23.60 1.OE+00 3.0E+00 364.5
23.91 31.06 -3.7TE4+00 2.3E+03 364.5

m3d pressure

m3d diffusivity 23.19 0.0E+00 6.8E+00 361.5 250.8 239.3 15.02(198.8 31.92| 203.0
m3d viscocity 24.86 2 29E400 364.5 2494 246.1 14.68| 209.2 32.66|207.5
hd temp 23.54 1.OE+35 59.3 53.0 4.27| 44.1 504 441
hid pressure 2413 1LOE+35 64.3 52.9 4.87| 45.0 775

hdd z velocit, 8 1.OE+35 67.4 4.59] 54.5 8.86

h3d y veloci 1.0E+435 5.04]| 53.5 864

had = velocity 10E+35 5.20| 68.9 9.3

Md density 3.0E+00

2.2E+00
2.3E+00 12
2.3E+400 2
9.0E+00 2
4.6E+02
26.99 3.7E-02 2.1E+03
4.6E+02

M3d pressure

M3d z velocity
Mad y velocity
M3d = velocity
atom = position  61.10
atom y position 45,90
atom : position  61.68
atom y velocity  64.65

100.00

84.3 2118
65.9 30.76,
946 1956

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50
9.65| 84.3 14.93

atom temp 64.91 8.34] 84.6 15.02
atom energy 3.45 7.01| 60.8 12.66
Tucy 61. 39 .09 -6.1E+02 1.2E+03 - - 73.6 -
david 25,23 31.11 -44E+03 1.8E+403 - - 108.6 -
torso 84, 12 3108 -27E+02 5.8E+02 - - 13 -
bl 7190 20.14 2599 1.5E+00 3.6E+02 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather (unmpnml to the median of five runs. Whereas our compres-
than floating-point it Itk h for simplicity or i itly slower than the less effective compressors [7.22],
other reasons it Nmnmou practice to use Hoating-point. Con- it is nearly twice as fast as [16] while produ
trary to [16]. which entropy codes all bits of the residual, our  pression rates. However, in more 1/O-intensive scenarios, such
new coder sacrifices such potential compression gains for speed — as in massively parallel sinlations dumping data to the same
by storing these repeated low-order bits in raw and uncom-  file system (as is common), the improved compression of our
pressed form. However, the massive dmu sets from wu-lmh: method over [: results i in a net gain in effective throughput.

ing similar con

simulation that motivated our work on high lc We integ 1 our comy; code with Miranda’s dump roy
as well as onr tetrahedral meshes, rarely exhibit significant low-  tines and ran performance tests on 256 nodes of LLNL's MCR
order redundancy, as also evidenced by onr results. supercomputer. Achieving on average a lossless reduction of 3.7

on 75 GB of data dumped, the overall dump time was reduced

5.1.1 Lossy Compression by a factor of 2.7 over writing the data uncompressed.
Fig. 3 shows that our scheme gracefully adapts to decreasing )
levels of precision when discarding the least significant man- 5.3 Entropy Coding
tissa (and eventually exponent) bits. For n bits of precision,  We compared the raw thronghput of our range coder and
the schemes |7, 22] require log, e bits to code the number of — Schindler’s (23] by (1) passing raw bytes through it with no
leading zeros, whereas our scheme exploits the combination of — compression and (2) entropy coding byte sequences. In both
low entropy in the leading-zero count and the elimination of the  cases, the source data was the uncompressed floating-point
low-order bits that are most difficult to predict and compress.  data used in our experiments. Timings show that our coder

3 is 40% faster for raw transmission and 28% faster for entropy
5.2 Compression Speed coding. Meanwhile, the inefficiency of our coder due to Iu.\\luf
Fig. 4 shows the speed of compressing from memory to disk,  precision and range reduction is only 26 bytes of overhead for
including disk write time. (Becanse of the simpli 1.5 GB of coded da Its raw thronghput is only 20% less than
method. its decompression speed is similar to its (ompn\\wn an furite call. while its entropy coding throughput of 20 MB
speed.) We also include the raw 1/O performance of dump-  per second. which includes probability modeling and 1/0 time,
ing the data uncompressed using a single furite call. Timings  compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

© Hc\\un\ H on f" zero-crossing ui) Hessians H on V2 f zero-crossing

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬁerenl definitions of edges, zero-
d [ "J butits ugumunr\ are used in non- of the d ive (c) and the Laplacian (d).
pl e.g. curvature-based strokes [11. 14, 19].  These results use s(|D||) = |D||'/* in (6).
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of  (5(||D|[) =< [ID||'/2), Fig. 10(c) better shows the dm:guuml patierns
an ear from the Visible Human male CT scan. Variations in surface  where the tensor norm is low. Ce a the f-
curvature are reflected in the new glyphs: convex (blue circles). con-  tensor trace with glyph halos highlights the regions of over-all stretch-
cave (orange circles), and saddles (orange and blue stars). For compar- ing or compression. especially along the bottom edge of the domain.
ison, Fig. 9(b) shows the full Hessian H from which G was computed. Finally, Fig. 11 demonstrates lm\n our m.w !-')'Ph performs trace-
The new glyphs may also have a role in visualizing the tensor in-  less tensor ion, in a sids 1o the dedi-
gredients of image analysis methods such as edge detection. One edge  cated traceless NLC tensor glyphs hy J:mLun-KglI) etal. [25]. Trace-
definition is zero- uumng on (he second directional derivative along  less tensors form a plane in eigenvalue space, and we are visualiz-
the gradient direction, f” = n "Hn. This edge surface is sampled by ing samples from a square within this plane, centered around the zero
a particle system [33] in Fig. 9(c), showing the Hessians at the edge  tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
locations, and revealing close similarities with the geometry tensors — sor norm to glyph sharpness, our glyph expresses norm by its overall
on the isosurface in Fig. 9(a), indicating that one of the H cigen-  scale \(HDH) = “D\| Consequently. the traceless glyph requires pre-
values is near zero even though this is not part of the edge defini- des (which are mapped
mm Another edge definition is the zero-crossing of the Laplacian lu perfect \harpmsxl while our glyph can be used out such prior
V2f = u(H), and Fig. 9(d) illustrates the difference between the Hes-  information. Another notable difference is that limiting their glyph to
sians on this surface and those in Fig. 9(c). The consistently gray glyph  traceless tensors allows Jankun-Kelly et al. to make use of parts of the
halos in Fig. 9(d) indicate that these are traceless tensors. superquadric shape space — including cylinders and boxes — that our
As a demonstration of the glyphs in a 2-D visualization, hg 10 approach sets aside for positive- or negative-definite tensors.
visualizes a cross-section of a of jet flow righ linto a
steady medium, causing turbulence. Glyphs of rate-of-deformations 6 CONCLUSION
tensors document how an infinitesimal volume is stretched or com- on research has made significant progress in visu:
pressed as it moves along the flow. A backdrop of line integral con-  second-order tensor fields, but has mostly concentrated on the positive-
volution [4] (with contrast modulated by velocity) provides visual — definite case. Faced with indefinite tensors, a frequent strategy is to
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] 1o map them to positive-definite tensors prior to visualization [34, 22,
map tensors with negative cigenvalues to positive-definite tensors suit- 21, 52, 33]. Even when bijective mappings are used (so mathemati-
able for ellipsoid visualization. When the absolute difference between  cally, no information is lost), such mappings still visually obscure the
cigenvalues becomes 100 large, these glyphs can become so stretched  difference between positive and negative cigenvalues, which is a fun-
that they overlap each other and extend over a significant portion of  damental qualitative aspect in various applications.
the domain, undermining the locality normally enjoyed by glyphs.  Therefore, we propose an extension of a previous positive-definite
Such stretching also reduces the visual presence of the needie-like — tensor glyph [28] (o the full space ul \, mmetric second-order tensors.
phs for tensors with larger norms, contrary to scale preservation (6).  Our glyph h; sign in a way that,
. 10(b) uses our superquadric glyphs with s([D]}) o< [D]|. The as-  unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly  ing occluded by larger ones. We also propose to use halos to ensure
indicates the tensor norm, and pointed glyph shapes clearly commu-  tensor glyph visibility cven when one or more cigenvalues are near
nicate With of scale variation  zero. Finally, we present a time- and memory-efficient implementa-

volume rend I

Schultz & Kindlmann [2010]
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two cases was not a factor that could affect the outcome of this study
negatively.

One i engaged in the of the table and in
assisting the participant when needed. A second experimenter took
notes and also documented the session by voice recording. A prepared
interview guide was used. It included a set of predefined questions that
covered various aspects of the design goals (section 5.1) and also a
number of potential questions used to prompt the participant to “think
aloud” when needed. Both experimenters engaged in the conversation
and made sure that all questions in the interview guide were covered
by the end of the session. Some questions were discussed while par-
ticipants worked on the cases and some were n.mn\ ed .;fmr»\.mls

Overall impression

Willingness to use

Efficiency for planning

Efficiency for surgery

Quality of work

Learnability

Benefits over static imaging

After using the table
questionnaire. The responses were zx\cn on a 5- pom\ rating scale:
Strongly unfavorable (1), Unfavorable (2), Unsure (3), Favorable (4)

and Strongly f ble (5). The questi covered the fc

[¢

Similarity to real situation

toothers

. Overall impression: The overall impression of the table.

. Willingness to use: Whether the orthopedic surgeon would like
to use the table in their daily work.

. Efficiency for planning: Whether using the table would save
time for pre-operative planning.

. Efficiency for surgery: Whether using the table pre-operatively
would save time during actual surgery.

. Quality of work: Whether using the table would improve the
quality of clinical work.

. Learnability: Ease of leaming table usage for a novice user.

. Interaction: Ease of interacting with the table.

8. Benefits over static imaging: Whether interactive 3D imaging
is superior 10 the series of static 3D snap-shots used today.

. Collaboration: Whether access to the table at work would facil-
itate collaboration between several people.

. Similarity to real situation: Whether the similarity to a real sit-
uation (patient lying on a table) facilitates insights and decision
making.

. Recommend to others: Whether the orthopedic surgeon would
recommend colleagues to use the table at work.

rated by the participants, the wording has been translated and slightly
changed to clarify reporting of the results. A full session lasted for
approximately 50 minutes including all parts.

7 RESULTS

The vser study proved effective for the objective of collecting distinct
and broad feedback from the orthopedic surgeons about how the visu-
alization table would fit in their application domain. They did not con-
sider the “think aloud” approach to be distracting from the evaluation
tasks. The overall sment from the surgeons is that the table would
be useful in their clinical work. This is illustrated by the numerical rat-
ings in the post-session questionnaire, see figure 12. Responses for the
eleven statements has a group mean value! of 3.8 (two statements), 4
(two statements) and above 4 (seven statements) respectively, all cor-
responding to a clearly favorable rating. Statistical significance was,
however, not achieved but this is to be expected for this small study.
There is only one example of a negative rating, one surgeon expressed
moderate disagreement with the table’s potential to improve efficiency
during surgery (ﬂ)ecl’\]ﬁl age 50). There were three statements con-
cerning general of Overall i ssion, Will-
ingness to use, and Recommend to others, and in all lhlee cases the
stady shows a >Lmngl\ ta\onbln mean rating of 4.4, Bolh the vnuugu
and less exp and the older sp

11t can be discussed whether averaging in an ordinal scale is appropriate,
our conclusion is that in this case it is the best way to convey the results, in

combination with the min-max measures in figure 12.

1
Interaction -'—
—t
_|_

ig. 12. The quantitative results of the user study questionnaire. Sub-
ective satisfaction regarding use of the table was measured for 11 ques-
fions, see section 6. The 5-point rating scale ranges from Strongly un-
orable (1) through Unsure (3) to Strongly favorable (5). Vertical red
bars denote the mean value and horizontal biue lines denote the full
kpan of given ratings.

0 all levels of the rating scale (3-5). Hence, for this participant pool,
ge and level of experience did not seem to affect the attitude towards
he technique.

The issues behind the rather general statements in the questionnaire
wvere discussed in greater detail during the sessions at the table and
ese findings provide a more nuanced and informative view of opin-
ons. Below, these findings are summarized under the following four
pubheadings: Ease of use and learnability, Clinical usefulness, Wor
flow, and Desired features.

7.1 Ease of use and learnability

ow learning threshold and high vsability were central objectives in
he design of the systemn, reflected by design requirements R1-R5. Re-
arding the overall impression of the table all participants expressed
ositive statements. The interface was considered intuitive and con-
venient, and it was easy to learn how to use the basic functional-
ty. The comments about learning threshold expressed an anticipa-
tion that novice users would quickly learn the basic functionality, al-
though some of the more advanced functionality (activated via the
pucks) would require some practice. All appreciated the clean inter-
face with only a few visible GUI elements and emphasized the benefit
and importance of the screen being focused towards visualizing the 3D
image.

Regarding the interaction, the touch gestures were described as in-
tuitive and straightforward to use, also for one of the participants who
pointed out that he had never vsed a touch-controlled interface be-
fore (specialist, age 54). The surgeons were asked if they perceived
the interaction as robust and responsive. They all concurred, through
statemnents that the result of actions on the screen was what they ex-
pected and that they felt in control. Nobody mentioned that the level
of precision provided by the touch (echnolog\ and the RST interaction
was insufficient or ]ymhleumu Even though the purlmpuulx dul lml
bring it up, the noted a few of
gestures due to holding the knuckles of inactive fingers too close to the
surface. The typical effect was that panning occurred instead of an in-
tended x-y-rotation, which the users dealt with by lifting the hand and
reapplying the rotation gesture. For the additional MPR slice views it
was commented that touch gestures were more efficient for transversal
browsing than using a mouse.

The pucks were, in general, described as a convenient approach for
reaching additional features. The interaction that caused some confu-
sion was the advanced parts of the clip plane functionality, namely to
control and understand slab clipping. The surgeons adopted the natural
size zoom as an integral part of the toolset and no usability obstacles

Lundstrom et al. [2011]
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6
516 23.60 1.OE+00 3.0E+00 364.5
23.91 31.06 -3.7TE4+00 2.3E+03 364.5

m3d pressure

mad diffusivity 23.19 0.0E+00 6.8E+00 364.5
m3d viscocity 24.86 1 29E400 3645
h3d temp 23.54 1.0E+35
hid pressure 2413 1LOE+35
h3d z velocity 8 1.0E+35
had y veloc 1.0E+35
h3d = velocity 1.0E+35
M3d density 3.0E+00

2.2E+00
2.3E+00 12
2.3E+400 2
9.0E+00 2
4.6E+02
26.99 3.7E-02 2.1E+03
4.6E+02

M3d pressure

M3d z velocity
Mad y velocity
M3d = velocity
atom = position  61.10
atom y position 45,90
atom : position  61.68
atom y velocity  64.65

100.00

data set Compressed size (MB) and compression time (seconds) |

unique entropy range 7 size time i PRSI Eree TG00 new
name (it (bity ™R max (S | AP | (RKB2006] | [EFF2000] .||_s.om|<| schc-n--J
m2d density 389 349 21.83 STE-01 12E+00 196 071 16 086 4.3 0.49| 44 056 1.3 1.08| 13 0.6

11.8 1.21] 155 1.20] 129 222 138 149
55[100.5  9.06( 96.3 8.48) 357 19.03| 35.5 9.25
95.6 87.9 8.87| 40.1 1879 404 9.96]
250.8 239.3 15.02|198.8 31.92| 203.0
2494 246.1 14.68| 209.2 32.66/207.5
59.3 53.0 4.27| 44.1 5.04] M1
64.3 52.9 4.87| 45.0 775
67.4 4.59| 54.5 8.86
5.04| 53.5 8.64
5.29| 68.9 9.83]

84.3 2118
65.9 30.76,
946 1956

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50
9.65| 84.3 14.93

atom temp 64.91 8.34] 84.6 15.02
atom energy 3.45 7.01| 60.8 12.66
Tucy 61. 39 .09 -6.1E+02 1.2E+03 - - 73.6 -
david 25,23 31.11 -44E+03 1.8E+403 - - 108.6 -
torso 84, 12 3108 -27E+02 5.8E+02 - - 13 -
bl 7190 20.14 2599 1.5E+00 3.6E+02 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather
than floating-point it Itk h for simplicity or
other roasons It fs comrion practice to use Hoating-point. Con-
trary to [16]. which entropy codes all bits of the residual, our
new coder sacrifices such potential compression gains for speed
by storing these repeated low-order bits in raw and uncom-
pressed form. However, the massive dmu sets from wu-nnh:

correspond to the median of five runs. Whereas our compres-

i itly slower than the less effective compressors [7.22],
it is nearly twice as fast as [16] while prody
pression rates. However, in more 1/O-intensive scenarios, such
as in massively pum"l'l simulations dumping data to the same
file system (as is common), the improved compression of our
method over [, results i in a net gain in effective thronghput.

ing similar con

simulation that motivated our work on high
as well as our tetrahedral meshes, rarel
order redundancy, as also evidenced by

lc
hibit significant low-
results.

5.1.1 Lossy Compression

Fig. 3 shows that our scheme gracefully adapts to decreasing
levels of precision when discarding the least significant man-
tissa (and eventually exponent) bits. For n bits of precision,
the schemes [7.22] require log, n bits to code the number of
leading zeros. whereas our scheme exploits the combination of
low entropy in the leading-zero count and the elimination of the
low-order bits that are most difficult to predict and compress.

5.2 Compression Speed

Fig. 4 shows the speed of compressing from memory
including disk write time. (Becanse of the simpli
method. its decompression speed is similar to its (()mpn\\wn
speed.) We also include the raw I/O performance of dump-
ing the data uncompressed using a single furite call. Timings

We integy 1 our « code with Miranda’s dump roy
tines and ran performance tests on 256 nodes of LLNL's MCR
supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding
We comp:

ed the raw thronghput of our range coder and
Schindler’s (23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data used in our experiments. Timings show that our coder
is 40% faster for raw transmission and 28% faster for entropy
coding. Meanwhile, the inefficiency of our coder due to loss of
precision and range reduction is only 26 bytes of overhead for
1.5 GB of coded da Its raw throughput is only 20% less than
an furite call. while its entropy coding throughput of 20 MB
per second. which includes probability modeling and 1/0 time,
compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

volume rend I

d [ "J but its ugumunr\ are used in non-
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Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬁerenl definitions of edges, zero-

p eg. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles). con-
cave (orange circles), and saddles (orange and blue stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero- uumng on (he second directional derivative along
the gradient direction, f” = n’ Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the Hi cigen-
values is near zero even though this is not part of the edge defini-
mm Another edge definition is the zero-crossing of the Laplacian
V2f = tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the gl)phs in a2 2-D visualization, hg 10
visualizes a cross-section of a of jet flow righ linto a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to
map tensors with negative cigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
cigenvalues becomes too large, these glyphs can become so stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the locality normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
phs for tensors with larger norms, contrary to scale preservation (6).
. 10(b) uses our superquadric glyphs with s([[D]|) o< D] The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-
nicate eig With of scale variation

of the d ive (c) and the Laplacian (d).
These results use s(|D|[) = |D||'/% in (6).

(s(ID]]) = [[D]*/2), Fig. 10(c) better shows the dm:guuml patierns
where the tensor norm is low. C £ the f-
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 demonstrates lm\n our ncw !.Iyph performs trace-
less tensor 2 jon, in a sid 1o the dedi-
cated traceless NLC tensor glyphs hy J:mLun-KglI) etal. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale \(HDI\) o “D\| Consequently. the traceless glyph requires pre-
des (which are mapped
lu perfect \harpmsxl while our glyph can be used out such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

on research has made significant progress in visu:
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is (o
map them 1o positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally, no information is lost), such mappings still visually obscure the
difference between positive and negative cigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] o the rull \p.lu. ul \) mmum second-order tensors.
Our glyph h; sign in a way that,
unlike the Reynolds glyph [18], pre\cnl\ small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more cigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-
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two cases was not a factor that could affect the outcome of this study
negatively.

One i engaged in the of the table and in
assisting the participant when needed. A second experimenter took
notes and also documented the session by voice recording. A prepared
interview guide was used. It included a set of predefined questions that
covered various aspects of the design goals (section 5.1) and also a
number of potential questions used to prompt the participant to “think
aloud” when needed. Both experimenters engaged in the conversation
and made sure that all questions in the interview guide were covered
by the end of the session. Some questions were discussed while par-
ticipants worked on the cases and some were n.mn\ ed .;fmr»\.mls

After using the table i

Overall impression

Willingness to use

Efficiency for planning

Efficiency for surgery

Quality of work
Learnability

Benefits over static imaging

questionnaire. The responses were zx\cn on a 5- pom\ rating scale:
Strongly unfavorable (1), Unfavorable (2), Unsure (3), Favorable (4)
and Strongly f ble (5). The questi covered the fc

[¢

Similarity to real situation

toothers

. Overall impression: The overall impression of the table.

. Willingness to use: Whether the orthopedic surgeon would like
to use the table in their daily work.

. Efficiency for planning: Whether using the table would save
time for pre-operative planning.

. Efficiency for surgery: Whether using the table pre-operatively
would save time during actual surgery.

. Quality of work: Whether using the table would improve the
quality of clinical work.

. Learnability: Ease of leaming table usage for a novice user.

. Interaction: Ease of interacting with the table.

8. Benefits over static imaging: Whether interactive 3D imaging
is superior 10 the series of static 3D snap-shots used today.

. Collaboration: Whether access to the table at work would facil-
itate collaboration between several people.

. Similarity to real situation: Whether the similarity to a real sit-
uation (patient lying on a table) facilitates insights and decision
making.

. Recommend to others: Whether the orthopedic surgeon would
recommend colleagues to use the table at work.

rated by the participants, the wording has been translated and slightly
changed to clarify reporting of the results. A full session lasted for
approximately 50 minutes including all parts.

7 RESULTS

The vser study proved effective for the objective of collecting distinct
and broad feedback from the orthopedic surgeons about how the visu-
alization table would fit in their application domain. They did not con-
sider the “think aloud” approach to be distracting from the evaluation
tasks. The overall sment from the surgeons is that the table would
be useful in their clinical work. This is illustrated by the numerical rat-
ings in the post-session questionnaire, see figure 12. Responses for the
eleven statements has a group mean value! of 3.8 (two statements), 4
(two statements) and above 4 (seven statements) respectively, all cor-
responding to a clearly favorable rating. Statistical significance was,
however, not achieved but this is to be expected for this small study.
There is only one example of a negative rating, one surgeon expressed
moderate disagreement with the table’s potential to improve efficiency
during surgery (ﬂ)ecl’\]ﬁl age 50). There were three statements con-
cerning general of Overall i ssion, Will-
ingness to use, and Recommend to others, and in all lhlee cases the
stady shows a >Lmngl\ ta\onbln mean rating of 4.4, Bolh the vnuugu
and less exp and the older sp

11t can be discussed whether averaging in an ordinal scale is appropriate,
our conclusion is that in this case it is the best way to convey the results, in
combination with the min-max measures in figure 12,

1
Interaction -'—
—t
_|_

ig. 12. The quantitative results of the user study questionnaire. Sub-
ective satisfaction regarding use of the table was measured for 11 ques-
fions, see section 6. The 5-point rating scale ranges from Strongly un-
orable (1) through Unsure (3) to Strongly favorable (5). Vertical red
bars denote the mean value and horizontal biue lines denote the full
kpan of given ratings.

ge and level of experience did not seem to affect the attitude towards
he technique.

The issues behind the rather general statements in the questionnaire
wvere discussed in greater detail during the sessions at the table and
ese findings provide a more nuanced and informative view of opin-
ons. Below, these findings are summarized under the following four
pubheadings: Ease of use and learnability, Clinical usefulness, Wor
flow, and Desired features.

7.1 Ease of use and learnability

ow learning threshold and high vsability were central objectives in
he design of the systemn, reflected by design requirements R1-R5. Re-
arding the overall impression of the table all participants expressed
ositive statements. The interface was considered intuitive and con-
venient, and it was easy to learn how to use the basic functional-
ty. The comments about learning threshold expressed an anticipa-
tion that novice users would quickly learn the basic functionality, al-
though some of the more advanced functionality (activated via the
pucks) would require some practice. All appreciated the clean inter-
face with only a few visible GUI elements and emphasized the benefit
and importance of the screen being focused towards visualizing the 3D
image.

Regarding the interaction, the touch gestures were described as in-
tuitive and straightforward to use, also for one of the participants who
pointed out that he had never vsed a touch-controlled interface be-
fore (specialist, age 54). The surgeons were asked if they perceived
the interaction as robust and responsive. They all concurred, through
statemnents that the result of actions on the screen was what they ex-
pected and that they felt in control. Nobody mentioned that the level
of precision provided by the touch (echnolog\ and the RST interaction
was insufficient or ]ymhleumu Even though the purlmpuulx dul lml
bring it up, the noted a few of
gestures due to holding the knuckles of inactive fingers too close to the
surface. The typical effect was that panning occurred instead of an in-
tended x-y-rotation, which the users dealt with by lifting the hand and
reapplying the rotation gesture. For the additional MPR slice views it
was commented that touch gestures were more efficient for transversal
browsing than using a mouse.

The pucks were, in general, described as a convenient approach for
reaching additional features. The interaction that caused some confu-
sion was the advanced parts of the clip plane functionality, namely to
control and understand slab clipping. The surgeons adopted the natural
size zoom as an integral part of the toolset and no usability obstacles

Lundstrom et al. [2011]
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Fig. 1. Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

Jata set Compressed size (MB) and compression time (seconds) |
ulique: entropy range 2lib [RKB2006] | [EFF2000] ‘|L<2005L| o ~|

name min max

size
(%) (bits) (bits) (MB) scheme

m2d density 3.89 3.49 21.83 8.TE-01 1.2E+00 19.6 1.6 086] 43 0.49] 44 056 1.3 1.08] 1.3 0.56]
m2d vorticity 99.20 2225 31.05 -14E402 25E401 19.6 lb 4 2 l-l 11.8 1.21] 155 1.20] 129 222 138 149
767 516 23.60 L.OE+00 3.0E+00 364.5 5/1100.5  9.06| 96.3 8.48| 35.7 19.03| 35.5 9.25]
2 6 -3.7TE4+00 2.3E403 364.5 95.6 87.9 8.87| 40.1 1879 404 9.96]
0.0E+00 6.8E+00 364.5 250.8 239.3 15.02|198.8 31.92| 203.0 18.47

m3d pressure
m3d diffusivity

m3d viscocity 29E400 364.5 249.4 246.1 14.68| 209.2 32.66
h3d temp 1.OE+35 59.3 53.0 4.27| 441 504
hid pressure LOE+35 64.3 529 4.87

h3d z velocit 1.0E+35 67.4 4.59

hid y veloc 1OE+35 5.04

hid “‘|0(‘ll\ 1.0E+35 5.29!

M3d density 3.0E+00 10.94; -

2.2E+00
2.3E+00 12
2.3E+400 2
9.0E+00 2
4.6E+02
26.99 3.7E-02 2.1E+03
4.6E+02

M3d pressure 16.59 -
M3d z velocity
Mad y velocity
M3d = velocity  100.00
atom x position G110
atom y position 45,90
atom : position  61.68
atom y velocity  64.65

7.61
6.31| 47.0 10.49
8.25| 75.7 13.50
9.65| 84.3 14.93

atom temp 64.91 8.34] 84.6 15.02
atom energy 3.45 7.01| 60.8 12.66
lucy 61. 39 “6.1E+02 1.2E+03 - 73.6 -
david 25,23 -44E+03 1.8E+403 - 108.6 -
torso 84, 12 3108 -27E+02 5.8E+02 - [ 13 -
bl 7190 20.14 2599 1.5E+00 3.6E+02 56 - 4.7 -

Table 1. Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grids. the atom point set, the lucy and david triangle meshes, and the
torso and rbl tetrahedral meshes. All data but M2d is represented in single precision. The [ILS2005] scheme operates on single precision only, hence the missing values.
For the meshes we report only the compressed size of vertex coordinates; timings are dominated by connectivity coding, and are hence excluded. The range measures
(the logarithm of) the number of floating-point values between min and max. Note that the first-order entropy is limited by the number of samples in 2 data set.

tation.) Arguably such data sets should use an integer rather wm-apmnl to the median of five runs. Whereas our compres-
than floating-point ion, alth h for simplicity or i itly slower than the less effective compressors [7.22],
other reasons it N(unmon prac o use Hoating-point. Con- it is nearly twice as fast as [16] while produ
trary to [16]. which entropy codes all bits of the residual, our  pression rates. However, in more 1/O-intensiv
new coder sacrifices such potential compression gains for speed  as in massively puru"l'l simulations dumping data to the same
by storing these repeated low-order bits in raw and uncom-  file system (as is common), the improved compression of our
pressed form. However, the massive dmu sets from scie nnh: method over [‘ 22] results i in a net gain in effective throughput.
simulation that motivated our work on high We integ 1 our comy; code with Miranda’s dump roy
as well as onr tetrahedral meshes, rarely tines and ran performance tests on 256 nodes of LLNL's MCR
order redundancy, as also evidenced by supercomputer. Achieving on average a lossless reduction of 3.7
on 75 GB of data dumped, the overall dump time was reduced
by a factor of 2.7 over writing the data uncompressed.

5.1.1 Lossy Compression
Fig. 3 shows that our scheme gracefully adapts to decreasing i
levels of precision when discarding the least significant man-  5-3  Entropy Coding
tissa (and eventually exponent) bits. For n bits of precision,  We compared the raw thronghput of our range coder and
the schemes |7, 22] require log, e bits to code the number of — Schindler’s (23] by (1) passing raw bytes through it with no
leading zeros, whereas our scheme exploits the combination of — compression and (2) entropy coding byte sequences. In both
low entropy in the leading-zero count and the climination of the  cases, the source data was the uncompressed foating-point
low-order bits that are most difficult to predict and compress.  data used in our experiments. Timings show that our coder
3 is 40% faster for raw transmission and 28% faster for entropy
5.2 Compression Speed coding. Meanwhile, the inefficiency of our coder due to Iu.\\luf
Fig. 4 shows the speed of compressing from memory to disk,  precision and range reduction is only 26 bytes of overhead for
including disk write time. (Becanse of the simpli 1.5 GB of coded data. Its raw throughput is only 20% less than
method. its decompression speed is similar to its (ompn\\wn an furite call. while its entropy coding throughput of 20 MB
speed.) We also include the raw I/O performance of dump-  per second. which includes probability modeling and 1/0 time,
ing the data uncompressed using a single furite call. Timings  compares favorably with state-of-the-art entropy coders [25].

Linstrom et al. [2006]

ualitative result inspection user performance/experience

6% of scenarios

1602 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2010

(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor along which (7] are traced (a), and
the variation in stress with distance from the load (b).

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two dlﬁerenl definitions of edges, zero-
d [ "J butits ugumunr\ are ly used in non- of the d ive (c) and the Laplacian (d).
pl e.g. curvature-based strokes [11. 14, 19].  These results use s(|D||) = |D||'/* in (6).
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
ctry tensors G on an isosurface (sampled by a particle system [39]) of  (g(|D|[) =< [ID||!/2), Fig. 10(c) better shows the d-muuml patierns
an ear from the Visible Human male CT scan. Variations in surface  where the tensor norm is low. Ce a the f-
curvature are reflected in the new glyphs: convex (blue circles). con-  tensor trace with glyph halos highlights the regions of over-all stretch-
cave (orange circles), and saddles (orange and blue stars). For compar- ing or compression, especially along the bottom edge of the domain.
ison, Fig. 9(b) shows the full Hessian H from which G was computed. Finally, Fig. 11 demonstrates how our new glyph performs trace-
The new glyphs may also have a role in visualizing the tensor in-  less tensor visualization, in a side-by-side comparison to the dedi-
gredients of image analysis methods such as edge detection. One edge  cated traceless NLC tensor glyphs by Jankun-Kelly et al. [25]. Trace-
definition is zero- cruwng on Iht.' second directional derivative along  less tensors form a plane in eigenvalue space, and we are visualiz-
the gradient direction, f” = n’ Hn. This edge surface is sampled by  ing samples from a square within this plane, centered around the zero
a particle system [33] in Fig. 9(c), showing the Hessians at the edge  tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
locations, and revealing close similarities with the geometry tensors — sor norm to glyph sharpness, our glyph expresses norm by its overall
on the isosurface in Fig. 9(a), indicating that one of the Hi eigen-  s¢ nl.“ \(HDH) o “D\| (‘onscquenll) the lrau.lux glyph requires pre-
values is near zero even though this is not part of the edge defini- des (which are mapped
mm Another edge definition is the zero-crossing of the Laplacian lu perfect \harpm:\\l while our glyph can be used without such prior
V2f = u(H), and Fig. 9(d) illustrates the difference between the Hes-  information. Another notable difference is that limiting their glyph to
sians on this surface and those in Fig. 9(c). The consistently gray glyph  traceless tensors allows Jankun-Kelly et al. to make use of parts of the
halos in Fig. 9(d) indicate that these are traceless tensors. superquadric shape space — including cylinders and boxes — that our
As a demonstration of the glyphs in a 2-D visualization, hg 10 approach sets aside for positive- or negative-definite tensors.
alizes a cross-section of a of jet flow rightward into a
steady medium, causing turbulence. Glyphs of rate-of-deformations 6 CONCLUSION
tensors document how an infinitesimal volume is stretched or com- on research has made significant progress in visu:
pressed as it moves along the flow. A backdrop of line integral con-  second-order tensor fields, but has mostly concentrated on the positive-
volution [4] (with contrast modulated by velocity) provides visual — definite case. Faced with indefinite tensors, a frequent strategy is to
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to  map them to positive-definite tensors prior to visualization [34, 22,
map tensors with negative cigenvalues to positive-definite tensors suit- 21, 52, 33]. Even when bijective mappings are used (so mathemati-
able for ellipsoid visualization. When the absolute difference between  cally, no information is lost), such mappings still visually obscure the
cigenvalues becomes 100 large, these glyphs can become so stretched  difference between positive and negative cigenvalues, which is a fun-
that they overlap each other and extend over a significant portion of  damental qualitative aspect in various applications.

volume rend

the domain, undermining the locality normally enjoyed by glyphs. Therefore, we propose an extension of a previous positive-definite
Such stretching also reduces the visual presence of the needie-like — tensor glyph [28] to the full space ul \, mmetric second-order tensors.
phs for tensors with larger norms, contrary to scale preservation (6).  Our glyph h; sign in a way that,

. 10(b) uses our superquadric glyphs with s(||D||) e |D||. The as-  unlike the Reynuhh glyph [18], pre\cnl\ small eigenvalues from be-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly  ing occluded by larger ones. We also propose to use halos to ensure
indicates the tensor norm, and pointed glyph shapes clearly commu-  tensor glyph visibility even when one or more eigenvalues are near
nicate eig With of scale variation  zero. Finally, we present a time- and memory-efficient implementa-

Schultz & Kindlmann [2010]
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two cases was not a factor that could affect the outcome of this study
negatively.

One i engaged in the of the table and in
assisting the participant when needed. A second experimenter took
notes and also documented the session by voice recording. A prepared
interview guide was used. It included a set of predefined questions that
covered various aspects of the design goals (section 5.1) and also a
number of potential questions used to prompt the participant to “think Quality of work
aloud” when needed. Both experimenters engaged in the conversation Learnability

4 ]
i
L]
'
L]
and made sure that all questions in the interview guide were covered iidesadilon I
¥

Overall impression

Willingness to use

Efficiency for planning

Efficiency for surgery

by the end of the session. Some questions were discussed while par-
ticipants worked on the cases and some were n.mcwud afmr»\.mls Benefits over static imaging

After using the table i C
questionnaire. The responses were gx\cn on a 5- pom\ rating scale:
Strongly unfavorable (1), Unfavorable (2), Unsure (3), Favorable (4)
and Strongly f ble (5). The questi

Similarity to real situation

covered the f toothers

ig. 12. The quantitative results of the user study questionnaire. Sub-
ective satisfaction regarding use of the table was measured for 11 ques-
. Willingness to use: Whether the orthopedic surgeon would like Jlllions, see section 6. The 5-point rating scale ranges from Strongly un-

to use the table in their daily work. orable (1) through Unsure (3) to Strongly favorable (5). Vertical red
. Efficiency for planning: Whether using the table would save [JP2rs denote the mean value and horizontal blue lines denote the full

time for pre-operative planning. pran of given rafings

. Efficiency for surgery: Whether using the table pre-operatively
would save time during actual surgery.

5. Quality of work: Whether using the table would improve the @hoe and level of cxpcﬁe]]cc did not seem to affect the attitude towards

quality of clinical work. he technique.
. Learnability: Ease of learning table usage for a novice user. The issues behind the rather general statements in the questionnaire
. Interaction: Ease of interacting with the table. wvere discussed in greater detail during the sessions at the table and
i - p . ) g se findings provide a more nuanced and informative view of opin-

8. Benefits over static imaging: Whether interactive 3D imaging oy, Below, these findings are summarized under the following four

is superior 10 the series of static 3D snap-shots used today. bubheadings: Ease of use and learnability, Clinical usefulness, Wor

. Collaboration: Whether access to the table at work would facil- @¥iow, and Desired features.
itate collaboration between several people.

. Similarity to real situation: Whether the similarity to a real sit- 7.1 Ease of use and leamnability
uation (patient lying on a table) facilitates insights and decision ow learning threshold and high vsability were central objectives in
making. he design of the systemn, reflected by design requirements R1-R5. Re-

. Recommend to others: Whether the orthopedic surgeon would arding the overall impression of the table all puni_ci;m‘ms expressed
recommend colleagues to use the table at work. ositive statements. The interface was considered intuitive and con-

venient, and it was easy to learn how to use the basic functional-
ty. The comments about learning threshold expressed an anticipa-
jion that novice users would quickly learn the basic functionality, al-
hough some of the more advanced functionality (activated via the
pucks) would require some practice. All appreciated the clean inter-
face with only a few visible GUI elements and emphasized the benefit
hnd importance of the screen being focused towards visualizing the 3D
mage.

Regarding the interaction, the touch gestures were described as in-
uitive and straightforward o use, also for one of the participants who
pointed out that he had never used a touch-controlled interface be-
ore {specm]xsl age 54). The surgeons were asked if they perceived
he i as robust and responsive. They all concurred, through
btatements that the result of actions on the screen was what they ex-
ected and that they felt in control. Nobody mentioned that the level
f precision provided by the touch (echnolog\ and the RST interaction
was insufficient or ]ymhlem.lm Even though the purunpnulx dnl lml
ring it up, the noted a few of
zestures due to holding the knuckles of inactive fingers too close to the

. Overall impression: The overall impression of the table.

rated by the participants, the wording has been translated and slightly
changed to clarify reporting of the results. A full session lasted for
approximately 50 minutes including all parts.

The vser study proved effective for the objective of collecting distin
and broad feedback from the orthopedic surgeons about how the visu
alization table would fit in their application domain. They did not con-
sider the “think aloud” approach to be distracting from the evaluatior]
tasks. The overall sment from the surgeons is that the table wouls
be useful in their clinical work. This is i by the ical rat
ings in the post-session questionnaire, see figure 12. Responses for thg
eleven statements has a group mean value! of 3.8 (two statements),
(two statements) and above 4 (seven statements) respectively, all cor
responding to a clearly favorable rating. Statistical significance was|
however, not achieved but this is to be expected for this small studyj
here i only one exariple ot nt‘gau.ve raung OuE SUrgeON EXDITSSe o face. The typical effect was that panning occurred instead of an in-
moderate disagreement with the table’s potential to improve efficiency &3 ER SR % s R
ended rotation, which the users dealt with by lifting the hand and
during surgery (specialist, age 30). Thezo were three statemeats con. eapplying the rotation gesture. For the additional MPR slice views it

[ ssion, Wil :
":"':'e“sg‘ tg;""l‘;" g Ruw’m‘(’: By aln‘d,:’;”all cdnbiiady '}Ill vas commented that touch gestures were more efficient for transversal
8! browsing than using a mouse.

;mnﬁégowh s :Lmngl Y ta\onbln l;a’h‘:‘gﬁ;‘ 44, Bmh the wuugc Thg pucks were, in gcmral,f s lhcd:} a convenient approach for
A o eaching additional features. The interaction that caused some confu-

!t can be discussed whether averaging in an ordinal scale is appropriate{ilision was the advanced parts of the clip plane functionality, namely to
our conclusion is that in this case it is the best way to convey the results, i ontrol and understand slab clipping. The surgeons adopted the natural
combination with the min-max measures in figure 12. size zoom as an integral part of the toolset and no usability obstacles

Lundstrom et al. [2011]
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Results: evaluation scenarios

81% evaluations without human participants

gual. results inspection

algorithmic performance
user experience o 9.3%
user performance 2.8%
work processes [l 4.6%
analysis & reasoning 1.7%
collaboration | 0.2%
communication 0%

0 50 100 150 200 250 300 350 400 450 500
IEEE Vis/SciVis: total numbers & percent of evaluation scenarios

Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results: historical development

100%

o /\ /\.—0—0’0\
o ~ N\
% of papers %% /‘\/A\
with evaluation 60% Y/\.\\o
type: \ /

IEEE Vis/SciVis

} >
0% 4 =0 . o . C—O0—0
\ <) @ © O N N
O O N P O O Y
) S S A A O T O O O
Q. N\ Jre s
SV 155615
8 — Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results: historical development

100%

90%
80% gualitative result

a inspection = 80%
% of papers /0% /‘\/ \\
with evaluation 60% / Y/\.\\o
type: ‘\\./

IEEE Vis/SciVis

} = —
0% . —_ i A . @ @ o
Q > o} O Q \ )
O Q Q Q Q Q Q A N N
N ,}0 ,]9 ,]9 ,]9 ,]9 ’19 ,}0 ’19 ,}0
e300 0=

Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results:

100%
90%
80%

% of papers /0%

with evaluation 60%

type:

IEEE Vis/SciVis
40%

50%

30%

20%

10%

0%

N

historical development

gualitative result
inspection = 80%

algorithmic
performance = 60%

© ®
P & &

P
O S\ M\ M\

N0
N N N
AR AT A

Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results: historical development

|IEEE Vis/SciVis

algorithmic
performance

10% v
o%m ————+—e—o—o—o—o
/
19 2000 2003 2006 ru 2008 7 0 o 0!
evaluation type in percent of papers
3% o Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results: historical development

|IEEE Vis/SciVis

80%

70% /.\
60% \ //\/ \\Y/'\\\.

50% \/
‘/\///.

40%
S o—o—o0—o
7 7 9 0 1 2
19 2000 2003 A P 2008 i L L

evaluation type in percent of papers

user performance +
user experience

30%

8 N\ = - .
3% S Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results: historical development

|IEEE Vis/SciVis

80%

70% /.\
60% \ //\/ \.\Y /’\o\\.

50% \/

40%

30% W\.

20% ,-\,\‘/ work processes +
/ analysis & reasoning

10%

0% |7 | T T T @ .7 4 .9 .0 .1 .2
19 2000 2003 2006 ru 2008 7 0 o 0!
evaluation type in percent of papers
cosfoo V B;v_;_{),., s
e =UNS Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



80%

70%

60%

50%

Results: historical development

|IEEE Vis/SciVis

/\/A\\ atn. N

4 e

evaluation type in percent of papers

10% <~
— e o
0% m— ———0—0—0—0—0—=0
7 7 o 0 1 12
19 v a y P P L L
o:'g,o \\/ -~ o
Gemse 2013

Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results: historical development

|IEEE Vis/SciVis |IEEE InfoVis

80% 80%

70% A\ 70%
60% /\/ \.\Y/\.\\. 60% 7
50% \\// 50% /\\ /A\//

40% 40% / V
30% /\/\‘ 30% A_A

10% ®= 10%
—— -
0% m— o—o—9o—0o o009 0%
1997 2000 2003 2006 2007 2008 2009 2010 " 2012
evaluation type in percent of papers
cosfoo V IS .= e
€29 =UNS Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results: historical development
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Results: historical development

. . algorithmic _
IEEE Vis/SciVis oerformance IEEE InfoVis
80% 80%
70% 70%
60% 60%
50% 50%
40% 40%

30% //\/\. 30%
20% /"\0\‘ 20%

10% o — 10%
0% g’ﬁ* S S S NS NS = 0% . /‘
1997 2000 2003 2006 2007 2008 2009 2010 2011 2012 1997 2000 2003 2006 2007 2008 2009 2010 2011 2012
evaluation type in percent of papers
FRVIS 5

@ge . = Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Results: historical development
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Results: historical development
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Results: human participants
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Results: visualization community as a whole
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Considerations

evaluation reporting rigor

analyzing and reporting real problems

statistical significance vs. qualitative expert feedback
obtaining and reporting expert feedback

use of case studies

number of study participants

Ogo i Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Considerations

evaluation reporting rigor

analyzing and reporting real problems

statistical significance vs. qualitative expert feedback
obtaining and reporting expert feedback

use of case studies

number of study participants

. = . Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Evaluation reporting rigor

* too often detall missing about the evaluation
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Evaluation reporting rigor

* too often detall missing about the evaluation

* need to report
participant details
collaboration detalils
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Analyzing & reporting real problems

4.7% process
relevant to virtually all visualization work: evaluation

understand visualization needs

understand use of visualizations for visual
reasoning, communication, and collaboration

grounding work In reality 95% visualization
evaluation

In practice: often done!
describe work with experts
make process evaluations first-class citizens in our papers

percentage of scenarios
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Statistical significance vs. expert feedback
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Statistical significance vs. expert feedback
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Statistical significance vs. expert feedback
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ODbtaining and reporting expert feedback

“We showed our system/tool to our collaborating experts
and they really liked it.”

expert feedback valid & important
but: rigor in study design and reporting!

several guidelines on qualitative evaluation methods

dgo. U Isenberg et al.: A Systematic Review on the Practice of Evaluating Visualization



Open questions

* rigor in algorithmic performance?
how many datasets?
benchmark datasets?

» statistical analysis?
iIssues with NHST (see “dance of the p-values™)
how many participants?

* rigorous gqualitative results inspection?
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Thanks for your attention
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