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Abstract/Zusammenfassung

Geometric models are the basis of computer graphics. Due to the growing computing
power and hardware support more and increasingly complex models are created. In
order to efficiently store, evaluate, manipulate, and match these, it is necessary to cap-
ture and extract the essence of shape. In particular for polygonal models, a concept
is developed that allows adaptation of the notion of importance to the specific appli-
cation without changing the extraction algorithm itself. For the use with this concept,
a variety of criteria are described and conceived that capture what commonly is con-
sidered to be important in a polygonal mesh. In addition, an algorithm is developed
within the concept that allows extraction of external skeletons as one aspect of essence
of shape. Moreover, it is demonstrated that the concept also covers different notions of
shape such as silhouettes. Since these have different application-specific requirements,
a different algorithm is presented for fulfilling them. Finally, the methods that were
presented are discussed with respect to potential application areas and a number of
examples are shown.

Geometrische Modelle bilden die Basis der Computergraphik. Aufgrund ständig wach-
sender Rechenkapazität und steigender Hardwareunterstützung werden immer mehr
und zunehmend komplexere Modelle erzeugt. Um diese effizient speichern, evaluieren,
manipulieren und miteinander vergleichen zu können ist es notwendig, das Wesentliche
der Form von Objekten zu finden und zu extrahieren. Insbesondere für polygonale
Modelle wird ein Konzept entwickelt, das es erlaubt, die Notation von Wichtigkeit
an die spezifische Anwendung anzupassen, ohne den Extraktionsalgorithmus selbst zu
verändern. Es werden eine Reihe von Kriterien für die Verwendung innerhalb dieses
Konzeptes beschrieben und neu entworfen. Diese werden verwendet, um Strukturen
entsprechend der üblichen Auffassung von wichtigen Merkmalen in polygonalen Mod-
ellen zu finden. Des weiteren wird entsprechend des Konzeptes ein Algorithmus entwick-
elt, der externe Skelette als einen Aspekt von wesentlichen Formmerkmalen extrahiert.
Außerdem wird gezeigt, daß das Konzept auch andere Formmerkmale wie beispielsweise
Silhouetten beinhaltet. Da diese andere anwendungsbezogene Anforderungen haben,
wird ein entsprechender Algorithmus präsentiert, der diese erfüllt. Abschließend werden
die vorgestellten Methoden in Bezug auf ihre möglichen Anwendungsgebiete untersucht
und eine Anzahl von Beispielanwendungen vorgestellt.
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Chapter 1

Introduction

In 1945/46, Picasso created the lithography series “The Bull” that is shown in Fig-
ure 1.1. It depicts the step by step abstraction from fairly detailed and almost realistic
depiction of a bull to a highly stylized one with only a few curves. This seems to be
a very good and intuitive example for capturing the essence of shape. As the level of
abstraction increases, Picasso concentrates on the curves on the surface of the object
that are characteristic for its shape. Those are curves that indicate, for example, places
of a high local curvature.

Figure 1.1: “The Bull.” Part of the lithography series by Picasso. From [Lév91].

However, Picasso not only draws the curves that are relevant in terms of the static as-
pect of shape but also uses silhouette lines that border the object from the background.
This illustrates that silhouettes are important shape descriptors as well. In this context,
the figure very nicely links feature detection or skeleton extraction, feature driven mesh
decimation (as another type of abstraction), and silhouette computation.



1 Introduction

This example illustrates that abstractions are used as a medium of art and as a way to
detect the essence in a shape. In addition, these abstractions are also often used as a
tool of art. For example, when an artist draws or paints a human figure he or she has
an abstraction of a human in mind (see, e. g., [Jen01]). This is used to make sure that
the depiction of the human has, e. g., the right proportions before the artist goes on to
add individual features to the drawing or painting.

1.1 Motivation and Goals

These two artistic examples illustrate that the knowledge of essential features of shape
is of great importance for the depiction of objects. However, it is not only important
in art but also in all areas where shapes are created, processed, or depicted. Therefore,
this especially applies to the area of computer graphics that deals with creating images
of shapes.

In the computer graphics domain shapes are created, represented, processed, and de-
picted in a great variety of ways. In particular in three-dimensional computer graphics,
shape representation as geometric models are the basis of the image generation process.
Due to the growing demand for three-dimensional visualizations not only in “serious”
applications such as CAD/CAM but also in computer games or computer-animated
movies the hardware support for the processing of geometric models has strongly ad-
vanced in recent years [Rub03]. The shape representation supported by these hardware
accelerators is almost exclusively polygonal meshes, specifically triangle meshes. This
is one of the reasons for using polygonal meshes in many applications in contemporary
computer graphics.

There are many ways to create or acquire models in form of meshes. For example, there
is a variety of modeling tools such as 3D Studio MAX that support the incremental
construction of models using a set of primitives and manipulations. Alternatively,
three-dimensional meshes can also be acquired using 3D scanning hardware. Using a
physical process (e. g., reflection of a laser or ultrasound) the surface of a physical object
is sampled and a point cloud is generated. The point cloud, in turn, is triangulated in
order to create a triangle mesh (for an overview of techniques see, e. g., [KSK98]).

The increasing demand for models and computing power as well as the number of
ways for creating or acquiring them leads to ever growing collections of 3D meshes
that can be used in applications (such as the Viewpoint Model Catalog [Vie99]).
Therefore, there is a great demand for automatic ways to evaluate, recognize, compare,
search for, simplify, and animate meshes. This means that methods are necessary that
automatically compute abstractions of models or detect important features, i. e., to
capture the essence of shape.

Many different algorithms have been introduced previously that capture certain aspects
of shape (e. g., [DHR+99, RKS00, WB01, HBK02]). All of them are very specific in what
they consider to be important in a shape. However, the wide variety of applications also
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1.2 Results

means that there is a variety of different concepts of what is considered to be important.
Hence, a general concept that allows users to determine and exchange what is meant
by “essential” is necessary. This would facilitate an easy adaptation of the method to
new applications by only exchanging the criterion for importance.

1.2 Results

Starting from this problem statement the following results have been achieved:

• The concept of essential shape representation (ESR) is devised. The concept
allows the distinction between algorithms that compute the essence of shape
(ESR scheme) and criteria that determine what is considered to be important
(ESR criterion).

• Specifically for polygonal meshes, a group of mostly geometric ESR criteria (DoI
functions) that allows the capturing of common notions of importance is devel-
oped and evaluated.

• A specific ESR scheme based on wave propagation on meshes that extracts a
curve based essential shape representation called external skeleton using a DoI
function is conceived.

• The silhouette of objects was examined as an essential shape representation and
due to the special requirements of potential applications (e. g., interactive or real-
time frame rates, analytic representation, and visibility culling) an object-space
algorithm that allows for an efficient silhouette computation is presented.

• Potential applications in different domains are discussed for the presented me-
thods and a variety of examples are given.

1.3 Structure of the Dissertation

The remainder of this dissertation is structured as follows. First, the foundation for
the following chapters is laid in Chapter 2. The chapter starts with a discussion of
the concept of shape and the notion of shape used in the context of this dissertation.
Afterwards, basic definitions regarding the goal of an essential shape representation
are derived from a more detailed motivation. Based on these definitions and a number
of desired applications, a set of requirements for essential shape representations are
stated. Next, the notion of shape is specified in more detail with respect to polygonal
meshes. The chapter concludes with a classification of the criteria that will later be
used to denote importance in a shape.

The foundations laid out in this chapter will be referred to throughout the remainder of
the dissertation. In particular, the distinction between an algorithm for computing the
essence of shape (ESR scheme) and the criterion that allows to evaluate the importance

3



1 Introduction

of features (ESR criterion) is essential for the discussion in the following chapters. In
addition, the requirements derived here will be used to evaluate not only previous work
but also the newly developed algorithms.

Chapter 3 gives an overview of previously presented techniques for capturing features
in shapes. The chapter focuses on methods for geometric features because these are by
far the most common. The chapter starts with an overview of important mathematical
concepts because these are later used in many other algorithms as well. This is followed
by a discussion of feature extraction from discrete data representations since these are a
second important group of shape representations in addition to polygonal meshes. The
latter are examined afterwards. In this review of feature extraction from polygonal
models it distinguished between internal and external structures that are detected.

By performing this extensive review of previous work it could be shown that most
methods extract some type of graph representation from the data. However, it was
found that what is considered to be essential in a shape varies significantly between
algorithms and data types from which features are extracted. Even algorithms that
operate on the same data type and look for the same category of features typically
produce different results.

In order to systematize the notion of essence in a shape, Chapter 4 develops a concept
for denoting importance. Specifically for determining the relevance of points on the
surface of an object the notion of a degree of interest function (DoI function) is defined.
Since many of the DoI functions described and conceived later are based on principal
curvatures, a method for approximating these for polygonal meshes is reviewed. Using
this mathematical background, a variety of known and newly developed DoI functions
are examined and evaluated. The chapter finishes with a comparison of geometric DoI
functions that were developed.

With the concept of a DoI function, a user is now able to create importance criteria that
fulfill the requirements of specific applications. The criteria discussed in Chapter 4 can
serve as a collection for users to select from. Many of these DoI functions emphasize
geometric features such as ridges and ruts since most users are interested in geometric
properties of surfaces. Alternatively, the discussed DoI functions can be used as starting
points to derive new criteria if an application calls for specific adaptations.

Based on the concept of DoI functions, a new algorithm for computing an essential
shape representation is introduced in Chapter 5. Referring back to the review of
techniques in Chapter 3, it starts with a discussion of methods that extract inter-
nal structures from polygonal models and derives the necessity for a new concept for
capturing the essence of shape. Afterwards, the wave propagation based algorithm for
the extraction of external skeletons is described and explained. In addition, algorithmic
considerations as well as an analysis of the method in terms of scale and reconstruction
are given.

The wave propagation that is performed by the algorithms serves two major objectives.
On the one hand, it is a means for traversing the mesh. On the other hand, it provides

4



1.3 Structure of the Dissertation

an easy way to identify the branching features on the surface. Because the new algo-
rithm does not use a predefined notion of importance, any of the previously introduced
DoI functions can be used as importance criteria. This makes it more flexible than
previous algorithms.

Chapter 6 turns to a different aspect of shape—the silhouette of objects. The chapter
first shows that silhouettes as well are in fact essential shape representations as these
were defined in Chapter 2. Thus, they can be computed with the wave propagation
based algorithm using the appropriate DoI function. However, based on the require-
ments of typical applications that use silhouettes the need for a different silhouette
algorithm is argued. By performing a comprehensive review of silhouette detection
algorithms a group of methods that facilitates a flexible use of the curves is identified.
Following this, an algorithm that performs the necessary visibility culling efficiently is
presented. The combined approach is analyzed in terms of results and performance.

Only the combination of a fast silhouette detection algorithm with a similarly fast
silhouette visibility culling method can serve as basis for an efficient silhouette rendering
program. Otherwise it is not possible to achieve interactive or real-time frame-rates
on the one side and be able to apply further manipulations such as stylization to the
extracted strokes on the other side. The presented method can fulfill these requirements
as it is demonstrated by examples and experimental results.

In order to evaluate the developed concept and algorithms according to their practical
use, Chapter 7 reviews a number of potential applications. Three major domains
are covered: progressive shape coding, shape matching and database search, and non-
photorealistic rendering. This discussion is illustrated with a number of examples
generated by a prototypical application. This tool, OpenNPAR, is also introduced
and a number of its main characteristics are presented.

The great variety of possible application areas demonstrates that the concept of the
essential shape representation is very powerful and flexible. In particular, the linear
character of the extracted information (i. e., a graph or strokes) gives rise to many ways
of using ESR algorithms as it is shown by a selection of examples.

Chapter 8 concludes the dissertation by reviewing the achieved results based on a
number of propositions. In addition, some points of criticism are given and potential
areas of future work are discussed.

5
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Chapter 2

Essence of Shape

Before it is possible to go into detail about specific algorithms or discuss related work,
it is necessary to clarify the vocabulary that is used. In addition, the rationale of the ap-
proach has to be defined and explained based on the motivation, potential applications,
and the type of shapes that are used.

This chapter starts with a discussion of the notion of shape since this is a frequently
used concept. In order to be able to work with this concept, it must first be specified
what is to be understood when referring to shape in the remainder of the disserta-
tion. Afterwards, the motivation given in Section 1.1 is extended. Some fundamental
definitions that are necessary for the future discussion are given that follow from this
motivation. Next, a number of requirements for shape abstractions and shape are ex-
amined that have been given by other authors. Based on the fundamental definitions,
the motivation, and desired application areas a number of more adequate requirements
are derived that are being referred to throughout the dissertation.

In the next step the concept developed so far is analyzed and specified with respect
to the type of data the work aims to treat—polygonal meshes. Following from these
considerations the concept is extended with respect to the criteria that will specify
the notion of importance. A classification of these criteria is given and discussed in a
summary and relations to the rest of the concept are examined.

2.1 Shape

The shape of an object typically refers to the form of its surface or silhouette. In this
respect properties of objects such as texture, color, material, internal structure, etc. are
not of importance. Sometimes the shape of an object is associated with the concept
of gestalt. In this context the shape of an object can allow a person to recognize it
because certain shape properties are typical for specific objects and familiar to this
person. For example, a compact object with a thin and long structure as well as four
short but thicker structures emerging may be recognized as an elephant having four
legs and a trunk. However, the gestalt aspect of shape and the recognition of objects
is not the topic or intention of this dissertation.

Instead, in this dissertation the shape of objects is analyzed mainly in terms of its
geometry. However, also non-geometric properties of objects can be considered because
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these may also carry important information that is relevant for the underlying geometry.
In particular, algorithms and applications in the area of computer graphics will be
examined. With respect to this domain, the discussion will be restricted to two- and
three-dimensional objects and their shapes.

Various attempts have been made previously to represent, classify, categorize, or evalu-
ate shape. Blum introduces his medial axis transformation for two-dimensional curve
based objects [Blu67] in order to derive a new shape descriptor, Koenderink tries
to conclude the shape of three-dimensional objects from their silhouette lines [Koe84]
and introduces a new measure for analyzing local shape aspects of three-dimensional
objects [Koe90, KvD92], Kunii discusses how to represent shape in a computation-
ally valid model [Kun99], and Edelsbrunner and Mücke show how to use α-shapes
to approximate the shape of a point cloud [EM94] to name just a few examples. A
selection of approaches related to the topic of this dissertation will be reviewed and
discussed in more detail in the following chapters.

The shape of objects as understood in this context can be represented in computer
graphics in a variety of different ways. For example, a shape representation can be
discrete (e. g., volumetric data) or analytic (e. g., boundary representation), explicit
(e. g., spline surface) or implicit (e. g., implicit surfaces), and continuous (e. g., smooth
subdivision surfaces) or piecewise linear (e. g., polygonal meshes). Other shape represen-
tations are, for example, Supershape in 2D and in 3D, Superellipse, and Superellipsoid
[Gie03] that represent shapes entirely by parameters of a formula and are specifically
used to represent natural shapes.

Due to the recent advance of graphics hardware, research on shapes in computer graph-
ics has concentrated on three-dimensional shape representations, lately. As already
mentioned in Section 1.1, particularly polygonal or more specifically triangular meshes
are used to approximate 3D shapes because they can easily be processed by graphics
hardware. In addition, most other three-dimensional representations can be converted
into 3D polytopes. The algorithms introduced below operate specifically on these
polygonal shape representations.

The shape analysis that will be performed by the algorithms introduced in the following
has the goal to extract the essence of shapes. This means that the extracted shape
information should facilitate, among other, feature extraction and shape abstraction.
The following section discusses some motivation for the approach presented later as
well as gives necessary definitions.

2.2 Motivation and Definitions

One of the biggest problems of shape processing and shape representations used in
computer science is that most of them represent the data/information sampled at a
very low level. This sampling means that the original, continuous data, such as the
color distribution in an image or the surface form of a three-dimensional object is not
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represented by its original characteristics. Instead, it is represented by a number of
sample points, often on a regular or almost regular grid, such as a pixel matrix or a
regular triangulation, respectively.

It is obvious that most processes of acquiring the shape data cannot be changed very
easily. Image scanners or the optical chips used in digital photography cannot easily
be replaced by a more advanced technology. Due to the limitations of data acquisition
hardware, the way volumetric three-dimensional objects are digitalized to 3D voxel
data sets by, e. g., MRI or CT scans will not be simple to modify. Similarly, the
acquisition methods of 3D boundary representations such as polygonal meshes through,
for example, laser scans are not easily exchangeable.

Even worse, with the growing processing power of computer hardware the sizes of shape
representations used in computer graphics is growing as well. Hence, for being able
to classify the shapes, index them for a database search, compress them for storage or
network transfer it is necessary to have efficient tools for telling important character-
istics from unimportant ones. Thus, algorithms for feature detection are continuously
becoming more important to find these significant parts of a shape.

Many algorithms have been presented which are able to find features in shape represen-
tations such as 2D pixel matrices, 3D voxel data sets, or polygonal geometric models,
some of which will be reviewed and discussed in Chapter 3. Most of these algorithms,
however, concentrate on a specific criterion for importance depending on the applica-
tion that was envisioned. On the other hand, the concept of what is important in a
geometric model and what is not differs from one application to another. For some
applications, such as lossy compression of geometric models, it might be important to
find ridges and creases on the surface of the model. Other applications may need to
detect edges of an additional property, such as the border between two texture maps,
to ensure the correct storage of those borders. A third group of algorithms could be
interested in preserving the general shape of the objects to allow for shape matching.
Hence, algorithms which have an inherent criterion are not flexible enough to be used
for applications other than the one for which they were created.

Generally speaking, the examples given above show that it is vital to capture the
essence of shape of the considered objects in many different application areas. This
leads to the following definition:

Definition 2.1 The data that is generated by an algorithm that captures the essence of
shape in form of features that are extracted from an object and that make up the essence
of its shape according to a certain criterion is called Essential Shape Representation
(ESR).

The concept of essential shape representation as defined above is independent from
a specific type of data as long as it complies to a certain set of requirements (see
Section 2.3 below). Thus, there can be various specific ESRs and there are many
possible ways to construct one.

9
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Definition 2.2 A specific way to construct an essential shape representation for a
certain type of input data leading to a specific representation shall be called ESR scheme
(ESRS).

Starting with these definitions and considering the example application areas given
above a set of requirements for ESRs will be derived in the following section.

2.3 Requirements of an Essential Shape
Representation

In order to be able to develop a new essential shape representation scheme or to evaluate
previously presented ones it is necessary to specifically know what characterizes a good
ESR. This means that a number of requirements for ESRs have to be defined.

In previous works on shape abstraction a number of people have given requirements be-
fore. For example, Sudhalkar, Gürsöz, and Prinz formulate some requirements for
skeletons in general [SGP93]. They base their constraints on properties of medial axes
(that will be discussed in detail in Section 3.1.1 below) of objects and the application
of skeletons in engineering:

• the skeleton should have no interior,

• the skeleton should have homotopic equivalence to the object; that is, number of
holes, enclosed voids, etc. should remain the same, and

• the shape of the skeleton should abstract the shape of the object; that is, locations
and relative dimensions of features should be the same as in the object.

Lam, Lee, and Suen discuss requirements for thinning of two-dimensional discrete
data [LLS92]. They state that the ideal algorithm should compress the data while
retaining significant features. In addition, the algorithm should eliminate local noise
without introducing distortion and the extracted structures should have unit width.
In [LLS93], Lee, Lam, and Suen refine this set for application to 2D skeletonization
algorithms. They add, for example, that the preservation of connectivity, of topology,
and of geometric properties is necessary. Similar requirements are also named by Ma,
Wu, and Ouhyoung [MWO03, Section 2]. They only add that a skeleton should be
invariant under affine transformations. In general, these notions of requirements are
very specific to the type of data and the structures extracted from it (i. e., skeletons).
Therefore, a more general set of requirements will be defined below. However, it will
also be based on the intended area of application of ESR.

In Sections 1.1 and 2.2 a number of motivations for building an essential shape rep-
resentation were given and discussed. Proposed application areas of essential shape
representations are numerous, some of which have already been named:

• feature extraction,
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• (progressive) shape storage,

• shape transfer over networks,

• shape compression,

• shape comparison and shape matching,

• search in shape databases,

• shape animation,

• shape property analysis, and more.

From these application areas and their restrictions as well as Definition 2.1 it is now
possible to derive a number of requirements that an essential shape representation in
the context of this dissertation has to fulfill as follows:

1. In order to enable storage of the data, an essential shape representation has to
allow for coding and decoding.

This means it has to be possible to construct an ESR scheme data structure from the
shape and also to reconstruct a representation of the shape from that data structure.
For example, this is required for (networked) applications where it is necessary to trans-
mit shape information. A progressive nature of the representation facilitates the best
possible reconstruction after network transfer with a possibly limited band-width.

2. At the same time, an essential shape representation has to enable compression of
shape information, especially lossy compression.

This could be achieved by using a progressive encoding of the data and omitting less
significant parts of the model to reduce the amount of information to be transmitted
over a network or stored in a file.

The progressive nature of the shape representation can in turn enable matching of two
shapes even if they are not fully geometrically identical.

3. Thus, essential shape representations should facilitate the search in shape databases
on the basis of previously identified characteristic features of the shapes.

4. Related to these features, an essential shape representation should be a multi-
scale representation.

This means that reconstruction can take place at various scales or different levels of
detail. One could use it to either reconstruct only the most important features or also
include less important ones to refine the reconstruction. In other words, it should be
possible to select the size of the geometric details that are needed to be reconstructed.
In a way this resembles the different stages of abstraction as shown in Figure 1.1.

5. In addition, an essential shape representation should allow for resampling of
shapes, i. e., representing the shape independently of a particular sampling.

11
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For example, a 3D boundary representation should be represented independently from
the triangulation given in a specific mesh. This means that different meshes can be
used for reconstructing the representation and that different tessellations lead to similar
ESRs.

6. As for additional attributes, an essential shape representation should allow the
assessment of geometric properties (such as curvature, volume, momenta, etc.)
that are all independent from the sampling.

7. An essential shape representation should allow for editing the shape at the feature
level, rather than at the sampling level.

This means that by applying a transformation to the essential shape representation
the reconstruction of that transformed ESR should also be transformed appropriately
compared to the original shape.

8. In addition, an essential shape representation should allow for animation at a
more meaningful feature level than at the level of individual sampling points.

For example, 3D meshes would be animated using skeleton-based animation methods
rather than specify the animation for each individual triangle vertex coordinate. Indeed,
an essential shape representation can be the input for an animation system.

These requirements are independent from a specific ESR scheme. An ideal ESR scheme
should fulfill all of these requirements. However, not all schemes deliver solutions for
all requirements. Previously presented techniques for capturing the essence of shape
are reviewed and compared with these requirements in Chapter 3 to see whether they
can be used as essential shape representations.

As already noted, the essential shape representation as a concept is independent from
the specific type of data it is applied to. Hence, a specific ESR scheme will be different
for different types of input model data. An ESR scheme for a pixel image in 2D or
a voxel data set in 3D will be different from an ESR scheme for three-dimensional
polygonal model. This in turn means that the methods for constructing an essential
shape representation will differ depending on the types of data. An essential shape
representation, however, will have to fulfill the requirements stated and discussed above.
In the following, the term essential shape representation will mostly be used in the
context of 3D polygonal meshes if not otherwise noted. Thus, the following section
discusses ESRs and ESR schemes specifically for polygonal meshes.

2.4 Essential Shape Representations for Polygonal
Models

In the context of polygonal models, there are a variety of ESR schemes that can be
thought of. These schemes can be roughly divided into two major groups:
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• schemes that find structures inside of the objects and

• schemes that look for structures on the surface of the mesh.

The first group of algorithms seeks to condense the information that is present in
polygonal objects to a graph of lines or curves which generally lies inside the original
object. This graph is also commonly referred to as the skeleton of the mesh. In addition
to the mere structure in the graph, the skeleton might also store additional properties
about the object. These additional properties can be used, for example, to guide the
later reconstruction of the original model. Although such a internal skeleton graph can
capture the general shape of an object and, thus, serves as an abstraction of form of
the shape, in most cases it is restricted in its capabilities for reconstructions in terms of
important features of the surface. Hence, it fails to meet major requirements for ESRs
(in particular Requirements 1 and 5: coding and decoding as well as resampling).

The second principle approach to generate essential shape representations for polygonal
meshes is to look for significant structures on the surface of the mesh itself. I. e., the
goal in this case is to capture details of the surface rather than the overall form. That
means to search for a set of curves on the surface of the object as it is defined by the
polygonal mesh. Similar to internal ESR schemes, the curves on the surface might
also be associated with additional properties other than their mere geometry. Those
properties could include, but are not limited to, curvature and curvature directions.

Of course, there are a variety of other ways to come up with a specific internal or
external ESR scheme for polygonal models. However, they will all either construct an
internal graph, look for structures on the surface of the object, or do a combination of
both.

2.5 ESR Criteria

In order to be able to capture the essence of a shape, the first thing is to define the
meaning of essential. The concept of what is considered important to be captured
as essential differs significantly across applications. Thus, it is necessary to describe
the importance of features with a certain criterion. In addition, it is vital that this
importance criterion be interchangeable to allow for applying the same ESR scheme to
different applications. Also, this allows to apply the same criterion to different ESR
schemes. The criterion, thus, has to be kept separate from the ESR scheme algorithm
that is used to capture the essence of shape.

Definition 2.3 The criterion that defines what is important in a shape will be called
ESR criterion. The choice of a specific ESR criterion is independent from the specific
ESR scheme algorithm.

This separation of ESR scheme and ESR criterion permits the use of virtually any
criterion that might be needed for an application. It is always possible to define and
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implement new criteria that are needed for a specific application and use the new
criterion in connection with a specific ESR scheme.

As argued above, many different criteria are possible that can lead to an essential shape
representation depending on the application that employs the ESR. In particular, a
classification for criteria that can be applied to specific geometric models to capture
importance is discussed in more detail in Sections 2.5.1, 2.5.2 and 2.5.3.

2.5.1 Geometric vs. Non-Geometric Criteria

In previous works on feature extraction (see Chapter 3) mostly one type of criterion
was used in order to determine what is to be considered as an important feature and
what is not: geometric criteria. Geometric criteria only take geometric properties of a
shape into account such as, for example,

• whether a volumetric point (voxel) is inside or outside the object,

• positions of surface points,

• surface normals,

• neighborhood relations,

• distances from structures such as the surface,

• curvature, or similar properties.

These geometric criteria are used in the literature to extract shape information such as
feature lines on the surface of an object, in particular ridges or creases. Other criteria
might be used to find object skeletons. An example for an application that uses the
features found by applying geometric criteria is lossy compression that guarantees that
the reconstruction is visually not or not perceivably affected. In this case the detected
features would be stored with a higher priority than areas without features ensuring
that the important parts of the model are correctly reconstructed.

There are, however, applications that require other types of criteria to find features
of shapes that are not based on geometric properties. An example for such a non-
geometric criterion is the interest of a user in a particular point and/or user interac-
tion. This data could be derived, e. g., from text-based (such as TextIllustrator
[SS00]) or interaction-based illustration applications (for example, ZoomIllustrator
[PRS97] and AGILE [HS02]).

The feature extraction using such non-geometric criteria can be equally important for
applications. Non-geometric criteria are not only more diverse but also more specific
in their application. This is one reason that they are rarely covered in the feature
detection literature. Some exemplary non-geometric criteria will be developed and
discussed in Sections 4.6.3 and 4.7.1.
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Geometric criteria, on the other hand, are more specific in terms of what features they
allow to detect, namely geometrically interesting areas. The detection of these loca-
tions is important in many algorithms, e. g., shape compression, shape storage, shape
transmission, and shape recognition. These algorithms are frequently used in shape
processing. For example, mostly geometric criteria are used in previously proposed
feature extraction techniques. Thus, geometric criteria are better studied and have a
broad range of potential applications.

For the same reason the following sections and chapters will concentrate on geometric
features as well. In principle, there are two main directions for capturing important
aspects of shape in terms of geometric features: criteria that lead to an abstraction of
the general form of the object and criteria that yield details on the surface of a shape.
These will be discussed in turn.

2.5.2 Geometric Criteria for Abstraction of Form

The first group of geometric criteria for defining what is important in a shape focuses
on large-scale properties. This allows a capturing of the overall shape of the considered
objects. This means that the global form rather than local features is considered to
be important. Thus, applying such a criterion leads to an abstraction of form of the
shapes to which it is applied.

In general, abstraction of form criteria are indirect criteria, i. e., it is not possible to
compute a scalar importance value for features directly. This is due to the fact that
taking the whole object into account when evaluating a criterion will not lead to a
locally defined importance value. Instead, abstraction of form criteria facilitate the
decision for shape modifications which will lead to an ESR in the end.

Thus, abstraction of form criteria are often used for internal ESR schemes (Section 2.4)
such as internal skeleton extraction methods. Those algorithms capture the general,
global shape of objects for, e. g. later analysis of the topology of the objects.

2.5.3 Geometric Criteria for Surface Details

In contrast to abstraction of form criteria, the second group of criteria is used to find
local structures that are important for an application. Thus, those criteria concentrate
on surface details of a shape. This means that they consider a local environment only
when evaluating the importance of a point. In fact, for computing an importance value
related to a surface detail it is obviously only necessary to consider the local environ-
ment. This local character of surface detail criteria facilitates the direct computation
of scalar importance values for features.

Criteria for finding surface details are typically used for external ESR schemes (Sec-
tion 2.4), e. g., in so-called feature extraction algorithms. These techniques—in contrast
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to internal skeleton extraction methods—try to find important structures on the surface
of shapes on a local scale.

2.6 Summary

In this chapter the concept of essential shape representations (ESRs) was introduced
and defined. It was argued that in order to allow for a ESR scheme to find the essence
in a shape an additional ESR criterion is necessary for specifying what is considered
to be important. Moreover, it was discussed that the specific ESR scheme should be
independent from the choice of a specific ESR criterion. This is a major constraint in
the ESR concept in order to allow for maximum flexibility of ESR schemes and criteria
in applications.

In addition, some requirements for essential shape representations were derived from
the list of desired application areas. These requirements are specifically designed for
three-dimensional essential shape representations. Since this dissertation focuses on
polygonal shape representations in 3D, the two general groups of ESR schemes were
distinguished: internal and external ESR schemes.

The criteria developed below in Chapter 4 mainly focus on direct geometric criteria
for use with the external ESR schemes presented in Chapter 5. However, some direct
non-geometric criteria will be addressed as well. In addition, in Chapter 3 a number
of internal ESR schemes will be reviewed that use indirect criteria.
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Chapter 3

Approaches to Capturing
Geometric Features of Shapes

In computer graphics, there are numerous methods for capturing the geometric features
of shapes. Besides mathematical and topological concepts to shape abstraction which
will be discussed first in Section 3.1, the methods for feature extraction presented in
this chapter will be reviewed based on the type of shape representation they are applied
to. It will be distinguished between discrete shape representations (see Section 3.2) and
boundary representations (see Section 3.3). In the former group, there are methods
that work on 2D data (i. e., pixel images) and others that were developed for volu-
metric shapes (i. e., voxel data). While this classification is also possible for boundary
representations, in practice primarily algorithms for 3D shapes are used. These can
be classified as internal and as external approaches according to where the extracted
features are located at.

For the description of extracted geometric features of a shape, in many applications
the term skeleton is used. In particular for approaches that compute an approximation
of a medial axis or a Voronoi diagram rather than the exact representation, skeleton
is used synonymously to those two terms. In addition, sometimes the extracted data
is referred to as feature lines.

3.1 Mathematical Concepts for Shape Abstraction

Although they are not often used in practice for feature detection or shape abstraction
applications, mathematical concepts play an important role in many of the algorithms
used in practice. In particular, the concepts Voronoi diagram, medial axis, and Reeb
graph will be discussed in detail in this section because they are an essential part of
many algorithms that will be introduced later.

Mathematically, the skeleton of a shape can be regarded as the set of singularities of
the signed distance function from the surface [ABOK94]. Informally this means that
it consists of the points that are equidistant to at least two points on the surface. This
definition relates closely to Voronoi diagrams and medial axes that are going to be
discussed first. A number of algorithms will be introduced for computing Voronoi dia-
grams and medial axes in two and three dimensions as well as some related concepts.

Afterwards, the Reeb graph being a structure for recording the topology of objects
will be introduced. The topology describes objects in terms of properties that are
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not modified by continuous deformations. In particular, the genus of an object is
one of these properties, i. e., how many “holes” the shape possesses. The abstraction
provided by the Reeb graph as a topological description of objects leads to a number of
algorithms that facilitate the capturing of essential shape information. Two examples
for these algorithms will be discussed in the following as well.

3.1.1 Voronoi Diagrams and Medial Axes

Voronoi diagrams are an important and widely used concept in various areas of science,
not only in computer graphics and computational geometry. A very comprehensive
survey about Voronoi diagrams, their history, areas of application, and algorithmics is
given by Aurenhammer [Aur91]. He shows that Voronoi diagrams have been used in
various areas as early as the nineteenth century.

A Voronoi diagram is a partition of n-dimensional space into Voronoi regions (see the
example in Figure 3.1). Voronoi regions and Voronoi diagram are then typically defined
as follows:

Definition 3.1 Given a set E of sites in the n-dimensional Euclidean space with each
site being a subset of this space. Then, the Voronoi region VR(e) of a site e of E is
considered the set of points that are at least as close to e as to any other site in E using
the Euclidean distance d:

VR(e) ≡ {p ∈ Rn | d(p, e) ≤ d(p, e′), ∀e′ 6= e, e′ ∈ E}

The Voronoi diagram VD(E) is then defined as the union of the boundaries ∂ of the
Voronoi regions:

VD(E) ≡
⋃
i

∂VR(ei)

Figure 3.1: Example Voronoi diagram in 2D for a small set of points.

Typically, a Voronoi diagram is computed for a set of individual points in the two-
dimensional plane as depicted in Figure 3.1. In this case the Voronoi diagram is a
polygonal partition of the plane. Some of the Voronoi regions are open and some are
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closed convex polygons. Before discussing Voronoi diagrams of more general shapes,
the concept of the medial axis will be explored in more detail.

The medial axis (MA)—sometimes called the symmetric axis or the (mathematical)
skeleton—of a polygon is a generalization of Voronoi diagrams. It was introduced by
Blum [Blu67] for finding and modeling new descriptors of shape. He uses the analogy
of burning grassland (grass fire metaphor) where an object in the form of a patch of
dry grassland is set on fire simultaneously at all points of its outer border. The fire
works its way to the inside with the same velocity at all locations (see Figure 3.2). This
grass fire metaphor is essentially a wave propagation starting from the border of the
shape. The union of all points where two wavefronts meet define the medial axis of the
original object (see examples in Figure 3.3).

Figure 3.2: Deriving the medial axis of a shape. The medial axis is denoted by the dotted line.
From [Blu67].

(a) Examples for simple shapes. (b) Examples for more complex shapes.

Figure 3.3: Examples for medial axes of shapes. The medial axes are denoted by the dotted lines.
From [Blu67].

Rather than using the previously discussed grass fire metaphor, the definition of a
medial axis is typically based on maximal balls [FEdFC02]:
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Definition 3.2 Given S as a subset of the Euclidean space and its boundary B. A
ball inside B that is not entirely contained in another ball inside B is called a maximal
ball. The union of the centers of all maximal balls form the medial axis MA(S) of the
set S.

The application of this definition yields a graph of connected, one-dimensional skeleton
curves for a closed shape in 2D (see examples in Figure 3.4). For polygonal shapes,
this graph is connected to every convex vertex on the border of the polygon but not to
concave vertices (see example in Figure 3.4(b)). For convex polygons, the medial axis
graph is also polygonal (see example in Figure 3.4(a)). For concave polygons, however,
the medial axis graph contains parabolic curves (see example in Figure 3.4(b)). Finally,
the medial axes of curved objects are usually curved as well. Only in cases where the
curved object is (locally) symmetric with respect to a linear symmetry axis will the
medial axis be (locally) linear. It must also be noted that the construction of the medial
axis is reversible when the radius of every maximal ball is stored since this information
is equivalent to the information contained in the original shape [Blu67]. By taking the
idea of medial axis even further, this concept can be generalized to external medial axes,
i. e., medial axes outside of shapes (see examples in Figure 3.3 where both internal and
external medial axes are shown). This is done by looking for maximal balls outside of
B. Interestingly enough, those external medial axes are only generated by points of
the border of the shape that are not part of its convex hull [Blu67].

(a) Medial axis for a convex polygon. (b) Medial axis for a concave polygon.

Figure 3.4: Medial axes of polygonal shapes in 2D. Some of the maximal balls are shown together
with their respective centers.

To relate medial axes and Voronoi diagrams, one can compute the Voronoi diagram
for a polygon and compare it to the medial axis of that polygon. However, considering
a polygon as a set of infinitely many individual points1 and following Definition 3.1,
Voronoi regions are found in form of rays emerging from every point perpendicular to
the respective polygon edge. Each of these Voronoi regions is also a Voronoi edge at
the same time because each Voronoi region only consist of one line. Thus, the Voronoi
region is equal to its boundary [FEdFC02].

To overcome this problem, Fabbri, Estrozi, and Costa give a generalized definition
for Voronoi diagrams [FEdFC02]:

1 One cannot consider the polygon as a whole to be the site that generates the Voronoi diagram
since this would not produce any Voronoi edges at all.
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Definition 3.3 Given a set E of sites in the n-dimensional Euclidean space with each
site being a subset of this space, then the Voronoi region VR(e) of a site e of E is
considered the set of points that are strictly closer to e than to any other site in E
using the Euclidean distance d:

VR(e) ≡ {p ∈ Rn | d(p, e) < d(p, e′), ∀e′ 6= e, e′ ∈ E}

The Voronoi diagram VD(E) is then defined as the complement of the union of all
Voronoi regions resulting in a set of points where each point is equidistant to at least
two Voronoi sites:

VD(E) ≡
[⋃

i

VR(ei)

]c

This generalized definition of Voronoi diagrams solves the problem of Voronoi edges
emerging from every point of a polygon edge since only points equidistant to at least
two sites are considered to be part of the Voronoi diagram.

In addition, Fabbri, Estrozi, and Costa also give a generalized definition of medial
axes [FEdFC02] that allows to also construct medial axes for open shapes such as open
curves:

Definition 3.4 Given S as a subset of Euclidean space. An open ball B is considered
to be a maximal ball of S if it satisfies the following two constraints:

1. B belongs to the set G of the open balls that does not contain any points of S.

2. B is not a proper subset of any other ball in G.

The union of the centers of all maximal balls that touch S in, at least, two points form
the medial axis MA(S) of the set S.

The generalized definitions of both Voronoi diagram and medial axis allow Fabbri, Es-
trozi, and Costa to establish a close relationship between both concepts [FEdFC02].
They show that, in fact, the medial axis is a special case of a Voronoi diagram.

Although Blum also discussed polygonal shapes, he used the medial axis graph mainly
for describing the general shape of curved, two-dimensional objects [Blu67]. This is
due to the fact that, when computing medial axes (or Voronoi diagrams) for curved
objects, the resulting graphs do not touch every convex vertex of the curved shape.
Instead, they form a graph of curves which lies completely inside the curved object.
This graph is locally symmetric to the shape [FEdFC02]. Hence, they are used as shape
descriptions for these types of objects. Blum also argues that the medial axis defines
the natural shape properties of objects while being invertible [Blu67].

However, as discussed above and illustrated in Figure 3.4, both Voronoi diagrams and
medial axis graphs connect to convex vertices when they are computed for polygo-
nal shapes. Because polygonal shapes are usually approximations and polytopes ap-
proximating curved shapes have a lot of convex vertices, many of the vertices will be
connected to branches of the medial axis graph. Even worse—the better the approxi-
mation gets the more of those branches will appear in the medial axis (see examples

21
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in Figure 3.5). This is caused by the fact that where the polygonal boundary is an
approximation the corners are sampling artifacts.

This leads to a very important observation regarding the usability of medial axis rep-
resentations for shape representation in the context of this work. Although the error
introduced by polygonal corners of the shape’s border gets smaller with a better ap-
proximation, the number of sampling artifacts grows. This, unfortunately, causes the
number of branches resulting from the sampling to grow as well. This means that the
medial axis representation of the ideal shape—a curved object—will differ significantly
from the medial axis representation of very good approximation—a finely tessellated
polytope (see Figure 3.5(b) and 3.5(c)). Thus, although a medial axis may be well
suited as a shape representation for curved shapes, it is not as well suited for those
polygonal shapes that represent approximations. However, most polygonal shapes (in
particular 3D meshes) are approximations of smooth, curved shapes.

(a) Medial axis of a coarse po-
lygonal approximation of
an ellipse.

(b) Medial axis of a better po-
lygonal approximation of
the ellipse.

(c) Medial axis of the exact,
not approximated ellipse.

Figure 3.5: Comparison of medial axes of different polygonal approximations of an ellipse and the
exact ellipse.

A concept that generalizes the medial axis is the straight skeleton. It was first intro-
duced by Aichholzer et al. in 1995 [AAAG95a, AAAG95b]. Similar to the medial
axis the straight skeleton is a graph inside a polygon. It is defined as the medial axis
of a polygon using the L∞-metric. The straight skeleton is identical to the medial axis
when computed for a convex polygon. However, in contrast to the medial axis which
can contain curved segments for concave polygons, the straight skeleton only consists
of linear edges for any type of polygon it is computed from (see example in Figure 3.6
which contains concave parts). The main advantages of the straight skeleton are its
straight-line character and its lower computational complexity [AAAG95a, AAAG95b].
However, it is very sensible to changes of the constructing polygon—small changes can
change the structure of the straight skeleton completely.

When generalizing the notion of the medial axis or the Voronoi diagram skeleton to the
third dimension, the medial axis “graph” of a three-dimensional boundary representa-
tion turns out to be a set of connected surface sections rather than just one-dimensional
edges as in the case of two-dimensional shapes (see example in Figure 3.7). Similar
to medial axes of two-dimensional shapes, the medial axis of a three-dimensional con-
vex polytope is a set of connected, planar polygons. Also analogous to two-dimensional
shapes, the medial axis of polytopes with concave parts contains non-planar (quadratic)
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Figure 3.6: The straight skeleton of a concave polygon. Note that there are no curved parts in the
skeleton. From [AAAG95b].

surfaces. In addition, the medial axis of a shape with a curved surface will be curved
in most cases as well.

Figure 3.7: Example for the medial axis of a three-dimensional shape.

Sherbrooke, Patrikalakis, and Brisson present an algorithm for the efficient
computation of the medial axis of 3D polyhedra of arbitrary genus which may also
include non-convex edges and vertices [SPB95]. They classify the different parts of the
3D medial axis into sheets (2D elements), seams (1D elements, the borders of sheets),
and rims (those seams that connect to the boundary of the shape) as well as junction
points (0D elements where seams and sheets meet). To extract the medial axis, they
recursively traverse the prospective MA starting at junction points. Each step identifies
seams and points or new junction points. In the latter case, the new junction points
are used for starting new recursions as long as they have not been visited before.

Etzion and Rappoport solve the problem of computing the 3D Voronoi diagram
of piecewise planar 3D polyhedra by determining their symbolic (Voronoi graph) and
geometric parts separately [ER02]. This algorithm is based on proximity structure sub-
division which encodes the proximities of the polyhedron’s parts and which is used to
construct the Voronoi graph. In order to handle degeneracies in the Voronoi diagram,
Etzion and Rappoport define and compute the approximate Voronoi graph in which
degenerate and almost-degenerate parts are simplified. In order to approximate the ge-
ometric part of the Voronoi diagram to any needed accuracy, the previously mentioned
space subdivision is used to construct the proximity structure diagram. This process is
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very stable and, in addition, can be applied locally. Thus, partial proximity information
can easily be derived.

Sudhalkar, Gürsöz, and Prinz generalize the concept of medial axis given in Defi-
nition 3.2 in that they use it on general maximal cells based on a certain norm which
does not necessarily have to be Euclidean. Using this generalized definition they con-
struct a modified medial axis which they call box skeleton [SGP93]. It differs from the
medial axis in that the L∞-metric is used instead of the Euclidean metric. They apply
this skeleton to shape abstraction for discrete objects, i. e., voxel based objects. Thus,
the algorithm they present works on these kinds of objects only.

One main application area of three-dimensional medial axes or skeletons is engineering
as discussed by Quadros et al. [QGRP01]. For example, the planning of forms for
injection molding for producing plastic parts is named by several authors (e. g., [SGP93,
QGRP01]). In this application area it is necessary to compute an abstraction of the
original model (which often contains thin walls) based on two-dimensional primitives.
This way the problem of flow of the injected mold can be reduced from three to two
dimensions. This significantly simplifies the numerical simulation of the mold filling
process while still remaining sufficiently accurate. Other application areas discussed
by Quadros et al. in the realm of engineering comprise hexahedral mesh generation,
feature recognition, and motion planning for material deposition [QGRP01].

However, for similar reasons as in the two-dimensional case (as discussed above) the
3D medial axes are not as useful for shape abstraction in the sense of the requirements
laid out in Section 2.3. One important reason for this, as already mentioned for the 2D
case, is that 3D medial axes of smooth objects differ significantly from those of good
polygonal approximations. The numerous branches of the medial axis just capture the
noise in the approximation rather than the essence of the shape. In addition, these
branches caused by noise cannot easily be classified or rated for their significance for
the overall shape of the object. Thus, since the medial axis is invertible it is not useful
as an abstraction of shape. However, invertible shape representations can qualify as
efficient shape abstractions if they have a progressive character that allow for omitting
insignificant parts (see also Requirements 1, 2, 3, and 4 in Section 2.3).

Voronoi diagrams and medial axis are two topological concepts for capturing the geo-
metric form of objects. A different topological concept is the Reeb graph. In contrast to
the previously discussed concepts, Reeb graphs disregard the specific geometric shape
of the surface and it are used to denote the pure topology of shapes according to a
mapping function. They will be discussed in the following.

3.1.2 Reeb Graphs

Reeb Graphs were introduced by and named after Reeb [Ree46] and are used in ho-
motopy and Morse theory [Mil63, SKK91]. They are used to represent the topology of
objects as a skeleton graph. The Reeb graph is always associated with a continuous
scalar mapping function which is defined on the given shape (often the height function
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is used). This function is used to identify critical points (maxima, minima, and saddle
points) on the shape. These points and the connections between them are determined
and represented in the Reeb graph (see example in Figure 3.8).

(a) Shape: torus. (b) Various levels of the height
function.

(c) Derived Reeb graph.

Figure 3.8: Deriving a Reeb graph of a torus.

The advantage of Reeb graphs is that they are strictly one-dimensional and, thus, are
easy to handle. In addition, if the scalar function is defined appropriately, the Reeb
graph is invariant to translation and rotation.

Hilaga et al. use Reeb graphs for extracting shape information from three-dimensional
objects for shape matching [HSKK01]. In particular, they use the extracted shape
information as a key for searching in shape databases. In this context, they extend the
concept of Reeb graphs to multi-resolution Reeb graphs (MRG) (see Figure 3.9). This
means that the Reeb graph is constructed hierarchically by a successive re-partitioning
of regions. This way the MRG converges to the original Reeb graph.

(a) First level. (b) Second level. (c) Third level.

Figure 3.9: Deriving a Multi-resolution Reeb Graph. From [HSKK01].

Hilaga et al. use these MRGs based on geodesic distance measurement—the distance
between two points on the surface—for the purpose of shape matching. The choice of
using the sum of geodesic distances between a point and all points on the surface as the
mapping function was made because it is necessary to have a function that is invariant
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to a number of transformations, for example, translations, rotations, and resampling
(see example in Figure 3.10). In addition, the chosen function also does not require a
certain source point for each shape. Thus, it is not necessary to rely on the unstable
computation of such a source point.

Figure 3.10: Color-coded geodesic distance for two similar objects used for multi-resolution Reeb
graph shape matching. From [HSKK01].

The matching of two shapes now works as follows. First, the MRGs of both objects
are constructed. Then, both MRGs are traversed hierarchically while trying to match
the MRG nodes based on a similarity attribute computed from area and length. Using
a database with 230 models, the authors show that the matching works efficiently and
accurately. However, although the multi-resolution Reeb graph approach works well for
matching 3D shapes, is does not allow for decoding, i. e., it does not allow to reconstruct
the models from the MRG representation.

Chen and Ouhyoung show how to apply this MRG based shape matching to 3D
object retrieval systems [CO02]. They discuss how to apply pre-processing, for example,
to the handling of models with objects that have previously not been connected.

Biasotti, Mortara, and Spagnuolo also extend the basic Reeb graph concept for
use in shape compression and reconstruction [BMS00]. This extension of the Reeb
graph only encodes the adjacency relationships between a few critical cross sections of
the shape using height as the mapping function. Critical regions are, for example, flat,
connected areas of the models having the same mapping function value. First, these
areas are detected (Figure 3.11(b)). Then, their influence zones are found. Finally, the
adjacency relationships of the influence zones are coded into the extended Reeb graph.
In addition, Biasotti, Mortara, and Spagnuolo discuss the reconstruction of the
Reeb graph by showing how to find the best surface that fulfills the constraints of the
constructed Reeb graph (see Figures 3.11(d) and 3.11(e)).

The original version of Biasotti, Mortara, and Spagnuolo’s extended Reeb graph
algorithm is restricted to terrain-like, not closed meshes. Biasotti discusses how to
extend the concept to also allow for closed meshes [Bia01]. However, although this
concept allows for shape coding and decoding as well as compression, it has not been
shown whether it can be used for shape matching. In particular, small errors, for
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(a) Original shape.(b) Extracted
height levels.

(c) Critical regions. (d) Reconstructed
height levels.

(e) Reconstructed
shape.

Figure 3.11: Using an extended Reeb graph for shape compression. From [BMS00].

example in form of holes in the shape, may lead to a different topology of the shape
which would make matching of intuitively similar shapes impossible.

As can be seen in the approaches described in this section, Reeb graphs can be used
for representing shapes. They do not capture geometric properties but only the pure
topology of a shape. Therefore, they are used rather for shape matching instead of
shape reconstruction. However, some adaptations allow for extension of the concept to
also facilitate shape reconstruction.

In general, topology based shape analysis or shape representation concepts such as
Voronoi diagrams, medial axes, and Reeb graphs can be used to identify significant
shape information. However, these concepts have certain limitations that have been
discussed above. On the other hand, they are the basis of many algorithms used
in practice that extract essential shape information from objects. A survey of these
algorithms will be given in the remainder of this chapter. First, algorithms that can
be applied to discrete data representations are going to be reviewed.

3.2 Feature Line Extraction from Discrete Data
Representations

Discrete data representations are very common in computer graphics. They are char-
acterized by sampling the data in most cases on a regular grid. Many modern data
acquisition techniques (e. g., 2D image scanners, digital cameras, MRI scanners, CT
scanners, and others) are based on capturing discrete data sets. The most common dis-
crete data representations are two-dimensional pixel images and volumetric data sets.
For both, various specific forms and optimizations exist. For example, space partition-
ing (such as quadtrees and octrees) can be used to improve the storage space efficiency
of discrete data. Also, grids other than the common Cartesian lattice are sometimes
used to improve efficiency.

However, most discrete representations may be converted or transformed into Cartesian
lattice based 2D or 3D representations. Thus, algorithms for feature extraction from
pixel images or volumetric data sets are by far the most common. Consequently, the
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methods discussed in this section are all working on either pixel or voxel data. The
structures in form of thin lines or curves extracted from two- or three-dimensional
sampled data are commonly referred to as skeletons. In addition, the term thinning is
used almost synonymously to skeletonization (skeleton extraction) [LLS92].

3.2.1 Skeletons from 2D Pixel Images

There are a large number of methods for extracting skeletons from 2D images. The
application areas for these algorithms are found, for example, in pattern recognition
and shape matching (e. g., optical character recognition (OCR)). In particular thinning
algorithms are used to extract these skeletons from sampled data. Lam, Lee, and
Suen give a comprehensive overview of these 2D thinning methodologies used in image
processing [LLS92].

The effect of thinning methods on two-dimensional shapes in pixel matrices is com-
parable to the effect of medial axis extraction from two-dimensional polygons (see
Section 3.1.1). The process is based on the iterative deletion of successive layers of
contour pixels from a shape until only a one pixel thick structure remains—the ske-
leton. Lam, Lee, and Suen distinguish between sequential and parallel algorithms
depending on how they examine the configuration of pixels in the local neighborhood
to determine which pixel gets deleted. Sequential algorithms use a fixed sequence in
each iteration to decide whether a pixel gets deleted or not. Hence, the decision on
whether to delete a certain pixel depends on the sequence of decisions that have been
made thus far. In contrast, in parallel algorithms the deletion of a pixel depends only
on the situation at the beginning of the iteration. Thus, the order in which the pixels
are visited within an iteration is not important.

In addition to iterative thinning methods, Lam, Lee, and Suen also discuss non-
iterative algorithms except those that are based on medial axis and distance transforms.
Non-iterative algorithms, for example, include scan-line based methods which trace
sections of black pixels and connect them in order to form skeletons. Other methods
use window operations to determine strokes locally and connect them in order to form
the skeleton. Also, run length coding of the image can be used to extract a skeleton
based on finding consecutive intervals of black pixels which are of approximately the
same size and more or less collinear.

Finally, Lam, Lee, and Suen discuss a number of requirements for the described thin-
ning algorithms [LLS92]. They name processing speed, preservation of topological and
geometric properties, reconstructability, and invariance under rotation. The discussed
algorithms are evaluated and judged according to these requirements.

In [LLS93], Lee, Lam, and Suen conduct a quantitative and qualitative evaluation of
20 widely used skeletonization algorithms (see examples in Figure 3.12). In particular,
they evaluate their computation times, sensitivity to noise, similarity to a reference
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skeleton,2 reconstructability, and how to implement them for parallel computing. How-
ever, they cannot determine one single algorithm which performs best for all criteria.
Instead, the performance of the algorithm always depends on which criteria are impor-
tant for the specific application. In [LS95], Lam and Suen concretize their results and
conduct a similar survey of parallel thinning algorithms specifically for the application
in optical character recognition (OCR).
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Figure 3.12: Original shape and selected results (using ARCEL, HILDI, and PAVLI) from Lee, Lam,
and Suen’s survey of skeletonization algorithms. From [LLS93].

3.2.2 Skeletons from Volumetric Data

There are many application fields where volume data is generated and processed in
the form of 3D voxel images, in particular medical imaging and technical visualization.
Examples for such domains in medical visualization are Computer Tomography (CT)
and Magnetic Resonance Imaging (MRI). Other examples in technical visualization
are numeric simulation of physical processes. For example, the physical processes
that take place in fuel cells can be captured in a volumetric data set including the
temperature, the pressure, as well as flow directions and used for visualization [Röb03].
In a variety of areas of scientific visualization it is important to find significant and
meaningful structures in the volume data. In these cases, skeleton extraction algorithms
are typically applied to the voxel models to find these structures. The first step in this
process is the segmentation of the 3D data for being able to treat different parts of the
model independently. Afterwards, skeleton extraction can be applied to the individual
structures. This makes it possible, for example, to evaluate the topology of the blood
vessel system [HSEP00].

For extracting skeletons from volumetric data Zhou and Tonga use a voxel-coding
methodology [ZT99]. Their goal is to identify connected, one voxel thick voxel paths
representing the skeleton of the volume data. Their method first assigns two values
to every voxel: the boundary seeded field value and the single seeded field value. Both

2 The reference skeleton was obtained as the average of skeletons resulting from a survey conducted
with a group of people.
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fields are generated using voxel coding and a specific distance metric. For a specific
voxel and its neighbor, this process increases the integer value assigned to the current
voxel by an increment according to the chosen metric. The new value is assigned to the
neighbor voxel if its previous value is lower than the new value. For boundary seeded
coding (BS-coding) the process starts with all boundary voxels as seeds while for single
seeded coding (SS-coding) it starts with a single voxel as the starting point. Thus, the
single-seeded field divides the 3D object into clusters. All pixels in one cluster have
the same distance from the seed voxel according to the chosen metric. Then, in each
cluster the voxel with the highest boundary seeded field value is identified marking it
as the medial point of the cluster. All these medial points together form the cluster
graph—a connectivity preserving skeleton of the volumetric object (see example in
Figure 3.13).

(a) Boundary seeded field and single seeded field (both color-
coded) of a brain data set.

(b) Resulting skeleton of the brain
data set.

Figure 3.13: Example for computing the skeleton from the volumetric data set of a brain.
From [ZT99].

Gagvani, Kenchammana-Hosekote, and Silver extract skeleton trees from vol-
ume data for volume animation [GKHS98]. Similar to the previous method, their
algorithm is also based on distance transforms. They first compute the skeleton by
thinning the object (also see 2D thinning algorithms discussed in Section 3.2.1). This
process yields a set of non-connected skeleton voxels. In order to have a structure for
easy animation of the volumetric object, they re-connect the skeleton voxels to form
a skeleton tree. The constructed skeleton is used for animation by first deforming the
skeleton and then reconstructing the volume from it.

A slightly different technique that is also based on thinning was introduced by Selle et
al. [Sel00, SPSP02]. They determine an internal skeleton based on a medial axis trans-
formation for three-dimensional volumetric objects.3 However, the three-dimensional
analogon of the medial axis (see Section 3.1.1) consists of a set of medial surfaces. In
some application domains (such as planning of liver surgery in connection with the
liver’s blood vessel structure as discussed by Selle et al.), on the other hand, instead

3 The method can also be applied to two-dimensional pixel images.
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of extracting a set of its medial surfaces it is necessary to find a medial axis or a
graph of medial edges for a three-dimensional object. Thus, Selle suggests to use
a discrete medial axis transformation in 3D [Sel00]. Similar to the definition of the
medial axis transformation, this method is based on the grass fire analogy. Starting
from the outer boundary of the three-dimensional volume model, border voxels are suc-
cessively removed (i. e., eroded) in a symmetric manner while preserving the object’s
topology. This process is called symmetric erosion. The medial surfaces that usually
result from thinning three-dimensional objects are reduced through this process to me-
dial axes. In addition, the development of so-called irrelevant medial axes that are
caused by sampling artifacts can be controlled by adjusting a relevance threshold (see
Figure 3.14).

(a) t = 0.0. (b) t = 0.8. (c) t = 0.9.

Figure 3.14: Influence of the threshold t on the generated internal skeleton using Selle’s algorithm.
From [SPSP02].

Selle et al. apply this algorithm to determine discrete medial axis transformations for
segmented models of human organs [SPSP02]. The generated skeleton can be used to
analyze the structure of the organ’s blood vessels. The resulting blood vessel skeleton
data is then used for operation planning to evaluate the blood support for the remaining
organ tissue after an operation (see Figure 3.15).

(a) Skeleton. (b) Color-coded skeleton. (c) Color-coded liver parts.

Figure 3.15: Using skeletonization to determine which parts of the liver are supplied by which branch
of the portal vein. From [SPSP02].

In addition, the generated skeleton can be used to visualize a complicated structure at
interactive frame-rates as suggested by Hahn et al. [HSEP00]. To be able to visualize,
for example, the complex blood vessel systems of a human liver interactively, first its
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skeleton is constructed in a pre-processing step. In an additional step, artifacts in the
skeleton such as the undesired form of the skeleton at bifurcations can be removed
(see examples in Figure 3.16). Also, the skeleton itself can be pruned and reduced in
complexity for later speed-up of the visualization. Afterwards, the modified skeleton
is used to generate the visualization using 3D rendering primitives such as frusta (see
Figure 3.17).

//

(a) Small branches.

//

(b) Successive small branches.

//

(c) Symmetric bifurcation.

Figure 3.16: Removal of artifacts in the skeleton at bifurcations. From [HSEP00].

Figure 3.17: Visualization of the skeleton using frusta. From [HSEP00].

Wink, Niessen, and Viergever review additional techniques for extracting a central
vessel axis from three-dimensional data sets generated in the medical domain [WNV00].
They distinguish between indirect approaches and direct approaches. Indirect approa-
ches perform preprocessing of the volumetric data prior to extracting the central axis,
e. g., segmentation of the data set into objects, while direct approaches extract the axis
directly. In their own approach, Wink, Niessen, and Viergever start with at least
two user-specified starting points on the central axis and iteratively compute the next
points. One iteration first determines a candidate for the next central axis point. Then
the central axis is extended with this point and a perpendicular plane to this estimated
axis is computed. On this plane, the center of the vessel is determined and used as the
new point for the central axis. Since this approach does not need any pre-processing
such as segmentation it is a direct method.

32



3.3 Extracting Internal Features from Boundary Representations

The discussed methods and similar approaches are well suited for extracting internal
skeletons from volumetric models. In addition to these methods for extracting internal
structures of volumetric datasets there are also methods for extracting surface features.
For example, Thirion and Gourdon use a method they call marching lines [TG92,
TG93, TG96] that is based on the marching cubes algorithm [LC87]. In a different
technique, Interrante, Fuchs, and Pizer base the identification of ridge and valley
lines on a surface on the approximation of the principal directions and curvatures
[IFP95].4

However, using any of the methods discussed in this section with polygonal models
would involve a separate step of creating a volumetric representation from the polygonal
data. This step, besides causing additional time and memory consuming computation,
would introduce new sampling artifacts. There are, on the other hand, algorithms that
compute skeletons directly from polygonal models. These methods are discussed in
detail in the following sections.

3.3 Extracting Internal Features from Boundary
Representations

There are a variety of shape description types for representing the boundary of three-
dimensional objects. For example, one can use free-form surfaces, mathematical shapes,
implicit surfaces, and polygonal meshes. The most common type of shape description
for three-dimensional objects in current computer graphics, however, is the polygonal
mesh representation. As already argued in Section 1.1, this results from the growing
hardware support for the display of such data in modern PCs. This is caused, at least
in part, by the ever-growing usage of 3D worlds in computer games and the resulting
hardware development. In addition, most other types of shape descriptions can be
translated into a polygonal form. Even discrete volumetric data can be transformed
into polygonal representations. For example, voxel data can be converted into polygonal
meshes using the marching cubes algorithm [LC87].

The translation of other types of shape representations into polygonal meshes, however,
introduces sampling artifacts in most cases, e. g., there is no correct polygonal repre-
sentation for a sphere. Regardless how fine the tessellation of the sphere’s polygonal
mesh gets, it is always only an approximation of the sphere.

In the previous sections, the distinction has been made between 2D and 3D shapes.
While this classification is possible for boundary representations as well, feature ex-
traction techniques for two-dimensional boundary representations (i. e., polygons) are
not used in practice very often.5 Thus, the approaches introduced in the following are
dealing with three-dimensional boundary representations (i. e., polygonal meshes).

4 For a comprehensive overview of algorithms for the analysis of volumetric datasets see, for example,
Lohmann [Loh98].

5 For Voronoi diagram and medial axis computation for polygons see Section 3.1.
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3.3.1 Medial Surface or Voronoi Diagram Based Algorithms

A group of algorithms for extracting skeletons from polygonal models is based on
computing the medial axis or Voronoi diagram for the model (also see Section 3.1.1).
From this data a graph consisting of one-dimensional lines or curves is extracted which
forms the skeleton of the polygonal shape.

Teichmann and Teller base their skeleton extraction algorithm on the computation
of the three-dimensional Voronoi diagram of the mesh’s vertices [TT98]. This Voronoi
diagram is simplified to yield the final skeleton. During this process of simplification,
Teichmann and Teller rely on user interaction for selection of a number of Voronoi
vertices as the ends of the expected features of the object respectively the skeleton.
Their algorithm then proceeds and reduces the medial axis graph by removing edges
without disconnecting the graph until a tree structure emerges (see examples in Fig-
ure 3.18). Finally, the skeleton is connected to the surface for later animation of the
model.

Figure 3.18: Shapes and their skeletons as computed by Teichmann and Teller. From [TT98].

Bloomenthal and Lim use a method for skeleton extraction which they call direction
testing [BL99]. This implicit technique is based upon the definition that skeleton
vertices are those points where the direction to the nearest point on the surface changes.
They find and connect the points using a piecewise-linear implicit surface polygonizer.
For points on a lattice the direction to the nearest surface point is computed. For
each pair of directly connected lattice points where this direction differs sufficiently,
the skeleton vertex is determined by binary subdivision.

Wade and Parent present an algorithm for extracting skeletons from polygonal
models based on the transformation of the polygonal data to the discrete domain
[WP00, Wad00, WP02]. Then, the problem is solved in voxel-space and the skeleton is
transformed back into continuous space. After the voxelization of the object, a discrete
medial surface (DMS) is computed (see Figure 3.19(a)). Starting from the central voxel,
a path tree is constructed6 that ends in the voxels farthest away from the center (see
Figure 3.19(b)). Next, this path tree is smoothed (see Figure 3.19(c)) to remove the
artifacts that result from the regular grid. Finally, the path tree is converted into the

6 Note, that always a tree is constructed. Thus, any information about the topological genus is
destroyed in the skeleton.
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skeleton by converting segments in the tree (sections between junction points or junc-
tion points and end points) into skeleton edges. If necessary, these edges are recursively
split to reduce the error that is introduced by the conversion (see Figure 3.19(d)).

(a) Voxels of the DMS. (b) Path tree. (c) Smoothed path tree. (d) Skeleton.

Figure 3.19: Constructing the skeleton using Wade and Parent’s algorithm. From [Wad00].

The main application for skeleton extraction as discussed by Teichmann and Teller
[TT98], Bloomenthal and Lim [BL99], and Wade and Parent [WP00, Wad00,
WP02] is the automatic generation of bones for the animation of polygonal meshes.
This means that in addition to the mere skeleton extraction, all algorithms must also
make the connection from the skeleton graph to the object’s surface in order to be able
to turn the motion of the skeleton into motion of the object. The data structure that
captures this relation is commonly called I-K-skeleton.7

In contrast to the previous approaches that extract a skeleton in form of connected line
segments, Amenta, Bern, and Kamvysselis present an algorithm to approximate
the Voronoi diagram of a 3D shape [ABK98, AB99]. Their goal is to find an approxima-
tion for the smooth surface that is given by a number of points on that surface. They
accomplish this through the extraction of the Voronoi vertices of the surface. They
note that in 2D for a number of vertices approximating a smooth curve, the Voronoi
vertices approximate the medial axis. However, in 3D this does not hold anymore. In
the 3D case Voronoi vertices can be located very close to the surface. These vertices are
not part of the medial axis of the smooth surface the mesh is approximating.8 Thus, in
order to find vertices that do approximate the medial axis, the authors suggest to only
use so-called poles—the two Voronoi vertices farthest away from the surface point, one
on either side of the surface. These resulting points can now be used to reconstruct an
approximation of the medial axis.

3.3.2 Edge Collapse Based Algorithms

The algorithms introduced previously are based on the topologic concepts such as the
Voronoi diagram and the medial axis. They compute their internal feature represen-

7 I-K stands for inverse kinematics.
8 An example for this is a group of four co-planar vertices that are located on a circle. In this

constellation a Voronoi vertex would be generated in the center of the four points which is not
part of the medial axis.
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tation explicitly, i. e., in one pass. In addition to these type of algorithms, there is
another major group for extracting internal features from polygonal meshes. In con-
trast to the previous one, this group—the edge collapse based algorithms—is based on
continuous simplification in order to extract the internal features. This means that a
simplification step is iteratively applied to the polygonal mesh until the internal feature
representation emerges. This will be discussed in detail in the following.

Simplification of Polygonal Meshes

In [HDD+93], Hoppe et al. introduced an algorithm for successive simplification of
polygonal meshes. It is based on an edge collapse operation (see Figure 3.20). In
this operation, one edge from the mesh is collapsed to a single vertex. This reduces
the mesh typically by two faces, three edges, and one vertex. Thus, by applying this
operation iteratively to the polygonal mesh it is successively simplified. The order in
which the edges are selected is determined by trying to minimize an energy function.

Figure 3.20: Edge collapse operation.

The process of applying successive edge collapse operations terminates once the desired
simplification level is reached (i. e., the model is simplified to a certain number of
polygons, edges, or vertices) or before the mesh becomes degenerate. As can easily be
seen, this process is reversible. By recording every edge collapse step and applying the
reverse operation—the vertex split—the original mesh can be reconstructed. Therefore,
Hoppe et al. suggest to use this process for progressively storing polygonal meshes
[Hop96]. To achieve this, the simplified version of the mesh is stored along with the
necessary vertex split operations that are needed to reconstruct the detailed mesh.

Edge Collapse Based Skeleton Extraction

Raab suggests to use the edge collapse based simplification method to generate an
internal skeleton for polygonal meshes [Raa98, DHR+99]. Instead of stopping the
algorithm before the mesh becomes degenerate, Raab continues to apply edge collapse
operations. The modified algorithms stops for an edge if this edge is not attached to
a valid polygon anymore. The remaining degenerate edges form the internal skeleton
of the original polygonal mesh. The process and the result of an edge collapse based
skeleton extraction is demonstrated for an example in Figure 3.21.
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Figure 3.21: Example for successive edge collapse operations resulting in the skeletonization of the
polygonal approximation of a cylinder.

In order to be able to approximate the global structure of the original polygonal mesh,
Raab suggests to always select the locally shortest edges for collapsing. However,
this local character or the algorithm in terms of selecting just the shortest edge can
lead to unwanted results. In particular, for not evenly tessellated meshes the local
approximation in the skeleton extraction algorithm can lead to a bad approximation
of the global form of the objects. In those cases the skeleton would “move” from the
finely tessellated to the coarser parts. In order to prevent this, Raab assigns a flag to
each vertex that is initially set to false. Now, the edges are examined in sorted order
from the shortest to the longest. An edge can only be collapsed if neither of its vertices
are tagged. For every edge that has been looked at and that could not be collapsed
because one vertex had been tagged before, the remaining vertex gets tagged as well.
Once an edge has been found with neither vertex tagged, this edge is collapsed and
the resulting vertex gets tagged. This process continues until all remaining vertices
are tagged. Then, the flags of the remaining vertices are again set to false and the
process starts over again. This modified algorithm works better in approximating the
global form of objects (see example in Figure 3.22).

(a) Shaded model of the bicycle. (b) Skeleton of the bicycle.

Figure 3.22: Model of a bicycle and the skeleton that was extracted from it using successive edge
collapse operations.

The edge collapse based skeleton extraction technique is very practical for models that
are piecewise tube-like. In this case, the algorithm will yield predictable results that are
very much like what one would intuitively expect. In contrast, for objects that are more
compact and sphere-like the results are insufficient and not quite predictable. In this
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case, the resulting skeleton graphs are highly dependent on the specific triangulation
of the mesh. Small alterations of the triangulation may lead to serious differences in
the skeleton.9

A possible application of the algorithm was presented by Deussen et al. in the context
of non-photorealistic illustration [DHR+99]. First, their system computes the skeleton
of objects. It is used for deriving the orientation of crosshatching lines in order to convey
shading in line drawings. Then, they compute intersections of planes perpendicular to
the skeleton with the objects. Finally, they draw lines along these intersections to
achieve the crosshatching illustration style (see Figure 3.23).

(a) Sketch of the model with the skeleton. (b) Resulting crosshatched illustration.

Figure 3.23: Example for the application of the skeleton extraction algorithm in non-photorealistic
rendering. From [DHR+99].

Another potential application is, for example, the computation of so-called bones for
animation purposes as previously discussed in Section 3.3.1. However, due to the
previously discussed limitations of the algorithm the skeletons would have to be revised.
Hence, the skeleton could serve as a first estimate of the bone structure that would
have to be adapted by the animation artist, afterwards.

Solving the Problem of Separated Model Parts

One problem with the edge collapse based skeleton extraction algorithm is that a
separated skeleton graph is generated when the original geometric model consists of
segmented parts. This problem can be overcome by an algorithm presented by Gar-
land and Heckbert [GH97, GH98]. Based on the edge collapse algorithm by Hoppe
et al. they describe a method to simplify polygonal models which can operate even on
seriously segmented data. This would be advantageous for skeleton based animation of
models because it allows treating the model as a union although the underlying mesh
data is segmented into patches or objects.

In contrast to the original edge collapse technique, the modified algorithm not only
looks at edges that are in fact present in the model but instead considers valid pairs.
Those are, in addition to model edges, potential edges in form of pairs of vertices which

9 However, even for piecewise tube-like shapes the resulting skeleton can be very sensitive to the
specific tessellation as will be demonstrated in Section 5.1.
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are less than a certain user-specified distance apart. When applying edge collapse op-
eration to these valid pairs during the simplification process, this causes the algorithm
to merge previously non-connected parts of the model.

Furthermore, Garland and Heckbert do not use an energy function or look for the
shortest edge to be collapsed next but instead use an approximation of the potentially
introduced error as the criterion. According to the authors this yields better results.

Similar to Raab’s modification of the plain edge collapse method one can use Gar-
land and Heckbert’s modified algorithm for skeleton extraction. The edge collapse
operations are continued until only a set of degenerate edges remain. Again, these
make up the skeleton of the polygonal model.

Further Improvements

Ronfard and Rossignac discuss an edge collapse algorithm which also tries to im-
prove the quality of simplification by using an estimated error as the selection criterion
[RR96]. Their method is based on finding the edge which introduces the smallest
estimated geometric error when being collapsed.

Sander et al. introduce an additional edge collapse algorithm with different simplifi-
cation behavior [SGG+00]. This algorithm makes sure that no part of the simplified
version of a model is inside the more complex version in any step. This means that the
model is “growing” while being simplified. This might be useful for clipping algorithms
where a simplified version of an object can be used for a first clipping test instead of a
bounding object (bounding box or bounding sphere).

3.3.3 Radial Basis Function Approach

Ma, Wu, and Ouhyoung choose a different approach for extracting an edge based
skeleton from polygonal shapes [MWO03]. Their algorithm is based on radial basis
functions (RBF) that are computed for the given 3D model (see Figure 3.24(a)). Af-
terwards, a gradient descent from each vertex of the model is invoked to find local
maximum positions. To do this, a gradient vector field is constructed using the partial
derivatives of the RBF (see Figure 3.24(b)). The local maxima positions found using
this method are grouped into clusters using a given range. Then, any two connected
maxima clusters are linked with a snake. Finally, the potential energy of the snake is
minimized to relocate it in order to be centered in the object (see Figure 3.24(c)). A
few examples of computed skeletons are shown in Figure 3.25.

This skeleton extraction algorithm, in contrast to the previously discussed techniques,
is capable of finding skeleton curves that are central to the model.
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(a) The RBF computed for an
object.

(b) Deriving a vector field and
finding local maxima.

(c) Linking the clusters with
snakes and relaxing them.

Figure 3.24: Computing internal skeletons using RBFs and snakes. From [MWO03].

Figure 3.25: Examples for the approach based on radial basis functions and snakes for skeleton extrac-
tion. The red spheres denote the maxima clusters and the green spheres the location of
the snakes after minimizing their energy. Courtesy of Wan-Chun Ma, from [MWO03].

3.3.4 Skeletons From Point Clouds

Besides extracting shape information from polygonal modes it is also possible to use
point clouds instead. Although point clouds contain less information about a shape
than polygonal meshes they can still be used to extract an internal skeleton from
a shape. In addition, it is always possible to generate point clouds from polygonal
meshes by sampling points on the triangles, either by using the mesh’s vertices or even
by generating more sample points on edges and faces. In order to be able to extract a
meaningful skeleton it is only necessary that the points are located on the surface of
the unknown shape and that the sampling is sufficiently dense.

Verroust and Lazarus describe an algorithm that extracts a skeleton that consists
of a graph of piecewise linear skeleton edges from a point cloud [VL97a]. Their algo-
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rithm is based on the cylindrical decomposition of the point set (see Figure 3.26(a))
meaning that the skeleton is constructed as follows. First, a neighborhood graph with
order n is constructed from the point set using a voxel decomposition of the space
(see Figure 3.26(b)). This means that the graph consists of edges (p, q) where p is one
of the n nearest neighbors of q or vice versa. From this graph, a geodesic graph is
constructed (see Figure 3.26(c)) starting from a user-defined source vertex by comput-
ing the shortest paths in the neighborhood graph between the vertices and the source
vertex. Afterwards, the geodesic graph is used to determine k level sets of the distance
map with k being user-defined (see Figure 3.26(d)). Thus, the points in a level set are
at the same distance from the source vertex. The points in a level set are connected and
connected components are found. Finally, the centroids of the connected level set com-
ponents are connected hierarchically to form the skeleton graph (see Figure 3.26(e)).
Figure 3.27 shows some examples of extracted skeletons.

(a) Point set. (b) Neighborhood
graph.

(c) Geodesic
graph.

(d) Level sets. (e) Extracted
skeleton.

Figure 3.26: Computing a skeleton from a point cloud. From [VL97a].

Figure 3.27: Examples for skeleton extraction from point sets. From [VL97b].

In general, it can be observed that the algorithms discussed above for extracting in-
ternal features from boundary representations produce a curve based structure. Being
computed by an internal ESR scheme, this graph captures the global form of objects
rather than surface properties. This means that internal skeleton graphs facilitate the
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analysis of form and topology of shapes but usually do not perform well when used
for reconstruction even if additional data is stored with the skeleton. Therefore, the
following section explores the extraction of external features from boundary represen-
tations.

3.4 External Feature Extraction from Boundary
Representations

Instead of looking for a skeleton inside of shapes, sometimes it is necessary to find
significant structures on their surfaces. In most cases, these structures are called feature
lines. Since surface features of two-dimensional objects are simple, non-connected
vertices, in most cases it only makes sense to look for structures on the surfaces of at
least three-dimensional objects. The following sections discuss a number of approaches
which extract such structures from 3D polygonal shapes.

3.4.1 Feature Lines Based on Approximated Curvature

In [RKS00], Rössl, Kobbelt, and Seidel present a method for extracting feature
lines from surfaces of polygonal meshes. They suggest to use first and second principal
curvature10 κ1 and κ2 in order to denote regions of interest. Since curvature is only de-
fined for smooth surfaces, they develop a method for determining the discrete curvature
of vertices of a polygonal mesh [Rös99, KBB+00] (for details see also Section 4.1.3). In
order to estimate the discrete first and second principal curvature and their associated
first and second principal directions (the curvature directions associated with the first
and second principal curvature are called first and second principal direction), they ap-
proximate the local neighborhood of the vertex (the vertex and all its direct neighbors)
by a biquadratic Taylor polynomial. The necessary parameterization is obtained either
from projecting the vertices’ neighbors onto its tangential surface (as given by its nor-
mal vector) or by using an exponential map. The local approximation of the surface is
done by a least squares solution of a linear system. This yields the Taylor coefficients
which can be used to estimate the normal vector and the second fundamental form.
From this, the principal curvatures and their directions are derived.

Having determined the local principal curvatures as the notion of importance, a thresh-
old is applied to the significance measure in order to segment the surface into important
and dull regions (see Figure 3.28(a)). The skeleton extraction described by Rössl,
Kobbelt, and Seidel is based upon the repeated application of two morphological
operators: dilation and erosion. Based on the dilation and erosion operator, the au-
thors define the opening (first apply dilatation and then erosion) and closing operator
(first apply erosion, then dilatation). Both are used to remove noise and artifacts from

10 The maximal and minimal curvature in a point are called first and second principal curvature,
respectively.
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the segmented features. In order to extract the skeleton from the determined features,
they are iteratively eroded (see Figure 3.28(b)) while respecting certain non-removable
vertices—complex vertices which have been already determined to be part of the skele-
ton. In an additional step, pruning can be applied to the skeleton in order to remove
certain unwanted artifacts (see Figure 3.28(c)).

(a) Segmented surface. (b) Derived skeleton. (c) Pruned skeleton.

Figure 3.28: Deriving an external skeleton as presented by Rössl, Kobbelt, and Seidel.
From [RKS00].

Watanabe and Belyaev extract so-called salient curvature features from polygonal
meshes [WB01]. They also base their approach on the approximation of the principal
curvatures κ1 and κ2 at the vertices of the surface. Their method, similar to the previous
one, uses the direct neighbors of a vertex and a Taylor series to obtain the principal
curvatures. However, they do not compute the principal directions and they extract
sets of feature triangles instead of feature edges. Based on the principal curvatures at
the vertices, the authors construct the two focal surfaces of the mesh. For every point
on the surface, the point on the focal surface is located on the normal in that point
with a distance of 1

κi
from the given point. Thus, a triangle on the surface is associated

with a focal triangle.11 Note that there are two focal surfaces—one for each principal
curvature.

After approximating the principal curvatures, Watanabe and Belyaev detect the
triangles where the curvature is extreme. They base this detection on the observation,
that extreme curvature lines on the surface correspond to ribs—i. e., sharp bends—on
the focal surfaces. Thus, they determine the curvature extrema by comparing the size
of the regular triangles with the size of their associated focal triangles and selecting
only triangles with the smallest 30% of the ratios. However, compared with analytically
computed extrema of curvatures, the new approach still needs smoothing and filtering
which is applied afterwards. Finally, a thinning algorithm is applied that is very similar
to methods applied to discrete 2D data (see Section 3.2.1). This yields the final set of
feature triangles (see examples in Figure 3.29).

11 For theoretical background on this approach see Belyaev, Anoshkina, and Kunii’s work
[BAK97].

43



3 Approaches to Capturing Geometric Features of Shapes

Figure 3.29: Salient curvature features extracted by Watanabe and Belyaev. From [WB01].

Watanabe and Belyaev show how to apply their approach for enhancing mesh dec-
imation methods such as the one presented by Garland and Heckbert [GH97].
By modifying the selection of edges to be collapsed (see edge collapse technique in
Section 3.3.2) to favor those edges which are not part of the extracted features they
improve the quality of the resulting mesh.

In a slightly different approach, Belyaev and Ohtake use methods from image pro-
cessing and apply them to polygonal meshes in order to find ridges and ravines on
the mesh’s surface [BO00]. They use algorithms for detecting edges in gray-scale im-
ages to find maxima on the approximated principal curvature. Unwanted artifacts are
suppressed by thresholding. In contrast to the previous approaches, Belyaev and
Watanabe are able to find the features with sub-triangle precision by interpolating
the approximated principal curvatures along the triangle edges. In addition to mesh
quality measurement and improving mesh decimation, they suggest applying their ap-
proach (using the also approximated principal directions) for pen-and-ink rendering by
rendering small strokes along the detected ridges (see example in Figure 3.30).

Figure 3.30: Applying strokes to detected ridges to generate a pen-and-ink rendering. From [BO00].
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In a way, these methods resemble algorithms that extract skeletons from discrete 2D
data. They first segment the mesh—either by vertices or by triangles—and then apply
some kind of thinning similar to the methods discussed in Section 3.2.1. However, since
the surface on which the algorithms operate is three-dimensional, the resulting features
are three-dimensional as well. In addition, since 3D meshes are usually not defined on
a regular grid, neither are the extracted features.

3.4.2 External Feature Lines From Internal Skeletons

Hisada, Belyaev, and Kunii pick up the idea of constructing an internal skeleton in
form of a 3D Voronoi diagram of a 3D surface [HBK01, HBK02] (as previously discussed
in Section 3.1.1). They show how to construct such a 3D Voronoi diagram efficiently
for polygonal surfaces (see Figure 3.31). Their algorithm is based upon computing
the Voronoi diagram for a set of points which are uniformly distributed on the surface.
For each point on the surface, the Voronoi poles of its Voronoi region are determined
(the two Voronoi vertices farthest away from the point). These poles give a good
approximation of the shape’s skeleton (i. e., its medial axis; for details see Section 3.3.1
as well as [ABK98] and [AB99]). Having determined these poles, Hisada, Belyaev,
and Kunii reconstruct the skeleton by using the connectivity in the original triangle
mesh (see Figure 3.31(b)). An edge in the skeleton between two poles is generated if
and only if there is an edge between the corresponding vertices in the triangle mesh.

In order to find ridges and ravines on the surface of the mesh, the authors employ
singularity theory and look for corresponding sharp edges in the approximated skeleton
(see Figure 3.31(c)). The threshold that is used to decide whether an edge is sharp or
not is determined by an statistical approach. Thus, the histogram of the cosine of the
angle between two faces sharing an edge in the inner skeleton is analyzed and a certain
percentage of the highest angles determines the threshold. This allows extraction of
the desired surface features (see Figure 3.31(d)).

(a) Original shape. (b) Approximated
Voronoi diagram.

(c) Sharp edges in
skeleton.

(d) Extracted sur-
face features.

Figure 3.31: Extracting surface features using an approximated Voronoi diagram. From [HBK01].
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3.4.3 Approach Requiring User Interaction

A different approach to feature extraction from polygonal meshes is taken by Lee and
Lee [LL02]. They use an adaptation of the snake algorithm used in image processing
which they call geometric snakes. A geometric snake is an active contour in form of a
parametric curve on the surface of the polygonal mesh. It moves over the surface while
minimizing its energy function. In contrast to the previously discussed methods, the
geometric snakes approach requires user interaction. Initially, the user has to specify
the starting position for the snake. Thereafter, the algorithm works automatically. The
energy of the snake which is to be minimized by moving the snake along the surface
consists of two major terms: an internal and an external energy. The internal energy
takes care of keeping the snake smooth while the external energy is used to locate the
features where it is locally minimal. Instead of directly moving the snake on the mesh’s
surface, the snake along with its local neighborhood of the mesh is mapped onto a 2D
plane. Using the original values of the energy function the snake is now moved on the
2D plane which makes the algorithm more efficient. After a number of iterations, the
snake is mapped back onto the mesh. If necessary, the process can be repeated several
times or the user can interactively make adaptations. Some examples for feature lines
that were extracted from 3D models are shown in Figure 3.32. In these examples,
normal variations between adjacent triangles are used to define the feature energy.

Figure 3.32: Examples for feature extraction with geometric snakes. From [LL02].

As it has been demonstrated, most approaches that endeavor to extract the most rel-
evant external characteristics of polygonal shapes do so by evaluating the principal
curvature of the surface. For polygonal meshes, however, this property is not defined.
Thus, an approximation of κ1 and κ2 is used. Other approaches look at related prop-
erties such as normal variations on the mesh or use an associated internal skeleton.

In contrast to internal skeleton extraction methods that extract curve based skeletons,
external feature line extraction approaches are better suited for compact objects. Be-
cause they capture local features rather than global properties, they are better able to
locate the essential surface structures for shapes which are not piecewise tubular.
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3.5 Summary

This chapter gave an overview of algorithms that extract geometric features from shapes
(see Table 3.1). The algorithms were presented depending on what type of shape rep-
resentation they can be applied to. First, three important mathematical concepts for
shape representation and shape abstraction were presented—Voronoi diagram, medial
axis, and Reeb graph. These serve as the basis of many algorithms mentioned after-
wards. This was followed by a review of algorithms that can be applied to discrete
data representations. In this context, both two-dimensional algorithms were discussed
as well as methods for volumetric datasets. The remaining two sections covered tech-
niques that were conceived for boundary representations. It was distinguished between
algorithms that extract internal structures and those that locate features on the sur-
face of shapes. This distinction can also be made for the techniques that are applied
to discrete data. However, in that case, methods that extract internal structures are
much more common.

In most cases, the discussed algorithms extract features from the shapes in form of
graphs that consist of curves or edges. Only a few methods find structures in form
of significant polygons or even connected surface sections. In addition, the algorithms
differ in terms of whether they need user interaction or not and whether they yield an
exact representation or only an approximate solution.

The presented selection of algorithms can only serve as an overview of the topic and
is not meant to be a complete survey. However, the discussed algorithms show that
the concept of what is being considered essential in a shape not only differs between
different types of shapes or types of extracted features. Instead, even for the same shape
and the same category of sought feature it is possible to produce different results. This
is illustrated very well, for example, by the comparison in Figure 3.12. It is caused by
varying requirements in different applications. In order to cope with this problem that
for different notions of what is essential it is needed to use different feature extraction
algorithms, a new concept is developed in Chapter 4.

In particular, the internal and external structures extracted from boundary representa-
tions are important in the context of this dissertation (see summary in Table 3.2). It
can be observed that internal features (skeletons) extracted from polygonal shapes do
capture global properties of certain types of objects. However, these skeletons fail to
represent certain local characteristics that are important as well. A detailed discussion
of this topic will be given below in Section 5.1. On the other hand, the methods that
find external structures on polygonal shapes extract local features but are restricted
in terms of the criteria they are applying. The criteria cannot be changed among the
algorithms and vice versa. This shows that a concept is necessary that allows for us-
ing different criteria with the same algorithm. Such a concept will be presented in
Chapter 5.
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algorithm applied to type of shape repre- extracted extracted
2D/3D sentation applied to features primitives

Voronoi 2D mathematical internal curves
diagram 3D concept surfaces
medial 2D mathematical internal curves
axis 3D concept surfaces
Reeb 2D/3D mathematical internal graph
graph concept
discrete 2D discrete internal pixel
skeleton 3D data internal voxel or
extraction (and external) graph
boundary 3D boundary internal graph or
representation representation surface
feature surface graph or
extraction faces

Table 3.1: Summary of the main groups of feature extraction algorithms.

algorithm internal/ result interaction main features
external required captured

[TT98] internal graph yes global
[BL99] internal graph no global
[WP00] etc. internal graph no global
[ABK98] etc. internal surface no global
[Raa98] etc. internal graph no global
[MWO03] internal graph no global
[VL97a] internal graph yes global

[RKS00] external graph no local
[WB01] external faces no local
[BO00] external faces no local
[HBK01] etc. external graph no local
[LL02] external graph yes local

Table 3.2: Summary of feature and skeleton extraction algorithms for boundary representations.
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Chapter 4

Degree of Interest Functions

In the discussion of the essential shape representation concept in Section 2.5 it has been
argued that in order to capture the essence of shape it is necessary to keep the specific
ESR criterion separate from the specific ESR scheme. These ESR criteria define what
it to be considered as important in a shape (also see Definition 2.3). Before introducing
a new ESR scheme in Chapter 5, this chapter surveys a variety of shape indicators for
their use as ESR criteria. In addition, new ESR criteria are explored partially based
on this review. Other criteria are developed based on new concepts.

This chapter concentrates on ESR criteria for evaluating the importance of points on
a polygonal surface of objects—Degree of Interest functions. In addition, only direct
criteria will be considered because the algorithm presented in Chapter 5 is based upon
scalar values computed for vertices on the surface. Most of the criteria discussed are
based on geometric properties, in particular based on the approximation of the local
curvatures in a point on the surface. However, some criteria are developed that are not
based on geometric properties at all. These are used to demonstrate that the concept
can also be used in applications other than feature detection.

4.1 Concept and Framework

In order to be able to evaluate previously discussed criteria for local shape classifica-
tion and to develop new ones, the concept of the Degree of Interest function needs
to be explained as well as the related concept of Extreme Ridges. For this purpose,
Section 4.1.1 gives definitions and derives properties for these concepts. Afterwards,
the restriction to polygonal surfaces is discussed in Section 4.1.2. In order to be able
to derive specific criteria later on, the mathematical background of curvature approxi-
mation from polygonal meshes is given in Section 4.1.3. Finally, Section 4.1.4 discusses
some basic DoI functions that can be derived directly from local curvature values.

4.1.1 Degree of Interest and Extreme Ridges

As has been mentioned above, the criteria discussed in this chapter are restricted to
direct ESR criteria that are evaluated for surfaces of shapes. They will be defined as
follows:
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Definition 4.1 A direct ESR criterion that captures the importance of points on a
surface in form of scalar values will be called Degree of Interest (DoI). A specific
importance value will be called DoI value and the function that computes the DoI value
will be called DoI function.

Formally, the DoI function shall be defined as follows:

Definition 4.2 Consider a three-dimensional shape Ω ⊆ R3, bounded by a surface
S = ∂ Ω. The Degree of Interest function (DoI : S → R) is defined such that it assigns
a scalar value to every point of S.

Various choices for DoI are possible; some examples will be given below. All DoI
functions shall have the following properties:

1. Without loss of generality, the local maxima of the DoI function are zero-dimen-
sional (i. e., they are isolated points on S).

2. The DoI possesses a network of Extreme Ridges (ER) (see Figure 4.1). An ex-
treme ridge E is a smooth 1D path on S, such that in every point P of E,
DoI(P ) > DoI(P + ε nP ) and DoI(P ) > DoI(P − ε nP ). Here, nP is a unit
vector perpendicular on E in the point P and ε is a sufficiently small positive
real number (see Figure 4.2). Informally this means that an extreme ridge is a
mountain-ridge of DoI. Formally it can be identified by interpreting the DoI func-
tion as a height profile and determining its second principal direction.1 On both
sides of the extreme ridge the values of the DoI function decrease. An extreme
ridge can be degenerate, i. e., it can be of length zero. In a degenerate extreme
ridge, nP has arbitrary direction.

Figure 4.1: Schematic illustration of the network of extreme ridges.

Lemma 4.1 A degenerate extreme ridge is a local maximum of the DoI function.

3. An extreme ridge ends in two Extreme Ridge Terminators (ERTs) that are either
one of the following:

1 If local minima of the DoI function are used to define the extreme ridges the first principal direction
has to be used.

50



4.1 Concept and Framework

PnP

ER

Figure 4.2: Schematic illustration of the definition of extreme ridges.

a) points where three or more extreme ridges are incident (these are the bi-
furcation points of the network of extreme ridges; some bifurcations may
be local maxima of DoI; some local maxima of DoI may be bifurcations of
extreme ridges),

b) points that are incident to precisely one extreme ridge (the end point or
starting point of an extreme ridge), and

c) points where precisely two extreme ridges are incident: in these ERTs, the
two incident extreme ridges have non-continuous tangents.

Lemma 4.2 A local maximum of DoI is always on at least one (degenerate) extreme
ridge.

Lemma 4.3 Every connected set of extreme ridges contains at least one local maximum
of DoI.

Belyaev, Bogaevski, and Kunii give a number of different definitions for ridges on
smooth surfaces [BBK96]. They distinguish ridges by determining whether a certain
curvature (in most cases the first principal curvature κ1) attains a local maximum
along a specific curve at a non-umbilic point.2 These curves include, for example, the
curvature line,3 the normal section curve along the first principal direction, and the
vertical section curve along the first principal direction. These definitions are related
to the definition of an extreme ridge given here. However, since DoI functions do
not inherently possess an associated direction in this case ±ε nP is used to define the
direction along which a local maxima is detected.

In [BAK97], Belyaev, Anoshkina, and Kunii define ridges as lines on the surface
that correspond to singularities on the surface’s caustic. The caustic (or focal surface)
is the dual of a surface characterized by the loci of the centers of curvature of points on
the surface. This definition is used in an approach to detect salient curvature features
from polygonal meshes presented by Watanabe and Belyaev in [WB01] (see also
Section 3.4.1).

2 At an umbilic point, both principal curvatures κ1 and κ2 are equal to each other.
3 A curvature line is the curve that follows a principal direction on the surface.
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These notions of ridges4 are well suited for defining certain geometry-based features on
smooth surfaces. However, since these definitions all rely on the local curvature of the
surface, they can only be used to find structures which are based on these properties. In
addition, for all but the last mentioned approach the adaptation to polygonal surfaces
does not follow easily from the definitions.

4.1.2 Discrete DoI Functions

So far, DoI functions were defined for arbitrary surfaces S. However, when working with
polygonal meshes which have a piecewise linear surface MS, certain restrictions apply.
Since polygonal models are typically only approximations of smooth surfaces with a
limited number of samples it is not clear which specific smooth surface is approximated
by a specific polygonal mesh. Hence, it is difficult to derive a continuous DoI function
that reflects the ESR criterion on the approximated smooth surface. Therefore, the
following definition is given:

Definition 4.3 A discrete DoI function is defined as a DoI function on a polygonal
mesh that only assigns DoI values to the primitives of a mesh: faces, edges, and vertices.

In most cases and in the context of this dissertation, DoI functions will be evaluated
for the mesh’s vertices. Thus, unless otherwise noted, in the following a DoI function is
considered to be a discrete DoI function evaluated for mesh vertices. This consequently
also means that the network of extreme ridges are part of the polygonal mesh as well.
Therefore, the extreme ridges consist of mesh edges and are, hence, piecewise linear
(see Figure 4.3).

→

Figure 4.3: Instead of being a set of smooth curves, the network of extreme ridges for polygonal
meshes consists of edges of the mesh.

4 It should be noted that there is a branch of applied differential geometry called ridge theory that
deals with various concepts of ridges and their applications. For a more thorough discussion of
ridges and ridge theory see, e. g., [Ebe96].
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Equipped with these definitions, specific discrete DoI functions can be formulated,
both based on known shape criteria and newly developed functions. However, many
previously presented algorithms for extracting geometric features from surfaces are
based on principal curvatures and principal directions. Thus, in order to prepare for
the discussion of some previously suggested criteria and also for newly developed DoI
functions, some background will be given in the following section on the computation
of these properties for polygonal meshes.

4.1.3 Determining the Discrete Curvature of Polygonal Meshes

Based on differential geometry, it is possible to compute the curvature for smooth
surfaces assuming a sufficiently differentiable domain.5 However, polygonal meshes do
not have a smooth and sufficiently differentiable surface. Thus, the curvature is not
defined for such surfaces (other than being infinity at edges and vertices where faces
meet at an angle and zero everywhere else). Therefore, algorithms have to be employed
for computing an approximation for the curvature on meshes, sometimes called discrete
curvature. These methods will be discussed in the following. The section focuses on
methods for estimating the discrete curvature in vertices.

As previously mentioned in Section 3.4.1, Rössl and Kobbelt developed a method
for polygonal meshes MS to estimate the discrete principal curvatures κ1 and κ2 as
well as their principal directions v1 and v2 [RK99, Rös99]. In this approximation, a
biquadratic Taylor polynomial F is fitted through a vertex V and its neighbors (see
Figure 4.4). This method will be explained in more detail below.

κ

κ

2

1

V

Figure 4.4: Estimating the principal curvatures using the method by Rössl and Kobbelt.

The first step is to transform the vertex and its neighborhood into a local coordinate
system so that F (0, 0) = (0, 0, 0). Afterwards, a parameterization of the points to
which the surface is going to be fitted has to be determined. Rössl and Kobbelt
suggest to use one of two methods: Either, the neighborhood vertices can be projected
onto the tangential plane or the parameterization is done using the exponential map
(i. e., the angles between two adjacent edges originating from V are uniformly scaled

5 For a detailed overview see, e. g., do Carmo [dC76].
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until the sum of the angles equals 360◦). The use of either one of the parameterization
methods yields ui and vi for V ’s n direct neighbors: F (ui, vi) = Qi (1 ≤ i ≤ n).

The second order surface is then locally approximated with a biquadratic Taylor polyno-
mial using the partial derivatives in u and v as well as the second partial derivatives:

F (u, v) = uFu + vFv +
u2

2
Fuu + uvFuv +

v2

2
Fvv . (4.1)

There are n points for which the position on the surface F (ui, vi) = Qi is known:
the n vertices which are direct neighbors of V . In addition, their respective param-
eters ui and vi have been determined during the parameterization step. Thus, a lin-
ear system consisting of n Taylor polynomial equations—one for each vertex and its
parameterization—can be constructed as follows:

VF = Q (4.2)

with V = (ui, vi,
u2

i

2
, uivi,

v2
i

2
)i, F = (Fu, Fv, Fuu, Fuv, Fvv)

>, and Q = (Qi)
>
i . Rössl

and Kobbelt solve this system using a least squares respectively least norm approach
yielding

F =


V>(VV>)−1Q : n < 5

V−1Q : n = 5

(V>V)−1V>Q : n > 5
. (4.3)

This procedure allows to approximate the partial derivatives Fu and Fv as well as the
second partial derivatives Fuu, Fuv, and Fvv for the local neighborhood of V .

With these partial derivatives of the fitted surface approximated for V and based on
the first fundamental form as well as the second fundamental form it is now possible to
formulate the local curvature κ as a function of a direction λ with λ = dv

du
= tan α:

κ(λ) =
FuuN + 2FuvNλ + FvvNλ2

FuFu + 2FuFvλ + FvFvλ2
. (4.4)

Rössl and Kobbelt show that the maximum and the minimum of the curvature in
V —κ1 and κ2, respectively—correspond to the real solutions of the equation

det

∣∣∣∣∣∣∣
λ2 −λ 1

FuFu FuFv FvFv

FuuN FuvN FvvN

∣∣∣∣∣∣∣ = 0 . (4.5)

Thus, the two solutions λ1,2 ∈ R of the equation

0 = λ2 (FuFv FvvN − FvFv FuvN) +
λ (FuFu FvvN − FvFv FuuN) +
1 (FuFu FuvN − FuFv FuuN)

(4.6)
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have to be found. Using Equation 4.4 and the λ1,2 derived from Equation 4.6 it is now
possible to determine the principal curvatures κ1 and κ2. Alternatively, Rössl and
Kobbelt show that it is also possible to compute the solutions for

det

∣∣∣∣∣ κFuFu − FuuN κFuFv − FuvN
κFuFv − FuvN κFvFv − FvvN

∣∣∣∣∣ = 0 . (4.7)

However, it was found through experiments that the latter way was not as numerically
stable as the former. In addition, using the former approach it is easier to derive the
principal directions. Depending on the angle α which determines λ, the normalized

direction vector
−−→
v(α) associated with the curvature κ(λ) can be computed as follows:

−−→
v(α) =

cos α Fu + sin α Fv

‖ cos α Fu + sin α Fv‖

=
Fu + tan α Fv

‖Fu + tan α Fv‖
. (4.8)

Because λ = tan α, the normalized principal directions can now easily be found using
λ1,2 as determined above:

−→v1,2 =
Fu + λ1,2Fv

‖Fu + λ1,2Fv‖
. (4.9)

In a different approach, Goldfeather first surveys two methods which are—similar
to the one proposed by Rössl and Kobbelt—based on a quadratic approximation
of the unknown surface [Gol01].6 He argues that these methods do not perform well
enough for arbitrary meshes. Instead, Goldfeather suggests to also take into account
the approximated normal vectors in V ’s neighbors and use a third order surface for
approximation. Using an error analysis, he argues that the third order approximation
performs significantly better in some cases.

However, for most triangle meshes with almost regular tessellation a quadratic ap-
proximation suffices. Thus, in the following the approach by Rössl and Kobbelt is
used. On the other hand, any method that is capable of approximating the principal
curvatures for polygonal meshes can be used for the algorithms described below.

4.1.4 Simple DoIs Based on Principal Curvature

Once the first and second principal curvature κ1 and κ2 have been determined, these
values can be used directly to define DoI functions:

DoI(V ) = κ1 (4.10)

or
DoI(V ) = κ2 . (4.11)

6 See also references in Goldfeather’s paper [Gol01] for a number of other approaches.
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Instead of just using either maximal or minimal curvature as a degree of interest func-
tion, a combination of both values can be used. For example, Gaussian curvature

DoI(V ) = K = κ1κ2 (4.12)

and average curvature

DoI(V ) = H =
1

2
(κ1 + κ2) (4.13)

are obvious choices for a combination of κ1 and κ2. They have previously been studied
as a means for classifying the local shape of surfaces (e. g., by Rössl, Kobbelt, and
Seidel [RKS00]). Therefore, they qualify for the use as DoI functions.

More complex DoIs can be defined that might be better suited for capturing the fea-
tures that are looked for in certain applications. A selection of more sophisticated
DoI functions—most of them based on principal curvatures—will be introduced and
developed below.

4.2 Heuristic DoI Function

In order to compare it to the curvature based DoI functions later on, a simple heuristic
DoI function based on an estimation for the average curvature at a vertex V will be
given. This intuitive DoI function is computed using V ’s approximated normal vector−→
NV and all k neighboring faces (see Figure 4.5). First, the centroids Cj of all adjacent
faces of the vertex are computed:

Cj =
n∑

i=1

Vji

n
j ∈ [1, k] . (4.14)

Then, the average CV of the centroids is computed as follows:

CV =
k∑

j=1

Cj

k
. (4.15)

The normal of V is approximated based on the normals of its adjacent faces:

−→
NV =

k∑
j=1

−→
Nj∥∥∥∥∥ k∑

j=1

−→
Nj

∥∥∥∥∥
. (4.16)

Afterwards, this point CV is projected onto the normal
−→
N of the vertex V :

−→
P =

−→
NV

(−−−−→
(V, CV ) · −→NV

)
. (4.17)

The length of the projected vector
−→
P and its direction can be used as an indication for

the curvature at this vertex:

DoI(V ) = −1(
−→
NV ·

−→
P ) . (4.18)

56



4.2 Heuristic DoI Function

C4
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Figure 4.5: Deriving an heuristic measure for the curvature at a vertex of a polygonal mesh.

This curvature measure works well for models with regular triangles. Unfortunately,
it does not perform very well when applied to meshes with irregular triangles.7 In
order to improve the method, the size of the faces ACj

can be taken into account when
computing the normal of V and the average of the centroids:

−→
NV =

k∑
j=1

−→
NjACj∥∥∥∥∥ k∑

j=1

−→
NjACj

∥∥∥∥∥
, (4.19)

CV =

k∑
j=1

CjACj

k∑
j=1

ACj

. (4.20)

However, this intuitive approach relies on regularly tessellated input meshes where all
faces have approximately the same size. Thus, it will not generate satisfying results
for arbitrary meshes. For completeness, it should be noted that a number of second
order differences based methods for estimating the curvature based on edges rather
than vertices exist (e. g., [HMG00, HG01, LPRM02, LL02]). In these cases the angle
between the normals of two adjacent faces is used to compute the DoI of an edge.

In the remainder of the chapter, new methods including, but not limited to some
based on approximated principal curvatures will be discussed. Based on evaluation
of a previously discussed measure for the local shape of a surface, a new measure is
derived and generalized afterwards. In addition, a new measure based on singularities
is introduced. Finally, DoI functions for use in applications other than feature detection
are developed.

7 Irregular triangles are very long and narrow.
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4.3 Modified Shape Index

In the discussion of DoI functions so far a heuristic DoI function and simple combina-
tions of κ1 and κ2 have been introduced. However, there are measures for classifying
the local shape of surfaces that have previously been introduced. These can be exam-
ined for their eligibility as DoI functions. Alternatively, they can be used to derive a
new DoI function which is done in the following.

4.3.1 Shape Index

Koenderink suggests using a so-called shape index in order to classify the shape in
the neighborhood of a point on a surface. The shape index for a point is computed
using its first and second principal curvature as follows [Koe90, KvD92]:

DoI(V ) = s =
2

π
arctan

(
κ2 + κ1

κ2 − κ1

)
(κ1 ≥ κ2) . (4.21)

The shape index has values close to 1 for locally convex shaped surfaces, values close
to −1 for locally concave shaped surfaces, and values close to 0 for locally saddle-like
surfaces (see example shapes in Figures 4.6 and 4.7). The major advantage of using
the shape index is that it can only have values in the interval [−1, 1]. However, its
disadvantage is that it does not distinguish between strong and weak features. For
example, a small bump has the same shape index value as a big one, given that they
are both, for example, locally convex. In addition, in most cases one is not interested
in the local convex or concave surface property in most cases. Those locally convex or
concave areas are usually considered to be geometrically boring because this is where
nothing “happens.” Instead, one would be interested in areas like faults.

Figure 4.6: Shape index for certain shapes. From [KvD92].

4.3.2 Modifications to Emphasize Ridges and Ruts

In order to develop a DoI function which is better suited for identifying interesting
features, the shape index will be modified. The goal in this modification is to empha-

58



4.3 Modified Shape Index

Figure 4.7: Color-coded shape index for some examples (green and blue represent negative while
yellow and red represent positive values). From [KvD92].

size ridges and ruts as prominent geometric features of the surface. Nevertheless, the
intensity of the feature has to be considered as well. Ideally, features would be sought
for a specific footprint that is specified by a scale parameter. However, this is not
possible using a purely local DoI function. Therefore, strong ridges and ruts (e. g., a
deep narrow valley) will be favored over weak ones.

As Koenderink points out in [Koe90, page 322] and more specifically in [KvD92,
page 560], the shape indices of ridges and ruts lie at 0.5 and −0.5, respectively (also
see illustration in Figure 4.6). Since these are the features most people are interested
in, they have to be emphasized while others should be de-emphasized. A gradual
transition from maxima at s1 = 0.5 or minima at s2 = −0.5 to zero at s ∈ {−1, 0, 1}
can be achieved by various functions, one of which is the sine function. Hence, a
modified shape index can be defined as follows:

DoI(V ) = sin(πs)

= sin
(
2 arctan

(
κ2 + κ1

κ2 − κ1

))
(κ1 ≥ κ2)

=
2

(
κ2+κ1

κ2−κ1

)
1 +

(
κ2+κ1

κ2−κ1

)2 (κ1 ≥ κ2) . (4.22)

This formula of the modified shape index classifies the environment of a vertex V
whether it is an interesting feature (ridge shaped or rut shaped) or if it has a rather
uninteresting shape (such as convex, concave, or saddle-shaped). However, it does not
make a distinction between strong or weak features. I. e., a point on wide ridge would
be classified with the same DoI value as a point on a very sharp ridge.

Thus, the DoI values should be scaled by their significance, i. e., the distance of κ1 and
κ2:

DoI(V ) = (κ1 − κ2)
2

(
κ2+κ1

κ2−κ1

)
1 +

(
κ2+κ1

κ2−κ1

)2 (κ1 ≥ κ2) . (4.23)

The effect of this function can be seen in Figure 4.8 where the three shape index based
DoI functions are applied to an example shape. In Figure 4.8(a), the original shape
index was used. Figure 4.8(b) shows the modified shape index which emphasizes ridges
and ruts. However, it is clearly visible that no distinction is made as to the strength
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of a feature. For example, the ridge of the bunny’s ear is attributed the same DoI
values as the surrounding area since this is also, in principle, ridge shaped. However,
when applying further scaling using the distance between both principal curvatures
by applying Equation 4.23, this problem is overcome and the strong features are well
distinguished from weaker ones (as shown in Figure 4.8(c)).

(a) Shape Index. (b) Modified shape index. (c) Scaled modified shape index.

Figure 4.8: Color-coded shape index based DoI values (red shows high values and blue low values).
The DoI values have been normalized in order to fill the whole color interval; the DoI
values in each image may be normalized differently.

An attempt to generalize the formula of the modified shape index will be taken in
the following section. Similar to the scaled modified shape index, this more general
approach also takes the degree of the feature into account.

4.4 Fold Index

As previously mentioned in Section 4.3.2, the desired measure should emphasize strong
ridges and long, narrow valleys rather than treating every ideal ridge or rut equally.
A surface point on one of these ideal features would have a negative first principal
curvature (κ1) along with a second principal curvature (κ2) having the value zero (i. e.,
a point on a ridge) or κ1 with the value of zero and positive κ2 (i. e., a point on a rut).
Thus, let

K =
(

κ2 + κ1

κ2 − κ1

)
(κ1 ≥ κ2) . (4.24)

This term K classifies the shape in an environment around a point in that it equals 1 for
environments of a point that are ideal ridges and −1 for ideally rut shaped surfaces. For
a certain constant distance ∆κ between κ1 and κ2, K grows for shrinking κi and shrinks
for growing κi. For cases with negative κ2 and positive κ1 the value lies somewhere
between 1 and −1. Hence, using Equation 4.24 Equation 4.22 can be simplified to

f1(K) =
2K

1 +K2
. (4.25)

Assuming a general continuous function f(K)
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1. that has its maximum value at K = 1 and its minimum value at K = −1 (for
emphasizing ideal ridges and valleys as defined above),

2. that is monotone between K = −1 and K = 1, and

3. that is asymptotic to the K-axis for values above K = 1 and below K = −1,

this function returns the desired interest value (using Equation 4.24) since it yields
the DoI value of 1 for ideal ridges, the DoI value of −1 for ideal ruts, and DoI values
between −1 and 1 for all other shapes:

DoI(V ) = f(K) . (4.26)

One can easily see that the function f1(K) in Equation 4.25 which is used for the
modified shape index has exactly the properties of f(K) as described above (also see
the plot of f1(K) in Figure 4.9).

Figure 4.9: Plot of function f1(K) in Equation 4.25.

As pointed out in Section 4.3.2, a desired trait for the DoI function is that the sharper
a ridge is the more important it should be. As previously done with the modified shape
index, this can be achieved by multiplying the size ∆κ of the interval [κ1, κ2]:

DoI(V ) = (κ1 − κ2) f (K)

= (κ1 − κ2) f
(

κ2 + κ1

κ2 − κ1

)
(κ1 ≥ κ2) . (4.27)

This formula for computing a DoI value for a vertex is called fold index . It generalizes
the formula used in the scaled modified shape index (Equation 4.23).

In fact, any f(K) that fulfills the requirements mentioned above can be employed
in computing the fold index. Besides f1(K) of Equation 4.25, the following function
based on the e-function can be employed as an appropriate f(K) since it has the desired
characteristics (also see plot of f2(K) from Equation 4.28 in Figure 4.10):

f2(K) = K e(1−|K|) . (4.28)
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Figure 4.10: Plot of the function f2(K) in Equation 4.28.

Combining Equations 4.27 and 4.28 yields the following formula for computing the
importance of a vertex V based on the interpolated principal curvatures κ1 and κ2:

DoI(V ) = −(κ1 + κ2) e

(
1−

∣∣∣κ2+κ1
κ2−κ1

∣∣∣)
(κ1 ≥ κ2) . (4.29)

As shown in Figure 4.11, the two fold indices (using function f1(K) or f2(K)) only differ
slightly. Although the function f(K) used in both cases differs in the specific character-
istics, both DoI functions are almost equally well suited for identifying ridges or ruts
on a shape according to the specifications in Section 4.3.2 as shown in Figure 4.11.

(a) Fold Index using f1(K)
(scaled modified shape
index).

(b) Fold Index using f2(K). (c) Amplified difference image.

Figure 4.11: Color-coded fold indices and the difference image. Although visually both fold indices
cannot be distinguished, there are slight differences. However, the differences are less
than 2.4% on each of the three 256 index RGB color scales.

The advantage of the fold index over the regular shape index is that it is independent
from the local convexity or concavity of the surface. Instead, it emphasizes faults or
ridges. Moreover, its value is not dependent on the actual size and shape of the triangles
(as the heuristic measure is) because it depends only on the approximated principal
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curvatures. In addition, in contrast to the modified shape index, it favors strong
features over weak ones since the fold index also takes the intensity into account. I. e.,
a vertex on a strong fault will yield a higher DoI value than a point on a weaker fault
while both will have similar DoI values when employing the modified shape index. One
disadvantage, however, for both the modified shape index and the fold index is that
they do not emphasize single peaks.

4.5 Singularity Index

The (modified) shape index and the fold index only use κ1 and κ2 in a single vertex
V in order to evaluate DoI(V ). One can also take an environment around V into
account. Thus, besides considering analytic measures based on the primary curvatures,
a different measure was considered that is based on the singularity properties of κ1

and κ2 for a mesh vertex. For illustration of what is meant by singularity property
the following metaphor is proposed. Consider a window through which one can see a
part of the outside world (see Table 4.1). Now if the window is moved along its main
coordinate axes the contents of the window may or may not change. If the contents
changes regardless of which axis was chosen to move it along the contents can be
considered to have the singularity degree of 0. If, instead, the window contents only
changes when moving it along one of its two axes a feature of singularity degree 1 is
detected. In case the contents does not change at all a feature of degree 2 has been
found. In general, a feature or singularity with the degree of n is characterized by n
coordinate axes of a coordinate system along which the window can be moved without
the contents to change.

window
metaphor

singularity 0 1 2
∆κ1,2(V ) ∆κ1,2 ≥ t ∆κi ≥ t; ∆κj < t ∆κ1,2 < t
primitive point line surface

Table 4.1: Deriving a singularity property based on the principal curvature values and directions
estimated in the vertices of a polygonal mesh.

This metaphor is applied to the principal curvatures on polygonal meshes. The “win-
dow” which is looked through is characterized by the two principal curvatures and the
“window contents” by their values. The coordinate axes are defined by the perpendic-
ular principal directions. In order to “move the window”—meaning to compute the
∆κ1,2(V )—it is necessary to interpolate the values of the principal curvatures at points
other than the vertices of the mesh. The value of κ′i is estimated for the slightly moved
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point P by applying Shepard’s interpolation scheme [She68].8 It uses the κi(Vj) for
the vertex V and all its n adjacent vertices V1 . . . Vn and their locations p and p0 . . . pn

(see Figure 4.12):

κ′i =

n∑
j=1

κij

|p−pj |2

n∑
j=1

1
|p−pj |2

i ∈ {1, 2} . (4.30)

κ

κ
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V
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1

V2
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Figure 4.12: Estimation of the principal curvatures at a point other than a mesh vertex by using
Shepard’s interpolation scheme [She68].

The final computation of the singularity degree of a vertex is only based on two user-
defined values: the distance between the actual vertex and the point where the cur-
vature values are estimated (how far to “move the window”) and a threshold t that
determines the smallest change in curvature values that is considered to be significant.
The former—the moving distance—is usually assigned the value of half the shortest
length of any edge in the mesh.

The singularity degrees for every mesh vertex can now in turn be used to define a new
interest measure which is called the singularity index. For that it is first postulated
that every vertex with a singularity degree of 0 or 1 is considered to be an interesting
feature and vertices with degree 2 to be not interesting. Thus, the smallest possible
value for the threshold t for which the singularity degree of a vertex V changes from
uninteresting (2) to interesting (1 or 0)—the maximum of the variations of κ1 and
κ2—is an indicator for the degree of interest of that vertex. This leads directly to the
definition for the singularity index as

DoI(V ) = max(∆κ1(V ), ∆κ2(V )) . (4.31)

Two examples for the application of the singularity index are shown in Figure 4.13.

8 Other interpolation schemes may be used as well.
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Figure 4.13: Color-coded examples for the application of the singularity index (red shows high values
and blue low values).

4.6 DoI Functions for Adaptive Subdivision

Although the DoI function will mainly be used for detecting the significance of shape
in the sense of feature extraction, finding important parts of shapes might also be
valuable in other applications. However, in application domains other than geometric
feature extraction it might be necessary to use DoI functions which do not emphasize
ridges or ruts. Thus, in this section a number of other DoI functions are developed in
order to illustrate that the DoI concept is not limited to feature detection. The DoI
functions introduced in this section were conceived for application in adaptive Loop
subdivision (for details see [IHK03]). In this context and in contrast to the previously
discussed functions, the DoI values in this section are not only computed for vertices
but for faces and edges as well.

The common goal of most subdivision algorithms is to generate meshes that permit visu-
ally pleasing renderings of the models. Therefore, most adaptive subdivision techniques
use geometric properties such as flatness—measured by the angle between adjacent
faces—to identify polygons where further subdivision is needed. There are, however,
various applications that have other requirements as to where fine tessellation is needed.
Hence, different criteria have to be used to decide where to apply additional subdivi-
sion steps. There are even applications for adaptive subdivision where the criterion for
refinement is not entirely geometric. Thus, a more general method that uses DoI func-
tions for the adaptive refinement decision are needed in these cases. The subdivision
scheme remains the same while the applied DoI function may vary within or across
applications. The examples in this section were generated using Loop subdivision,
an approximating scheme commonly used for triangle meshes [Loo87]. In principle,
however, this method is applicable to any subdivision scheme.

Before every subdivision step, the application computes the DoI function for each
vertex, edge, or face on the triangle mesh. These DoI values are now used instead of
geometric properties to decide if additional subdivision steps are required or not by
comparing them to a certain threshold value. If the DoI is bigger than the threshold t
the face is subdivided, otherwise it is not.
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4.6.1 DoI Functions for Silhouette Generation

The main goal when using adaptive meshes for silhouette generation is to reduce the
number of triangles while retaining a similar quality if the generated rendition. Azuma
et al. showed how to generate view dependent models using the progressive meshes al-
gorithm [ACD+01, AWC+03]. These meshes are finely tessellated in areas tangential to
the viewing direction and sparsely tessellated perpendicular to it. This means that sil-
houettes extracted from the model will appear as smooth lines with fewer triangulation
artifacts. To achieve similar meshes with the DoI based adaptive subdivision method
the DoI functions are based on the angle between face normal and viewing direction.
This is achieved by computing the dot product of both vectors

DoI(F ) = −→n · −→v (4.32)

(see Figure 4.14(a)). A method that produces even less faces for the same number of
adaptive subdivision steps considers edges where front facing and back facing triangles
meet. Those silhouette edges are assigned a DoI value of 1 while all other edges are
assigned a DoI value of 0

DoI(E) =


1 : [(−→n1 · −→v ≥ 0) ∧ (−→n2 · −→v < 0)]∨

[(−→n1 · −→v ≤ 0) ∧ (−→n2 · −→v > 0)]
0 : otherwise

(4.33)

with ni being the normals of the two faces. This results in a binary DoI function. Hence,
the threshold t to which the DoI function is being compared can be set to anywhere in
the interval (0; 1). The result of using this DoI function is shown in Figure 4.14(b).

(a) Faces with an angle of less than 20 degrees
to the viewing direction are subdivided.

(b) Edges where front facing and back facing
triangles meet are subdivided.

Figure 4.14: Dynamic adaptive subdivision (three steps) for better silhouette generation. In both
cases the model is viewed directly from the front.

Meshes generated with adaptive subdivision using these DoI functions have to be up-
dated in every frame since they are view dependent. For generating static meshes which

66



4.6 DoI Functions for Adaptive Subdivision

better support silhouette generation one can use the observation that the probability
for an edge to be a silhouette edge depends on the angle between both its adjacent
faces. In addition, concave edges cannot become silhouette edges at all. Thus, the DoI
in this case can be derived directly from the angle between the two faces

DoI(E) = arccos(−→nf1 · −→nf2) (4.34)

(see Figure 4.15). If the edge is concave it could additionally be set to zero because
these edges are never silhouette edges. The result of this approach is similar to the one
presented in [AFR03].

Figure 4.15: Static adaptive subdivision for better silhouette generation: adjacent faces with an
angle higher than 30 degrees are subdivided.

4.6.2 DoI Functions for Improving Haptic Rendering

A second example incorporates adaptive subdivision into a haptic rendering algorithm.
The major disadvantage of polygonal meshes in haptic rendering is that users perceive
discontinuities during the exploration of objects. This problem is usually overcome
by force shading. This technique interpolates the direction of the reaction force to
reduce the discontinuities along edges. Unfortunately, this causes lateral forces that can
significantly disturb users during the exploration and can influence their perception.

To overcome this problem, there are basically two approaches. The first works directly
on the original triangular mesh and uses the Loop subdivision algorithm for a dynamic,
successive refinement in the neighborhood of the surface contact point (SCP) of the
haptic interaction device. The limited time to determine the SCP prohibits the applica-
tion of adaptive subdivision within the intersection calculation. Hence, meshes within
different subdivision levels have to be pre-calculated and stored (see [RBR01]).

As opposed to the approach just discussed, a second solution is based on a piecewise
interpolation of the displayed surface using Bézier patches. For a smooth mesh it
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is necessary to have a smooth transition between adjacent patches. However, in the
underlying triangular geometry at some places two adjacent faces might connect with
a too sharp angle causing perceivable artifacts in the haptic rendering. A DoI function
is used to identify these places on the surface and cause the mesh to be adaptively
subdivided. This results in meshes which are usable for Bézier patch based haptic
rendering (see example in Figure 4.16).9

(a) No subdivision steps. (b) One subdivision step. (c) Two subdivision steps.

Figure 4.16: Triangles that produce perceivable discontinuities in haptic rendering are being subdi-
vided.

4.6.3 DoI Functions Based on User Interaction

Priority values not based on geometric properties are used in a number of interactive
illustration systems (e. g., ZoomIllustrator [PRS97], TextIllustrator [SS00],
and AGILE [HS02]). The DoI functions or dominance values used in these systems are
extracted by analyzing user interactions or visible text segments in order to guarantee
a coherent multi-modal presentation.

An analysis of scientific illustrations reveals that human artists display details within
the local environment of the most dominant objects. Moreover, these details fade out
with increasing distance to the dominant object. Hence, to enhance such interactive
illustration applications, the DoI values provided by the systems can directly be used
for adaptive subdivision. This makes sure that the most dominant structures are
enhanced through the finer tessellation whereas irrelevant geometric parts or objects
remain coarse (see example in Figure 4.17).

The presented DoI functions for adaptive subdivision are examples for using the degree
of interest concept in application domains other than feature extraction. In these cases
it is not essential to find geometrically interesting regions of a shape. Instead, the
DoI functions classify regions where additional subdivision is necessary. It could be
demonstrated that even DoI functions that are not based on geometric properties at
all can be used in this context.

9 For a detailed description on how to compute the DoI function for haptic rendering see [IHK03].
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Figure 4.17: Olaf’s bracelet is the object of focus. Thus, its triangles and all triangles of objects
close to it are subdivided. The closer the triangles are to the focus point the more
subdivision steps are used.

4.7 Summary

For a summary of the DoI functions discussed in this chapter, in Section 4.7.1 they are
first classified according to a number of criteria such as what properties they are based
on or where they can be primarily applied. In addition, in Section 4.7.2 the geometric
DoI functions for capturing the essential parts of a shape will be compared. In order
to allow for evaluating their behavior for example shapes color-coding of the computed
DoI values is used.

4.7.1 Classification and Hierarchy of DoI Functions

The DoI functions that were introduced in this chapter are direct, surface detail ESR
criteria according to the classification in Section 2.6. For the purpose of formulating
a hierarchy of the different DoI functions, they are categorized according to whether
they are based on geometric properties or whether they are computed non-geometrically.
The geometric DoI functions in turn can be split into functions that are based on prin-
ciple curvatures such as shape index, modified shape index, fold index, and singularity
index. On the other hand, there are geometric functions that are not based on κ1 and
κ2 such as the heuristic DoI function introduced in Section 4.2, the silhouette prop-
erty based DoI function, and the DoI function that takes into account errors in haptic
rendering.

Besides being based on geometric properties, DoI functions can also be computed en-
tirely differently. For example, one could think of a farmer who would classify different
locations on the farmland by the fertility or the amount of income it produces. This
could be called the farmland index which is not based on geometric shape properties.
In addition, the DoI values based on user interaction are based on non-geometric prop-
erties as well. In fact, any criterion that could lead to a pseudo segmentation10 or

10 A pseudo segmentation is a segmentation where not all segments need to have closed borders.
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partition of S can be employed. Such non-geometric DoI functions can be used just
as well to compute an external skeleton. Hence, a taxonomy of the DoI functions
described in this chapter could look as depicted in Figure 4.18.

DoI functions

geometrical DoI functions

based on principal curvatures

shape index

modified shape index

fold indices

singularity index

etc.

based on other properties

heuristic function

based on silhouette property

based on haptic rendering

etc.

non-geometrical DoI functions

based on user interaction

farmland index

etc.

Figure 4.18: Proposed taxonomy for the DoI functions developed and discussed in this chapter.

Besides building a hierarchy based on the type of property that is evaluated in order
the compute DoI values, the DoI functions can also be classified according to whether
they are view-dependent (such as two of the DoI functions based on silhouette property
of the vertices) or view-independent (as the rest). In addition, the DoI functions can
be grouped into those which are suited for extracting some sort of feature from the
model’s surface (such as shape index, modified shape index, fold index, singularity
index, intuitive measure, and farmland index) and the rest which is used, e. g., for
adaptive subdivision.

4.7.2 Comparison of Geometric DoI Functions

A number of different DoI functions have been conceived and/or examined in this
chapter. Some of them can be used to identify significant parts of objects. In particular,
the heuristic measure, the simple principle curvature based functions, the shape index,
the modified shape index, and the fold indices can be used for this purpose.

In order to be able to compare them (see summary in Table 4.2), these functions have
been applied to example shapes as shown in Figures 4.19 and 4.20. In the figure, the
DoI values have been color-coded to visualize their value. In each individual image,
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the interval of DoI values computed have been linearly scaled to fit the red-blue scale.
High values are presented in red while low values are shown in blue.
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Heuristic measure no yes no
Maximal curvature yes yes n/a
Minimal curvature yes yes n/a
Maximal absolute curvature yes yes no
Minimal absolute curvature yes yes no
Average curvature yes yes yes
Gaussian curvature yes yes no
Shape index yes no yes
Modified shape index yes no yes
Fold index using f1(K) yes yes yes
Fold index using f2(K) yes yes yes
Singularity index no yes no

Table 4.2: Comparison of the properties of geometric DoI functions.

As can be seen in the figures, most results of the various DoI functions differ signifi-
cantly. For example, it can be observed that the heuristic measure is somewhat depen-
dent on the triangulation (see Figures 4.19(a) and 4.20(a)). It can also be seen that
the shape index and the modified shape index do extract the local shape using their
individual scales but do so regardless how strong the features are (see Figures 4.19(h),
4.20(h), 4.19(i) and 4.20(i)). Finally, it should be noted that it seems that the fold
indices nicely extract ridges and ruts as extreme values (red and blue parts) while
non-significant parts are assigned values right in the middle (purple parts, i. e., the DoI
values are zero in this case) between both extremes (see Figures 4.19(j), 4.20(j), 4.19(k),
and 4.20(k)).

Thus, depending on the application at hand either one of the DoI functions introduced
can be used to evaluate the significance of points on the surface. Hence, it is up to
the user to decide which measure does best fits his or her needs. In addition, multiple
DoI can be used in separate runs of the algorithms while the individual results are
combined (see example in Section 5.3.3).

Besides the DoI functions introduced in this section many more are possible. The
selection presented here is intended on the one hand to illustrate the concept of and
show examples for possible DoI functions. On the other hand the specific functions
presented will be applied in the following sections for finding significant parts of a
polygonal mesh.

71



4 Degree of Interest Functions

(a) Heuristic measure. (b) Maximal curvature. (c) Minimal curvature.

(d) Maximal absolute curvature. (e) Minimal absolute curvature. (f) Average curvature.

(g) Gaussian curvature. (h) Shape index. (i) Modified shape index.

(j) Fold index using f1(K). (k) Fold index using f2(K). (l) Singularity index.

Figure 4.19: Color-coded DoI values using some of the DoI functions introduced in this chapter
(red shows high values and blue low values). The DoI values have been normalized in
order to fill the whole color interval; the DoI values in each image may be normalized
differently.
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(a) Heuristic measure. (b) Maximal curvature. (c) Minimal curvature.

(d) Maximal absolute curvature. (e) Minimal absolute curvature. (f) Average curvature.

(g) Gaussian curvature. (h) Shape index. (i) Modified shape index.

(j) Fold index using f1(K). (k) Fold index using f2(K). (l) Singularity index.

Figure 4.20: Color-coded DoI functions as used in Figure 4.19 applied to a technical model.
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Chapter 5

An ESR in 3D:
the External Skeleton

In the previous chapter, a concept for specifying what is considered to be important for
a specific application was introduced—DoI functions. Based upon these, a new ESR
scheme is developed that allows detection of the important features of the surface of an
object. This scheme utilizes the property of the DoI function that it defines extreme
ridges on the object’s surface as noted in Section 4.1.1. These curves are identified
using a wave propagation technique that traverses the surface of the object.

Before going into detail about the new essential shape representation algorithm, the
need for this new concept will be argued. This discussion is based on a review of
previous internal ESRs. Afterwards, the wave propagation based algorithm is developed
and examined in detail. In the following section a number of algorithmic considerations
and potential modifications of the technique are presented. Finally, the method is
analyzed and evaluated in particular in terms of how it supports the representation of
scale, the steps necessary in order to reconstruct the shape, and robustness as well as
potential problems.

5.1 Analysis of Internal Skeletons

A selection of previously presented algorithms for extracting internal skeletons from
polygonal mesh based geometry models has been introduced and discussed in Sec-
tion 3.3. In the following section, these algorithms are going to be reviewed in terms
of the requirements for essential shape representations mentioned in Section 2.3. First,
the appropriateness of the algorithms for certain types of models is examined and how
well the extracted skeletons resemble the form of shapes. In addition, the sensitivity of
the algorithms to the tessellation of the models and errors in the meshes is described.
Finally, it will be shown how the algorithms deal with segmented meshes. Based on
this discussion the necessity of a new concept is concluded.

5.1.1 Suitability for Different Classes of Models

In general, it can be observed that edge or line based internal skeletons of three-
dimensional shapes are well suited for representing tubular shapes. This especially
applies to tubular shapes that have an approximately circular cross-section. In these
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cases, the skeleton can easily be used for creating a reconstruction close to the original
shape (Requirement 1 in Section 2.3) by moving the circular cross-section along the
skeleton path oriented perpendicular to the skeleton. The reconstructed surface is de-
rived by connecting the circumferences of the cross-sections. If the skeleton additionally
stores the local average distance of the shape to the skeleton this can be used to scale
the cross-section accordingly. In addition, the original shape does not necessarily have
to resemble one single tube. It is sufficient if the shape’s parts are tubular. Then, the
generated skeleton will comprise of one skeleton curve per tubular part (see example
in Figure 5.1).

(a) Example shape consisting of tubular parts. (b) Derived line based skeleton.

Figure 5.1: Deriving a line based skeleton from shapes which are tubular or consist of tubular parts.

However, not all shapes are tubular. Many have a more compact or flat nature. In
these cases, the essence of their shape lies not in the way tubular parts are assembled
to form the final object but rather in what the characteristics of the surface are. Such
shapes can only be poorly approximated with a line based internal skeleton. A correct
or almost correct reconstruction is hardly possible from theses skeleton graphs (see
Figure 5.2). Thus, line based internal skeleton extraction is not as well suited for this
class of shapes.

5.1.2 Correlation of the Skeleton Graph with the Original Model

A potential problem with skeletons generated with particularly the edge collapse based
algorithms is that the skeleton edges are not necessarily located exactly in the middle
of the original model part as previously discussed in Section 3.3. In fact, in certain
cases it can happen that a skeleton edge can even be partly outside of the object part
it is approximating (see example in Figure 5.3 and 5.4). However, in some application
domains it is necessary that the skeleton graph is located centrally to its associated
structure. For example, in medical visualization it is essential that the skeleton lies
exactly in the center of the shape to be applicable in vessel analysis and operation
planning (see, e. g., [Sel99, HSEP00, SPSP02]).

The other algorithms introduced in Section 3.3 yield better skeletons in terms of the
location of the skeleton edge central to the shape. However, most of them cannot
guarantee the precise central location of the skeletons, either. For example, Figure 3.19
on page 35 shows that Wade and Parent’s algorithm [Wad00] yields skeletons which
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(a) Shape with tubular objects. (b) Reconstruction of the tubular
objects.

(c) Shape with
compact
objects.

(d) Reconstruction
of the compact
objects.

Figure 5.2: Reconstructing shapes from an internal edge based skeleton using the quadratic error.
As shown in (a) and (b), the reconstruction of tubular objects works well. However, the
reconstruction of compact objects does not correspond to the original as well ((c) and
(d)). From [Raa98].

are not central to the object (see the neck of the horse). Also, the skeleton extraction
algorithm for point clouds by Verroust and Lazarus [VL97a] cannot guarantee
central skeletons (see Figure 3.27 on page 41).

Another observation can be made for all skeleton extraction algorithms that yield edge
or curve based skeleton graphs. None of these algorithms computes a mathematically
correct skeleton (see Sections 3.1 and 3.1.1). This is inherent in using lines or curves
as the primitive of the skeleton rather than planar primitives. Naturally, the fact that
the skeleton curves are not necessarily central to the shape also contributes to the
non-mathematical character of the skeletons.

5.1.3 Sensitivity to the Tessellation of Shapes

In edge collapse based skeleton extraction algorithms the position of generated skeleton
edges and even the decomposition of the skeleton graph into skeleton edges is highly
dependent on the order in which the edges are selected for being collapsed. Thus, it
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Figure 5.3: Example for a skeleton created with the edge collapse method where parts are outside
of the object. In particular, see the neck and the beak of the dinosaur.

is dependent on the tessellation of the object rather than its overall shape. In fact,
skeleton vertices might “drift” while performing the skeleton extraction.

Stabilization of the drift behavior can be achieved by averaging the final position of
skeleton vertices by considering the original vertices that make up the skeleton vertex.
This reduces the dependency on the order of edge collapse steps. Raab argues that a
weighted sum of the positions to minimize the quadratic error should be used [Raa98].
However, since minimizing the quadratic error has not been solved efficiently, he sug-
gests using homogeneous coordinates for the purpose of finding the central point for a
set of points. When determining the point in the middle between the vertices of the
edge that is to be collapsed, the two positions just have to be added using homogeneous
coordinates. Since adding homogeneous coordinates is an associative operation the sum
of the positions of a set of points yields the position in the middle. Figure 5.4 displays
an example for the stabilization of the drift behavior. In Figure 5.4(a) it is clearly
visible that although the original shape is symmetric the skeleton is not. Figure 5.4(b)
shows the almost perfectly symmetrical skeleton after stabilization.

(a) Shape and not stabilized skeleton. (b) Shape and stabilized skeleton.

Figure 5.4: Stabilization of the drift behavior which is caused by a certain succession of edge collapse
steps by averaging the final positions of the skeleton vertices.
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Unfortunately, one important property of edge collapse based algorithms—that the
decomposition of the skeleton graph into skeleton edges is dependent on the sequence of
edge collapse operations—cannot be removed by this modification. In fact, the sequence
of edge collapse steps is highly dependent on the specific triangulation (topology of the
triangulation and positions of the vertices) of the mesh. Only small changes in the
triangulation can lead to significant and global changes in the skeleton graph (see
example in Figure 5.5).

(a) Shape one. (b) Skeleton of (a). (c) Shape two. (d) Skeleton of (c).

Figure 5.5: Sensitivity of the edge collapse based internal skeleton to slight changes in the triangula-
tion of the shapes they are computed for. Being visually equivalent, the two shapes (a)
and (c) only differ in the scales of their underlying geometric models.

5.1.4 Sensitivity to Errors in the Mesh

In some cases geometric models contain errors that are due to the process of how they
are constructed or obtained. Errors that occur most often are normals with wrong
orientation, double edges or double faces as errors in the tessellation or even missing
faces that cause holes.

The edge collapse based skeleton extraction algorithm is robust against models with
errors in the normals, e. g., it is not necessary to have a model with correct classification
of “inside” and “outside”. In addition, errors in the triangulation can be handled very
well, e. g., holes or double edges do not cause problems for the algorithm. However, it
has to be noted that the algorithm may alter the topological genus of the model during
the process. It may happen that holes in the original model are closed (see example
in Figure 5.6). Nevertheless, since no new holes can appear the topological genus can
never increase but only decrease.

Similarly, the point cloud based skeleton extraction technique by Verroust and
Lazarus [VL97a] is robust against these errors since triangulation errors or normal
orientation do not apply to point clouds. The medial axis based skeleton extraction
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(a) Object: disk with hole. (b) Expected skeleton in form of
a closed loop.

(c) Resulting skeleton: only one
edge is created.

Figure 5.6: Problem of edge collapse based skeleton extraction with the genus of the mesh. Since the
hole of the disk has short edges compared to the outer edges they are being collapsed first.
Thus, instead of the expected skeleton ring a single edge is the output of the algorithm.

algorithms should generally also be robust against wrong normals or double edges.
However, holes will most likely cause additional skeleton edges to be computed. As
an exception, the method by Wade and Parent [Wad00] needs correct normals and
closed meshes in order to derive a correct voxel representation which is needed to find
the discrete medial surface from which the skeleton is computed.

5.1.5 Skeletons of Segmented Meshes

Another problem for skeleton extraction algorithms is posed by segmented models. In
3D model libraries (e. g., the Viewpoint catalog [Vie99]), models that are intended
particularly for character animation are sometimes available in segmented form instead
of as a single skin. Although visually they seem to be connected, the different parts
of the model are logically separated from each other. This segmentation is intended to
support the efficient animation of the characters using underlying bone hierarchies.

Some skeleton extraction algorithms can deal with this type of models without problems
(e. g., Wade and Parent’s algorithm [Wad00] or the point cloud based algorithm
by Verroust and Lazarus [VL97a]). However, the result of applying certain other
skeleton extraction algorithms to one of these models is a logically and almost certainly
also visually separate skeleton graph for each object of the segmented model as shown
in an example in Figure 5.7.

On the other hand, it is sometimes required to extract a connected skeleton graph
from a model. As already discussed in Section 3.3.2, one option for obtaining such
a connected skeleton is to use an adapted skeleton extraction algorithm (e. g., using
Garland and Heckbert’s edge collapse algorithm [GH97]). A different way for
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(a) Traditional rendition of the
segmented model.

(b) Expected skeleton. (c) Resulting skeleton due to seg-
mentation of the model.

Figure 5.7: Skeletons extracted from segmented models (a) are segmented as well (c). For obtaining
a connected skeleton graph as shown in (b) the patches have to be welded together prior
to starting the edge collapse process.

obtaining a connected skeleton is to have a model with connected objects or patches
to start with, i. e., the model must contain just one connected object.

For shapes that originally comprised one connected mesh and that were only segmented
for animation this is not difficult. The separated patches still share vertices at the same
location. Hence, the vertices that share a location can be determined (e. g., using a hash
based approach) and welded together. In the example above, the patches that form the
shape in Figure 5.7(a) were merged prior to generating the skeleton in Figure 5.7(b).

Solving the problem for models for which it is not possible to use the procedure outlined
above is also possible. For example, in addition to segmented or not segmented single-
skin models in character animation, there are also so-called ball-jointed (sometimes
simply called jointed) forms of models [Tra94]. In this form of models, the parts
of the character (e. g., the forearm and the upper arm) are independent from each
other and the joints are modeled as half spheres for each of the body parts. Thus,
although being logically independent, the parts overlap at the joints. This allows easy
hierarchical animation with bones because the individual parts just have to be assigned
to the associated bone and transformed accordingly. This means that no simulation
of bending limbs is necessary. Thus, although being not as visually pleasing due to
seams at the joints and rigid body parts, this type of animation is easier than for
single-skinned models.

When computing internal skeletons for this type of models, segmented skeletons are
generated because a simple welding of the individual parts is not possible. The genera-
tion of a single-skinned version of these shapes for skeleton extraction can be achieved,
for example, by employing α-shapes [EM94]. A similar procedure can also be applied
to avoid problems with models that have small holes that ought to be filled.
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5.1.6 Necessity for a New Concept

Table 5.1 summarizes the results of the analysis of internal skeletons. From this analysis
it can be concluded that they do have some serious flaws according to the requirements
named in Section 2.3. Most notably, internal skeleton extraction methods are not
suitable for all types of shapes in terms of the form of their surface (Section 5.1.1). In
particular, compact shapes can only poorly be represented by internal, line or curve
based skeletons. In addition, being internal ESR schemes, internal skeletons capture
the overall form of the shape. They do not preserve certain, possibly important surface
features. However, in some applications (e. g., shape storage and reconstruction) it is
not sufficient to capture the general form of the whole shape. Hence, the form of the
surface has to be included in an essential shape representation as well.

This shows the necessity of a new concept of external skeletons. In the remainder of
this chapter, such a concept will be developed and properly defined. In addition, an
algorithm will be described which extracts external skeletons using DoI functions that
have been discussed in Chapter 4 as the significance criterion.

5.2 External Skeletonization using Wave Propagation

The review of existing algorithms for extraction of internal skeletons that was given in
the previous section showed the necessity for a new concept for capturing the essence
of shape. In order to avoid the problems of internal skeletons, the following sections
introduce the new concept of external skeletons. Based on a wavefront propagation al-
gorithm and using DoI functions as discussed in Chapter 4, skeleton edges are extracted
in form of extreme ridges as a subset of the polygonal mesh.

5.2.1 Definition and Algorithm Outline

Based on the definitions in the context of DoI functions in Section 4.1.1, the notion of
external skeletons can now be formally defined as follows:

Definition 5.1 An external skeleton (ES) is the network of extreme ridges on a sur-
face S. The extreme ridge terminators (ERTs) together with the local maxima of DoI
that are not ERTs are the nodes in this network. The external skeleton is dependent
on the specific DoI that is used to determine the extreme ridges.

Notice that the network of extreme ridges need not be connected. In general, it consists
of multiple connected components.

Thus far, extreme ridges have been defined so that they can be determined for arbitrary
surfaces S. In the remainder of the chapter, however, only polygonal meshes MS will
be considered (similar and relating to the discussion of DoI functions in Chapter 4).
Thus, the network of extreme ridge on these meshes consists a number of separate parts
with each part being a connected set of edges.
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Table 5.1: Summary of analysis of internal skeletons.
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5 An Essential Shape Representation in 3D: the External Skeleton

In order to establish the network of extreme ridges, the first step is to search (all) local
maxima of the selected DoI function. These local maxima will form the set LM . The
rationale is that, according to Lemma 4.3, LM yields at least one point in each of
the connected components of ES. In order to establish the entire network of extreme
ridges, all of S has to be surveyed. To do this a strategy based on propagating waves is
employed (see the following section). This process starts in each of the points in LM
and follows local maxima of the chosen DoI function.

The process of determining wavefront edges on the mesh and finding the external
skeleton is divided into the following four steps:

1. locate the local maxima of the chosen DoI function on the 2D mesh surface
(Section 5.2.3),

2. create the wavefronts originating from those local maxima (Section 5.2.4),

3. regularize the determined set of wavefront edges (Section 5.2.5), and

4. follow the local maxima of the chosen DoI function (Section 5.2.6).

Before these steps will be explained in more detail in the following, a short discussion of
the rationale is given that allows using wave propagation in an algorithm for extracting
extreme ridge curves.

5.2.2 Rationale of Wave Propagation

Wave propagation is a physical process that occurs when oscillations spread in a con-
tinuous medium [Fle80, page 150]. It can occur in different dimensional media (e. g.,
one-dimensional waves on a spiral spring, two-dimensionally moving waves on a water
surface, and three-dimensional sound waves in the air). For a medium with constant
velocity of wave movement, the wavefront is perpendicular to the direction of wave
movement [GKV89, page 150]. In such a case a single point wave initiator would cause
two-dimensional wavefronts to form concentric circles on a plane.

The propagation of wavefronts over the mesh is used as a means to traverse the mesh
in an organized way. This, in turn, allows to trace the extreme ridge curves starting at
the wavefront initiators (local maxima) from which they emerge and follow them over
the mesh.

The process of wavefront propagation starts with the identification of local maxima of
the DoI function as wave initiators. Features in form of local maxima curves emerge
from such wave initiators. These features (i. e., extreme ridges or external skeleton
curves) are to be detected but are not known at this point. Thus, wavefronts are
initiated by the isolated local maxima and are propagated across the mesh. It can be
supposed that the features are initially parallel to the wave movement if the waves are
approximately circular. This approximately circular form of the wavefronts can only
be achieved by a constant or nearly constant velocity of wave propagation [GKV89]
causing the wavefronts to be perpendicular to the extreme ridges. This means for the
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5.2 External Skeletonization using Wave Propagation

mesh’s tessellation that it should be balanced in order to allow for a near-geodesic
metric. For unbalanced tessellations the velocity is not constant and thus the features
are not perpendicular to the wavefronts. The property that the extreme ridges are
perpendicular to the wavefronts only holds for wavefronts close to the initiators because
with growing distance of the wavefronts from their initiators (age of the wavefronts)
the extreme ridge curves may turn. Thus, in order to minimize the growing errors
with growing distance from the local maxima, wavefronts are generated emerging from
all local maxima. This also means that the extreme ridge curves that are traced by
different wavefronts are expected to meet where the wavefronts meet.

The wavefronts are not only used for traversing the mesh but are also used to identify
the extreme ridges (see Section 4.1.1). The ERs have initially been defined as local
maxima of the DoI function along a direction ±ε nP . This can now be replaced by the
wavefront since it is approximately perpendicular to the ER as outlined above.

The technique of wave propagation is based on Huygens’ principle. It was formulated
by the Dutch physicist Christiaan Huygens in his book “Traité de la Lumière” in
the late 17th century [Huy90]. The principle says that the propagation of a wave can
be understood by regarding every point at a wavefront as a new wave source. This
means that the individual waves initiated by all points on the wavefront interfere with
each other and, consequently, their union forms the new collective wavefront. This
principle will later be used in the wave propagation algorithm when performing the
actual propagation.

5.2.3 Finding Local Maxima

As discussed in Section 5.2.1, the first part in the process of finding the external skeleton
ES is to determine where the wave propagation is supposed to start on the polygonal
mesh. This is done by finding all vertices V representing local maxima of the chosen
DoI function.

For finding the set of maximum vertices LM , all vertices of the mesh MS have to be
examined. It is tested whether a vertex’ interest value DoI(V ) is greater than the DoI
value of all vertices in the set neighbors(V ) of its direct neighbors in the mesh:

LM = {V ∈ MS | ∀Vi ∈ neighbors(V ) : DoI(V ) > DoI(Vi)} (5.1)

Thus, LM comprises maxima of the DoI function in two dimensions because the DoI
value of a vertex is compared with all its neighbors in the mesh.

All local maxima of the degree of interest function become wavefront initiators in the
next step. Alternatively, a thresholded local maximum can be used. In order to have a
normalized threshold, its computation is based on the difference ∆DoI between maximal
and minimal DoI value for the specific shape:

LM = {V ∈ MS | ∀Vi ∈ neighbors(V ) : DoI(V ) > t2D ∗∆DoI + DoI(Vi)} (5.2)
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5 An Essential Shape Representation in 3D: the External Skeleton

Thus, positive threshold factors t2D reduce the number of vertices that are local maxima
on the mesh in the DoI function. In particular, this reduces the number of insignificant
local maxima where the DoI value of a local maximum vertex is only slightly bigger than
one or more of its neighboring vertices (see example in Figure 5.8). Further influence
on the algorithm can be taken by limiting the set of wavefront initiators to the k most
significant local maxima.

(a) No threshold. (b) With positive threshold of 0.005 applied.

Figure 5.8: Reducing the number of insignificant local maxima by employing a threshold. The local
maxima are indicated by red dots; the fold index was used as the DoI function.

5.2.4 Wave Propagation on Polygonal Surfaces

Once all local maxima LM have been found, the actual wave propagation process starts
(see illustration in Figure 5.9 and pseudo-code in Listing 5.1). This process identifies
the list of wavefronts (LoW ) on the surface of the mesh. The initial wavefront LoW [0]
comprises these local maxima LM . To move from one wavefront to the next, all direct
neighbors of vertices in the current wavefront V ∈ LoW [i].vertices are detected. If
these new vertices have not been visited before they are stored as the next wavefront
LoW [i+1].vertices.1 These steps are repeated iteratively until all vertices in MS have
been visited. Two examples are shown in Figures 5.10(a) and 5.10(b).

Edges between two consecutive wavefronts are called inter wavefront edges. In order to
distinguish them from wavefront edges, both types of edges are marked using specific
flags while proceeding with wave propagation. In addition, the wavefront edges are
stored in the data structure LoW [i].edges that keeps the list of wavefronts.

When two wavefronts meet in the real world they interfere with each other. This
interference effect was not modeled for the external skeleton extraction algorithm. In

1 At this point the algorithms makes use of the Huygens’ principle [Huy90]. The algorithm regards
every point on the wavefront as a new wave initiator. Since the new vertices represent the one full
propagation step, the union of all vertices that have not been visited to that point make up the
new wavefront.

86



5.2 External Skeletonization using Wave Propagation

list_of_wavefronts
wavefront_propagation(mesh MS) {

list_of_wavefronts LoW;
wavefront W;
set_of_vertices WV , WV_new;
set_of_edges WE;
vertex P;
int id = 0;

// initial wavefront from local maxima

WV = local_maxima(MS);
for (∀ P ∈ WV) {

P.visited = true;
P.wavefront_id = 0;

}
W.vertices = WV;
W.edges = ( wavefront_edges(WV))
LoW.add(W);

while (not all P ∈ MS visited ) {
id++;
for (∀ P ∈ WV)

for (∀ neighbors_in_MS N of P)
if (!N.visited ) {

WV_new.add(N);
N.visited = true;
N.wavefront_id = id;

}
W.vertices = WV_new;
W.edges = wavefront_edges(WV_new );
LoW.add(W);
WV = WV_new;
WV_new.empty ();

}
return LoW;

}

set_of_edges
wavefront_edges(set_of_vertices WV) {

set_of_edges WE;

for (∀ P ∈ WV)
for (∀ neighbors_in_MS N of P)

if (N.wavefront_id == P.wavefront_id)
WE.add(edge(N, P));

return WE;
}

Listing 5.1: Wavefront propagation.
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5 An Essential Shape Representation in 3D: the External Skeleton

Figure 5.9: Schematic view of wavefront propagation on a triangular mesh. Wavefront edges are
the thick gray edges whereas the inter-wavefront edges are thin gray. The black dots
represent vertices with local maxima in the DoI function. The black edges are part of
the extreme ridges.

(a) One starting vertex at the tip of the nose. (b) Many starting vertices.

Figure 5.10: Propagation of wavefronts on the surface of a triangular model, without correction.
Note the wrongly marked edges between meeting wavefronts and at merged wavefronts.

fact, this is not necessary at all since the wavefront propagation only serves as a means
to traverse the mesh MS. Interfering wavefronts would assign two different wavefront
levels to the same vertex. Instead, when wavefronts meet they are merged and only
the outer border of the merged fronts is continued as a new wavefront.

5.2.5 Regularization

During the process of wave propagation, unfortunately, too many edges are marked to
be part of a wavefront. This occurs, e. g., when two wavefronts meet (see examples in
Figure 5.10). In such cases, two neighboring vertices are part of wavefronts that have
the same age (the same distance from their initiators) but originated from different
wavefront initiators (see schematic illustration in Figure 5.11(a)). This causes the edge
between both vertices to be marked as a wavefront edge although it is actually an inter
wavefront edge. A similar case can occur when two wavefronts from different wavefront
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initiators meet and consequently merge (see schematic illustration in Figure 5.11(b)).
If this merging of wavefronts occurs at a sharp angle this can also cause edges to be
marked as wavefront edges which are actually neither wavefront not inter wavefront
edges. Thus, in order to ensure proper behavior and correct results of the remaining
part of the algorithms, those erroneously marked edges have to be eliminated. This
process is called regularization.

(a) Erroneously marked edges when two wave-
fronts meet. Both wavefronts, although start-
ing from different initiators, have the age three.
Thus, the edges in the mesh between them are
erroneously marked.

(b) Erroneously marked edges when two wave-
fronts meet at sharp angle and are merged. If
in such cases two edges of a triangle are part
of the merged wavefront, the third edge of this
triangle is erroneously marked as well.

Figure 5.11: Schematic illustration of cases for which regularization of wavefront edges is needed.
Regular mesh edges are thin black lines, wavefronts are thick gray lines, and erroneously
marked edges are shown as thick black lines. See also examples in Figure 5.10.

In order to regularize the wavefronts, a set of regularization edges is determined. Regu-
larization edges are those edges that are direct neighbors—clockwise and counterclock-
wise around any vertex V ∈ LoW [i].vertices—of inter wavefronts edges. Thus, this set
of regularization edges comprises the theoretically possible wavefront edges. All correct
wavefront edges have such an inter wavefront neighbor edge and the wrongly marked
edges do not. Hence, finding the regularization edges is very straightforward: during
the process of finding the new wavefront vertices all direct neighbors of edges between
two wavefronts—clockwise and counterclockwise around any V ∈ LoW [i].vertices—are
marked with a flag (see Figure 5.12).

The regularization edges (Figure 5.12(a)) are finally compared with the initially deter-
mined set of wavefront edges LoW [i].edges (Figure 5.10(b)). The intersection of both
sets (i. e., edges which are part of both—the initial set of wavefront edges and the set of
regularization edges) yields the regularized set of wavefront edges with the unwanted
edges eliminated (see Figure 5.12(b)).
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(a) Regularization edges. (b) Regularized wavefront edges.

Figure 5.12: Regularization edges for use with the edges in Figure 5.10(b) and resulting regularized
wavefront edges.

5.2.6 Following Local Maxima Curves On Wavefronts

After the regularization process has been completed, the wavefronts can be used for
identifying the extreme ridges on the mesh. This process starts at the local maximum
vertices LM as the initial vertices of the external skeleton ES. Then, the extreme ridges
are traced by following local maxima of the DoI values from one wavefront to the next
(see Listing 5.2).

set_of_edges
follow_maxima(mesh MS) {

list_of_wavefronts LoW;
set_of_edges ES;
set_of_vertices WV , LM1D , LM1D_new;
vertex P;

LoW = wavefront_propagation(MS);
LM1D = LoW [0]. vertices;
for (int i = 1; i < LoW.size (); i++) {

LM1D_new = local_1D_maxima(LoW[i]);
for (∀ P ∈ LM1D)

for (∀ neighbors_in_MS N of P)
if (N ∈ LM1D_new ) ES.add(edge(N, P));

LM1D = LM1D_new;
}
return ES;

}

Listing 5.2: Following the locally maximal DoI value curves.
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The goal is to determine extreme ridges and their connection. This is accomplished by
identifying local maxima of DoI on the wavefronts by comparing them to their direct
neighbors on the same wavefront. Other vertices that they might be connected to in
MS are not looked at in this step. This means that vertices are identified where the
DoI function is locally maximal while restricting the domain of DoI to the current
wavefront. These maxima are called 1D maxima (or restricted maxima), as opposed
to the elements of LM , which are called 2D maxima (or unrestricted maxima).

In a second step, the 1D maxima are connected using inter wavefront edges (see the red
edges and vertices in Figure 5.9). This can easily be accomplished by testing each inter
wavefront edge whether it has two vertices which both are restricted local maxima.
Due to triangulation artifacts, while looking only for direct edge links between two
local maxima one can miss a connection in certain cases (see Figure 5.13(a)). Thus,
for connecting the local maxima in such cases the algorithm also searches sideways on
the wavefront. Hence, one wavefront edge on each wavefront is allowed to be part of
the extreme ridge (see Figures 5.13(b) to 5.13(g)). Since some of these options are
equivalent, only one can be used in a specific case.

(a) Triangulation problem. (b) Connecting on both
wavefronts.

(c) Connecting on both
wavefronts.

(d) Connecting on
one wavefront.

(e) Connecting on
one wavefront.

(f) Connecting on
one wavefront.

(g) Connecting on
one wavefront.

Figure 5.13: Potential problem when connecting restricted local maxima and how to avoid them.
Wavefronts are visualized by thick gray lines and restricted local maxima by black dots.
The proposed connection of the local maxima is shown by thick black lines.

Similar to using a threshold for limiting the number of unrestricted maxima in Sec-
tion 5.2.3, the number of insignificant restricted maxima can be limited by employing
a one-dimensional threshold t1D. Applying a one-dimensional threshold renders certain
restricted local maxima to be too insignificant. Thus, during the process of following
extreme ridges on the surface it may happen that one ridge ends since no connecting
restricted local maxima could be found. However, it may occur that a few wave propa-
gation steps further a chain of restricted local maxima can be found again. This does
not pose a problem to the algorithm since the process of linking restricted local maxima
is not dependent on having a chain of extreme ridge edges to begin with. Instead, only
two local maxima on adjacent wave fronts are necessary.

An example where the process is applied to a specific model using the fold index as
the DoI function is shown in Figure 5.14. Figure 5.14(a) shows the original shape for
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which the external skeleton is to be computed. Figure 5.14(b) shows the regularized
wavefronts and Figure 5.14(c) shows the derived external skeleton.

(a) Original object. (b) Regularized wavefronts.

(c) Resulting external skeleton. (d) Front view of the skeleton.

Figure 5.14: External skeleton consisting of a network of extreme ridges computed for the bunny
model. The DoI function used in this example is the fold index with function f2.

5.2.7 External Skeleton Graph

At this point the network of extreme ridges has been identified. This network is called
the external skeleton of the shape. After it has been found, the edges of the external
skeleton can be displayed and stored by traversing the edges of the mesh and selecting
the skeleton edges. Alternatively, they can also be assembled into a skeleton graph for
further processing. This is also done by traversing the edges of the shape and selecting
the skeleton edges. However, once a skeleton edge is found, its neighbors are examined
to determine whether they are also skeleton edges. Thus, connected sets of skeleton
edges can be identified by a recursive search. By assigning a certain flag to each edge
that has already be found the whole skeleton graph is extracted.
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5.3 Algorithmic Considerations

In this section, considerations in terms of efficiency of the algorithm will be presented.
In addition, some potential modifications of the method an their impact on the results
will be discussed.

5.3.1 Efficient Computation

The wave propagation algorithm essentially consists of the four steps outlined in Sec-
tion 5.2.1. The first step (identifying the local maxima) requires comparing the DoI
value of each vertex in the mesh with those of its direct neighbors. This means that
every edge (and its associated vertices) has to be touched twice: once for each of its two
vertices in order to check the value of the opposite vertex. Hence, the computational
complexity of this step is O(nv + ne). The second step (establishing the wavefronts)
also is based on examining the direct neighbors of vertices and all vertices are touched
in this step as well. Hence, the same complexity O(nv + ne) applies. During the fol-
lowing step of wavefront regularization every edge is examined and corrected based on
the regularization information derived previously (this only required constant time per
edge). Finally, the local maxima are traced across the wavefronts. For this purpose
local restricted maxima are detected which also visits every vertex and compares it to
its direct neighbors requiring O(nv + ne). Afterwards, all edges are examined again to
detect those inter wavefront edges that connect two vertices that are restricted local
maxima. This yields the external skeleton edges in an additional O(ne). Therefore, the
total computational complexity of the algorithm is O(nv + ne).

For the computation of local maxima being computationally feasible, a data structure
that allows for a fast search for local information in the polygonal mesh is required. In
particular, the DoI values of neighboring vertices in the mesh need to be compared in
order to determine local maxima (both restricted and unrestricted) during the compu-
tation of the external skeleton. This requires finding the neighbor of a specific vertex
for accessing its DoI value. The same operation is also required for assembling the ske-
leton edges into a skeleton graph after the wave propagation process. A data structure
that provides this local neighborhood information in constant time O(1) is required.

5.3.2 Winged Edge Data Structure

In order to fulfill the requirements mentioned above, the Winged Edge data structure
as introduced by Baumgart [Bau75] was chosen (see also [Gla91]). As the name of
the data structure suggests, it is based on an (global) edge list and consists of locally
linked edges. For every shape, the data structure additionally stores a list of faces
and vertices (see Figure 5.15). Each face and each vertex maintains a (local) list of
edges that are associated with it. Thus, each edge will be stored more than once.
Consequently, in order to store the data associated with edges only once, each edge in
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an edge list—global and local—only holds a pointer to a unique edge data object. This
edge data in turn stores the local information for in edge. This includes, at least, links
to both the adjacent faces, the associated two vertices, and—hence the name of the data
structure—links to the wings of an edge, i. e., the edges clockwise and counterclockwise
around each of the two faces (see Figure 5.16). In addition, this edge data object may
store other information regarding the edge such as, for example, flags.

Face List

Edge List

Vertex List

Edge Lists of Vertices

Edge Lists of Faces

Edge Data

Face List

Winged Edge Shape

Figure 5.15: Schematic illustration of the Winged Edge data structure.

bC edge

aCC edge

aC edge

bCC edge

a face

b face

a vertex

b vertex

Figure 5.16: Schematic illustration of the neighborhood relations stored in the edge data for every
unique edge within the Winged Edge data structure.

The (local) edge lists around each vertex and around each face on the one hand and
the linked edge wings on the other hand allow the local traversal of the mesh starting
at any vertex, edge, or face. In addition, the number of edges in an edge list of a face
is always three for triangular meshes.2 The number of edges in an edge list (degree)
of a vertex, however, may vary. On the other hand, the degree of most vertices in a
regularly triangulated mesh is six.3 Hence, most queries for connectivity information

2 Note, however, that the Winged Edge data structure is defined for arbitrary meshes.
3 A regular triangulation is generated, e. g., by applying subdivision techniques such as Loop’s

scheme [Loo87]. In such meshes, all but a few extraordinary vertices have the degree of six.
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can be completed in constant time (i. e., O(1)). Thus, the Winged Edge data structure
provides the local connectivity information which is needed for efficient computation
of the external skeleton.

5.3.3 Modifications of the Algorithm

So far, the only parameter for adaptation to the area of application is the choice of a
DoI function. Thus, in order to allow for a wider variety of adaptations, some possible
modifications of the wave propagation based algorithm for external skeleton extraction
will be discussed in this section.

Significance-Driven Wavefront Initiators

In the algorithm as it has been described above, all identified unrestricted local max-
ima are used as wavefront initiators at the beginning of wavefront propagation. This,
however, gives all local maxima the same significance. Local maxima that have a high
DoI value are treated the same as those with low DoI values. This behavior might not
be a desired trait in every case because they have not the same significance (i. e., DoI
value).

The algorithm can be modified in that the DoI value of the unrestricted local maxima is
considered when selecting the wavefront initiators for the wave propagation. After the
unrestricted local maxima have been identified, they are sorted using their DoI value.
The following wave propagation phase is only started with the vertex (or vertices if
there are more than one) that have the highest DoI value of all local maxima. Then,
after completing each individual wave propagation step, the lowest DoI value on any
wavefront visited during this step is determined. All local maxima that have a higher
DoI value than this lowest DoI value on a wavefront and that have not been visited
thus far are also added to become new wavefront initiators.

This modified procedure allows for further influence on the way the skeleton is extracted
in that it favors unrestricted maxima with high DoI values over those with low DoI
values because this allows to track more significant features first.

Using Local Minima Instead of Local Maxima

Up to now, only maxima of the DoI function have been considered in order to find the
wavefront initiators as well as tracing the skeleton on the wavefronts. Some functions,
however, do not only classify features through high DoI values but also through low
DoI values. Among theses functions that have this property are, for example, average
curvature, regular and modified shape index, and the fold indices. Thus, depending on
the chosen DoI function, in some cases it is advisable to also look for minima of this
DoI function instead of just using maxima.
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When local minima are used instead of maxima, the rest of the algorithm has to be
adapted accordingly. For example, the sign of the thresholds that are used has to be
modified. In addition, the sorting order has to be reversed when using significance-
driven wavefront initiators.

Multiple Runs

One single run of an algorithm might not always yield the desired result, even with the
many possible ways of parameterization. For example, only using maxima or only using
minima when extracting the external skeleton may only detect some of the features.
Similarly, one single DoI function may not be able to capture all the features a user is
interested in. One option is to modify the DoI function to include all the desired traits.
This will often not only prove to be difficult to achieve but also the resulting function
will be difficult to handle in terms of complexity and/or numerical stability. Rather
than coming up with such a very complex DoI function, the easier way is to employ
multiple runs of the algorithm, each with a different parameterization (e. g., different
DoI functions or different local extrema to be followed). After the separate runs have
been completed, their results are combined into the final external skeleton.

An example for the result generated with multiple runs is shown in Figure 5.17. In a first
run, the external skeleton of the shape in Figure 5.17(a) was generated using κ2 as the
DoI function and looking for local minima (see Figure 5.17(b) where wavefronts along
with the unrestricted local maxima are shown). Figure 5.17(c) shows the combined
skeleton of the first run and the second run which used κ1 as the DoI function and a
local maxima based wave propagation.

5.4 Analysis of the External Skeleton

After the algorithm for extracting an external skeleton from a polygonal mesh has been
presented, the external skeleton itself will be examined. In particular, two properties
of essential shape representations will be looked at in detail at this point. On the one
hand, it will be shown that external skeletons facilitate the representation of different
scales of objects. On the other hand, it will be demonstrated how the shape can be
reconstructed from the external skeleton.

5.4.1 Scale

One of the important requirements named in Section 2.3 is that an essential shape
representation has to allow for multi-scale representation of shape (Requirement 4).
Therefore, the external skeleton should provide means to code and decode multiple
scales of a shape. The following methods can be employed for this purpose:

• prune the external skeleton,
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(a) Original object. (b) Wavefronts and external
skeleton, minima of κ2 only.

(c) Resulting final external ske-
leton, maxima and minima
combined.

Figure 5.17: External skeleton curves computed for a face model. The local extrema are visualized
as dots (red for maxima and blue for minima). The insets are the same models viewed
from a different angle.

• prune the set of local maxima LM ,

• low-pass filter the original mesh, or

• any combination of these.4

Figure 5.18 illustrates this procedure. The different paths that are possible for getting
from the initial mesh MS0 to the final skeleton ESi are shown. In the diagram, the
vertical arrows indicate the two mayor stages of the algorithm: the identification of
the maxima though exhaustive search and the wave propagation for constructing the
external skeleton graph. Each of the methods named above constitutes one way of
achieving multi-scale for external skeletons. These are indicated by the horizontal
arrows. Low-pass filtering MS0 happens before staring the algorithm, pruning LMi

after the maxima have been identified, and pruning the ES after the algorithm has
been completed.

As previously discussed in Sections 5.2.3 and 5.2.6, the pruning of the set of wavefront
initiators and of the external skeleton was implemented by applying thresholds to
determine the significance of the local maxima. Hence, for both unrestricted as well
as restricted local maxima a threshold value can be determined for which the specific
maximum is going to be pruned yielding their specific scale value.

4 In addition to these, scale could also be incorporated in a DoI function as mentioned in Sec-
tion 4.3.2. This could be done, as mentioned before, by defining a footprint using a scale value
that determines the scale of features that are emphasized.
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MS0

exhaustive search
��

low−pass filter
// MS1

exhaustive search
��

LM0

graph construction
��

prune
// LM1

graph construction
��

LM2

graph construction
��

prune
// LM3

graph construction
��

ES0 prune
// ES1 ES2 prune

// ES3 ES4 prune
// ES5 ES6 prune

// ES7

Figure 5.18: Diagram showing the different possibilities for introducing multi-scale capability to
external skeletons. This is achieved by combinations of low-pass filtering the original
mesh MS0 or pruning the set of local maxima LMi or the external skeleton ESj .

Incorporating the lowest level of multi-scale from Figure 5.18 into external skeletons
is very straight-forward. Starting with the external skeleton without thresholding ap-
plied, all vertices of the skeleton are assigned their specific scale values that are stored
along with the geometry and adjacency data. When the data structure is organized
progressively using the scale values of the vertices as indicators, a skeleton at a specific
scale level can easily be extracted.

The two higher levels of scale in Figure 5.18 (low-pass filtering of MS0 and pruning of
LMi) can be used for generating separate starting conditions for the process outlined
above. It is not possible to unify, for example, the scale values generated when pruning
LMi with those of pruning ESj because the former changes the starting conditions for
the wave propagation process which might lead to a different external skeleton. The
skeleton generated from a pruned LMi+1 will most certainly not simply be a subset of
the skeleton generated from the not pruned LMi. Thus, using the low-pass filtering
of MS0 and pruning of LMi it is possible to not only construct a linear succession
of progressively stored skeleton edges but instead constructing a series of those with
growing starting scale levels.

Figure 5.19 illustrates the multi-scale character of the external skeleton. In the example
different levels of scale of the same object are shown. It can be observed that indeed the
most significant features are preserved even at high scale levels while more insignificant
features are disregarded at lower scale levels.

For the skeletons shown in Figure 5.19, Table 5.2 gives the numbers of vertices and
edges of each external skeleton compared with the original model from Figure 5.17(a).
The numbers show that even if low levels of scale are used the amount of vertices and
edges that are significant for the important features of scale is small compared to those
in the original mesh.

5.4.2 Reconstruction

Of the requirements discussed in Section 2.3, one of the most fundamental ones is
Requirement 1. It states that the ESR must not only be constructed from a shape but
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(a) (b) (c) (d) (e)

Figure 5.19: Growing level of scale of an external skeleton of the same model achieved through prun-
ing LM and ES. The skeleton was computed from the shape shown in Figure 5.17(a)
using κ2 as the DoI function and looking for minima.

Model Original External Skeletons
Figure 5.17(a) 5.19(a) 5.19(b) 5.19(c) 5.19(d) 5.19(e)

vertices (#) 11,710 2,955 1,967 1,274 938 389
vertices (%) 100 25.2 16.8 10.9 8.0 3.3

edges (#) 35,124 3,402 1,943 1,161 774 339
edges (%) 100 9.7 5.5 3.3 2.2 1.0

Table 5.2: Numbers of vertices and edges of the external skeletons shown in Figure 5.19 compared
with the original model shown in Figure 5.17(a).

that it must also be possible to reconstruct the shape from the ESR. A reconstruction
of the shape from the external skeleton basically requires two steps:

1. establishing a topology for a triangle mesh and

2. establishing the geometric location of the vertices.

In order to demonstrate step 2, the process of establishing the location of the vertices
for the reconstruction will be discussed first. For this purpose the topology will be
used that is available in the original model (see Figure 5.20). Afterwards, step 1 will
be demonstrated by showing how to establish a topology to be used for the shape
reconstructed from the external skeleton.

Establishing the Location

For demonstrating step 2 of the reconstruction, in a first stage white noise is applied
to all vertices except the ones in the skeleton (see Figure 5.20(c)). Afterwards, relax-
ation [vO95] is applied to get a smooth surface at the regions not specified by the
skeleton. To ensure that the skeleton does not change during this process the vertices
on the skeleton are frozen while applying the relaxation. Figure 5.20(d) shows the
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result after freezing the output and applying the relaxation whereas Figure 5.20(e)
demonstrates what happens without freezing the external skeleton vertices.

(a) Original
shape.

(b) External skele-
ton.

(c) Original mesh
with noise.

(d) Relaxation ap-
plied.

(e) Relaxation, no
freezing.

Figure 5.20: Simulating the reconstruction of the external skeleton by employing white noise.

Since reconstruction without taking the external skeleton into account produces the
badly deformed result in Figure 5.20(e), it can be concluded that the external skeleton
captures the essence of the shape in Figure 5.20(a), and the large similarity between the
shapes in Figure 5.20(a) and Figure 5.20(d) shows the effectiveness of the method. In
order to get an even more accurate reconstruction, one could store the local curvature
and curvature directions of the skeleton vertices to guide the process of generating a
new mesh. This might additionally improve the mesh quality of the reconstruction.

(a) (b) (c) (d) (e)

Figure 5.21: The effect of scale on the reconstruction. The reconstructed shapes were generated
from the external skeletons shown in Figure 5.19.

Figure 5.21 shows the effect of scale on the reconstruction. The reconstructions were
generated from the external skeletons shown in Figure 5.19. As can be observed, the
more detail is preserved in the external skeleton the better the reconstruction matches
the original shape. It is interesting, though, that a significant reduction of the number
of vertices and edges in the ES can be tolerated before visible differences between the
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reconstruction and the original shape occur. Of course, this should be investigated
more thoroughly by means of rate distortion assessments, but it may be interesting to
study the merits of external skeleton as a compression device.

Establishing and Refining a Mesh Topology

Step 1 of the reconstruction—establishing the necessary topology of a triangle mesh—
can be attempted by employing known techniques for reconstructing a shape from a set
of points on the shape’s surface. Those were developed, for example, by Veltkamp
based on Delauney triangulation [Vel93, Vel94] or by Amenta, Bern, and Kamvys-
selis using Voronoi diagrams [ABK98, AB99]. These types of algorithms, however,
require a fairly dense set of points for all parts of the surface of the shape. This is not
the case for external skeletons. Thus, point based algorithms may not be appropriate
for external skeletons.

Other algorithms, e. g., as used in the system Teddy [IMT99], exploit curve based
reconstruction methods. In the Teddy system, the mesh is established from a polygon
drawn in 2D by first computing the chordal axis, raising it, and tessellating the surface
which spans between the polygon and the axis. This process is repeated for the opposite
side of the shape. The advantage of such an algorithm is that it can work with polygons
rather than an unorganized point set. However, it needs a closed polygon to start with.
This, too, is not always given for external skeletons. For a subclass of shapes (e. g., the
face model which contains an almost closed polygon even in high scales as shown in
Figure 5.19(e)) this might be an option to pursue. However, for general shapes it will
not be feasible.

Finally, one might try to apply an approach using the projection of the skeleton onto a
sphere to reconstruct the shape. A sufficiently densely tessellated sphere is constructed
and centered to the skeleton. From the center of the sphere, the skeleton is projected
onto the tessellated sphere and the vertices and edges of the skeleton are matched with
the ones of the sphere. This way a topology is assigned to the skeleton. Unfortunately,
this approach can only reconstruct shapes of genus zero. Also, the matching process of
the sphere with the skeleton can not always guarantee to find a plausible topology.

This discussion shows that re-establishing a topology from the external skeleton graph
is difficult. However, reestablishing the topology is not really necessary because it is
not lost during the wave propagation process. After the skeleton has been determined,
the original topology is still available and can be used. On the other hand, it is neither
necessary nor advisable to keep the entire tessellation of the mesh. The original mesh is
by far too detailed for the purpose of storing the topology. Thus, the mesh’s complexity
has to be reduced.

For this purpose, an algorithm based on edge collapse operations as it was introduced
in Section 3.3.2 can be employed. It has to be modified such that vertices and edges
that are part of the skeleton are not moved or collapsed, respectively. However, a
simple length based scheme for selecting the edges that are to be collapsed next as it
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has been applied for internal skeleton extraction is not advisable in the current case.
Using such a scheme can possibly result in a degenerated mesh with most non-skeleton
edges and vertices collapsed into one or few final vertices as shown in Figure 5.22.

(a) Original shape. (b) External skeleton. (c) Degenerated collapsed mesh.

Figure 5.22: Possible degenerate result when collapsing of edges is not restricted to those starting
from the external skeleton. Although the skeleton is fairly densely tessellated, the
simplified mesh is degenerated (in this example a different model was used to show the
effect because in the face model the sharp edge around the face prevents the effect to
some degree).

Those edges are to be selected for an edge collapse operation that share exactly one
skeleton vertex. This scheme ensures that the mesh is simplified starting from the
skeleton. The mesh’s complexity is reduced at approximately the same speed starting
equally from all skeleton edges and vertices. In addition, before each edge collapse step
it has to be tested that this operation will not create a degenerated mesh or reduce its
genus. Only then the edge collapse operation is actually performed. When repeating
this process iteratively until all non-skeleton edges have been collapsed the simplified
mesh is created. Figure 5.23 shows the resulting simplified meshes for all skeletons
previously shown in Figure 5.19.

(a) (b) (c) (d) (e)

Figure 5.23: Mesh simplification for preservation of the mesh’s topology using edge collapse opera-
tions for the external skeletons shown in Figure 5.19.

For a complete reconstruction it is necessary to re-establish a mesh with a balanced
tessellation where every polygon has approximately the same size. This is not the case
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after the mesh decimation step. In order to re-create a mesh with smaller, regular
triangles in a balanced tessellation, adaptive subdivision can be applied (for details
of the process of adaptive subdivision see Section 4.6 and [IHK03]). For this purpose,
the subdivision is applied only to those faces that are too large. This it iteratively
repeated until the faces reach the desired size. This can be measured by comparing the
lengths of the edges of a face with the average edge length before the external skeleton
extraction process. If, for example, the average length of the edges of a face is longer
than the average length of all edges before skeletonization, this edge is subdivided
according to Loop’s scheme [Loo87]. Because Loop subdivision is a scheme based on
edge split steps this will, however, also cause the skeleton edges to be split. Since these
are already relatively small (they have not been touched during the mesh decimation
step) this will cause too small edges to be generated. In order to prevent this from
occurring, after each step of adaptive subdivision those divided edges are merged again
by applying edge collapses to those edges only.

Alternatively, for establishing a smooth mesh with a balanced tessellation, other mesh
smoothing algorithms as, for example, the beautification method presented by Igarashi
and Hughes [IH03] can be applied. However, the modifications to the mesh introduced
by this method will also cause the removal of the specific location and connectivity of
the external skeleton edges.

5.4.3 Robustness of the Method and Potential Problems

Meshes may contain a number of errors which are caused by the way the geometric
mesh data is created or acquired (e. g., creating 3D models using a modeling suite such
as 3D Studio MAX or acquiring it through 3D scanning). Errors in a modeling suite
can occur, for example, due to mistakes of the modeling artist or because of incorrect
computation of modeling operations in the software. Wrong parts of meshes can be
created in 3D scanners due to certain physical phenomena such as reflections of laser
rays. Although these mistakes can be reduced (see, e. g., Neugebauer [Neu96] or
Teutsch [Teu03, TITW04]) they can never completely be avoided.

One of the properties of an ESR that is important in terms of usability is how sensitive
it is towards errors in the mesh it is applied to. Errors in the mesh include, but are not
limited to, wrong normals, double edges, double faces, holes (i. e., missing faces), and
open patches (those are usually not considered to be errors but are a special case of a
geometric mesh).

Wrong normals are no problem for the wave propagation based skeleton extraction since
it does not use normals at any stage. Even the edge collapse operations or adaptive
subdivision used for preserving the topology do not use normals at any point. In fact, it
is easier to check the model for correct normals at the simplified level—either manually
or automatically—because this representation contains far less faces.

Double edges do not pose a problem to the algorithm either. If they are part of features
on the mesh it just means that this condition will be preserved in the skeleton. However,
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they can easily be removed in a pre-processing stage. Similarly, double vertices and
double faces do not cause problems and can also be easily removed by pre-processing.

Holes in the mesh and meshes consisting of open patches are similar in that they are
characterized by edges that have only one face attached. However, holes are most
certainly errors in the mesh while open patches have to be preserved. Missing faces
in general are no problem for the algorithm because it is edge-based, i. e., it only uses
edges and their neighboring edges so that missing faces are ignored. However, during
the mesh decimation stage the missing faces may disappear or may also be enlarged.
Thus, it is advisable to try to close the holes prior to skeleton extraction. On the other
hand, the edges at the end of the patches can be marked as being part of the skeleton
in order to preserve the open patches.

One potential problem with the presented method for extracting external skeletons is
that only two-manifold shapes5 can be used. This technical limitation is caused by
using the Winged Edge data structure [Bau75] for shape description that can only
describe two-manifold shapes. From an algorithmic point of view, the two-manifold
character is not required since the wave propagation can easily handle non-two-manifold
singularities due to the Huygens’ Principle (see Section 5.2.2). This, on the other hand,
would require one to use a different mesh data structure. However, most geometric
models relevant in rendering are two-manifold or can be modified to be two-manifold
without significant visual changes.

As already argued in Section 5.4.2, the topological genus of a shape cannot be captured
when the skeleton is reduced to the graph only. If the edge collapse based topology
preserving method is used instead, the topology is unlikely to change. Unfortunately,
the edge collapse algorithm might collapse holes when no specific precautions are taken.
However, the degeneracy check discussed previously to avoid the creation of degenerated
meshes (e. g., to avoid reducing a tube to a single internal skeleton edge) can also be
used to prevent the algorithm from closing holes in the shape. This ensures that the
topological genus is preserved.

As could be seen in experiments, the algorithm works very well for approximately
evenly tessellated meshes. If the tessellation is not balanced for the mesh, the fact that
the distance of two wavefronts is one edge length and not a certain constant Euclidean
distance causes problems (the reasons for this were discussed in Section 5.2.2). The
problem of uneven tessellation could be solved, however, by applying some adaptive
subdivision steps that subdivides larger triangles rather than smaller ones prior to the
feature detection (similar to the adaptive subdivision in Section 5.4.2). Alternatively,
re-meshing algorithms could be applied prior to skeleton extraction such as, for example,
the method introduced by Alliez, Meyer, and Desbrun [AMD02]

Some difficulties may arise when using the external skeleton ESR in applications where
connectivity of the skeleton is essential. There are cases when branches of the exter-
nal skeleton graph originating from different neighboring wavefront initiators may not

5 Two-manifold shapes are those shapes for which there is an ε environment around every point on
the surface which is topologically equivalent to a disk.
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meet. This may be due to numerical problems with the DoI function or to an uneven
tessellation of the mesh.

Other problems may arise for shapes and a DoI function that produces the same values
everywhere (or for a certain part of the mesh). For example, think of a regularly
tessellated tube and a curvature based DoI function. In such cases the algorithm cannot
find meaningful local maxima. This happens also when the DoI function yields noise
instead of a constant value. In fact, in cases with constant DoI values the application
of some noise may help to create (random) maxima to be used in the algorithm. These
in turn will then be used for mesh simplification. This will not yield a meaningful
skeleton graph but will make topology-preserving mesh simplification possible.

5.5 Summary

In this chapter, a new ESR scheme has been introduced for application to polygonal
meshes. It extracts an essential shape representation that is called external skeleton
that represents the essence of the shape with respect to a chosen ESR criterion. The
algorithm is based on wave propagation using a DoI function as ESR criterion in
order to traverse the mesh and trace local maxima of the chosen DoI function. The
resulting graph comprises local shape information based on the DoI function. It has
been shown that this method can be used to capture not only local information but
also global properties such as the general form of the mesh. It has been shown how this
representation can be used to derive different levels of scale as well as how the original
shape can be reconstructed.

With respect to the requirements posed in Section 2.3, it can be seen that an external
skeleton, defined as the network of extreme ridges, is a plausible option. Indeed, it
allows for coding and decoding (Requirement 1). Instead of storing the whole mesh
only the external skeleton is stored (with or without the topology depending on the
specific application). When decoding, the positions and connectivity of the extreme
ridges can be used. A reconstruction was discussed based on storing the topology along
with the extreme ridges. This produces a mesh similar to the original one. Through
this the algorithm also facilitates shape compression (Requirement 2; see Figures 5.19
and 5.21 as well as Table 5.2). An external skeleton does allow for multiple scales
(Requirement 4) and progressive encoding in that the extreme ridges can be pruned
based on the significance (DoI value) of the feature edges.

Moreover, an external skeleton is represented independently from the specific triangu-
lation and allows for resampling (Requirement 5) in that the extreme ridges can be
thought of as a connected graph rather than a subset of the triangle mesh. By ma-
nipulating the external skeleton instead of the specific mesh, the external skeleton also
facilitates the editing of the shape at feature level (Requirement 7). Finally, it seems
easily possible to use the external skeleton for shape matching (Requirement 3) by go-
ing stepwise from high to low scale versions of two external skeletons instead of using
the triangle mesh. However, this has not been tested and remains for future work.
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Due to employing a DoI function in order to classify what is to be regarded as important
in a shape, the essential shape representation approach has a major advantage over
previous approaches to feature extraction (e. g., [RKS00, HBK01, HBK02, WB01]).
This means that it is a more general method because it is not limited to geometric
features. The algorithm is not restricted anymore in terms of a specific concept of
importance for detecting features. Instead, an appropriate DoI function can be defined
that fulfills the specific requirements of the application which extracts the ESR.

Compared to algorithms based on thinning (for example, Rössl and Kobbelt [RKS00])
the ESR approach is able to find the actual location of the features. Thinning based
algorithms, in contrast, first use segmentation based on a criterion and than extract a
central axis of the segmented part of the surface. This axis, however, does not neces-
sarily have to be identical with the actual local maximum of the criterion. The wave
propagation based ESR, on the other hand, locates this local maximum on the wave-
fronts. Since no thinning is used in the process, the algorithm also does not have to
cope with unwanted short curves emerging from the main skeleton curve that are due
to the thinning process.

Belyaev, Bogaevski, and Kunii indicate that in order to represent global proper-
ties one has to employ internal skeleton structures (e. g., internal skeletons, linear or
planar) while local properties are best represented by external structures (for example,
ridges, external skeletons, feature lines) [BBK96, Section 3]. It has been argued in this
chapter, however, that not all internal structures are well suited for representing global
properties (see Section 5.1 and specifically Section 5.1.1). In addition, it could also
be shown that a set of local properties (the wavefront propagation algorithm captures
local properties) can in fact be used to capture aspects of global shape of the object
(see Section 5.4.2).

Unfortunately, the presented essential shape representation cannot be used to capture
all global shape aspects present in an object. Thus, it seems advisable to combine in-
ternal and external skeletons in one essential shape representation. Hisada, Belyaev,
and Kunii have previously discussed such a combination based on an internal Voronoi
structure [HBK01, HBK02] while Watanabe and Belyaev use an internal focal sur-
face [WB01, BAK97]. However, all these approaches are based on planar internal
structures and they are used to derive the external representation. Using a linear in-
ternal representation might add the missing global properties to the external skeleton
while at the same time avoiding the problems discussed in Section 5.1.

In the following chapter, a different type of essential shape representation will be exam-
ined that also detects curves on the surface of a polygonal mesh. However, it captures
the second aspect of shape that was mentioned in Section 2.1—the form of an object’s
silhouette. It differs in many factors from the ESRs discussed so far and requires a
separate method of computation due to its specific properties and applications.

106



Chapter 6

ESRs in 2D: Silhouettes

Line drawings have played an important role in the area of artistic expression (e. g.,
any pencil or pen-and-ink drawing), scientific visualization (for example, medical or
technical illustrations; see, e. g., Hodges [Hod89]), or entertainment graphics (such
as in comics) for a long time. Hence, the automatic generation of such line drawings
has been studied extensively in computer graphics. In particular, the area of non-
photorealistic rendering (NPR) [GG01, SS02, FM03] has focused on two main directions
of research in this respect: the generation of hatching to convey illumination as well
as texture in an image, and the computation of outlines and silhouettes. In particular,
silhouette drawings allow artistic expression even with a very limited number of strokes.
One can also emphasize specific parts of an image, by using stylized lines, in order to
focus the viewer’s attention [ST90, SPR+94].

However, a silhouette can also be regarded as an essential shape representation in 2D.
In contrast to the previously discussed ESRs, silhouettes are dynamic and depend on
how an object is viewed. In addition, not all parts of the silhouette are visible at
all times. This means that there are other requirements for algorithms that compute
silhouettes. Most notably among these are a fast detection of possible silhouette edges
and the visibility culling that is necessary for most applications, in particular those for
interactive line rendering.

After a definition of the concept of silhouettes and a more thorough discussion of silhou-
ettes as ESRs, this chapter first gives a comprehensive survey of silhouette detection
algorithms followed by the discussion of a new algorithm for efficient visibility culling
of silhouettes. This is complemented by methods for generating long smooth silhouette
strokes and for post-processing them. Combining a fast silhouette detection algorithm
with the new silhouette visibility culling yields a method of generating interactive line
renderings, one of the most popular applications for silhouettes.

6.1 Definition of Silhouette Concept

The silhouette S of a free-form object is typically defined as the set of all points on
its surface where the surface normal is perpendicular to the vector from the viewpoint
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[HZ00]. Mathematically, this means that the dot product of the normal −→ni with the
view vector at a surface vertex P ’s position pi is zero:

S = {P : 0 = −→ni ·
−−−−→
(pi − c)} (6.1)

with c being the position of the center of projection. In case of orthographic projection−−−−→
(pi − c) is exchanged with the view direction vector −→v .

Unfortunately, for polygonal objects this definition cannot be applied because normals
are only well defined for polygons and not for arbitrary vertices on the surface. Hence,
typically there are no points on the surface where the normal is perpendicular to the
viewing direction. However, silhouettes can be found along those edges in a polygonal
model that lie on the border between changes of visibility for the surface. Thus, the
silhouette edges of a polygonal model are defined as edges in the mesh that share a
front-facing polygon and a back-facing polygon.

Some authors refer to the term contour rather than the term silhouette. A contour
is taken to be the subset of the silhouette that separates the object from the back-
ground. Note, that the subset of the silhouette that—in 2D—divides one portion of
the object from another one of the same object is not part of the contour. Those lines
are sometimes called internal silhouettes.

Other lines that are also significant in the context of silhouettes are creases, border lines,
and self-intersection lines. Creases are edges that should always be drawn, for instance
the edges of a cube. Typically, they are identified by comparing the angle between its
two adjacent polygons with a certain threshold. Border lines only appear in models
where the mesh is not closed and are those edges with only one adjacent polygon. Lastly,
self-intersection lines are lines where two polygons of a model intersect. They are not
necessarily part of the model’s edges but are important for shape recognition. In the
literature, these three additional categories of lines are often called feature lines. Some
silhouette detection methods make no algorithmic distinction between these feature
lines and silhouette lines. This is because the visibility of all these line types must be
determined for generating an image. Hence, the visibility aspect of an algorithm usually
treats them the same way. The visibility test yields visible segments of silhouette edges
and potentially also feature lines. Sometimes visible segments are joined together into
visible strokes.

6.2 Silhouettes as ESRs in 2D

Psychological research has shown that silhouettes play an important role for the recog-
nition of shapes since they are one of the main cues for figure-ground segregation
[Gol02, page 158 f.]. In fact, they have proven to be almost as efficient in human shape
recognition as regularly shaded objects [BR94]. Moreover, when they are displayed in
addition to regularly shaded objects they also significantly improve the figure-ground
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segregation and, thus, the recognition of shapes [HMH+03]. This means that they carry
essential information concerning the shape of objects.

From a geometric point of view, Koenderink discusses what conclusions can be drawn
from the shape of the contour1 of an object concerning the local shape of the surface of
the object [Koe84]. He shows that a convex part of the visible contour corresponds to a
locally convex surface of the object. Concavities of the contour, in contrast, correspond
to locally saddle-shaped patches of the surfaces of the object.

With respect to the concept presented in this dissertation, it can be concluded that
silhouettes are in fact essential shape representations as defined in Section 6.1 and they
can be generated by employing the external skeleton algorithm discussed in Chapter 5.
This can easily be demonstrated by using a DoI function similar to the one for silhouette
based adaptive subdivision (Equation 4.32). This DoI function is modified in order to
use the interpolated normal of a vertex instead of the normal of a face (i. e., the equation
is derived from Equation 6.1):

DoI(V ) = −→n · −→v . (6.2)

Using this DoI function in the wave propagation algorithm will generate local maxima
at the silhouette of the mesh (see example in Figure 6.1). Consequently, the extracted
external skeleton will be the silhouette of the mesh. However, there are additional
edges extracted which are not part of the silhouette. This is caused by restricted local
maxima which are detected on the wavefronts.2 In addition, the errors in the silhouette
are due to the unbalanced tessellation.

(a) Wavefronts. (b) Silhouette skeleton.

Figure 6.1: Computing the silhouette using the wave propagation based external skeleton extraction
algorithm and the DoI function from Equation 6.2.

1 Koenderink uses a different notion in his paper: what has been defined as a silhouette in this
work he calls a rim whereas his notion of contour refers to the union of all rays originating in the
viewpoint and touching the object perpendicularly in a point on the rim (this forms a generalized
cone).

2 They may be considered to be feature lines. However, the computation of these edges is highly
unstable. Thus, this is not an appropriate way to deal with such lines.
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Thus, silhouettes are a special case of the essential shape representation concept. When
comparing them to the group of previously discussed examples of ESRs for feature
detection, it can be noted that they have many properties in common. For example, in
both cases curves are computed in 3D on the surface of the polygonal mesh of objects.
The silhouette curves on the surface of the objects mark the border between visible
and invisible parts of the surface while the feature detection ESRs denote interesting
curves on the surface, e. g., in terms of the geometry. Both properties can be detected
by a specific DoI function.

However, silhouettes and previously discussed ESRs also differ in a number of points.
Most previous external skeleton curves are static since they are based on static DoI
functions (with the exception of the silhouette based DoI functions discussed in Sec-
tion 4.6.1). In contrast to the skeletons, silhouettes are view-dependent and, thus,
dynamic. This means that they need to be recomputed when the viewpoint changes,
e. g., for every frame of an animation. Related to this point, while previous ESRs
can be computed without defining a view on them, the silhouette curves do not make
much sense unless they are projected onto the two-dimensional viewing plane. When
projected onto this plane, the silhouettes border the projected object from the back-
ground. When this background is part of the object itself, the curve is an internal
silhouette. Otherwise it is called an external silhouette.

Both groups of ESRs describe abstractions of objects. The previous external skeleton
uses a DoI function describing a specific property to abstract from the 3D shape of the
object as shown in Chapter 5. In contrast, silhouettes abstract from the projected shape
of objects. Interestingly enough, the silhouettes can be used to reconstruct the form of
objects in terms of normal data of the surface as shown by Johnston [Joh02]. This
is used by Johnston to simulate real-world illumination situations for hand-drawn
silhouette cartoon characters placed into filmed movie sequences.

The previously mentioned dynamic character of silhouettes brings about that algo-
rithms for detecting the silhouette of an object have to fulfill different requirements
than those for static essential shape representations. In particular, it is essential to
use an efficient and fast method to detect silhouettes which is non-trivial to derive.3

In addition, it is necessary to distinguish between silhouette edges and feature lines.4

Indeed, there is a variety of different algorithms that compute silhouettes for geometric
objects (and potentially feature lines). A classification of the various techniques and
how they differ from each other is shown in Section 6.3.

Parts of the silhouette may be occluded while the remaining parts are visible. Again,
this depends on how the object is seen by a viewer and changes when the viewpoint
moves. In most applications it is necessary to determine the visible subset of the

3 For a discussion of the computational bounds for silhouette computation see Efrat et al.
[EGHHZ00]. However, they impose tight restrictions on the objects they consider (only con-
vex polytopes) and the movement of the viewpoint (only a straight line or an algebraic curve).
This means that they do not have to be detected dynamically.

4 Feature lines, that may be extracted as well, have to be identified by a stable algorithm. They
should be the same for every view of the object and must not change their position on the surface.
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silhouette. Most notably are silhouette line renderers that treat the visible subset of
the silhouette differently from the invisible part (e. g., the visible part is rendered using
solid lines while the invisible part is rendered dashed or left out altogether). Section 6.4
discusses a few approaches for visibility culling of silhouettes and introduces a new
algorithm that combines the advantages of previous approaches: speed and analytic
presentation of the results.

6.3 Approaches for Detecting the Silhouette of
Polygonal Meshes

In order to support the following silhouette visibility culling approach, a comprehen-
sive survey of the existing literature for silhouette extraction was conducted [IFH+03].
This survey has shown that the are numerous algorithms for silhouette detection but
relatively few works for the necessary visibility culling.

Due to the scope of this analysis, the following discussion of related work on algorithms
for silhouette detection is restricted to the discussion of only those algorithms that can
be applied to polygonal models.5 Thus, all algorithms that are discussed here can be
used to take a polygonal mesh as input and produce the visible part of the silhouette.
Some algorithms, however, can also be used to compute the silhouette only, i. e., without
additional visibility culling. The representation of the silhouette may vary depending
on the class of the algorithm, it may be in the form of a pixel matrix or as a set of
analytic stroke descriptions.

As noted above, every silhouette algorithm has to solve two major problems. First, sil-
houette edges need to be detected. The second step is to determine the visible subset of
the detected silhouette edges (visibility culling). For the purpose of this survey, the ap-
proaches are classified according to how they solve each of these problems. First, with
respect to how the edge detection problem is solved it can be distinguished between
image-space algorithms, hybrid algorithms, and object-space algorithms. Image-space
algorithms only operate on image buffers (see Section 6.3.1), hybrid algorithms per-
form manipulations in object-space but yield the silhouette in an image buffer (see
Section 6.3.2), and object-space algorithms do all calculations in object-space with the
resulting silhouette represented by an analytic description of silhouette edges (see Sec-
tion 6.3.3). The second problem—visibility determination—is inherently solved within
the algorithm for both image-space and hybrid approaches of silhouette detection. How-
ever, for object-space approaches, the visibility culling has to be done separately. The
algorithms that do this visibility check can be categorized into image-space, object-
space, and hybrid approaches. A discussion of these techniques as well as a newly
developed method will be presented in Section 6.4.

5 For an algorithm to compute the silhouette for free-form surfaces see, for example, [EC90].
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6.3.1 Image-Space Algorithms

The main idea behind image-space algorithms is to exploit discontinuities in the image
buffer(s) that result from conventional rendering. Thus, these methods use image
processing algorithms to extract these discontinuities. The result of these methods is
a silhouette represented as features in a pixel matrix.

The easiest way to find significant lines would be to detect edges in the color buffer.
This, however, does not necessarily detect silhouettes since changes in shading and
texturing can cause edges to be detected erroneously. Saito and Takahashi suggest
using the z-buffer instead and to apply an edge detection operator such as the Sobel
operator to it [ST90]. This has the advantage that only object-relevant edges are
found, such as silhouette lines including contours, because in most cases at places
where silhouette lines are in the image there is a (C0) discontinuity in the z-buffer (see
Figure 6.2). In [Her99] Hertzmann extends this method by using a normal buffer
instead. This can also detect C1 discontinuities. Both approaches combined yield a
pleasing result (see Figure 6.3).

Figure 6.2: Image-space silhouette detection based on edge detection operators on the z-buffer (orig-
inal image, z-buffer, detected edges, and composed image). From [ST90].

Figure 6.3: Image-space silhouette detection using edge detection operators on the z-buffer and the
normal buffer (z-buffer, edges extracted from the z-buffer, normal buffer, edges extracted
from the normal buffer, and combination of both edge buffers). From [Her99].

Deussen and Strothotte use a simplified version of this algorithm specifically to
compute pen-and-ink illustrations of trees [DS00]. They render the foliage of the tree
as primitives (such as oriented disks) only to the z-buffer and look for discontinuities
larger than a specified threshold. Depending on the primitives’ size and the depth
threshold, this achieves the special look of pen-and-ink.

The advantage of using image-space algorithms is that existing graphics hardware and
rendering packages can be used to generate the buffers on which the algorithms oper-
ate. This makes these algorithms relatively simple to implement. The computational
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complexity of silhouette detection in this manner depends on the number of pixels that
comprise the image, rather than the number of polygons in the model,6 and thus is
constant provided that the image resolution remains constant. Thus, these algorithms
are usually fast. Moreover, the algorithms can be greatly accelerated by appropriate
graphics hardware. Mitchell suggests using the pixel shader technique on newer
graphics cards for hardware acceleration of image-space silhouette detection [MBC02].
Finally, an image-space algorithm inherently deals with silhouette edges the same way
as with feature lines. In contrast to other methods, even self-intersections are found au-
tomatically. These also share similarities with z-buffer rendering in that the algorithms
are very generic and robust to errors in the models.

The main disadvantage of image-space algorithms is that the user has very little con-
trol over the attributes of the resulting lines. The only ways to directly influence the
resulting lines are the choice of an edge detection operator and the choice of a source
buffer on which to apply it. A second disadvantage is the fact that the silhouette
is not available in the form of analytic line description. Hence, the silhouettes can
typically not be stylized or used for further processing. Thus, many techniques simu-
lating traditional drawing or painting utensils cannot be readily applied because they
usually require this analytic information. On the other hand, there are approaches
that extract curves from the silhouette pixels such as presented by Loviscach who
fits Bézier curves to the pixels [Lov02]. This does allow for subsequent stylization
of the resulting curves. However, the process of fitting curves to the pixel silhouettes
might introduce new artifacts and inaccuracies. In addition, the approach is too slow
for interactive or real-time applications.

Inherent in the use of image processing operators is the fact that the resulting silhou-
ettes in general do not have distinct borders. The intensity—the gray value—of a
silhouette pixel usually depends on the derivative and thus on the intensity of features
detected in the original buffer. However, this also means that the resulting images tend
not to have significant aliasing problems. Another characteristic of these algorithms is
that they are limited to pixel precision. This means that some fine details with less
than the size of a pixel may be hidden. However, for visual appearance this usually
makes no difference.

6.3.2 Hybrid Algorithms

Hybrid algorithms are characterized by operations in object-space that are followed by
the rendering of the modified polygons in a more or less ordinary way using the z-buffer.
This usually requires, however, two or more rendering passes. The result is similar to
image-space algorithms, in that the silhouette is represented in a pixel matrix.

Rustagi presents a simple algorithm using the stencil buffer [Rus89] that delivers the
contour—not the complete silhouette—of an object. The object’s mesh is rendered

6 Note, that whereas silhouettes are not computed from polygons, these polygons must be rendered
first into the required buffers.
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four times, each time translated in screen coordinates by one pixel in the positive or
negative x or y directions. During each pass the stencil buffer is incremented where
the object fills the viewport. After these four passes, the object’s interior pixels will
have a stencil value of four, the perimeter pixels will have values of two or three, and
the exterior will have values of zero or one. Finally, setting the stencil function to pass
if the stencil value is two or three and rendering a primitive larger than the object will
result in only the outline pixels being changed.

Rossignac and Emmerik present a method based on z-buffer rendering that yields sil-
houettes and not only contours [RvE92]. They show four algorithms that differ slightly
from each other and that render polygonal objects either in wireframe or silhouette
mode with the hidden lines either removed or dashed. For generating an image with
visible silhouette and feature lines only, they first draw the faces of the objects into the
z-buffer. Then they translate the mesh away from the viewer by a small distance and
render a wireframe representation using wide lines. This ensures that only silhouette
edges will be visible since the other lines will be occluded by the previously rendered
faces in the z-buffer. Finally, they translate the object forward again by twice the
former distance and render the feature lines of the objects in regular line width.

Raskar and Cohen generalize this approach in their work [RC99]. For automati-
cally determining front and back facing polygons that define the silhouette they use
traditional z-buffering along with back-face culling or front-face culling, respectively.
Similar to the work by Rossignac and Emmerik, by first rendering all polygons in
white on a white background with back-face culling enabled, they fill the z-buffer with
the depth data of front-facing polygons. Afterwards, they render all polygons again,
but this time in the desired silhouette color and using front-face culling. Hence, only
the back-facing polygons effect the frame buffer during this second pass. By employing
the “equal to” depth function, Raskar and Cohen achieve the result that only the
edges where the two groups of polygons meet are drawn and thus yield the silhouette
of the model. Similar results are achieved by instead rendering the wireframe represen-
tation in the second pass. This allows rendering of silhouettes with a certain line width
by just using thicker lines for the wireframe rendering.

This general technique can be improved by performing additional transformations be-
fore rendering the back-facing polygons. A translation of the back-facing polygons
towards the viewer yields thicker silhouette lines in the resulting image. However,
these lines do not have a constant line width. For silhouettes with adjustable but con-
stant width, the back-facing polygons are enlarged depending on the distance from the
viewer and on the angle with the viewing direction (see Figure 6.4).

A similar technique that also uses hardware accelerated rendering is presented by
Gooch et al. [GSG+99]. Instead of rendering directly to a color buffer, lines are
drawn into a stencil buffer. This stencil buffer is used as a mask for drawing the back-
facing polygons in a second pass. Also, creases can be rendered in a different color
than silhouettes.
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Figure 6.4: Enlargement of a back-facing polygon to achieve wide silhouette lines. From [RC99].

Raskar proposes a one-pass hardware implementation that basically adds borders
around each triangle [Ras01]. These borders are arranged in such a way that they dis-
appear between two neighboring front-facing polygons during rendering. This method
also inherently includes the generation of crease lines where the angle between the faces
exceeds a given threshold.

A different technique introduced by Gooch et al. uses environment mapping in ad-
dition to regular shading [GSG+99]. By using a partially darkened environment map,
the vertices with normals that are almost perpendicular to the viewing direction are
assigned dark values whereas other vertices are not changed. This method achieves a
stylistic effect (see Figure 6.5).

Figure 6.5: Silhouette generated with a hybrid algorithm. From [GSG+99].

The advantage of hybrid algorithms over image-space algorithms is the typically higher
degree of control over the outcome. This control is achieved through the choice of
an algorithm and through parameters such as translation or enlargement factors that
control line width. The visual appearance of the generated images tends to be a more
stylistic one. Also, in contrast to image-space algorithms, the silhouettes inherently
have distinct borders which may be desired. On the other hand, the distinct borders
can give rise to aliasing artifacts in the image. However, these artifacts can be avoided
by employing well-known anti-aliasing techniques.

The computation times of hybrid algorithms, generally, do not differ much from those
of image-space methods and are in the realm of interactive to real-time frame rates.
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Some need two or more render passes but, in return, do not require an additional
manipulation of any of the generated buffers. Additional computation time besides
the number of rendering passes is required by the object-space manipulations that are
needed for some of the algorithms. However, the algorithms can easily make use of
commonly available graphics hardware to speed up the rendering process.

The drawbacks of a pixel matrix representation of the found silhouette lines, as men-
tioned for image-space algorithms (see Section 6.3.1), apply to hybrid algorithms just
as well. Similarly, the silhouette lines have pixel resolution and do not facilitate fur-
ther stylization. In addition, the algorithm may have some numerical problems due to
limited z-buffer resolution.

6.3.3 Object-Space Algorithms

In the above discussions of algorithms the disadvantage of a pixel matrix representation
of the computed silhouette was mentioned. In order to do further processing of the
lines it is necessary to have an analytic representation of the silhouette. A good way
to achieve this is to employ an object-space algorithm. The computation of silhouettes
in this group of algorithms, as the name suggests, takes place entirely in object-space.
In contrast to hybrid and image-space algorithms, object-space algorithms deal with
the problems of edge detection and edge visibility in separate stages.

A straightforward way to determine the silhouette edges of a model follows directly
from the definition of a silhouette (see Section 6.3.3). There are approaches to speed-
up the process by using some pre-computed data structures (see Section 6.3.3), while
other algorithms achieve faster execution by employing stochastic methods (see Sec-
tion 6.3.3).

Trivial Method

The trivial algorithm is based on the definition of a silhouette edge. It consists of
two basic steps. First, it looks at all polygons of the mesh and determines whether
they are front-facing or back-facing as seen from the camera. The second step of the
algorithm examines all edges of the model and selects only those that share exactly
one front-facing and one back-facing polygon. These two steps have to be completed
for every frame.

Buchanan and Sousa suggest using a data structure called the edge buffer to support
this process7 [BS00]. In this data structure they store two additional bits per edge, F
and B for front-facing and back-facing, respectively. When going through the polygons
and determining whether they are front-facing or back-facing, they XOR the respective
bits of the polygon’s adjacent edges. In case an edge is adjacent to one front-facing

7 The edge buffer is especially intended to optimize for platforms such as game consoles that have
certain hardware restrictions.

116



6.3 Approaches for Detecting the Silhouette of Polygonal Meshes

and one back-facing polygon the FB bits are 11 after going through all polygons and
can thus be used for silhouette rendering. Buchanan and Sousa extend this idea to
include support for border edges and other feature edges.

This simple algorithm, with or without using the edge buffer data structure, works
for both perspective and orthographic projections. Also, it is guaranteed to find all
silhouette edges in the model. It is easy to implement and well suited for applications
that only use small models. However, it is comparatively computationally expensive for
common hardware-based rendering systems and the models of the size typically used
with them.8 Even if an effective data structure is used that delivers local connectivity
information in constant time, every face has to be looked at, its orientation has to be
determined (which can be done with one dot product per face9), and every edge has
to be looked at as well. The time complexity of this trivial algorithm is linear in the
number of edges and faces but still too slow for interactive rendering of reasonably sized
models. When it is additionally considered that there is typically only a small number
of edges that are in fact silhouette edges, testing each one also seems unnecessary.

To speed up the brute force algorithm, user-programmable vertex processing hardware
can be used as suggested by Card and Mitchell [CM02]. For every potential silhou-
ette edge in the model a separate quad is generated along the edge. In addition, each
vertex of such an edge stores the normals of both faces adjacent to the edge. When
rendering the quads, a vertex program tests whether the normals are front-facing or
back-facing. The quad is only actually drawn where the result is different for both
normals.

Sub-Polygon Silhouettes

Because a polygonal mesh is usually only an approximation of a free-form object, sil-
houettes of polygonal meshes usually have some artifacts (such as, for example, zig-zags
or silhouette edge clusters). Hence, the expected silhouette of the real object can differ
significantly from the silhouette the trivial algorithm yields. Therefore, besides the
quest for a fast algorithm, there are approaches that try to find a more exact silhouette
similar to the one of the real object.

Hertzmann and Zorin suggest considering the silhouette of a free-form surface that
is approximated by a polygonal mesh [HZ00]. To find this silhouette, the normal
vectors of the approximated free-form surface are re-computed in the vertices of the
polygonal mesh. Using this normal its dot product with the respective viewing direction
is computed. Then, for every edge where the sign of the dot product is different at
both vertices, linear interpolation along this edge is used to find the point where it
is zero. These points are connected to yield a piecewise linear sub-polygon silhouette
line (see Figure 6.6). The resulting silhouette line is likely to have far less artifacts

8 For software-based rendering systems, however, the silhouettes computed with the brute-force
approach come at little extra cost.

9 For perspective projection the view vector has to be re-computed for every face as well.
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in the form of zig-zags or silhouette edge clusters. Also, the result is much closer to
the “real” silhouette than the result of a traditional polygonal silhouette extraction
method. Hence, it is well suited for later stylization of the lines. For an example see
Figure 6.7.

+

-

-

(a) Sub-polygon silhouette for
a single triangle.

(b) Concatenated sub-polygon sil-
houette for a mesh.

Figure 6.6: Computation of a sub-polygon silhouette for a single triangle and a mesh. The dot
product between normal vector and view direction is positive at vertices with plus signs
and negative at vertices with minus signs. Between a positive and a negative vertex
linear interpolation is used to find the silhouette. From [Her99].

Figure 6.7: Two images generated with the sub-polygon method by Hertzmann and Zorin. The
silhouettes are combined with a hatching technique. From [HZ00].

Pre-Computation Methods

To speed up the process of silhouette edge determination, various authors have devel-
oped methods that do some kind of pre-processing. The pre-processing stage sets up
data structures that are used to find silhouette edges more quickly.
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Gooch et al. [GSG+99] as well as Benichou and Elber [BE99] present a procedure
for pre-processing that is based on the projection of face normals onto a Gaussian
sphere. Here, every edge of the mesh corresponds to an arc on the Gaussian sphere
which connects the normals projections of its two adjacent polygons (see Figure 6.8).
For orthographic projection, a view of the scene is equivalent to a plane through the
origin of the Gaussian sphere. The authors further observe that every arc that is
intersected by this plane is a silhouette edge in the corresponding view. Applying this
observation to silhouette edge extraction removes the need to check if every face per
frame is front-facing or back-facing. The arcs are computed in a pre-processing step
and at run-time only the intersections with the view-plane are tested. An example
rendering is shown in Figure 6.9.

Figure 6.8: Pre-processing using the projection of the normals of the two faces adjacent to an edge
onto the Gaussian sphere (left) and its surrounding cube (right). From [BE99].

Figure 6.9: Example scene rendered with the Gaussian sphere pre-processing algorithm. Note that
no visibility test was used. Courtesy of Gershon Elber and Fabien Benichou.

To further limit the number of arcs to be tested, Gooch et al. use a hierarchical
decomposition of the sphere, starting with a platonic solid, and consecutively applying
subdivision to its sides [GSG+99]. The arcs are stored in the lowest possible level.
Benichou and Elber, on the other hand, map the Gaussian sphere as well as the
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arcs to a cube surrounding the sphere [BE99]. The arcs are equivalent to line segments
on the cube. The great arc of the view plane is also mapped onto the cube resulting
in a set of line segments which simplifies the intersection test. To reduce the number
of arcs that have to be tested the sides of the cube are decomposed into a grid and
only edge line segments in grid cells that are touched by a view-plane line segment are
tested for intersection.

In [HZ00], Hertzmann and Zorin present a method that uses a data structure also
based on a dual representation which is, in fact, similar in principle to the one by
Benichou and Elber. In this approach, however, a dual representation of the mesh
is constructed in 4D space based on the position and tangent planes of every vertex.
The viewpoint’s dual (a plane in 4D) is intersected with the dual of the mesh triangles.
Beforehand, the dual vertices are normalized using the L∞-norm so that they end up
on one of the unit hypercube’s sides.10 Thus, the problem is reduced to intersecting
the triangles on a hypercube’s sides with the viewpoint’s dual plane. This means that
triangles in eight 3D unit cubes (the eight hypercube sides) must be intersected with a
plane. Here, again, the speed-up is achieved by employing space partitioning, namely
by using an octree for each of the hypercube sides. At runtime, only the dual plane of
the viewpoint is computed and intersected with each of the hypercube’s sides resulting
in edges that intersect the silhouette. The major advantage over the methods discussed
earlier in this section is that it works for orthographic as well as perspective projections.
For orthographic projection the viewpoint is simply placed at infinity.

Pop et al. present another algorithm that is based on a dual representation [PBD+01].
Similar to the previous approach but this time in three dimensions, a dual space is
constructed with vertices having planes as duals and vice versa. The silhouette problem
is reduced to finding intersections of the dual plane of the viewpoint with the duals of
the edges of the mesh. This, unfortunately, is still expensive to compute for every frame.
The authors note, however, that only the changes of silhouettes have to be found in
two consecutive frames. To do this they look at the wedge that is formed by the dual
planes of two consecutive viewpoints and identify the dual edges with one vertex inside
and the other vertex outside of this wedge. Similarly to Hertzmann and Zorin’s
method, to speed up this process they use an octree data structure. The advantage of
this approach over the previous one is that it works in 3D only. Hence, the search for
intersections can be performed only once per frame as opposed to eight times. Also,
only the changes of the silhouette are detected. However, although Hertzmann and
Zorin’s approach requires eight octrees instead of just one each octree only contains
about one-eighth of the faces. Also, both methods should have an expected extraction
time linear on the number of found silhouette edges.

Sander et al. use a different method for silhouette edge detection [SGG+00]. In their
approach, a hierarchical search tree is constructed in which the mesh’s edges are stored.
All the faces attached to the edges in a node and its associated sub-tree make up a
face cluster. At run-time, the tree is searched recursively to find face clusters which

10 The normalization does not make a difference because the viewpoint’s dual plane goes though the
origin.
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are entirely front-facing or entirely back-facing. All the edges of such a face cluster can
be discarded and the search for the associated sub-tree is stopped. To effectively test
whether a face cluster is entirely front-facing or entirely back-facing in constant time,
Sander et al. store two anchored cones in every node (see Figure 6.10). One of the
cones represents those positions where the view point can be located at for the entire
face cluster to be front-facing, the other cone for the face cluster to be back-facing.

Figure 6.10: Pre-processing for faster silhouette detection through arrangement of face clusters in
anchored cones (visualized in 2D) by Sander et al. From [SGG+00].

In summary, all pre-computation methods presented here reduce the number of trian-
gles or edges that have to be checked at run-time to speed-up the silhouette detection
process without having to trade in accuracy. This is accomplished by establishing an
efficient data structure during pre-processing. All authors claim to achieve at least
interactive frame rates for reasonably sized models. However, these methods have the
drawback that they make animation of the models themselves inefficient since the pre-
computed data structure stores information about the visibility of polygons to quickly
identify silhouettes for the moving viewpoint. If a model would be animated beyond a
flight through the scene this pre-computed data structure would become invalid which
would result in new pre-computation steps for every frame. On current hardware, this
would reduce the frame rate to below interactive rates. In addition, pre-computation
algorithms need a separate elaborate data structure besides the actual geometry for
achieving their speed-ups.

Stochastic Method

In contrast to pre-computation, Markosian et al. suggest using a stochastic algorithm
to gain faster run-time execution of silhouette detection [MKT+97, Mar00]. They
observe that only a few edges in a polygonal model are actually silhouette edges.11

11 Typically O(
√

n) edges of the n polygons according to [SGG+00].
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In the hope of finding a good initial set of candidates for front and back face culling,
they randomly select a small fraction of the edges and exploit spatial coherence. Once
they detected a silhouette edge, they recursively test adjacent edges until they reach
the end of the silhouette line. In addition, they also exploit spatial coherence as the
silhouette in one frame is typically not far from the—visually—same silhouette in the
next frame.

Combining these two parts of the algorithm yields most of the silhouette edges in
one image. By exploiting spatial and temporal coherence Markosian et al. achieve
fast run-time execution for interactive or real-time applications. Also, the method is
not restricted to static objects, so animation does not pose a problem. However, in
contrast to the pre-computation algorithms that were discussed above, the algorithm
cannot guarantee finding the entire set of silhouette edges for a certain view on the
scene.

6.3.4 Comparison of Silhouette Detection Algorithms

Table 6.1 summarizes the silhouette detection algorithms discussed in the survey. In
addition to the individual assessments given above, it compares the algorithms with
respect to a number of important properties.
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[ST90, Her99] image pixels yes yes pixel no no
[DS00] image pixels yes no pixel no no
[Rus89] hybrid pixels yes no pixel no no
[RvE92] hybrid pixels yes no pixel limited no
[RC99, Ras01] hybrid pixels yes no pixel limited no
[GSG+99] hybrid pixels yes no pixel limited no
trivial, [BS00] object edges no no mesh yes no
[HZ00] object edges no no submesh yes yes
[GSG+99] object edges no no mesh yes yes
[BE99] object edges no no mesh yes yes
[PBD+01] object edges no no mesh yes yes
[SGG+00] object edges no no mesh yes yes
[MKT+97, Mar00] object edges no no mesh yes no

Table 6.1: Comparison of silhouette detection algorithms.
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It is of particular interest to use the detected silhouettes beyond the mere drawing of
simple lines in an image. Therefore, in order to successfully do a further processing of
silhouettes, e. g., apply line styles across silhouette lines, the silhouettes of a scene must
be represented as a series of connected visible line segments. This requires silhouette
edges as the output of the silhouette detection process as a prerequisite. Thus, from the
three groups of algorithms for silhouette detection discussed above only object-space
methods can be used for this purpose. All object-space silhouette detection methods,
however, have in common that they only test the silhouette property of the edges in
a mesh. Image-space and hybrid silhouette algorithms, in contrast, inherently also
test the visibility of the silhouettes. Therefore, the following section discusses visibility
culling for edges that were generated with object-space silhouette detection methods.

6.4 From Silhouette Edges to Visible Strokes

In most applications it is essential to handle the visible subset of a silhouette (that
part of the silhouette which is not occluded by other parts of the scene) differently
from the invisible subset. Hence, it is essential to come up with ways to compute the
visible silhouette. For example, the importance of determining visible line segments
becomes apparent when considering a line renderer that uses line styles which may
apply perturbations to the original line. When the lines have been tested for visibility
prior to the stylization this allows lines to be rendered to the scene afterwards without
additional depth testing. For example, this allows to use perturbations that overlap or
cross over other objects (such as thick lines or path variations). In addition, the visible
subsets of the silhouette edges have to be assembled to form long strokes. This allows,
e. g., a line renderer to simulate the smooth strokes of a drawing tool that an artist may
have used. Using single edges in this case would significantly distort a line rendition
since the individual edges do not necessarily have all the same length. In addition, for
models with fine tessellations the average edge length will be comparatively short.

Methods to do both of these steps—visibility culling and stroke handling—will be dis-
cussed in the following (for details see [IHS02]). First, a brief survey of previous tech-
niques for visibility culling of lines will be given (see Section 6.4.1). Afterwards, a new
technique is presented that uses a hybrid approach for the line visibility determination
combining both the speed of image-space techniques with the analytic representation
of the results found in object-space methods (see Section 6.4.2). Finally, a discussion
of the creation long smooth strokes follows and how certain artifacts of the polygonal
character of the silhouettes can be avoided (see Sections 6.4.3 and 6.4.4).

6.4.1 Visibility Culling of Silhouette Edges

The problem of visibility culling of silhouette edges is the classic computer graphics
problem of hidden line removal. Similar to silhouette detection, there are three general
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ways to attack this problem. A fast way is to use an image-space approach (see Sec-
tion 6.4.1). High precision can be achieved by employing an object-space method (see
Section 6.4.1) that yields visible silhouette segments in an analytic description. Finally,
by combining both approaches one can use a hybrid method12 that is faster than an
object-space method but still yields analytic descriptions of the visible silhouette lines
(see Section 6.4.1).

Image-Space Visibility Tests

A trivial and fast way to determine the visibility of silhouette edges in image-space is
to use the z-buffer. The simplest method is to render the silhouette edges and let the
z-buffer do the hidden line removal. The result is comparable to Raskar and Cohen’s
hybrid method using wireframe rendering in the second pass (see Section 6.3.2). A more
advanced algorithm renders the silhouettes in a certain line width and perpendicular
to the viewing direction. Unfortunately, this generates images with thick internal
silhouettes and thin contour lines because the contour lines are partly occluded by the
object itself and internal silhouettes are not.

Besides the limitation to pixel accuracy, the main disadvantage of this image-space
approach is that the drawn silhouette line might be partially occluded when stylized
variations have been applied to it.

Object-Space Visibility Tests

In the past, many algorithms have been proposed to do hidden line removal in object-
space (see, e. g., Sutherland et al. [SSS74] or Sechrest and Greenberg [SG81]),
most of which also solve the problem of hidden surface removal. It would be beyond
the scope of this survey to address all of these but many of them can easily be used
for determining the visibility of silhouettes. One algorithm, however, deserves further
attention since it has frequently been used in the context of silhouette algorithms: the
visible line algorithm presented by Appel [App67]. The algorithm is based on the
notion of quantitative invisibility (QI)—the number of front-facing polygons between a
point on the edge to be rendered and the viewer—which is determined for all segments
of edges (see Figure 6.11). All edge segments with a QI value of zero are visible, all
others are invisible. The fact that QI value only changes when the edge to be rendered
intersects a silhouette edge in the two-dimensional projection (it can also change at
a vertex if the vertex lies on a silhouette edge causing some complications for the
computation) allows for propagation along connected sets of edges. Therefore, for
every connected set of edges that has to be tested the QI value is initially established

12 Hybrid visibility culling methods must not be confused with hybrid silhouette detection algorithms.
Visibility culling is inherently solved within the hybrid silhouette detection while hybrid visibility
culling is used with the silhouettes generated by object-space silhouette detection. However, both
types of hybrid algorithms were named such because they both combine image-space and object-
space aspects.
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for one point using, for example, ray-tracing. It is then propagated along the edges
to be rendered determining whether the QI value increases or decreases each time the
edge passes behind a silhouette edge.

Figure 6.11: Example for Appel’s notion of quantitative invisibility (QI) for a line passing behind
the object. The dots denote the positions where the QI value changes. Adapted from
[App67].

Markosian et al. [MKT+97] use a modified version of Appel’s algorithm to improve
computation time. They re-define the QI value to be the total number of faces between
a point and the viewer. This simplifies Appel’s algorithm in that the QI value can
now only change at a vertex if that vertex is a so-called cusp vertex. In addition, they
avoid many of the required ray tests by first looking at how the QI value changes
by establishing relative QI values when traversing a connected set of edges before
actually executing the ray test. Sometimes, this marks the whole connected set of
edges invisible and thus removes the need to establish initial QI values. In remaining
cases, the algorithm avoids even more tests by inferring from QI values of one set
of connected edges to those of others by using the relative QI values as determined
before.

Hertzmann and Zorin apply this approach to their algorithm for sub-polygon sil-
houettes [HZ00]. First, they divide their silhouette curves into segments at points
where the visibility can possibly change and determine visibility individually for each
of these segments. Then, in addition to their sub-polygon silhouette edges they also
determine regular (non sub-polygon) silhouette edges that are a subset of the input
mesh. They determine edge visibility using the adapted Appel’s algorithm described
above. Finally, the visibility of the majority of the edges adjacent to one of the sub-
polygon silhouette edge segments is used to infer the visibility of the segment. For
finely tessellated objects this yields a sufficiently correct visible silhouette.

The advantage of analytic algorithms is that they typically yield high precision visibi-
lity information. However, since their computational complexity is not constant, they
usually take longer to compute than image-space approaches.
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Hybrid Visibility Tests

As has been demonstrated above, due to their exact solution for the hidden line problem,
object-space silhouette visibility tests are usually expensive. In addition, as has been
shown before, a typically fast but not as accurate way of determining the visibility of
the silhouette edges is to use an image-space approach. However, in many applications
it is not necessary to have more than pixel accuracy. Thus, this fact can be used
to achieve a significant speed-up for the visibility test by combining object-space and
image-space approaches to a hybrid algorithm.

In addition to regular rendering using a z-buffer, Northrup and Markosian use a
second buffer—an ID buffer—to determine the visibility of the silhouette edges [NM00].
In this ID buffer each triangle and each silhouette edge is identified by a unique color.
For each frame, this buffer is read from the graphics hardware and all pixels of the
reference image are examined to extract all those silhouette edges that are represented
by at least one pixel. Each of the remaining silhouette edges are then scan-converted
and checked for visibility according to whether a pixel with the edge’s unique color
exists in the ID buffer or not. An example rendition with stylization applied to the
silhouette is shown in Figure 6.12.

Figure 6.12: Image generated using the hybrid visibility test by Northrup and Markosian. Note
the use of line styles for rendering silhouette strokes. From [NM00].

6.4.2 A New Hybrid Approach for Determining Visibility

As already argued above, from the set of silhouette edges it is necessary to determine
which segments of those edges are visible to the viewer. In the following, a new tech-
nique will be introduced that does not require rendering of an ID-buffer (such as done
by Northrup and Markosian [NM00]), but makes direct use of available z-buffer
information. Therefore, the scene may be rendered as usual (or enable writing to the
z-buffer only), and then this information can be used for visibility testing. Thus, in
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cases when the scene geometry needs to be rendered in combination with silhouettes,
the generation of z-depth information is obtained for free.

To determine visible silhouette segments, each silhouette edge is taken separately, and
the edges are scan-converted in relation to the z-buffer, testing for point visibility
along the edge. In a näıve approach, to determine the visibility of a point one could
just compute its z-value and compare it with the value in the z-buffer. However, the
results are highly instable due to z-buffer precision and pixel quantization. Since the
visibility of silhouette edges is being tested the visibility culling algorithm has to look
at parts of the projected scene where many faces are almost parallel to the viewing
direction. Hence, these faces may share the same x-y-location as the silhouette edges,
but will overwrite the z-buffer at those locations with z-values closer to the viewer. The
näıve test will fail under these circumstances, and falsely detect an edge as occluded
(see Figure 6.13).
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Figure 6.13: Problem with faces almost parallel to the viewing direction (indicated by the arrow).
Although the z-value of the silhouettes (indicated by dots in the left image) is 5 the
value of the related pixels’ z-buffer is 2. The left image shows a cut through the model
as shown in the middle (with silhouette lines emphasized) and right part shows the
resulting z-buffer image.

In order to take advantage of the availability of the rendered z-buffer, a more reliable
point visibility test along a silhouette edge has to be employed. For this purpose,
z-buffer silhouette extraction techniques (e. g., Saito and Takahashi [ST90]) are
adapted so that not only the exact position of a point is looked at to determine its
visibility but also its 8-neighborhood. If there is any point in this 8-neighborhood where
the z-buffer value is farther away than the computed z-value of the point, it is declared
visible, and not visible otherwise (see Figure 6.14).

This works because silhouette edges occur in regions with a discontinuity in z-depth.
Hence, it is almost certain that one of these background pixels is found by looking in
the 8-neighborhood. Those silhouette edges that are occluded by larger areas will not
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Figure 6.14: Testing the visibility by looking at the z-buffer values of the pixel and its 8-
neighborhood. Also, not every pixel is tested (in this case every fifth pixel is examined).

find any pixels further away, and will be correctly identified as occluded. Therefore,
the numeric instability of the z-value computation is significantly reduced.

For speeding up the process it is not necessary to test visibility for each pixel when
scan converting an edge. Instead, it is possible to parameterize the number of pixels
that may be skipped along this process (example in Figure 6.14). The advantage of
this is that it is possible to tune a speed vs. accuracy trade-off for the specific needs.
There are cases when two adjacent test points are detected in the scan conversion of an
edge of which one is visible and the other one invisible. The edge segment determined
by these two adjacent points then intersects a boundary between visible and occluded
parts of the edge. An imprecise way to solve this problem is to clip this segment in the
middle. In order to reduce visible artifacts, the scan-conversion process is subdivided
until a one-pixel accuracy is reached for the location where the edge needs to be clipped.
However, the consequence of skipping pixels could be that a line is drawn through an
occluder that lies in-between two visibility test points in the scan conversion of an
edge.

Additional speed-up is obtained through the optimization of the extraction of z-buffer
values. This is done both by caching results (eliminating re-accessing the same values)
and reading larger chunks at a time (minimizing function-call overhead and bus-rate
transfer). The size of the chunks to read is largely dependent on the performance issues
of the hardware. On common PC-based machines it has shown to be practicable to
read chunks of eight by eight pixels at a time and store them into the main memory.
Only in cases where the image exhibits a high density and distribution of silhouette
edges it becomes profitable to read the entire area of the z-buffer that is covered by
the scene.

As a result the set of clipped silhouette edges is found that is now defined as the set of
visible silhouette segments. Next, the visible silhouette segments are combined into a
set of silhouette strokes.
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6.4.3 Finding Silhouette Strokes

A silhouette stroke is a concatenation of visible silhouette segments that share a com-
mon vertex pairwise. Therefore, strokes terminate when there are no more segments
that may be joined by a common vertex. There are cases where more than two visible
silhouette segments share a common vertex (e. g., a cusp vertex). In these cases an
approach can be adopted that continues the stroke along the segment with an angle
closest to 180◦ (as done by Northrup and Markosian [NM00]).

To generate these strokes, a data structure that provides local connectivity information
can be used such as the Winged Edge [Bau75]. Starting with an arbitrary visible
silhouette segment, and searching in both directions for additional connecting visible
silhouette segments, the silhouette edges are concatenated in each iteration. Visible
silhouette segments that do not comprise of a whole silhouette edge may either form a
silhouette stroke by themselves (if they are located in the middle of a silhouette edge) or
may start or end a silhouette stroke (if they are at the beginning or end of one silhouette
edge). This is simple and efficient because the visible silhouette segments that were
generated in the previous stages of the algorithm correspond directly to the original
mesh with the edge connectivity information intact. Thus, no additional processing,
such as rendering an edge ID buffer, is necessary to find connectivity between edges.

6.4.4 Removing 2D Artifacts

Since meshes do not provide perfect representations of surfaces and due to numerical
instabilities in silhouette edge detection, one often gets overlapping silhouette edges
and small zig-zags in image-space (of course, there might also be zig-zags due to the
local shape of an object). These have to be removed in order to achieve good looking
results when applying styles to strokes, as will be described in the following sections.
The visibility-check algorithm requires that edges are scan-converted to the rendered
information in the z-buffer, thus it is not possible to alter the position of the edge
vertices prior to this process. Therefore, there are two stages in artifact removal—one
before the visibility processing of silhouette edges that retains the original vertices for
edges, and one after visible silhouette segments have been found that might merge or
alter vertices. The first two artifacts outlined below are treated in the first stage, and
the subsequent three are handled after silhouette stroke generation.

Triangles With Two Visible Edges

Sometimes it happens that two silhouette edges share the same triangle (depicted
in Figure 6.15) such that they cause sharp zig-zag lines when projected to the image
plane. Applying a style in form of a texture to these zig-zag lines will result in awkward
artifacts, due to the edges turning back on themselves. However, because a triangle
with two silhouette edges is most likely to be almost parallel to the viewing direction,
the artifacts created may be avoided by un-marking the two formerly marked silhouette
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edges and marking the remaining edge of the shared triangle instead (see Figure 6.15).
This yields the result that one new silhouette edge covers the same span as the previous
two, but with the zig-zag artifact removed. However, before this artifact reduction is
applied, the orientation of the triangle is tested whether it is oriented parallel to the
viewing direction. Only when the angle between triangle and viewing direction is below
a certain small angle (≈ three degrees were used) are the marked edges switched. This
avoids unwanted effects when both silhouette edges have to be visible (e. g., a triangle
facet of a cube).

Figure 6.15: Example for handling triangles with two silhouette edges before and after the update.
The arrow indicates the viewing direction.

Silhouette Edge Clusters

Another problem also arises due to small numerical errors and triangle surface approx-
imation. It can occur when computing the visibility of faces that are almost parallel
to the viewing direction. In these cases one might encounter lots of adjacent triangles
that alternate between front-facing and back-facing, thereby creating clusters of silhou-
ette edges (Figure 6.16 shows an example; one can find clusters of silhouette edges, for
example, at the silhouette of cylinder-like shaped objects). This may result in many
short strokes whereas one long stroke would be favorable.

Figure 6.16: Example for treating silhouette edge clusters. In the screen-shots the upper part is
visible and the lower part is not. The triangles with all edges marked alternate from
not visible to visible. To remove the cluster, a path around it is detected, the inner
edges are removed, and the longest segment of the path between the two leaving edges
is removed. The left and right images show, respectively, the situation before and after
the update.
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One way to remove these silhouette edge clusters is to find each triangle that comprises
three silhouette edges. Next, the closed path of outer silhouette edges around such
groupings of triangles is detected. The silhouette edges that reside inside the closed
path loop are eliminated. Now, because there is a loop, overlapping silhouette edges
are generated when projected onto the screen. This means that one side of the loop
can be removed so that a single connected path joins all the silhouette edges leaving
the group of triangles (as an example, in Figure 6.16 the path comprising the most
silhouette edges was removed). This is achieved by detecting the longest path (the one
with the highest number of edges) between two neighboring leaving edges. Of course,
if there is only one triangle in a triangle cluster (such as a tetrahedron with only one
side visible) this remains untouched.

Silhouette Stroke Zig-Zags

After the projection into 2D, again due to numerical instabilities, there can be zig-zags
in the generated strokes (see Figure 6.17). Parts of a stroke are classified as comprising
zig-zags for each segment that has two sharp angles formed by its adjacent segments.
If such a case is detected, the visible silhouette segment is replaced by just a vertex
located in the middle of this segment. This typically eliminates the zig-zag.

Figure 6.17: Example for removing zig-zags. The left side represents the result before and right
side after the update. These zig-zags might originate from cases similar to the one
displayed on the right side of Figure 6.15 due to a viewing direction which was changed
just slightly in the counter-clockwise direction and minimal numerical errors during
the visibility test. These can occur very easily because the viewing direction is almost
parallel to the triangles.

Sharp Angles

Similar problems as with zig-zag lines can arise when there are acute angles in a stroke
depending on the stroke width. Consider Figure 6.18. On the left side it can be observed
that over the length of the segment the normal of the stroke texture is twisted by almost
90 degrees. Also, because of the high stroke width, the thickness at the vertex of the
sharp angle is much smaller than at the other end. Both effects yield an unappealing
image. Therefore, the silhouette stroke is split at the point of the sharp angle. This
intends to stop the stroke in the vertex of the sharp angle and start a new one there
for the remainder of the former stroke. This simulates an artist drawing one stroke,
stopping, and then drawing back over his stroke.
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Figure 6.18: Example for splitting silhouette strokes at sharp angles. The left side shows the sit-
uation before the update where one stroke is twisted awkwardly. On the right side,
after the update, the stroke has been split into two separate strokes yielding a better
rendering.

Short Segments

Sometimes stroke segments with screen-projection lengths less than a few pixels are
generated. The stroke quality can be improved by merging sub-pixel and short strokes
together. Note that this eliminates many sharp angles occurring at the sub-pixel level
that would influence the orientation changes and texturing of a stroke, whilst also
acting as a level-of-detail feature by reducing geometry (see Figure 6.19).

Figure 6.19: Example for removing short segments, left side before and right side after the update.

Results of Artifact Reduction

The artifact reduction techniques significantly improve the appearance of the final
image. The slight displacements to silhouette strokes and segments might alter the
real silhouette but do not significantly distort the line drawing. In contrast, for the
application in stylized rendering they are necessary to yield appealing images (for
applications that rely on an exact silhouette the artifact removal can be skipped).
In Figure 6.20 the local improvements to the silhouette rendering can be seen. When
no artifacts are removed at the geometric level, the projection of zig-zags and short
segments create noticeable unwanted properties in the line stylization as depicted in
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Figure 6.20(a). Figures 6.20(b) and 6.20(c) show elimination of visual artifacts before
and after visible silhouette segment processing, respectively. However, only when both
artifact removal stages are combined can the algorithm yield the smooth consistent
outline present in Figure 6.20(d).

(a) No artifact removal. (b) Pre-visibility artifact removal only.

(c) Post-visibility artifact removal only. (d) All artifact removal techniques.

Figure 6.20: Examples for artifact removal. Remaining gaps are due to the applied line style.

6.5 Analysis of the Approach

In this section, the presented method for efficient visibility culling of silhouette edges
and generation of silhouette strokes will be analyzed according to how well it is suited,
in particular, for the application in interactive line rendering systems. First, a few ex-
amples are given to demonstrate the visual quality of the approach. Then, the approach

133



6 Essential Shape Representations in 2D: Silhouettes

is evaluated in terms of the rendering times required for the separate stages. Finally,
a summary of the method is given naming the advantages over previous approaches,
suggesting potential application areas, and discussing few disadvantages.

6.5.1 Examples

Figure 6.21 shows the application of different line styles to the silhouette strokes gener-
ated by the silhouette stroke based non-photorealistic rendering system OpenNPAR
(see also Section B). The line styles can be modified interactively, such as by varying the
line width and stroke textures. Perturbation functions (such as applying a sinusoidal
wave over the strokes) are also possible, using both image-space or object-space algo-
rithms. Image-space algorithms compute styles based on viewport projections whereas
object-space algorithms can actually operate in three dimensions, such as varying thick-
ness according to depth in order to implement depth cueing.

Figure 6.21: Examples for applying different line styles to the generated silhouette lines produced
by the OpenNPAR system.

6.5.2 Computation Times

By providing one parameter that determines the number of pixels that are skipped in
the silhouette edge visibility scan conversion process, a tuning mechanism is provided
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so that a trade-off between accuracy and speed can be decided upon (see Table 6.2).
Determining this number depends on the resolution of the image (the higher the res-
olution, the more pixels may be skipped) and the geometric properties of the scene
(objects that cover small areas would require reducing the number of pixels which are
skipped). The extravagance of styles may also be taken into account (wavy lines, for
instance, will overlap nearby objects anyway). From experiments it was found that a
skipping value of six pixels has negligible visual impact for most cases.

skipping value (pixel) 1 2 3 4 5 6 7 8 9 10
time (ms) 13.1 12.1 12.0 11.7 11.5 10.8 10.4 10.7 10.5 10.6

Table 6.2: Computation times for the silhouette stroke generation (including stroke segment gener-
ation) depending on the skipping value for the bunny model with 3608 polygons and an
approximate rendered size of 295 x 223 pixels.

In Tables 6.3 and 6.4 the computation times are shown for various stages of the render-
ing pipeline for a number of objects and polygon counts. It can be observed that the
major bottleneck in the resulting frame-rate is the silhouette edge detection. However,
this can be reduced by using any of the more efficient silhouette detection algorithms
(e. g., using pre-processing) as reviewed in Section 6.3.

model PN SED PrVAR SSG PoVAR STY total fps
1P 2P 1P 2P 1P 2P 1P 2P 1P 2P 1P 2P 1P 2P

bunny 902 2 2 1 0 11 7 2 1 7 4 23 14 25.1 42.7
bunny 3608 7 7 1 1 11 6 3 2 7 4 29 20 21.7 32.0
bunny 14432 29 27 4 2 11 7 4 3 11 6 59 45 11.7 15.5
bunny 57728 114 108 8 6 14 9 9 5 11 6 156 134 4.8 5.8
knot 2880 4 4 1 0 12 7 2 1 6 3 25 15 24.9 42.7
knot 11520 21 21 2 1 12 7 4 2 11 6 50 37 14.3 21.4
foot 11244 24 21 8 7 22 13 15 7 35 17 104 65 7.5 10.7

Table 6.3: Computation times in milliseconds tested on a 450MHz PentiumIII machine with a
GeForce2MX graphics board and 256 MB RAM (1P, left columns) and a 800 MHz
Dual-PentiumIII machine with a GeForce1 graphics board and 384 MB RAM (2P, right
columns), both running MS Windows 2000 (PN = polygon number, SED = silhouette
edge detection, PrVAR = pre-visibility artifact removal, SSG = silhouette stroke gener-
ation (including stroke segment generation), PoVAR = post-visibility artifact removal,
STY = stylization). The skipping value was set to six pixels and the approximate ren-
dered size was 295 x 223 pixels. The frame-rates given are total tested rates and less than
to be expected from the computation times because they also include other activity like
the standard OpenGL rendering of the model.

The computation times for the silhouette stroke generation depends on the number of
8-neighborhood tests (i. e., number and length of silhouette edges, the pixel coverage of
the rendered object, and the skipping value). In Table 6.3 it is noted that computation
time across the models is relatively constant, except for the foot model because the
silhouette here is more complex. Higher resolution representations of models also yield
higher computation times for the silhouette stroke generation because often silhouette
edges are very short, and to short edges the skipping mechanism cannot be applied.
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model PN SED PrVAR SSG PoVAR STY
1P 2P 1P 2P 1P 2P 1P 2P 1P 2P

bunny 902 8.7 14.3 4.3 0.0 47.8 50.0 8.7 7.1 30.4 28.6
bunny 3608 24.1 35.0 3.4 5.0 37.9 30.0 10.3 10.0 24.1 20.0
bunny 14432 49.2 60.0 6.8 4.4 18.6 15.6 6.8 6.7 18.6 13.3
bunny 57728 73.1 80.6 5.1 4.5 9.0 6.7 5.8 3.7 7.1 4.5
knot 2880 16.0 26.7 4.0 0.0 48.0 46.7 8.0 6.7 24.0 20.0
knot 11520 42.0 56.8 4.0 2.7 24.0 18.9 8.0 5.4 22.0 16.2
foot 11244 23.1 32.3 7.7 10.8 21.2 20.0 14.4 10.8 33.7 26.2

Table 6.4: Computation times in percent according to the data in Table 6.3 (abbreviations as in
Table 6.3). Differences from a sum of 100% are due to rounding errors.

Altering skipping values gives computation times as shown in Table 6.2. The depen-
dency of computation time for silhouette strokes (including stroke segment generation)
on the size of the rendered image is demonstrated in Table 6.5.

size (pixel) 523 x 393 295 x 223 170 x 130 92 x 72 43 x 34
time (ms) 23.2 10.8 5.8 3.8 2.7

Table 6.5: Computation times for the silhouette stroke generation (including stroke segment genera-
tion) depending on the (approximate maximal) size of the rendered image for the bunny
model with 3608 polygons and a skipping value of six.

The pre-visibility artifact removal sequentially processes all silhouette edges, hence
computation times are dependent on the number of extracted silhouette edges. Post-
visibility artifact removal and stylization operate over the generated silhouette strokes.
Since strokes are comprised of segments this computation time depends on the number
of visible silhouette segments.

6.5.3 Summary

The presented algorithm performs an efficient visibility culling of silhouette edges and
generates silhouette strokes for application, e. g., in stylized rendering at interactive
frame-rates (see also comparison with the visibility culling methods reviewed above in
Table 6.6). Its input is the result of any algorithm that computes silhouette edges from
a polygonal mesh. The introduced method performs a fast visibility check by combining
analytic edge information available in the form of a Winged Edge data structure with
the depth information in the z-buffer, but without having to render an additional image
buffer. The expected complexity of the method depends linearly on the total projected
length of all silhouette edges. This means that a few long edges take approximately
the same time to compute as many short edges if both have the same projected length.
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6.5 Analysis of the Approach

In addition, if the same set of edges is tested in a small and in a twice as big projection,
the latter will take approximately twice as long to compute.13
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z-buffer image pixel no O(lpe + ne) z
[App67, MKT+97] object analytic yes O(n2

e) none
[NM00] hybrid pixel yes O(lpe + ne) ID
8-neighborhood hybrid pixel yes O(lpe + ne) z

Table 6.6: Comparison of visibility culling algorithms (lpe is the projected edge length and ne denotes
the number of edges).

The data structure also allows the algorithm to connect silhouette strokes from only
those silhouette segments that are continuous on the object topology. The fact that
this yields higher quality images becomes apparent when considering two silhouette
segments that are continuous in the image plane (so that their endpoints touch or
overlap each other) but are actually disjoint in object space (so that they represent
different parts of the object or separate objects). The new approach would render
two distinct strokes (one for each object silhouette) whereas earlier approaches that
reconstruct strokes from the image buffer only [NM00] would draw a single stroke
spanning over the two disjoint silhouette segments. The new approach can also easily
be extended to allow multiple styles to be rendered across the scene since the analytic
edges can be tagged accordingly.

The presented algorithm can now be used to generate silhouette drawings from a mesh.
In combination with a pre-processing object-space silhouette detection method it is
possible to generate interactive to real-time animations of line renditions using stylized
strokes. It has been shown that trading the absolute accuracy of an object-space
visibility culling technique for pixel accuracy allows for an enormous speedup. This
pixel accuracy is sufficient for most applications which require the interactive display of
silhouettes. In addition, in many cases the stylization applied to the generated strokes
creates a sketchy appearance of the line renditions that hides the remaining artifacts
(strokes that stop a few pixels short or after an occluding part’s stroke). In such
environments they appear to add to a sketchy look rather than disturb the image.

In contrast to previous hybrid approaches (such as the one by Northrup and Marko-
sian that uses an ID-buffer [NM00]), in most cases the presented new hybrid visibility

13 This applies to models with most silhouette edges longer than the skipping value. If most edges
are shorter than the skipping value, the expected complexity depends linearly on the number of
edges because the 8-neighborhood test is performed for each vertex of the stroke.
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culling method does not require additional G-buffers14 to be generated. Instead, the
z-buffer is used to determine the visibility status of the silhouette edges. The z-buffer
is generated as a part of the traditional rendering process for hidden surface removal.
This means that if the silhouettes are generated in addition to a traditional rendition
this depth information comes at no extra cost. In addition, a number of artifact removal
techniques have been introduced that filter the silhouette strokes before they are sent
to the stroke stylization stage. These modified silhouettes might differ slightly from the
originally computed silhouette, but will yield better images when styles are applied.

Computation times were recorded across a variety of models for each separate stage
of the algorithm, demonstrating that interactive rates are achievable. When used to
create animations, the algorithm performs well in maintaining strokes over successive
frames, although no explicit frame-coherent measures are taken. Sometimes artifacts
occur in stroke textures due to sudden varying lengths or start and endpoints of sil-
houette strokes. This occurs most noticeably when new silhouette segments are added
to strokes in regions where the object comprises long edges in the geometry, and when
strokes are split by occlusion from other objects. Popping artifacts are inherent to sil-
houettes generated from coarse models and can be improved by subdividing the model
into finer triangles or by propagating parameterization information across successive
frames. To handle sudden occlusion of strokes to maintain frame-coherency would re-
quire more investigation. In practice, however, the achieved results show that even
with applied perturbations to the strokes the resulting animation maintains a degree
of frame-coherency with only the occasional visual artifact.

Unfortunately, the algorithm sometimes does not perform well when trying to determine
the visibility of sharp concave feature lines. In these cases the 8-neighborhood test
often fails because most tested points in the adjacent faces will be closer to the viewer
than the edge itself. However, this effect can be reduced by using a polygon offset
(glEnable(GL_POLYGON_OFFSET_FILL) and glPolygonOffset() in OpenGL). Also,
in cases where two independent silhouette edges are touching or almost touching, such
that they lie at exactly the same z-distance from the viewer and separated from each
other by less than one pixel in the frame-buffer, they might not pass the silhouette
segment visibility test. The risk of this occurring, however, is minimal.

Stylized silhouette strokes have previously been implemented in a number of off-line
systems that analytically generate high quality renditions (such as the daLi! system by
Masuch et al. [MSS97, MSS98]). However, the interactive frame-rates being achieved
by the new hybrid approach are essential when working with stylized line drawings.
Hence, stylized silhouettes can now be used in interactive and real-time applications
[HIR+03]. This means that it is now also possible for a designer to experiment with
rendition in order to create a pleasing result. Appropriate interfaces to support this
creative process are necessary and first attempts have been made towards this goal (see,
e. g., the system by Halper, Schlechtweg, and Strothotte [HSS02]).

14 G-buffers are buffers with the size of the frame-buffer which store additional information, such as
z-depth, normal data, object ID, face ID, edge ID, etc. They have been first introduced by Saito
and Takahashi [ST90].
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Chapter 7

Applications and Case Study

The concept of essential shape representations that was developed and discussed in this
dissertation has a broad range of possible applications. In particular, the two main algo-
rithms introduced and discussed in this dissertation—external skeleton extraction and
visible silhouette stroke generation—can be employed in various different domains.

This chapter introduces a selection of potential application scenarios that go beyond
the mere computation of feature or silhouette curves. First, applications that are based
on the progressive coding of shape data will be examined. In this context, applications
such as shape compression, mesh decimation, and network transfer are important. A
second major application domain can make use of essential shape representations for
shape matching. Interestingly enough, not only external skeletons but also silhouettes
can be used in this area. Finally, non-photorealistic rendering is going to be analyzed
as the main domain where silhouettes are used. However, the examples given show
that also other ESRs such as internal and external skeletons can be used for creating
non-photorealistic renditions. Moreover, the fact that both external skeletons and sil-
houettes are curves leads to additional applications of which some will be mentioned.

The variety of potential application areas illustrates the great potential of the intro-
duced concept. Because of the many possible applications only a selection of the
scenarios discussed in this chapter could be prototypically implemented. A number
of examples are shown in the following sections in order to illustrate these scenarios.
Other scenarios will be presented without having been implemented in order to point
out additional application areas.

7.1 Progressive Coding of Shape Information

As one important property, the multi-scale character of the essential shape representa-
tion facilitates progressive coding of geometric models. This is not only important for
storing the data structure in a file. In contrast, it also permits, among other things,
lossy and lossless compression and storage, feature driven mesh decimation of geometric
data, and optimized network transfer.
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7.1.1 Progressive Meshes and Compression

Progressive coding of data is always very useful where large amounts of data have to
be processed. It ensures that important features of the data are stored, transferred,
or processed first while less important features are looked at later. Typical methods
for progressive coding of polygonal meshes are based on mesh optimization techniques
that use the edge collapse algorithm (e. g., [HDD+93, Hop96, GH97, GH98] etc.).

These algorithms successively select edges from the mesh that are to be collapsed and,
thus, reduce the complexity of the object’s tessellation. The selection of edges to be
collapsed is usually based on some kind of criterion that changes the shape of the
object as little as possible (for example, using the shortest edge or using an edge which
introduces the smallest possible error). This process is stopped once a sufficiently small
mesh has been generated. This prevents the mesh from degenerating.

External skeletons can also be used in order to implement a progressive coding of
meshes. In addition to the multi-scale property discussed in Section 5.4.1, the value
of the used DoI function can be employed for this purpose. By setting both threshold
values t1D and t2D to zero, a very detailed external skeleton is computed. Based on
one of the previously mentioned progressive mesh algorithms, first all edges that are
not part of the skeleton are collapsed (similar to the topology preserving algorithm
in Section 5.4.2). Then, the skeleton edges are collapsed in the sequence of their DoI
values (less significant first). Alternatively, the threshold values can be used to select
which edges are to be collapsed next.

The progressive mesh can be decoded by reversing the edge collapse operations to
vertex split operations [Hop96]. During this process, the most significant features are
reconstructed first. Besides this lossless coding of mesh data, this also allows for the
generation of different scale levels of the same object (Requirement 4). This process
can be used in order to generate models that have the appropriate size for a specific
application.

In addition, when disregarding the less important subset of the data, progressive coding
can be used for lossy data compression (Requirement 2). The progressive mesh is then
reduced to a certain percentage of the most significant vertex split operations. This
means that insignificant details will be eliminated. Since these do not have to be stored
anymore this leads to a compression of the shape representation with information loss,
i. e., lossy data compression.

7.1.2 Feature Driven Mesh Decimation

Closely related to the progressive storage of meshes and lossy compression are algo-
rithms for mesh decimation. In this case compression as an aspect of data storage is
not the desired trait. Instead, the reduction of the complexity of the mesh is the goal
since this allows for faster processing of the data. However, the important features of
the mesh should be preserved in this process. Previous approaches (e. g., [WB01]) used
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a geometric criterion to define these important features. External skeletons are very
well suited for feature driven mesh decimation since they use DoI functions in order to
define the features. This makes this approach more flexible than previous algorithms.

The application of feature driven mesh decimation is demonstrated in Figures 7.1
and 7.2 as well as in the previously shown example in Figure 5.23 on page 102.

(a) 20 247 polygons. (b) 7 867 polygons. (c) 6 325 polygons. (d) 5 355 polygons.

Figure 7.1: Example for feature driven mesh decimation using the fold index. As can be observed,
the features important in the shape are preserved even at high decimation rates.

(a) 30 840 polygons. (b) 19 020 polygons. (c) 14 580 polygons. (d) 10 806 polygons.

(e) 7 710 polygons. (f) 5 596 polygons. (g) 4 780 polygons. (h) 3 862 polygons.

Figure 7.2: Technical example for feature driven mesh decimation using the fold index. See also the
visualization of the fold index DoI function for this model in Figure 4.20(k).

7.1.3 Linearizing the Mesh Data for Network Transfer

Both the progressive mesh representation of shapes and feature driven mesh decimation
can be applied in networked transfer of object geometry data. Progressive meshes have
an inherent ordering that can be used in networked transfer. In addition, the lossy
compression or feature driven mesh decimation may be applied in order to reduce the
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amount of data that has to be sent. In any case, due to the progressive character of
this transfer it is possible to reconstruct the mesh on the receiver’s side using all the
information that is available at a specific time. The receiver does not have to wait
until all data has been received. In addition, the external skeleton graph itself also
allows for linearization. The individual edges and vertices in the graph can easily be
assigned importance values based on the selected DoI function. Using these DoI values
the edges can be sorted and sent over a network connection using this sequence.

All mentioned application domains that are based on progressive coding of meshes ben-
efit from the external skeleton approach’s flexibility. Better than in previous algorithms
it is now possible to define which features are important for a specific application rather
than to be limited to a certain geometric property.

In addition to the application of essential shape representations for shape modifications
in a broad sense, the structures extracted from shapes can also be used as descriptors
of these shapes. This leads to the application domain of shape matching that will be
discussed in the following section.

7.2 Shape Matching and Database Search

In the previously discussed shape processing using progressive coding it was impor-
tant to manipulate shapes depending on the extracted external skeleton. In addition,
essential shape representations can also be applied to the domain of shape matching
database search for shapes. In this case shapes are not manipulated but rather a
simplified representation is needed to represent a mesh.

The two main aspects of essential shape representations presented in this dissertation—
skeletons and silhouettes—are both important in this application area. Both can be
used to compare shapes in order to determine their geometric similarity. In the fol-
lowing, some examples for this application domain will be given. In addition, how the
algorithms presented above can be applied in this context will be discussed.

7.2.1 Similarity Measure Based on Shape Abstractions

In general, when trying to match two shapes it is necessary to compare the geometric
properties of the objects. Hence, it is necessary to compute a representation of the 3D
shape that captures the geometric essence in some way.

Skeleton-like structures have previously been applied to matching of 3D shapes. Hi-
laga et al., for example, used Reeb graphs in order to compare two 3D models
[HSKK01] (for details see Section 3.1.2). In a different approach, Osada et al. dis-
cuss a method to compute shape histograms called shape distributions that also allow
for comparing 3D shapes [OFCD02]. Their method can also deal with partially er-
roneous geometries which is very advantageous when dealing with arbitrary shapes.
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Funkhouser et al. use a shape descriptor based on spherical harmonics [FMK+03].
Although it cannot be used for object reconstruction, it can be used to determine the
distance between two shapes and has the advantage of being orientation invariant.

A problem for such shape matching algorithms arises when comparing connected and
non-connected shapes. Methods that compute different abstractions for similar shapes—
one with connected components (e. g., topologically equivalent to one sphere) and one
with logically separate components (e. g., topologically equivalent to many spheres)—
are not well suited for shape comparison. Instead, the algorithms should provide the
same abstraction for both type of objects.

7.2.2 Shape Matching with Edge Based Skeletons

In order to compute the similarity of two shapes, skeletons as discussed in this disserta-
tion can be employed. Both internal and external skeletons are graphs. These can be
used for comparing shapes instead of using their geometry for this purpose. Unfortu-
nately, there is no known polynomial time algorithm for the graph isomorphy problem.
However, skeleton graphs are usually not very large structures. In addition, they can
be pruned in order to remove less important structures.

A small empirical study of shape matching based on skeleton graphs was conducted
using internal skeletons (see details in [Bre03, BI04]). In this study, a selection of models
were compared on the basis of their internal skeletons. Using a feature vector approach
a scalar similarity value was computed. This was accomplished using a back-tracking
algorithm that tries to find the best match of the two skeleton graphs that are being
compared (see Figure 7.3). In order to simplify this search, nodes with a degree of two
whose adjacent edges were approximately co-linear were removed in a preprocessing
stage since they usually do not carry much information about the shape.

(a) Low detail model
and skeleton.

(b) High detail model
and skeleton.

(c) Skeleton comparison, com-
mon subgraph marked gray.

Figure 7.3: Comparing two similar shapes using simplified internal skeletons.

The empirical study showed that it is in fact possible to derive a similarity measure
for shapes from matching their skeletons. Figure 7.4 shows the result of comparing a
number of selected models. It can be seen that the algorithm performs quite well for
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piecewise tubular shapes. However, for compact or flat objects very similar skeletons
are computed. This means that the algorithms can match their respective skeletons
very well although the shapes may differ significantly. However, this is not a problem
of the matching algorithm but of the edge collapse based internal skeleton extraction
technique as discussed in Section 5.1.1.
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Figure 7.4: Comparison matrix for a number of example shapes. The gray value indicates the quality
of the match, black indicates a perfect match and white denotes no match at all.

Although the study has been conducted with internal skeletons, external skeletons
could just as well be used because both types of skeletons are represented as graphs.
In fact, it would be easier to use external skeleton graphs since they additionally con-
tain information about the importance of vertices in form of DoI values. This would
simplify the back-tracking search for a match because the progressive coding can be
used (Requirement 3). For this reason it is to be expected that external skeletons will
perform better than internal skeletons. Fortunately, external skeletons provide similar
graphs for connected and non-connected shapes. This is another reason why they will
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perform better than internal skeletons. However, a combination of both types can
potentially be used in order to improve the results even more.

7.2.3 Shape Matching with Silhouettes

In addition to using 3D shape abstractions in order to match 3D shapes, it is also
possible to use 2D shape abstractions, i. e., silhouettes. For example, Min, Chen, and
Funkhouser describe a method for matching hand-drawn silhouettes of shapes with
3D models [MCF02]. They note that users tend to use a fairly limited set of views
on objects when asked to sketch silhouettes. In order to compute the match of the
silhouettes with 3D models, they compute a series of traditional 2D projections of the
models and try to match them individually with the user sketches. An individual match
score is based on transformation into the frequency domain using Fourier analysis. This
technique frequently used in two-dimensional shape comparison makes the matching
process rotation invariant. The total match is combined from single ones.

In order to improve this process, real silhouettes computed from the required views of
the shapes can be used. This would create images by far more similar to the query
images. Although this has not been tested, it can be expected that this would improve
the quality of the shape matching. Similar to Min, Chen, and Funkhouser’s work
[MCF02], it can then be applied to silhouette based shape database queries. These are
more flexible and more user-friendly than keyword based searches. The search in shape
databases as a potential application will be examined in the following section.

7.2.4 Model Database Search Using Silhouettes or Skeletons

Shape matching techniques based on shape abstractions such as skeletons and silhou-
ettes can be employed in a shape database search. For example, the multi-resolution
Reeb graph based shape matching technique by Hilaga et al. [HSKK01] has been
applied in a 3D object retrieval system by Chen and Ouhyoung [CO02] as previ-
ously mentioned in Section 3.1.2. Funkhouser et al. introduce a different system
in [FMK+03]: the Princeton 3D Model Search Engine [RG03]. In addition to
well-known annotation based keyword search the system can use both—the query by
2D silhouettes and the query by a shape descriptor as described in Section 7.2.2.

In both cases it is important what interface is presented to the user. For the 3D search
it would be possible to allow the user to “sketch” a model using a known modeling tool.
However, since this is a very technical interface it would be much too complicated for
most users. Thus, the authors use the 3D sketching interface Teddy as introduced by
Igarashi, Matsuoka, and Tanaka [IMT99] (see Figure 7.5). It lets the user specify
a shape from which the system computes a shape descriptor to query the database.

The silhouette based interface is easy to use as well. The user sketches the silhouette
from up to three views on the model (see Figure 7.6). These sketches can be directly
applied for querying the database.
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Figure 7.5: Searching for a model of Nefertiti’s bust by sketching the silhouette using the Princeton
3D Model Search Engine [RG03].

In both mentioned types of search queries, the concepts introduced in this dissertation
can be employed. Potential applications include, for example, the use of external
skeletons for a 3D based shape query. The fast silhouette algorithm, on the other hand,
can be used for searching in a database by the shape of projections of the stored models.
In fact, a combined version also seems to be possible: the user would sketch the shape
using a system similar to Teddy [IMT99]. From this 3D sketch both a silhouette and
a 3D representation can be computed for searching the database.

In contrast to the shape manipulation and shape description applications for essential
shape representations that were discussed so far, additional potential for applications of
ESRs lies in using the extracted structures for the creation of renditions. In particular,
the following section will examine non-photorealistic depictions created using ESRs.

7.3 Non-Photorealistic Rendering

The previously discussed shape manipulation and shape matching applications are the
primary area where skeletons are used. However, this is not the case for silhouettes.
Non-photorealistic rendering is certainly the main application for silhouette rendering.
Nevertheless, skeletons can also be used in this domain. The following sections discuss
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7.3 Non-Photorealistic Rendering

Figure 7.6: Searching for a model of Nefertiti’s bust by sketching the shape using the Princeton
3D Model Search Engine [RG03].

possible applications of not only silhouettes but also skeletons as non-photorealistic ren-
dering techniques. Within the framework of the unifying system OpenNPAR within
which the techniques discussed in this dissertation have been implemented (see Ap-
pendix B), new application domains for silhouettes and skeletons have emerged, some
of which will be described as well.

7.3.1 Silhouettes and Skeletons in Non-Photorealistic
Techniques

A very obvious application for silhouette generation is to use them in non-photorealistic
rendering by applying line styles to the generated strokes. In addition, combinations
of silhouettes and skeletons promise to allow for new and interesting ways of creating
non-photorealistic renditions. Some of these techniques will be outlined below.

Interactive Silhouette Line Rendering

The self-evident application for fast silhouette algorithms (a silhouette detection me-
thod using preprocessing combined with the hybrid visibility culling technique), as
noted above, is the creation of interactive silhouette line renditions. They can be used,
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for example, for the creation of medical or technical illustrations or for comic style ren-
dering. In particular, in application domains such as CAD and architectural design it
is advantageous to use stylized line drawings instead of photorealistic renditions when
presenting designs to customers as a study has shown [SPR+94, SSRL96].

In all of these cases it is beneficial to be able to render the images with interactive frame
rates using, for example, the algorithm presented in Chapter 6 (see, e. g., Figure 7.7).
The possibility for interaction with renditions reduces the limitations for designers who
create non-photorealistic visualizations. This means that they can easily experiment
with certain views and parameterizations which would hardly be possible with off-line
rendering. However, the interactivity poses new problems to the rendering algorithms.
In particular, frame coherency has to be maintained, especially when using line styles.
Some of the attempts to maintain a good frame coherency in computer-generated sil-
houette line animations have been introduced in Section 6.4.4, others are discussed by
Hertzmann and Zorin [HZ00] or Kalnins et al. [KDMF03].

Figure 7.7: Example application created with the OpenNPAR library that demonstrates interactive
line rendering.

External Skeletons as Feature Lines

One problem with silhouette line drawings generated using object-space methods is
that only the actual silhouettes are found by the silhouette detection algorithm itself.
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However, line drawings usually also include lines other than the silhouette—commonly
referred to as feature lines (also see Section 6.1).

Typically, the feature lines for line renditions generated from polygonal models are
detected using the angle between two adjacent faces and comparing it to a user-defined
threshold. Although this works well for models with sharp edges where feature lines
ought to appear, it fails when the models have rounded corners. In such cases the
feature lines can be computed using external skeletons and an appropriate DoI function
(see example in Figure 7.8 where the maxima of κ1 and the minima of κ2 have been
used in separate runs). This allows one to find local extrema for rounded corners of
models as well as those at sharp edges. The algorithm may be modified in order to limit
local extrema where their value is below a certain threshold which avoids insignificant
feature lines.

(a) (b) (c) (d)

Figure 7.8: Comparison of using sharp angles between adjacent faces ((a) and (c)) and prototypically
external skeletons ((b) and (d)) for computing feature lines of mostly smooth objects.
The insignificant feature lines of the external skeleton have not been pruned yet in this
example.

Improvement of Interactive Line Rendering Through Skeletons

One observation that can be made about silhouette line rendering is that it is not very
efficient for objects that are far away from the viewer. Such objects typically do not
contribute much to a rendition in terms of space covered. However, the computational
cost is not different from objects close to the viewer. In addition, many very short
strokes are produced that usually only results in an “ink blot” when line stylization is
applied (see Figure 7.9 on the left).

In such cases it is possible to use a skeleton instead of the silhouette to represent
distant objects [HIR+03]. This not only has the advantage that the number of lines
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Figure 7.9: Comparison of rendering silhouette drawings with skeleton drawings for different dis-
tances of an object. Created in collaboration with Nick Halper.

to be drawn is typically reduced. Also, the computational cost is much smaller since
the skeleton only has to be computed once in contrast to a silhouette that has to be
recomputed for every frame. Internal curve based skeletons can easily be employed for
this purpose as demonstrated in Figure 7.9. It might also be possible to use external
skeletons. This, however, has not yet been tested.

There are also other applications of skeletons within non-photorealistic rendering. For
example, internal skeletons can be used to create hatching lines [DHR+99]. In a similar
way, external skeletons could be used to guide the creation of hatching lines on the
surface of polygonal meshes.

7.3.2 Stroke Manipulation Based Example Applications

One common property of silhouettes as well as skeletons is that both are lines or curves
extracted from a mesh and can be represented as strokes. The major advantage of
representing line data as strokes (as opposed to as accentuated pixels in a pixel image)
is that it is still available as analytic data, i. e., as a vector graphic. Thus, a pipeline
approach to stroke handling facilitates easy manipulation of these strokes. This means
that a wide variety of applications that uses or manipulates stroke data is possible.
Although some divert to some degree from the main topic of the dissertation, a few
ideas will be presented below.

For example, two-dimensional distortion [Car99] can be applied to the strokes by ma-
nipulating the positions of the stroke’s vertices. This allows, among other things, the
easy creation of caricatures from 3D models. In Figure 7.10 an example for this ap-
plication is shown. Starting with the same line rendition (shown in Figure 7.10(a))
various different line drawings were generated (Figures 7.10(b)–7.10(f)), each of them
conveying a different meaning or impression. The advantage of this process is that
an artist can interactively and in the same application select an appropriate view on
the model, generate the line drawing (either using skeletons, silhouettes, or both), and
then modify the rendition using distortion creating virtually endless possibilities.
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7.3 Non-Photorealistic Rendering

(a) Un-distorted rendition. (b) Smart elephant. (c) Strong elephant.

(d) Bigfoot elephant. (e) Drinking elephant. (f) Elephant with big belly.

Figure 7.10: Examples for applying distortion to vector graphic line drawings in order to create car-
icatures. Created in collaboration with Petra Neumann and Sheelagh Carpendale.

As mentioned before, the analytic stroke data can easily be exported to a vector graph-
ics file format (e. g., the PDF file format). Those files can now be used, for example,
in illustrations. In particular, in the medical and technical domain silhouette rendi-
tions are used frequently. However, additional information about the geometric model,
the image generation process, or the artist who created this model is often lost in the
process of processing the image. Thus, such information should be stored along with
the rendition. However, storing the data in separate files or data fields is not advis-
able since it will most certainly be lost when processing the graphic in vector graphic
applications such as CorelDRAW.

Thus, algorithms for including the information directly within the vector graphic data
can be employed—so-called illustration watermarks [SIDS03]. They change the vector
graphic data in such a way that a bit sequence is embedded in the vertex sequence of the
strokes. This can happen without changing the visual appearance of the rendition (for
being able to use the graphic without noticing the additional data) or with changing
it (to create a stylized appearance). Examples for both possibilities are shown in
Figure 7.11.

Besides the creation of “pure” non-photorealistic renditions, a promising application
of silhouette renditions lies in the combination with traditional photorealistic scenes—
hybrid rendering [JI03]. However, the mere usage of silhouettes for parts of an otherwise
shaded model leads to a see through problem as seen in Figure 7.12(a) and 7.12(b). Since
some objects are represented only by their silhouette other objects can be seen through
them. This can be avoided by adding additional non-photorealistic shading to those
objects. In addition, this enhances the non-photorealistic character of the appearance
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7 Applications and Case Study

//oo

Figure 7.11: The silhouette is used to embed data with (on the right) or without (on the left)
recognizable changes of the graphic. Other sources for 2D vector graphics are possible
as well. Created in collaboration with Henry Sonnet.

of modified objects. Using dark silhouettes on a white or bright non-photorealistic
shading, for example, conveys the impression and metaphor of drawing on a piece of
paper (see Figures 7.12(c) and 7.12(d)).

The non-photorealistic component in these hybrid images can be used as an additional
presentation variable. It is used to guide the viewer’s attention to specific parts of
interest. By adding animation in terms of continuously blending the silhouette compo-
nent in and out this effect can be enhanced to make it even stronger (see examples in
Figures 7.13 and 7.14 where some frames of such an animation are shown).

7.3.3 Combination with Alternative Stroke Generation

In addition to silhouettes, feature lines, and internal as well as external skeletons there
are other techniques that are frequently used in non-photorealistic rendering. One of
the most important of these is the usage of hatching. Hatching lines are strokes on
the surface of an object that usually run almost parallel to each other (see examples in
Figure 7.15). Sometimes, two or more sets of hatching lines are generated at a certain
angle to each other (see example in Figure 7.16).

Since hatching lines are strokes most of the techniques described previously can be
applied to hatching lines as well. For example, the hatching strokes have to be generated
only once as a preprocessing step. For interaction with the model, using a newly
developed hatching technique it could be demonstrated that the fast hybrid hidden
line removal technique that was introduced in Section 6.4 can be applied to hatching
strokes as well in order to remove the invisible subset [ZISS04] (this has been done
in Figure 7.15). In addition to the possibility to generate new types of high quality
illustrations, this primarily facilitates the creation of interactive illustrations. As other
potential examples, illustration watermarks or distortion could easily be applied to
hatching lines as well if a modular type of stroke handling is used.
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(a) (b) (c) (d)

Figure 7.12: When the shading of an object is exchanged with a line-based NPR technique, the
photorealistically rendered remainder of the model is seen in the background (a) and
(b), which is very distracting for many applications. Shading can be used to enhance
the appearance of the line-based NPR style. This avoids that hidden surfaces are
shining through the non-photorealistically rendered parts of the models. Created in
collaboration with Roland Jesse and Bernd Nettelbeck.

Figure 7.13: Snapshots of an animation pointing out specific parts of an anatomical example. The
bones Os cuneiformie I, Os metatarsale I, Phalanx proximalis I, and Phalanx distalis I
are emphasized in order to visualize their functionality. Created in collaboration with
Roland Jesse and Bernd Nettelbeck.

Figure 7.14: Snapshots of an engine model. The tubes of the engine’s cooling system are gradually
emphasized by being rendered in a line shaped silhouette style. The style changes
reflect the possible utilization of the single tubes and their interplay with the cooling
aggregate located ad the bottom right side. Created in collaboration with Roland Jesse
and Bernd Nettelbeck.
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Figure 7.15: Hatching lines are another class of non-photorealistic rendering primitives which allow
the generation of illustrations (combined with silhouettes in these examples). Created
in collaboration with Johannes Zander and Stefan Schlechtweg.

Figure 7.16: Rendition of the same model using single hatching (left) and triple hatching (right).
Created in collaboration with Johannes Zander and Stefan Schlechtweg.

7.4 Summary

By the examples as well as exemplary tools and applications discussed in this chapter
it could be demonstrated that it is possible to apply the concepts introduced in this
dissertation in many areas. Potential application domains range from shape operations
to non-photorealistic rendering.

It was discussed how external skeletons can be used for mesh decimation, a task very
common in geometry processing. In addition, the application of skeletons and silhou-
ettes in the domain of shape matching and model database queries was suggested.

It could also be demonstrated that both skeletons and silhouettes can be represented
similarly as strokes. That way it is possible to process them all using the similar
techniques. Important in this context is the modular character of the stroke based
algorithms. This allows, for example, the easy combination of stroke modules. Stroke
manipulation and visualization can be used without modifications with silhouettes,
skeletons, and other stroke sources such as hatching lines. This facilitates the creation
of many different non-photorealistic rendering techniques.
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Chapter 8

Concluding Considerations

In this dissertation the topic of how to extract the essence of shape was examined. In
particular, algorithms for the application to piecewise linear three-dimensional bound-
ary representations (i. e., polygonal meshes) were explored.

Proposition 1:
Capturing the essence of shapes of three-dimensional models is very important in many
applications in various domains. In most cases the essential shape information is used
for distinguishing between significant and insignificant aspects of the geometry which in
turn can be used in a number of different ways.

Among the example applications given in this dissertation are (progressive) shape stor-
age, (networked) shape transmission, lossy and lossless shape compression, feature-
driven shape resampling, as well as shape matching and shape database search. In
addition, it has been demonstrated that essential shape information is relevant even
in areas such as non-photorealistic rendering. The importance of detecting essential
shape information is also demonstrated by the great variety of algorithms that try to
solve this problem.

Proposition 2:
Previously presented methods for shape abstraction or feature extraction do capture the
essence of shape. However, they are very specific in their potential application and,
consequently, very numerous and seemingly disjoint.

The review of techniques in Chapter 3 demonstrates that there is indeed a great vari-
ety of algorithms for abstracting from shape or extracting features from objects. The
techniques depend on and can be classified by the type of feature that is sought (e. g.,
curves or surfaces), the dimension of the object (i. e., mainly two-dimensional or three-
dimensional objects), and the type of shape representation (i. e., discrete or analytic,
volumetric data or boundary representations, etc.). However, even the features ex-
tracted by one group of algorithms can be very diverse. Therefore, it is difficult to
use the same algorithm in different application domains. This was one of the main
problems that is being solved by the techniques presented in this dissertation.

8.1 Summary

The discussion of the essence of shape started with the definition of the concept of
essential shape representations in Chapter 2.



8 Concluding Considerations

Proposition 3:
The concept of an essential shape representation (ESR) can be used for capturing the
essence of shape in three-dimensional objects.

For ESRs, a number of requirements that were derived from the potential application
areas were given. These requirements were used later on to evaluate ESRs reviewed in
Chapter 3 and the newly developed external skeleton.

As one of the major properties of ESRs, it was argued that ESR scheme and ESR
criterion should not be one unit. Otherwise the algorithm would be restricted to one
specific problem in one application domain.

Proposition 4:
The specific ESR scheme has to be independent from the choice of ESR criterion in
order to allow for maximum flexibility in applications.

The separation of scheme and criterion makes it possible to freely exchange the ESR
criterion in order to adapt the algorithm to the application. This allows the use of a
broader range of features and is not restricted to, e. g., angles between adjacent faces.
In addition, different ESR schemes are possible and can be used with the same criterion.
This is useful in cases where the criterion accurately captures the essence but an ESR
scheme has to be found that efficiently operates on the specific shape representation.

It was discussed that it is not possible to exactly say what is important and what is
not because this depends on the specific application.

Proposition 5:
It cannot be a priori defined what the essence of a shape is given just a geometric model
because what is considered to be important varies between applications. ESR criteria
can be specified in order to characterize essence of shape for a specific application.

The use of ESR criteria has the advantage in that it can now be specified what is
important for a specific application. For polygonal objects, so-called degree of interest
(DoI) functions that are used to compute the importance of a vertex, edge, or face
for the shape of the mesh were developed. Arbitrary geometric and non-geometric
DoI functions are possible. In Chapter 4 a variety of DoI functions was conceived
and examined. The discussion of DoI functions focused on geometric functions. In
particular, functions that are based on the local first and second principal curvature
κ1 and κ2 that were approximated for the polygonal mesh were derived.

These DoI functions can now be used to determine curves on the surface of objects
that characterize the essence of the their shape.

Proposition 6:
An ESR criterion determines a network of extreme ridges on the surface of an object.
These extreme ridges characterize the location that carries the essential shape informa-
tion.

These extreme ridges have to be identified. This requires a complete traversal of the
mesh. In order to avoid visiting certain areas of the mesh twice, a wave propagation
algorithm was proposed in Chapter 5. The wave propagation is initiated by local
(unrestricted) maxima of the chosen DoI function.
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8.1 Summary

Proposition 7:
A wave propagation algorithm can be used for identifying the network of extreme ridges
in the surface of a mesh. The resulting structure is an essential shape representation
and is called external skeleton of the mesh.

The wave propagation technique not only serves as a means for traversing the mesh
but also yields wavefronts approximately perpendicular to the sought extreme ridges.
Thus, the extreme ridges can easily be located by searching for restricted local maxima
of the DoI function on the wavefronts. These are finally connected across wavefronts
yielding the graph of extreme ridges—the external skeleton.

In Chapter 6 a topic was approached that appears not to be connected to external
skeletons at first sight—the computation of silhouettes. However, it was demonstrated
that in fact silhouettes are essential shape representations as well.

Proposition 8:
The essential shape representation concept also has other potential applications above
and beyond feature detection. For example, both external skeletons (i. e., feature lines)
and silhouettes can be considered to be essential shape representations.

However, it was argued that although the wave propagation based algorithm for exter-
nal skeletons can also be applied to the computation of silhouettes this is not the ideal
way. Instead, silhouettes are usually used in interactive or real-time rendering so that
the algorithm has to allow for at least interactivity.

Proposition 9:
Algorithms for computing silhouettes will typically differ from those for external skele-
tons due to the different requirements of their respective main applications.

In fact, from the example of silhouettes and external skeletons it can be inferred that
different algorithms are necessary for working with dynamic DoIs (e. g., the silhouette
property) than are for static DoIs (the ones used for computing the external skeleton).

Proposition 10:
In general, dynamic criteria need different algorithms compared to those used with static
criteria in order to facilitate interactive or real-time applications.

In order to allow for efficient silhouette computation, a comprehensive survey was con-
ducted to identify the group of algorithms for silhouette detection that can be applied
to interactive, stylized rendering. In addition, it was concluded that detecting the sil-
houettes is not enough for generating appropriate renditions. Instead, the visibility of
silhouettes has to be determined as well.

Therefore, a method was developed for visibility culling of silhouettes. This algorithm
takes the special properties of silhouette edges into account, i. e., that they are—
visually—located at the border between object and background. The main advantage
of this algorithm is that it usually does not require the computation of additional in-
formation because it makes use of the z-buffer. In addition, a set of artifact removal
techniques that reduces the artifacts of silhouettes strokes that are caused by the polyg-
onal mesh of the objects was conceived.
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8 Concluding Considerations

Chapter 7 gave an overview of potential application areas for the algorithms devel-
oped in the dissertation. Three major domains were discussed in this context: pro-
gressive coding of shape information, shape matching and database search, and non-
photorealistic rendering. For each of these, a number of applications was discussed
and some of them demonstrated with examples. This diverse selection of application
examples also nicely supports Proposition 1.

8.2 Criticism

As has been shown not only in the case study chapter, the wave propagation based
algorithm works well for feature detection when applied to meshes that have a fine
and balanced tessellation. This is caused by the fact that the wave propagation ideally
needs geodesic wave movement on the surface.

Proposition 11:
The wave propagation algorithm works well on balanced and finely tessellated meshes.

Unfortunately, this geodesic wave movement cannot fully be guaranteed by a polygo-
nal surface. However, balanced tessellations provide a good basis for approximately
geodesic wave movement even on polygonal meshes.

The algorithm works well with those models that inherently have such a balanced tessel-
lation. For example, models derived from three-dimensional object scanning typically
contain many small triangles of about the same size. In addition, such models often are
very large and have to be pre-processed in order to reduce the amount of polygons they
use. In this domain the wave propagation based external skeleton extraction would
perform very well. Unfortunately, this could not be confirmed in practice due to the
lack of appropriate model data.

A problem when working with the external skeleton algorithm consists in finding good
values for the thresholds t2D and t1D in order to capture what can be considered to
be the major aspects of shape is often tedious. Thresholds that work well for one
model may not necessarily work well for a different one. Automatic ways to derive the
threshold values would be desirable.

8.3 Future Work

In addition to the ideas for solving some of the problems discussed above there are also
some major directions for continuing the work presented in this theses. These will be
presented below.

The problem mentioned in Proposition 11 that a balanced tessellation is necessary
for optimal performance of the algorithm can be overcome by applying a remeshing
algorithm to the models prior to external skeleton extraction. For example, Hormann,
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8.3 Future Work

Labsik, and Greiner suggest an algorithm that can generate a balanced tessellation
[HLG01]. Alternatively, the method presented by Alliez, Meyer, and Desbrun
could be used [AMD02].

Moreover, remeshing could also be applied depending on the chosen DoI function. In
contrast to the balanced tessellation created proposed to be used above, a remeshing
algorithm could also be parameterized so that it generates higher tessellations at inter-
esting portions of the surface an lower tessellations at dull parts. This in turn would
cause the wave propagation to move slower in the interesting part creating a more
detailed skeleton there. In uninteresting sections, on the other hand, the wave fronts
would move slower and generate less detailed skeletons.

Even better than using remeshing for generating balanced tessellations would be to
use a geodesic way of wave movement on the surface. The algorithm would then be
independent from the actual tessellation of the mesh which would make the results
more stable.

The polygonal nature of the meshes used for silhouette extraction also poses some
problems for silhouette computation in that rendering artifacts are produced (e. g., zig-
zags). The artifact removal techniques introduced in Section 6.4.4 help to remove these
artifacts but cannot eliminate them in all cases. Thus, using the silhouette detection
algorithm that generates sub-polygon silhouettes may help avoiding the artifacts in-
stead of removing them afterwards. Hence, it should be examined in the future how
this affects the performance of the whole algorithm.

In addition, a case study to determine which of the developed DoI functions works best
for computing an external skeleton should also be conducted in the future. This study
could judge the DoI functions according to, among others, the type of model they are
applied to (e. g., technical or medical models) or the application the external skeleton
extraction is applied to.
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ment intégrable ou d’une foncion numérique [On the Singular Points of a
Completely Integrable Pfaff Form or of a Numerical Function]. Comptes
Randus Acad. Sciences Paris, 222:847–849, 1946.

[RG03] Princeton Shape Retrieval and Analysis Group. Princeton 3D Model
Search Engine. Web site, August 2003. http://shape.cs.princeton.

edu/search.html.
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[ZSD+00] Denis Zorin, Peter Schröder, Tony DeRose, Leif P. Kobbelt, Adi Levin,
and Wim Sweldens, editors. Subdivision for Modeling and Animation,
volume 23 of SIGGRAPH 2000 Course Notes. ACM SIGGRAPH, 2000.

[ZT99] Yong Zhou and Arthur W. Tonga. Efficient Skeletonization of Volumetric
Objects. IEEE Transactions on Visualization and Computer Graphics,
5(3):196–209, July–September 1999.

175

http://www.springer.de/cgi/svcat/search_book.pl?isbn=3540588086
http://www.digimation.com/models/
http://link.springer-ny.com/link/service/journals/00371/bibs/0016001/00160015.htm
http://link.springer-ny.com/link/service/journals/00371/bibs/0016001/00160015.htm
http://www.inria.fr/rrrt/rr-3250.html
http://www.inria.fr/rrrt/rr-3250.html
http://dx.doi.org/10.1016/0010-4485(95)96801-R
http://dx.doi.org/10.1016/0010-4485(95)96801-R
http://www.accad.ohio-state.edu/~lwade/pubs/WadeDiss.pdf
http://www.accad.ohio-state.edu/~lwade/pubs/WadeDiss.pdf
http://www.eg.org/EG/CGF/volume20/issue3/cgf531.html
http://www.eg.org/EG/CGF/volume20/issue3/cgf531.html
http://www.ieee-tmi.org/IEEE/vol_19_no_4.htm
http://www.ieee-tmi.org/IEEE/vol_19_no_4.htm
http://www.computer.org/proceedings/ca/0683/06830164abs.htm
http://www.computer.org/proceedings/ca/0683/06830164abs.htm
http://link.springer.de/link/service/journals/00371/bibs/2018002/20180097.htm
http://link.springer.de/link/service/journals/00371/bibs/2018002/20180097.htm
http://mrl.nyu.edu/publications/subdiv-course2000/
http://www.computer.org/tvcg/tg1999/v0196abs.htm
http://www.computer.org/tvcg/tg1999/v0196abs.htm




List of Figures

1.1 “The Bull.” Part of the lithography series by Picasso. From [Lév91]. . 1

3.1 Example Voronoi diagram in 2D for a small set of points. . . . . . . . . 18
3.2 Deriving the medial axis of a shape. The medial axis is denoted by the

dotted line. From [Blu67]. . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Examples for medial axes of shapes. The medial axes are denoted by

the dotted lines. From [Blu67]. . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Medial axes of polygonal shapes in 2D. Some of the maximal balls are

shown together with their respective centers. . . . . . . . . . . . . . . . 20
3.5 Comparison of medial axes of different polygonal approximations of an

ellipse and the exact ellipse. . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 The straight skeleton of a concave polygon. Note that there are no

curved parts in the skeleton. From [AAAG95b]. . . . . . . . . . . . . . 23
3.7 Example for the medial axis of a three-dimensional shape. . . . . . . . 23
3.8 Deriving a Reeb graph of a torus. . . . . . . . . . . . . . . . . . . . . . 25
3.9 Deriving a Multi-resolution Reeb Graph. From [HSKK01]. . . . . . . . 25
3.10 Color-coded geodesic distance for two similar objects used for multi-

resolution Reeb graph shape matching. From [HSKK01]. . . . . . . . . 26
3.11 Using an extended Reeb graph for shape compression. From [BMS00]. . 27
3.12 Original shape and selected results (using ARCEL, HILDI, and PAVLI)

from Lee, Lam, and Suen’s survey of skeletonization algorithms. From
[LLS93]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.13 Example for computing the skeleton from the volumetric data set of a
brain. From [ZT99]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.14 Influence of the threshold t on the generated internal skeleton using
Selle’s algorithm. From [SPSP02]. . . . . . . . . . . . . . . . . . . . . 31

3.15 Using skeletonization to determine which parts of the liver are supplied
by which branch of the portal vein. From [SPSP02]. . . . . . . . . . . . 31

3.16 Removal of artifacts in the skeleton at bifurcations. From [HSEP00]. . . 32
3.17 Visualization of the skeleton using frusta. From [HSEP00]. . . . . . . . 32
3.18 Shapes and their skeletons as computed by Teichmann and Teller.

From [TT98]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.19 Constructing the skeleton using Wade and Parent’s algorithm. From

[Wad00]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.20 Edge collapse operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 36



List of Figures

3.21 Example for successive edge collapse operations resulting in the skele-
tonization of the polygonal approximation of a cylinder. . . . . . . . . . 37

3.22 Model of a bicycle and the skeleton that was extracted from it using
successive edge collapse operations. . . . . . . . . . . . . . . . . . . . . 37

3.23 Example for the application of the skeleton extraction algorithm in non-
photorealistic rendering. From [DHR+99]. . . . . . . . . . . . . . . . . 38

3.24 Computing internal skeletons using RBFs and snakes. From [MWO03]. 40

3.25 Examples for the approach based on radial basis functions and snakes
for skeleton extraction. The red spheres denote the maxima clusters
and the green spheres the location of the snakes after minimizing their
energy. Courtesy of Wan-Chun Ma, from [MWO03]. . . . . . . . . . . 40

3.26 Computing a skeleton from a point cloud. From [VL97a]. . . . . . . . . 41

3.27 Examples for skeleton extraction from point sets. From [VL97b]. . . . . 41

3.28 Deriving an external skeleton as presented by Rössl, Kobbelt, and
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Implementations

The following table contains a list of tools that were implemented in connection with
this dissertation. In all implementations the programming language C++ was used.

Tool Author Description

OpenNPAR gen-
eral framework

Nick Halper,
Tobias Isenberg,
Felix Ritter

General framework of the Open-
NPAR system, based upon Open In-
ventor (Section B).

OpenNPAR sil-
houette rendering

Tobias Isenberg Brute-force and preprocessing silhou-
ette detection (Section 6.3.3) and visi-
bility culling (Section 6.4).

OpenNPAR
shape processing

Tobias Isenberg E. g., Winged Edge, subdivision, and
mesh decimation (e. g., Section 7.1.2).

OpenNPAR ske-
leton extraction

Tobias Isenberg Internal (Section 3.3.2) and external
(Chapter 5) skeleton extraction.

OpenNPAR ske-
leton comparison

Angela Brennecke,
(Laborpraktikum)

Heuristic for the comparison of shapes
using their internal skeleton graphs.

OpenNPAR
stroke pipeline
and rendering

Tobias Isenberg,
Nick Halper,
Angela Brennecke

Stroke manipulation and rendering
tools for visualizing the output of many
algorithms (Sections B.2 and 7.3.2).

OpenNPAR hy-
brid rendering

Bernd Nettelbeck
(Diplomarbeit),
Tobias Isenberg,
Roland Jesse

Combination of photorealistic and non-
photorealistic renditions in interactive
visualizations (Section 7.3.2).

OpenNPAR line
output and illu-
stration water-
marks

Henry Sonnet,
Tobias Isenberg

Vector graphic output of strokes and
embedding of additional information in
data (Section 7.3.2).

OpenNPAR line
distortion

Petra Neumann,
SheelaghCarpendale,
Tobias Isenberg

Distortion for interactively creating
caricatures of strokes (Section 7.3.2).

OpenNPAR
high quality lines

Johannes Zander
(Praktikum)

Generation of hatching lines based on
a curvature flow field (Section 7.3.2).

Table A.1: List of implementations created in connection with this dissertation.
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Appendix B

A Unifying Implementation:
OpenNPAR

In order to integrate the two aspects of essence of shape algorithms—external skele-
ton extraction and visible silhouette stroke computation—into one system they have
both been implemented within the OpenNPAR framework.1 OpenNPAR has origi-
nally been designed to facilitate the easy creation of non-photorealistic animations and
renditions [HIR+03, Hal03]. It is based on Open Inventor and adds modules for
non-photorealistic rendering. These modules can be integrated into the Open Inven-
tor scene graph which enables an easy combination of different modules to implement
various non-photorealistic algorithms. These are provided as a library and can be used
in various applications (see, e. g., Figure 7.7 on page 148).

The framework provides essential tools necessary not only for extracting silhouettes
but also for finding external and internal skeletons. Most important among these tools
are a data structure for geometric meshes that provides local information in constant
time as well as a stroke handling for assembling, exporting, and displaying strokes.
This, in turn, allows for stroke manipulation that can be used in additional application
scenarios of silhouettes and skeletons. These aspects and some application scenarios
will be discussed in this section.

B.1 Winged Edge Data Structure

The Winged Edge data structure for polygonal geometric models was originally intro-
duced by Baumgart in 1975 [Bau75]. It is based on a list of all edges in the shape
and local connectivity information for every edge. The details of the data structure
have been outlined earlier in Section 5.3.2.2

However, the important property of the Winged Edge which makes it ideal for both
external skeletons and silhouette extraction is that local information can be found in
O(1) or O(k). For example, it is possible to find the next edge clockwise around a face
by just locating this information in the edge’s locally stored adjacency information (see
Figure 5.16). As a second example, it is possible to identify all k edges attached to a
vertex by just looking into the vertex’ edge ring (see Figure 5.15).

1 For additional images, videos, publications, and demo programs see the OpenNPAR Website at
http://www.opennpar.org/.

2 For a more detailed discussion on the efficient implementation of a Winged Edge data structure
see [Gla91].
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B A Unifying Implementation: OpenNPAR

This fast access to local information is essential for external skeletons and silhouette
extraction.3 In the first case—the extraction of external skeletons—it is necessary
to simulate the Huygens’ principle in order to propagate wavefronts on the surface
of the mesh. This requires, for example, finding edges attached to a vertex. Also
the progressive meshes algorithm that is used in topology preservation for external
skeletons or even for the extraction of internal skeletons requires the fast identification
of edges, faces, and vertices attached to one edge. The algorithm for extraction of visible
silhouette strokes needs to identify neighboring silhouette edges in order to concatenate
them to silhouette strokes. This is essential for stroke based rendering because isolated
silhouette edges of dense meshes are too short for a pleasing visualization, e. g., using
textures and other stylization.

In general, any mesh data structure that can provide the required local connectivity
information could be used for efficient skeleton extraction and silhouette detection.
However, mesh data structures, such as the very common indexed vertex list, that are
efficient for traditional photorealistic rendering should not be used since they cannot
provide the connectivity information in constant time. Instead, mesh data structures
such as the OpenMesh can be employed [BSBK02] that also provide fast access to local
connectivity information.

The Winged Edge data structure can represent arbitrary meshes, i. e., it is not limited to
triangle meshes. However, most polygonal meshes in contemporary computer graphics
are based on triangles. Thus, data structures other than the Winged Edge may be
more efficient, especially in terms of memory consumption [ZSD+00, page 107].

B.2 Stylization and Visualizing Strokes

OpenNPAR provides means for displaying the strokes generated by either skeleton ex-
traction or silhouette detection. This is accomplished by a stroke pipeline that stylizes,
texturizes, and finally renders the strokes, mostly for non-photorealistic visualization.
Modules are provided that can, for example,

• remove artifacts such as zig-zags, short stroke segments, and sharp angles (as
part of the hybrid visibility culling discussed in Section 6.4.4),

• subdivide the stroke to allow for more detailed stylization,

• transform the stroke into a Bézier curve for achieving a smoother appearance,

• add regular or randomized perturbations (such as sine waves),

• change the thickness of strokes (using a constant a size or depth cueing),

3 For other operations on geometric meshes such as (adaptive) subdivision and edge collapse based
algorithms local connectivity information is essential, too.
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B.2 Stylization and Visualizing Strokes

• add textures for simulating certain drawing tools (e. g., pen, chalk, charcoal, pen-
cil, watercolor, oil paint, etc.; see examples for a number of line styles in Fig-
ure B.1 and example renditions shown in Figure B.2; also see examples previously
shown in Figure 6.21 on page 134), and

• output the strokes as vector graphics (for example, as PDF files).

These modules can be individually activated, parameterized, and arranged in the stroke
pipeline in order to achieve the desired output.

Figure B.1: Examples for textures assigned to strokes to simulate certain drawing tools such as pen,
charcoal, oil paint, pencil, watercolor, and others as well as sine wave perturbations.

Figure B.2 illustrates the different appearances that can be achieved by changing the
parameterization of the non-photorealistic rendition. The parameterization used in the
example includes

• the line style (in particular the texture),

• whether or not a shaded model is displayed,

• whether or not visibility culling was applied to the lines,

• the color of the lines, and

• the color of the background.

The use of different textures can simulate various drawing tools known from traditional
art (e. g., Figures B.2(b), B.2(c), B.2(d), and B.2(e)). It can also create styles that are
not possible with traditional drawing tools (for example, Figure B.2(f)). In addition,
the texture can also simulate a path variation of a drawing tool, e. g., to simulate
a sketchy style as shown in Figure B.2(g). By using silhouettes without visibility
culling the appearance of a technical drawing can be achieved such as in Figures B.2(h)
and B.2(j). Figures B.2(i) and B.2(j) demonstrate that by omitting the traditional
shading of the object the non-photorealistic character of the rendition can be increased.
Finally, using a white line style on a black background can create the appearance of a
drawing on a black board as depicted in Figures B.2(k) and B.2(l). Interestingly enough,
the same texture is used for creating both the charcoal drawing (e. g., in Figure B.2(b))
and the chalk rendition (e. g., in Figure B.2(l)).
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(a) Model without silhouettes. (b) Lines in charcoal style. (c) Lines in ink style.

(d) Lines in oilpaint style. (e) Lines in watercolor style. (f) Lines in van Gogh style.

(g) Lines in zigzag pen style. (h) Silhouettes without visibility
culling.

(i) Silhouettes without shaded
model.

(j) Silhouettes without shaded
model and without visibility
culling.

(k) Shaded model with lines in
chalk style on black back-
ground.

(l) Lines in chalk style on black
background without shaded
model.

Figure B.2: Examples for different line styles applied to the same model, with or without additional
shading, with or without visibility culling of the silhouettes, and on white as well as
black backgrounds.
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