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Abstract
A way to create effective stylized line drawings is to draw strokes that start and stop at visible portions along
the silhouette of an object to be portrayed. In computer graphics to date, algorithms to extract silhouette edges
are many, although putting these edges into a form such that stylized strokes may be applied to them has not
been greatly covered, so that existing methods are either time-consuming or presented vaguely. In this paper,
we introduce an algorithm that takes a set of silhouette edges originating from polygonal meshes and efficiently
computes the visible parts of the edges before connecting them to form long smooth silhouette strokes to which
stylization algorithms may be effectively applied. Features of our algorithm that gain efficiency and accuracy over
existing methods is that we directly exploit the analytic connectivity information of the mesh in combination with
the available z-buffer information during rendering, and filter artifacts in connected edges during the process to
improve the visual quality of strokes after stylization.

Categories and Subject Descriptors(according to ACM CCS):
I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Hidden line/surface removal

1. Introduction

Line drawings have been an important part in the area of
artistic expression and scientific visualization (see, for ex-
ample, HODGES9) for a long time. In particular, silhouette
drawings allow artistic expression even with a very limited
number of strokes. One can also emphasize specific parts of
an image, such as by using stylized lines, in order to focus
the viewer’s attention17, 20. Although there has been consid-
erable research in the area of computer-generated line draw-
ings there is still a lot to be done in order to create stylized
line drawings for interactive or even real-time applications.

In order to successfully apply styles across silhouettes, the
silhouettes of a scene must be presented to a line stylization
algorithm as a series of connected line segments. In this
way, stylizations applied to a silhouette of an object to be
drawn start and stop at visible portions (those that are not
occluded by other parts of the scene) along the silhouette,
which simulates long smooth strokes that an artist may have
drawn. In addition, the importance of determining visible

line segments becomes apparent when we consider that line
styles may apply perturbations to the original line. This then
allows lines to be rendered to the scene without depth testing
because the perturbations may overlap or cross over other
objects (such as thicker lines or path variations).

For clarity, we define those edges that mark the border
between front-facing and back-facing polygons assilhouette
edgesand the visible parts thereof asvisible silhouette seg-
ments. Since the visibility test used in this paper can be ap-
plied to silhouette edges and certain feature edge lines, visi-
ble silhouette segments may also comprise those visible por-
tions of edges that are tagged as sharp (often called creases
or valley and ridge lines), so we do not distinguish between
these. Connected visible silhouette segments formsilhouette
strokes. A silhouetteapplies to the union of visible silhou-
ette segments specific to an object or the scene. Note that a
silhouette can also include inner lines (those that would not
show up in an objects shadow) as opposed to a contour (that
traces an object’s shadow).
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In this paper we introduce a new approach to determine
which portions of silhouette edges are visible based on a
z-buffer4 lookup, and manipulating the resulting set of sil-
houette segments to produce a set of silhouette strokes that
are adapted for a stylization algorithm in such a manner that
they can be rendered ’on top’ of a scene. We begin by high-
lighting the major contributions of the paper:

• a fast and robust image-precision hidden line removal al-
gorithm adapted for silhouette edges that scan-converts
edges and tests against depth information available in the
z-buffer, requiring no additional rendering of the scene
such as an ID-buffer,

• the retainment of local edge connectivity information
from silhouette segment computation for efficient con-
catenation into silhouette strokes,

• the adaptation of silhouette strokes for stylization algo-
rithms to increase visual quality by filtering artifacts, and

• the combined computation time of our algorithm allows
for interactive frame-rates.

Section 2 covers related work in the area of silhouette render-
ing. In Section 3 we describe the silhouette stroke generation
algorithm in detail. The performance and the yielded results
of the work presented is examined in Section 4. Section 5
draws a conclusion from the discussion of the algorithm and
in Section 6 we evaluate directions of future work in the area.

2. Related Work

For our work we require that we have found silhouette edges.
A number of techniques are able to be used for this pur-
pose. EFRAT et al.5 discuss the computational bounds for
silhouette computation. However, they impose tight restric-
tions on the objects they consider (only convex polytopes)
and the movement of the viewpoint (only a straight line or
an algebraic curve). MARKOSIAN et al.11, 10 use a random-
ized approach that is fast but does not guarantee to find all
silhouette edges. BENICHOU and ELBER2, GOOCH et al.6,
HERTZMANN and ZORIN8, SANDER et al.18 as well as POP

et al.15 use pre-computation for optimized silhouette edge
extraction, although this is only applicable to objects that
do not change form, requiring re-computation whenever an
object’s shape is altered. BUCHANAN and SOUSA3 compute
silhouette edges by use of an edge-buffer that optimizes with
respect to cache hits. Any of these techniques can be used
for generating silhouette edges as the input our algorithm.
For a survey of silhouette extraction algorithms see HERTZ-
MANN 7.

Computerized extraction of visible silhouette segments
has been studied in detail only recently. There are two
major techniques to do this, image-based and analytic.
Image-based techniques take advantage of the image buffers
that can be generated quickly using hardware acceleration.
RASKAR, for example, renders front-facing and back-facing
polygons separately so that the back-facing polygons render

the edge lines, and the front-facing polygons occlude those
edge lines that do not form part of the silhouette16. How-
ever, because this is all happening in hardware to the image
buffer, lines cannot be stylized beyond thickness or color.

Analytic algorithms (as, for example, described by
SECHRESTand GREENBERG19) have a high computational
complexity and are not suited for interactive applications.
MARKOSIAN et al.11 use an adaption of APPEL’s algorithm
that is based on determining thequantitative invisibility(QI)
for points. The QI value might only change when one sil-
houette line crosses another one in 2D or at certain so-called
cusp vertices. Determining visible parts requires clipping of
silhouette edges against others and severalray teststo estab-
lish initial QI values. This technique works best for smooth
surfaces.

Silhouette strokes have been implemented in some off-
line systems that analytically generate high quality stylized
renderings (such as thedaLi! system12, 13). Only recently
techniques have been introduced for interactive renderings.
NORTHRUPand MARKOSIAN describe a hybrid approach14.
Visibility of edges is determined by searching in a refer-
ence image (ID buffer) for connected paths of edges close
together. However, their algorithm does not make use of the
analytic connectivity information that was available from the
original mesh. In contrast, the algorithm presented in this pa-
per makes direct use of the available analytic edge informa-
tion present in a winged-edge data structure1, thereby spar-
ing the computationally expensive reconstruction of connec-
tivity information by searching for near-by edges in image
space.

3. Silhouette Stroke Generation

Given an algorithm that generates all the relevant silhouette
edges, this section describes the way we determine the set
of visible silhouette segments from silhouette edges, how to
connect them to form silhouette strokes, and how to reduce
artifacts that might occur during the process.

This is broken down into four steps:

1. removing redundant silhouette edges that could cause ar-
tifacts,

2. determining visible silhouette segments (visibility test),
3. generating silhouette strokes from visible silhouette seg-

ments, and
4. removing image-plane artifacts of silhouette strokes.

Determining relevant silhouette edges can be done by using
any of the algorithms mentioned in Section 2. We are using
a brute force approach since we want to guarantee that all
silhouette edges are found and so that results can be tested
on animations. We describe the determination of visible sil-
houette segments and stroke generation (steps 2 and 3, re-
spectively) first, and then focus on the removal of artifacts
(steps 1 and 4).
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3.1. Determining Visible Silhouette Segments

From our set of silhouette edges we need to determine
which segments of those edges are visible to the viewer.
We introduce a new technique that does not require ren-
dering of an ID-buffer (such as done by NORTHRUP and
MARKOSIAN14), but makes direct use of availablez-buffer
information. Therefore, we may render the scene as normal
(or enable writing to thez-buffer only), and then use that
information for visibility testing. Thus, if we want to ren-
der the scene geometry in combination with silhouettes, we
obtain the generation ofz-depth information for free.

To determine visible silhouette segments, we take each
silhouette edge separately, and scan-convert the edges in re-
lation to thez-buffer, testing for point visibility along the
edge. In a naïve approach, to determine the visibility of a
point, one could just compute itsz-value and compare it with
the value in thez-buffer. However, the results are highly in-
stable due toz-buffer precision and pixel quantization. Since
we want to check the visibility of silhouette edges we will
often look at parts of the image buffer where many faces
are almost parallel to the viewing direction. Hence, these
faces may share the samez-buffer locations as the silhou-
ette edges, but will overwrite those locations with values
closer to the viewer. The naïve test will fail under these
circumstances, and falsely detect an edge as occluded (see
Figure 1).

To take advantage of the availability of the renderedz-
buffer, we choose to employ a more reliable point visibility
test along a silhouette edge. We adaptz-buffer silhouette ex-
traction techniques (e.g. SAITO and TAKAHASHI 17) so that
we not only look at the exact position of a point to determine
its visibility but to also look at its 8-neighborhood. If there
is any point in this 8-neighborhood where thez-buffer value
is farther away than the computedz-value of the point, we
declare it visible, and not visible otherwise (see Figure 2).

This works because silhouette edges occur in regions with
a discontinuity inz-depth. Hence, it is almost certain that
we find one of these background pixels by looking in the
8-neighborhood. Those silhouette edges that are occluded
by larger areas will not find any pixels further away, and
be correctly identified as occluded. Therefore, the numeric
instability of thez-value computation is greatly reduced.

For speeding up the process we do not need to test vis-
ibility for each pixel in the edge scan conversion. Instead,
we are able to parameterize the number of pixels that we
may skip along this process (example in Figure 2). The ad-
vantage of this is that we are able to tune a speed vs. accu-
racy trade-off for our needs. Should we find that two adja-
cent test points in the scan conversion of an edge intersect a
boundary between visible and occluded, then we subdivide
the scan-conversion process until we reach a one-pixel ac-
curacy for the location where we need to clip the edge. The
consequence of skipping pixels could be that we draw a line

through an occluder that lies in-between two visibility test
points in the scan conversion of an edge.

Additional speed-up is obtained through the optimization
of the extraction ofz-buffer values. This is done both by
caching results (eliminating re-accessing the same values)
and reading larger chunks at a time (minimizing function-
call overhead and bus-rate transfer). The size of the chunks
to read is largely dependent on the performance issues of the
hardware. On our machine it has shown to be practicable
to read chunks of eight by eight pixels at a time and store
them into the main memory. Only in cases where the image
exhibits a high density and distribution of silhouette edges
does it become profitable to read the entire area of thez-
buffer that the scene covers.

As a result we have the set of clipped silhouette edges that
are now defined as the visible silhouette segments. Next we
combine the visible silhouette segments into a set of silhou-
ette strokes.

3.2. Generating Silhouette Strokes

A silhouette stroke is a concatenation of visible silhouette
segments that pairwise share a common vertex. Therefore,
strokes terminate when there are no more segments that may
be joined by a common vertex. There are cases where more
than two visible silhouette segments share a common vertex
(e. g., think of a cusp vertex), and here we adopt the approach
that continues the stroke along the segment with the lowest
angle to it (as done by NORTHRUPand MARKOSIAN14).

To generate these strokes, we make use of a winged-edge
data structure that provides local connectivity information.
We start with an arbitrary visible silhouette segment, and
search in both directions for additional connecting visible
silhouette segments, concatenating them in each iteration.
Visible silhouette segments that do not comprise a whole
silhouette edge may either form a silhouette stroke by them-
selves (if they are located in the middle of a silhouette edge)
or may start or end a silhouette stroke (if they are at the be-
ginning or end of one silhouette edge). This is simple and ef-
ficient because the visible silhouette segments that we have
generated in the previous stages of our algorithm correspond
directly to the original mesh with the edge connectivity in-
formation intact. Thus, no additional processing, such as
rendering an edge ID buffer, is necessary to find connectiv-
ity between edges.

3.3. Artifact Removal

Since meshes do not provide perfect representations of sur-
faces and due to numerical instabilities in silhouette edge de-
tection we often get overlapping silhouette edges and small
zig-zags in image-space (of course, there might also be zig-
zags due to the local shape of an object). These have to
be removed in order to achieve good looking results when
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Figure 1: Problem with faces almost parallel to the viewing direction (indicated by the arrow). Although the z-value of the
silhouettes (indicated by dots in the left image) is 5 the value of the related pixels’ z-buffer is 2. The left image shows a cut
through the model as shown in the middle (with silhouette lines emphasized) and right part shows the resulting z-buffer image.

applying styles to strokes, as will be described in the fol-
lowing sections. The visibility-check algorithm requires that
we scan-convert edges to the rendered information in thez-
buffer, thus we may not alter the position of the edge ver-
tices prior to this process. Therefore, there are two stages in
artifact removal—one before the visibility processing of sil-
houette edges that retains the original vertices for edges, and
one after visible silhouette segments have been found that
might merge or alter vertices. The first two artifacts outlined
below are treated in the first stage, and the subsequent three
are handled after silhouette stroke generation.

Figure 2: Testing the visibility by looking at the z-buffer val-
ues of the pixel and its 8-neighborhood. Also, not every pixel
is tested (in this case every fifth pixel is examined).

Triangles With Two Visible Edges
Sometimes it happens that two silhouette edges share the
same triangle (depicted in Figure 3) such that they cause
sharp zig-zag lines when projected to the image plane. Ap-
plying a style in form of a texture to these zig-zag lines will
result in awkward artifacts, due to the edges turning back on
themselves. However, because a triangle with two silhou-
ette edges is most likely to be almost parallel to the viewing
direction, we may avoid the artifacts created by un-marking

the two formerly marked silhouette edges and marking the
remaining edge of the shared triangle instead (see Figure 3).
This gives the result that we now have one new silhouette
edge that covers the same span as the previous two, but with
the zig-zag artifact removed. However, before this artifact
reduction is applied, the orientation of the the triangle is
tested whether it is oriented parallel to the viewing direction.
Only when the angle between triangle and viewing direction
is below a certain small angle (we used≈ 3 degrees) the
marked edges are switched. This avoids unwanted effects
when both silhouette edges have to be visible (e. g., think of
a triangle facet of a cube).

Figure 3: Example for handling triangles with two silhou-
ette edges before and after the update. The arrow indicates
the viewing direction.

Silhouette Edge Clusters
Another problem also arises due to small numerical errors
and triangle surface approximation that can occur when
computing the visibility of faces that are almost parallel
to the viewing direction. In these cases one might en-
counter lots of adjacent triangles that alternate between
front-facing and back-facing, thereby creating clusters of sil-
houette edges (Figure 4 shows an example; one can find
clusters of silhouette edges, for example, at the silhouette
of cylinder-like shaped objects). This may result in many
short strokes whereas one long stroke would be favorable.
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Figure 4: Example for treating silhouette edge clusters. In
the screen-shots the upper part is visible and the lower part
is not. The triangles with all edges marked alternate from
not visible to visible. To remove the cluster, a path around it
is detected, the inner edges are removed, and the longest seg-
ment of the path between the two leaving edges is removed.
The left and right images show, respectively, the situation
before and after the update.

One way to remove these silhouette edges clusters is
to find each triangle that comprises three silhouette edges.
Next, we find the closed path of outer silhouette edges
around such groupings of triangles. We eliminate the sil-
houette edges inside the closed path loop. Now because we
have a loop, when viewed from the viewpoint, we will get
overlapping silhouette edges, so we may remove one side of
the loop in a manner so that a single connected path joins all
the silhouette edges leaving the group of triangles (as an ex-
ample, in Figure 4 we remove the path comprising the most
silhouette edges). This is achieved by detecting the longest
path (the one with the highest number of edges) between
two neighboring leaving edges. Of course, if there is only
one triangle in a triangle cluster (such as a tetrahedron with
only one side visible) this remains untouched.

Silhouette Stroke Zig-Zags
After the projection into 2D, again due to numerical insta-
bilities, there can be zig-zags in the generated strokes (see
Figure 5). We classify parts of a stroke as comprising zig-
zags for each segment that has two sharp angles formed by
its adjacent segments. If we find such a case, we replace the
visible silhouette segment by just a vertex located in the mid-
dle of this segment. This typically eliminates the zig-zag.

Figure 5: Example for removing zig-zags, left side before
and right side after the update. These zig-zags might origi-
nate from cases similar to the one displayed on the right side
of Figure 3 due to a viewing direction which was changed
just slightly in the counter-clockwise direction and minimal
numerical errors during the visibility test. These can occur
very easily because the viewing direction is almost parallel
to the triangles.

Sharp Angles
Similar problems as with zig-zag lines can arise when there

are acute angles in a stroke depending on the stroke width.
Consider Figure 6. On the left side we see that over the
length of the segment the normal of the stroke texture is
twisted by almost 90 degrees. Also, because of the high
stroke width the thickness at the vertex of the sharp angle
is much smaller than at the other end. Both effects yield an
unappealing image. Therefore, we decide to split the silhou-
ette stroke at the point of the sharp angle. This means to
stop the stroke in the vertex of the sharp angle and start a
new one there for the remainder of the former stroke. This
simulates an artist drawing one stroke, stopping, and then
drawing back over his stroke (with a thick drawing utensil).

Figure 6: Example for splitting silhouette strokes at sharp
angles. The left side shows the situation before the update
where one stroke is twisted awkwardly. On the right side,
after the update, the stroke has been split into two separate
strokes yielding a better rendering.

Short Segments
Sometimes stroke segments with screen-projection lengths
less than a few pixels are generated. We can improve the
stroke quality by merging sub-pixel and short strokes to-
gether. Note that this eliminates many sharp angles occur-
ring at the sub-pixel level that would influence the orienta-
tion changes and texturing of a stroke, whilst also acting as a
level-of-detail feature by reducing geometry (see Figure 7).

Figure 7: Example for removing short segments, left side
before and right side after the update.

4. Results

The described algorithms are implemented in C++ within
a modular non-photorealistic rendering and animation sys-
tem. All the proposed stages of the algorithm and artifact
removal techniques are implemented as modules that can be
combined with stroke stylization modules as part of the ren-
dering pipeline.
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4.1. Artifact Reduction

We found that the artifact reduction techniques discussed
in Section 3.3 improved the appearance of the final image.
The slight displacements to silhouette strokes and segments
might alter the real silhouette but do not significantly distort
the line drawing. In contrast, for the application in stylized
rendering they are necessary to yield appealing images (for
applications that rely on an exact silhouette the artifact re-
moval can be skipped). In Figure 8 we can see the local
improvements to the silhouette rendering. When no artifacts
are removed at the geometric level, the projection of zig-zags
and short segments create noticeable unwanted properties in
the line stylization as depicted in Figure 8(a). Figures 8(b)
and 8(c) show elimination of visual artifacts before and after
visible silhouette segment processing, respectively. How-
ever, only when we combine both artifact removal stages do
we get the smooth consistent outline present in Figure 8(d).

4.2. Computation Times

We provide a tuning mechanism so that we can decide upon
a trade-off between accuracy and speed (see Table 1) by pro-
viding one parameter that determines the number of pixels
we skip in the silhouette edge visibility scan conversion pro-
cess. Determining this number depends on the resolution of
the image (the higher the resolution, the more pixels we may
skip) and the geometric properties of the scene (objects that
cover small areas would require reducing the number of pix-
els we skip). The extravagance of styles may also be taken
into account (wavy lines, for instance, will overlap nearby
objects anyway). We have found that a skipping value of six
pixels has negligible visual impact for most cases.

In Tables 2 and 3 we show the computation times for var-
ious stages of the rendering pipeline for a number of objects
and polygon counts. Here we see that the major bottleneck
in the resulting frame-rate is the silhouette edge detection.
However, this can be reduced by using any of the more effi-
cient algorithms as reviewed in Section 2.

The computation times for the silhouette stroke genera-
tion is dependent on the number of 8-neighborhood tests
(i. e., number and length of silhouette edges, the pixel cov-
erage of the rendered object, and the skipping value). In
Table 2 we note that computation time across the models is
relatively constant, except for the foot model because the sil-
houette is more complex. Higher resolution representations
of models also yield higher computation times for the sil-
houette stroke generation because often silhouette edges are
very short, to which the skipping value cannot be applied.
Altering skipping values gives computation times as shown
in Table 1. The dependency of computation time for silhou-
ette strokes (including stroke segment generation) on the size
of the rendered image is demonstrated in Table 4.

The pre-visibility artifact removal sequentially processes
all silhouette edges, hence computation times are dependent

on the number of extracted silhouette edges. Post-visibility
artifact removal and stylization operate over the generated
silhouette strokes, but since strokes are comprised of seg-
ments this computation time is dependent on the number of
visible silhouette segments.

4.3. Examples

Figure 9 shows the application of different line styles to the
silhouette strokes generated from our non-photorealistic ren-
dering system. The line-styles can be modified interactively,
such as varying the line width and stroke textures. Pertur-
bation functions (such as applying a sinusoidal wave over
the strokes) are also possible, using both image-space or
object-space algorithms. Image space algorithms compute
styles based on viewport projections whereas object-space
algorithms can actually operate in three dimensions, such as
varying thickness according to depth.

5. Conclusion

In this paper we have presented an algorithm for visibility
culling of silhouette edges and generating silhouette strokes
for application in stylized rendering at interactive frame-
rates. Its input is the result of any algorithm that computes
silhouette edges from a polygonal mesh. The method in-
troduced enables us to do a fast visibility check by com-
bining analytic edge information available in the form of
a winged-edge data structure with the depth information in
the z-buffer without having to render an additional image
buffer. This also allows us to connect silhouette strokes from
only those silhouette segments that are continuous on the
object topology. The fact that this yields higher quality im-
ages becomes apparent when considering two silhouette seg-
ments that are continuous in the image plane (so that their
endpoints touch or overlap each other) but are actually dis-
joint in object space (so that they represent different parts of
the object or separate objects). Our approach would render
two distinct strokes (one for each object silhouette) whereas
former approaches that reconstruct strokes from the image
buffer only14 would draw a single stroke spanning over the
two disjoint silhouette segments. Our approach can also be
easily extended to allow multiple styles to be rendered across
the scene since we can just tag the analytic edges accord-
ingly.

A number of artifact removal techniques have been shown
that filter the silhouette strokes before they are sent to the
stroke stylization algorithm. These modified silhouettes
might differ slightly from the originally computed silhou-
ette, but will yield better images when styles are applied.

Computation times were recorded across a variety of
models for each separate stage of our algorithm, demon-
strating that interactive rates are achievable. When used
to create animations (see accompanying videos), our algo-
rithm performs well in maintaining strokes over successive
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(a) no artifact removal (b) pre-visibility artifact removal only

(c) post-visibility artifact removal only (d) all artifact removal techniques

Figure 8: Examples artifact removal. Remaining gaps are due to the applied line style.

skipping value (pixel) 1 2 3 4 5 6 7 8 9 10

time (ms) 13.1 12.1 12.0 11.7 11.5 10.8 10.4 10.7 10.5 10.6

Table 1: Computation times for the silhouette stroke generation (including stroke segment generation) depending on the skip-
ping value for the bunny model with 3608 polygons and an approximate rendered size of 295 x 223 pixels.

frames, although no explicit frame-coherent measures are
taken. Sometimes popping occurs in stroke textures due to

sudden varying lengths or start and endpoints of silhouette
strokes. This occurs most noticeably when new silhouette
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model PN SED PrVAR SSG PoVAR STY total fps

1P 2P 1P 2P 1P 2P 1P 2P 1P 2P 1P 2P 1P 2P

bunny 902 2 2 1 0 11 7 2 1 7 4 23 14 25.1 42.7
bunny 3608 7 7 1 1 11 6 3 2 7 4 29 20 21.7 32.0
bunny 14432 29 27 4 2 11 7 4 3 11 6 59 45 11.7 15.5
bunny 57728 114 108 8 6 14 9 9 5 11 6 156 134 4.8 5.8
knot 2880 4 4 1 0 12 7 2 1 6 3 25 15 24.9 42.7
knot 11520 21 21 2 1 12 7 4 2 11 6 50 37 14.3 21.4
foot 11244 24 21 8 7 22 13 15 7 35 17 104 65 7.5 10.7

Table 2: Computation times in milliseconds tested on a 450 MHz PentiumIII machine with a GeForce2MX graphics board and
256 MB RAM (1P, left columns) and a 800 MHz Dual-PentiumIII machine with a GeForce1 graphics board and 384 MB RAM
(2P, right columns), both running MS Windows 2000 (PN = polygon number, SED = silhouette edge detection, PrVAR = pre-
visibility artifact removal, SSG = silhouette stroke generation (including stroke segment generation), PoVAR = post-visibility
artifact removal, STY = stylization). The skipping value was set to six pixels and the approximate rendered size was 295 x 223
pixels. The frame-rates given are total tested rates and less than to be expected from the computation times because they also
include other activity like the standard OpenGL rendering of the model.

model PN SED PrVAR SSG PoVAR STY

1P 2P 1P 2P 1P 2P 1P 2P 1P 2P

bunny 902 8.7 14.3 4.3 0.0 47.8 50.0 8.7 7.1 30.4 28.6
bunny 3608 24.1 35.0 3.4 5.0 37.9 30.0 10.3 10.0 24.1 20.0
bunny 14432 49.2 60.0 6.8 4.4 18.6 15.6 6.8 6.7 18.6 13.3
bunny 57728 73.1 80.6 5.1 4.5 9.0 6.7 5.8 3.7 7.1 4.5
knot 2880 16.0 26.7 4.0 0.0 48.0 46.7 8.0 6.7 24.0 20.0
knot 11520 42.0 56.8 4.0 2.7 24.0 18.9 8.0 5.4 22.0 16.2
foot 11244 23.1 32.3 7.7 10.8 21.2 20.0 14.4 10.8 33.7 26.2

Table 3: Computation times in percent according to the data in Table 2 (abbreviations as in Table 2). Differences from a sum
of 100% are due to rounding errors.

size (pixel) 523 x 393 295 x 223 170 x 130 92 x 72 43 x 34

time (ms) 23.2 10.8 5.8 3.8 2.7

Table 4: Computation times for the silhouette stroke generation (including stroke segment generation) depending on the (ap-
proximate maximal) size of the rendered image for the bunny model with 3608 polygons and a skipping value of six.

segments are added to strokes in regions where the object
comprises long edges in the geometry, and when strokes are
split by occlusion from other objects. Popping artifacts are
inherent to silhouettes generated from course models and
can be improved by subdividing the model into finer tri-
angles. To handle sudden occlusion of strokes to maintain
frame-coherency would require more investigation. In prac-
tice, however, our results so far show that even with applied
perturbations to the strokes the resulting animation main-
tains a degree of frame-coherency, with only the occasional
visual artifact (such as popping lines).

Unfortunately, the algorithm sometimes does not per-
form well when trying to determine the visibility of sharp
concave feature lines. In these cases the 8-neighborhood
test often fails because most tested points in the adja-
cent faces will be closer to the viewer than the edge it-
self. However, this effect can be reduced by using a poly-
gon offset (glEnable(GL_POLYGON_OFFSET_FILL)
andglPolygonOffset() in OPENGL). Also, in cases
where two independent silhouette edges are touching or al-
most touching, such that they lie at exactly the samez-
distance from the viewer and separated from each other by

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 9: Examples for applying different line styles to the generated silhouette lines.

less than one pixel in the frame-buffer, they might not pass
the silhouette segment visibility test. The risk of this occur-
ring, however, is small.

6. Future Work

Besides the silhouette edge detection algorithm, the bottle-
neck in the silhouette stroke generation algorithm is the pro-
cess of reading of data from thez-buffer (note this bottleneck
is present only if using graphics hardware for thez-buffer
generation). Currently, we already make sure not to read
the same information twice by storing read information in
memory and testing this. However, depending on the size of
the z-buffer, the amount of information to be allocated can
be large (typically 2-4 MB). We could reduce the amount of
buffer while also optimizing memory with respect to cache
hits by clipping edges to pre-defined regions of the viewport
and processing each region in turn.

For high resolution models or sub-divided models a
grouping of lines to one bigger line and then checking the

bigger line instead could make the algorithm more resolu-
tion independent.
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