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Abstract—We present a technique for the illustrative rendering of 3D line data at interactive frame rates. We create depth-dependent
halos around lines to emphasize tight line bundles while less structured lines are de-emphasized. Moreover, the depth-dependent ha-
los combined with depth cueing via line width attenuation increase depth perception, extending techniques from sparse line rendering
to the illustrative visualization of dense line data. We demonstrate how the technique can be used, in particular, for illustrating DTI
fiber tracts but also show examples from gas and fluid flow simulations and mathematics.
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1 INTRODUCTION

Illustrative depictions play an essential role in the communica-
tion of knowledge. Traditionally, illustrators used graphic tools
such as pen-and-ink to draw—with the goal to depict, e. g., the
shapes of objects. The choice of tool was typically dictated by
the means of reproduction, usually the printing in books. There-
fore, illustrators often chose techniques that result in black-and-
white imagery, for example pen-and-ink, woodcuts, or copper
plates. Despite being limited to two “colors,” these techniques
still allowed illustrators to convey shape, material, and illumi-
nation through techniques such as stippling, hatching, or cross-
hatching. More importantly, illustrators also made use of the
fundamental illustration principles of abstraction and emphasis
to effectively communicate their intentions.

With the advance of computer support, illustrators started to
use general purpose graphics programs (e. g., Adobe’s Illustra-
tor™) to create illustrations. One reason for this tool change is
that general purpose programs, in many aspects, provide more
freedom than traditional tools. In a separate development, the
visualization community has created numerous successful tech-
niques to solve specialized visualization problems, e. g., in the
medical domain. In both cases, the availability of color process-
ing and reproduction has invited the use of shading techniques,
i. e., representing surfaces through shades of color, in contrast
to the traditional black-and-white methods.

While illustrators in their use of general purpose tools can
still apply the illustration principles of abstraction and empha-
sis, this is more difficult for automatic techniques as it is chal-
lenging to “teach” importance to an algorithm. In the areas
of non-photorealistic rendering (NPR) and illustrative visualiza-
tion, however, abstraction and emphasis techniques have been
investigated. Examples include the use of halos for simple line
rendering [2, 10] or shading [20, 33] and volume rendering [4],
the use of additional depth cueing by influencing line or shading
parameters (e. g., [10]), interactive emphasis techniques (e. g.,
[30, 37]), or focus+context techniques (e. g., [12, 35]).

In this paper we build on these previous approaches but fo-
cus on a specific subset of data—line datasets (see the example
result in Fig. 1). This type of data is generated in a number of
application domains such as medical imaging (e. g., DTI fiber
tract extraction), meteorology (e. g., particle traces in storm
data or simulations), physics (e. g., particle tracts from 3D gas
or fluid flow simulations), or astronomy (e. g., particle traces
from mass distribution simulations for galaxy formation). In all

Fig. 1. Illustrative visualization of DTI fiber tracts with depth-dependent halos.

these application areas, line data with a comparably high den-
sity of elements is generated and needs to be analyzed. This
data lends itself more to the traditional black-and-white de-
piction techniques rather than shading-based methods because
lines occupy much less space than shaded elements such as
cylindrical shapes. In addition, detail in the visualizations is
often important so that reducing the number of depicted lines
may not be a suitable approach.

To address this problem of depicting dense line datasets in
their full detail our paper makes the following contributions:
We show how to illustratively visualize dense line datasets at
interactive frame-rates using modern graphics hardware. We in-
troduce a conceptually simple technique that allows us to only
render the front layer of the data, i. e., the lines or points that
lie close to each other and closest to the viewer. These front
elements are rendered such that they do not overlap each other
but at the same time they occlude elements much further away
from the viewer. This depth-dependent halo technique empha-
sizes bundles of co-linear line segments (which are likely to be
important, see Fig. 1) and abstracts from less structured seg-
ments. Moreover, we de-emphasize elements that are farther
away to enhance depth perception, and filter the dataset for fur-
ther emphasis of important structures. We further show how the
discrete and black-and-white nature of the depicted elements
lends itself to anaglyphic stereo rendering.

The remainder of the paper is organized as follows. In Sec-
tion 2 we place our work in the context of related approaches.
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Next, we present the technical details of the approach in Sec-
tion 3. Then in Section 4, we show examples of visualizations
created with our technique for several application domains. We
conclude the paper in Section 5, where we also mention some
avenues for future work.

2 RELATED WORK

As background for our illustrative line rendering we discuss
both line visualization and illustrative rendering techniques.

2.1 Line Data Visualization

Numerous techniques exist to depict paths of particles or other
linear structures, in particular for flow visualization. For ex-
ample, people have employed (shaded) lines, tubes, or strips
(ribbons) whose color and shape can be changed depending
on data properties such as velocity, flux, or direction [26]
(e. g., Fig. 2(a)). Particularly related to our work are scalable,
self-orienting surface techniques [21, 22, 28, 29] which create
shaded, view-aligned strips to visualize 3D vector fields. In
contrast, our goal is to create high-resolution black-and-white
visualizations for dense datasets using illustration principles.

As an alternative to explicitly representing streamlines,
texture-based methods [19] such as line integral convolution [6]
provide both a global and local impression of flow data. This
technique was extended to 3D [13, 15] where, related to our
work, halos are used to increase depth perception. For a similar
purpose, halos are used in streamline-based volume visualiza-
tion [36]. Both streamlines and texture-based techniques are
employed in many other domains which rely on the visualiza-
tion of line data resulting from real or simulated linear struc-
tures or particle traces. Examples include physics (e. g., elec-
tric or magnetic field lines), chemistry (e. g., protein structures),
and meteorology (e. g., storm data).

In particular in the medical domain, line data such as tracts
of muscle or brain fibers is important. Here, fiber tracts are
estimated from diffusion weighted magnetic resonance imag-
ing (DW-MRI) [23]. The fiber tracts represent, for example,
bundles of neural axons connecting different parts of the brain.
Such fiber tracts are typically rendered as lines or tubes with
coloring or shading applied to them to enhance understanding
of spatial relationships [25, 39, 40]. The approach we present in
this paper uses illustration principles to create black-and-white
visualizations that despite being limited to two colors still con-
vey the spatial relationships of the lines.

2.2 Illustrative Visualization and Rendering

In a number of line-based scientific visualization techniques,
people make use of illustration principles. For instance, Joshi
et al. [16] employ techniques that enhance the boundary or sil-
houette to accentuate internal features in visualizations of hur-
ricanes. Similar contour enhancing techniques have also been
investigated for flow data [31] or medical volume data [5, 9].
Related to illustrative visualization is non-photorealistic render-
ing (NPR), where lines have been used as a means to illustrate
surfaces (e. g., [14, 38]) but are usually placed onto surfaces
during rendering rather than being the original carrier of the de-
picted data or shape. Such techniques have been applied, e. g.,
to medical volume visualization [8, 24, 34] as well as rendering

of fiber and vessel structures [18, 27]. In the latter examples,
line rendering is used to enhance and supplement traditional
techniques that are based on larger cylindric structures.

Techniques that enhance depth perception are important
specifically in line rendering and have been introduced to NPR
in its early days. Such techniques include the use of visibility
information [1, 17] as well as the use of halos [2, 10], the illus-
tration method we also use in our own work. Halos, however,
can not only be used in line rendering but have been applied
in more traditional visualization techniques based, e. g., on line
integral convolution [15] or volume rendering [4] to enhance
depth perception. Related to these approaches as well as to our
own are techniques that make use of depth buffer manipulations
to enhance the depth perception in the created images. Note-
worthy in this respect are, in particular, depth buffer unsharp
masking [20], depth cueing in molecular visualization [33], and
pen-and-ink tree rendering using depth discontinuities [7]. In
contrast to these techniques, our approach extends similar illus-
trative rendering principles to the domain of dense line or point
data which are rendered without shading and which, thus, rely
even more on cues to indicate depth relations.

3 ILLUSTRATIVE 3D LINE RENDERING

Based on the previously discussed techniques to visualize line
data, we combine these with principles of halo-based non-
photorealistic rendering of lines. We focus on datasets where
dense sets of lines are important, for example, DTI fiber tracts
or particle traces in physical simulations. In this section we
first give a general motivation and overview of the technique
and then discuss its realization in detail. Next, we show how
the technique is extended to point clouds, present a number of
visual enhancements, and address data filtering.

3.1 General Motivation and Technique Overview

The rendering of line data requires, in particular, that the depth
relation of the lines is clearly depicted. As discussed in the pre-
vious section, shaded cylindrical representations were tradition-
ally employed for this purpose. This approach has a number
of limitations. Due to the use of shading, each line needs to
have a certain minimum width in order for viewers to be able
to discriminate each individual line’s orientation and location
in space (Fig. 2(a)). This limits the number of lines that can
simultaneously be depicted and also hinders the visualization
of natural line bundles if each line is to be visible individually.
An alternative approach would be to use simple black lines on
a white background (Fig. 2(b)). On the one hand, a higher num-
ber of data elements can potentially be depicted because lines
can easily be packed more tightly. Moreover, it also becomes
more feasible to use such illustrations in print, because these do
not require shading and thus do not rely on halftoning. On the
other hand, this introduces a lot of visual clutter into the image
and results in large regions of black being shown. Thus, it is
no longer possible to distinguish foreground from background
lines, which also means that the depth relation is lost.

To address these issues and to be able to use the advantages
from both techniques, we employ line halos as previously used
in line rendering [2, 10]. Since we are dealing with dense



(a) Traditional tubes with shading. (b) Plain line rendering.

(c) All lines with halos. (d) Lines with illustrative halos.

Fig. 2. Comparison of rendering techniques for line datasets.

datasets of lines, simply adding a halo to each line is not suf-
ficient (Fig. 2(c)). Instead, we present a technique that adds
halos to all lines, but these halos are only rendered if the lines
are sufficiently separated in depth (Fig. 2(d)). This causes the
halos of lines that lie in front of others to occlude lines further
away. If lines have the same distance to the viewer, however,
they do not occlude one another. This depth-dependent halo
reduces visual clutter, emphasizes line bundles by visually clus-
tering them, and depicts depth relations as in previous halo tech-
niques [2, 4, 10], resulting in an effective illustration.

The general approach is to use view-aligned triangle strips.
Each strip represents one of the lines and always faces the
viewer (similar to billboards). Strips are textured so that the
center is black, representing the line, and the perimeter is white
to create the halo. In addition, each strip is bent away from the
viewer as shown in Fig. 3(a). This way the part of the strip that
is not black prohibits parts of other lines to be drawn that are
close in image space but further away from the viewer in depth.
This approach is related to the ε-z-buffering used in point-based
rendering [3, 11] that uses fragment-dependent depth correc-
tions to determine the visibility of splats in a two-pass process.
Our approach, however, makes use of fragment depth manipu-
lations in a single rendering pass to directly render lines that
are close together without overlapping halos, similar to Tarini
et al.’s depth-aware contour lines [33].

In practice, our approach for rendering 3D lines is a two-
stage process. In the first stage we transform the lines into
view-oriented triangle strips, while in the second stage we ma-
nipulate the shape of the strip and texture it. These two stages
are mapped to the two stages in modern GPU processing: ver-
tex shading and fragment shading.

3.2 View-Oriented Triangle Strips

Our goal is to display the line data as view-aligned strips that
represent both the line itself as well as the halo around it. There-
fore, before sending data to the GPU, we organize our input
lines in the CPU as sequences of 3D vertices. To be able to later
render the lines as triangle strips on the GPU, we create zero-
width line strips on the CPU by duplicating each vertex but re-
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Fig. 3. Schematic depiction of the rendering of the creation of depth-dependent
halos for large depth discontinuities: (a) projected view of the depth displacement,
(b) view of a line (black) being crossed by a perpendicular line (red) creating a
halo. The fat parts are the actually rendered line pixels, the thin lines illustrate the
z-buffer manipulation.

taining the vertex locations. On the GPU, this strip needs to be
widened by extending it perpendicular both to the viewing di-
rection and the line direction so that it is always oriented to face
the viewer. We derive the direction of the line locally at each of
the vertices by taking the normalized average direction of both
line segments adjacent to the vertex (or one segment for start
and end of each line). This step occurs before the vertices are
duplicated, and the direction is copied to the new vertex when
the duplication is carried out. As a final pre-processing step,
each of the vertices is assigned texture coordinates (u, v). For
this purpose, the u-coordinate is interpolated along the length
of the line, while the v-coordinate is set to 1 for the “left” side
of the strip and to 0 for its “right” side. As a result, each vertex
now has a position, texture coordinates, and a direction. This in-
formation in the form of zero-width triangle strips is transferred
to the GPU as vertex buffer objects.

During the GPU rendering stage (once for each rendering
pass), the strip is widened and view-aligned. For this purpose
we extend the zero-width strip into a direction that is perpendic-
ular to both the direction of the line D and the view direction V.
Thus, we compute the cross-product between V and D, normal-
ize the resulting vector, and move a vertex along this direction if
v = 1 and in opposite direction if v = 0. Hence, the new vertex
position pout is calculated as:

pout = pin +‖V×D‖(v−0.5)wstrip, (1)

where pin is the input vertex position and wstrip is the strip width.
The result is that the strip always faces the viewer, and the cen-
terline of the strip is located along the original line.

3.3 Fragment Texturing and Depth Displacement
The next step in the process is to assign either black or white to
the individual pixels of the line strip so that both line and halo
are created, but without the halo obstructing nearby lines. This
occurs in the fragment shader after the previously created line
strip has been rasterized. We first determine the distance (s) to
the center of the strip for each fragment, again using the texture
coordinates:

s = wstrip|v−0.5|. (2)

If this distance s is smaller than half the line width (wline), the
fragment’s output color is set to black and its depth value is
left untouched. Otherwise, the fragment’s output color is set to



Fig. 4. Illustration of how the line halos change depending on the distance of the
lines with respect to each other.

white and its depth is adjusted depending on the distance from
the strip’s center (Fig. 3(a)):

dnew = dold +dmax fdisplacement(2|v−0.5|). (3)

Here, dnew is the fragment’s new depth, dold is the its old depth,
dmax is the maximum displacement, and fdisplacement is a func-
tion that maps a scalar value x ∈ [0,1] to [0,1], representing the
specific shape of depth displacement. A simple linear function
has proven to be suitable, and we use fdisplacement(x) = x for all
our examples (except Fig. 15).

The effect of this depth displacement of fragments is illus-
trated in Fig. 3(b) where one line (black) is rendered on top of
another one (red). Because depth testing is enabled, parts of
the red crossing line are obscured by white fragments of the tri-
angle strip belonging to the black foreground line. The visual
effect is a halo around the black foreground line.

If the red line in Fig. 3(b) were to move further back, the
width of the halo would increase until the difference in depth be-
tween both lines is larger than dmax, after which the halo width
remains constant. Moving the background line toward the fore-
ground line, in contrast, would decrease the halo width until the
halo completely disappears. This happens if the background
line is closer to the foreground line than fdisplacement(0.5wline).
This effect is illustrated in Fig. 4 in which a series of vertical
lines of decreasing distance to the viewer are rendered with re-
spect to a horizontal line. Notice how the changing halo widths
enhance the depth perception in this case.

3.4 Visual Enhancements
So far the technique correctly represents haloed lines that do not
occlude each other if they lie close together. For an individual
line that lies clearly in front of a bundle of other lines this has
the effect of showing the rectangular strip—visible, in particu-
lar, at the line ends (Fig. 5(a))—which can be distracting. We
improve the visual appearance of the lines by tapering (grad-
ually narrowing line ends, Fig. 5(b)). We place a stencil tex-
ture over the strip to be checked in the fragment shader which
only lets fragments pass that are inside the mask. To make the
amount of tapering independent from the line length, the u tex-
ture coordinate is, in fact, interpolated non-linearly along each
triangle strip. For the first ntapered vertices the u-coordinate is
linearly interpolated between 0 and ttapered, assuming they are
approximately equidistant. Similarly, the last ntapered vertices
are mapped to u-values between 1− ttapered and 1. We use
ntapered = 2 and ttapered = 0.2.

One important aspect of 3D data visualization is to correctly
display spatial relationships. While the depth-dependent halo
rendering already supports depth perception (Fig. 6(a)), we fur-
ther enhance this effect using depth cueing by adjusting the line

(a) (b)

Fig. 5. Comparing rendering (a) without and (b) with tapering.

(a) (b)

Fig. 6. Rendering (a) without and (b) with additional depth cueing.

width [10]. The perspective projection that we use already in-
troduces some foreshortening of the line strips with growing
distance from the viewer. We further emphasize this effect by
manipulating the portion of the strip that is rendered as line, re-
ducing it the further away a line section lies from the viewer
(Fig. 6(b)). This is realized in the fragment shader by modi-
fying wline with respect to the current fragment’s z-value. The
degree of depth cueing can be adjusted w.r.t. the desired effect.

Finally, the visual quality of a line rendering depends to
a large degree on the way the resulting image is represented.
While using vector graphics could be advisable for the line ren-
derings we are producing, we can also achieve similar results
by rendering high-resolution 1-bit black-and-white images as
used throughout the paper. For on-screen rendering we either
use a gradual transition from black to white in the fragment
shader or employ full-scene anti-aliasing (FSAA). For exam-
ple, Coverage Sampling Anti-Aliasing (CSAA) can be enabled
to produce higher-quality images with less sampling artifacts.

3.5 Filtering

As another means of illustrative abstraction (in addition to se-
lecting a subset of lines through a ROI) we filter the data to
remove selected parts, e. g., low velocity streamlines or fiber
tracts in areas with low fractional anisotropy (FA). For this pur-
pose we assign an extra scalar attribute to each vertex of the
data based on which the filtering will occur. This filtering at-
tribute is passed onto the GPU and replicated for each fragment
in the rasterization stage. The fragment shader then compares
each fragment’s filtering attribute with a pre-determined thresh-
old and discards fragments that do not pass this test. The thresh-
old can now be changed at run-time and permits an interactive
selection of the amount of filtering that is to occur.

Unfortunately, this process re-introduces the problem of the
rectangular shape of line ends discussed in Section 3.4. To ad-
dress it, we change the process of halo masking when filtering
is enabled. Instead of using the actual interpolated u texture co-
ordinate we derive a new u-value from the interpolated filtering
attribute and the currently active threshold such that the ends of
the filtered lines are tapered. Limitations are that this assumes
the filter attribute changes gradually and that it does not result

http://developer.nvidia.com/object/coverage-sampled-aa.html


(a) (b) (c)

Fig. 7. Three example stages of filtering, using the fractional anisotropy (FA) value
of a DTI fiber tract dataset. With the growing filtering threshold for FA, more of the
internal structure of the dataset is revealed.

Fig. 8. Anaglyphic stereo visualization of DTI fiber tracts. For use with red-cyan or
red-green glasses (red on the left eye).

in the same visual quality as before.
The scalar attribute used for filtering needs to be meaningful

with respect to the specific dataset. For example, for DTI fiber
tract data we use fractional anisotropy, which is a measure for
the amount of directionality in the data (Fig. 7). Since this value
is defined based on a volume representation, it is interpolated
for each vertex in the pre-processing stage based on the vertex’
location in the volume.

3.6 Anaglyphic 3D Rendering

The three-dimensionality of the data is one important aspect
that needs to be visualized, even beyond the support of halos.
In regular rendering for visualization this is achieved through
regular shading, potentially combined with special techniques
such as depth buffer unsharp masking [20] or ambient occlusion
[33]. Alternatively, stereo rendering and projection can be used,
i. e., computing separate images for each of the viewer’s eyes.
The black-and-white character of our visualization technique
does not permit using shading-based techniques, but lends it-
self to stereo rendering without requiring complicated projec-
tion setups: anaglyphic rendering. For this purpose we render
the scene from two different viewpoints, color these red and
cyan, and overlay them on top of each other for use with red-
cyan glasses (Fig. 8).

The illustrative line rendering technique lends itself, in partic-
ular, to this stereo vision technique because it is monochrome
and the discrete elements (lines and points) allow the human
visual system to make an easy association between related ele-
ments. The halos around lines and line bundles enhance this ef-
fect because it makes the separation of individual elements that
belong to each other easier. In addition to anaglyphic render-

(a) Emphasis of dense bundles. (b) Abstraction for non-aligned lines.

Fig. 9. Illustration principles at work. Detail regions from Fig. 1.

ing, we also applied the technique to passive stereo rendering
using polarized light, resulting in a comparable experience but
without the small color artifacts caused by the red-cyan glasses.

4 DISCUSSION

After having described the illustrative line rendering technique
and its implementation in detail, we now discuss some appli-
cation aspects. In particular, we address how depth-attenuated
halos incorporate the illustration principles of abstraction and
emphasis, how specific visual results can be achieved, and how
the technique can be applied to a number of application scenar-
ios and input data types.

4.1 Illustration Principles in Depth-Attenuated Halos

Our illustrative rendering technique for lines has the effect that
no or only small halos are created between lines that form con-
centrated bundles (Fig. 9(a)). This effect emphasizes line bun-
dles visually, through larger dark regions or tightly packed co-
linear lines and through separation from the background. This
emphasis may make the individual lines less distinguishable,
but supports and highlights the importance and the coherency
of such dense line bundles. Lines that do not form concentrated
bundles (which are less aligned), in contrast, are visually de-
emphasized and abstracted (Fig. 9(b)): For crossing lines that
are not at the same distance from the viewer many halos are
generated, splitting these lines up into smaller segments. These
emphasis and abstraction effects are enhanced further through
the usage of additional depth cueing via line width attenuation,
emphasizing front parts and de-emphasizing distant parts of the
scene. These methods allow us to refrain from using any light-
ing while still illustrating spatial relations.

The illustrative line rendering technique using depth-
attenuated halos has the additional effect that lines behind tight
bundles are visually separated due to the halo that is rendered
around the bundle. Thus, the technique renders the line data
as implicit layers that are visually separated from each other
through their halos. Occlusion situations are clearly visible
through the halos surrounding the front line bundles, leading to
a visual depth clustering similar to the halos in [33]. Moreover,
this effect also means that for bundles or other co-linear lines
only the front-most layer of lines are displayed in the resulting
images—visible, in particular, in videos, during interactive ma-
nipulation, or when viewing anaglyphic stereo images (Fig. 8).
Therefore, despite the fact that no surfaces exist explicitly in the
data, the rendering has the interesting effect that surfaces that
implicitly exist in the data by means of densely packed bundles
are visually noticeable.



(a) Full dataset. (b) Filtered dataset.

Fig. 10. Fiber tracts from diffusion tensor imaging (DTI). Notice the visual bundling
and depth clustering in (b).

Fig. 11. Simulated air flow in an office.

4.2 Case Studies of Application Scenarios

To illustrate the applicability of our technique we now discuss
a number of case studies from a variety of domains.

4.2.1 DTI Fiber Tracts

Nerve fiber tracts extracted from diffusion tensor imaging
(DTI) give an indication of how actual bundles of axons connect
different parts of the brain. Depending on the resolution of the
underlying MRI scan, a large number of fibers can be extracted.
In our example in Fig. 10, 150 352 tracts with 1 625 472 vertices
in total were extracted using the program Diffusion Toolkit,
the small average vertex number per tract resulting from many
short tracts. Because of such large dataset sizes, fibers are diffi-
cult to visualize with traditional techniques due to performance,
rendering technique (shaded cylinders need a certain amount of
space), and overview/occlusion issues. Hence, usually subsets
of the fiber tracts are selected and visualized. Our illustrative
line rendering technique can easily render whole datasets at in-
teractive rates but also suffers from overview/occlusion issues
(Fig. 10(a)). Thus, we also select subsets (e. g., Fig. 1 and 8,
where the ROI is a sagittal slice) and/or use filtering to cope
with this type of data (e. g., Fig. 7 and 10(b)). Nevertheless, our
technique is able to display all fibers in a subset so that no auto-
mated data reduction technique is necessary that would cluster
several lines into single ones. With our technique it is possible
to visually distinguish single fibers from smaller or larger fiber
bundles rather than requiring algorithmic support for this task.

Fig. 12. Two views of a selection of simulated water flow streamlines.

(a) (b)

Fig. 13. Illustrative rendering of streamlines in a heat-driven cavity visualized with
a low (a) and a higher (b) value for dmax, resulting in two different ways of depicting
the sheets.

Fig. 14. Visualizations of simple mathematical shapes from knot theory.

4.2.2 Simulated Flows of Fluids or Gases

Another domain where line data is generated is the simulation
of fluids or gases. For example, we used VTK’s “office” ex-
ample dataset and extracted 786 streamlines from it using VTK
(Fig. 11). The visualization in Fig. 11 shows where the simu-
lated air flow is focused and where it branches off, highlight-
ing concentrated bundles of air movement. Fig. 12 shows two
views of a similar simulation of water flow using 1 400 stream-
lines and 2 603 605 vertices in total. Here, the twisted flow of
the water in a number of vortices is illustrated, while focused
flow is still emphasized. The combination of these illustrative
effects gives the illustrations a vividly three-dimensional ap-
pearance. Fig. 13 shows streamlines in a heat-driven cavity.
These visualizations show that some groups of streamlines vi-
sually form sheet-like structures and that the depiction of ‘sheet-
ness’ can be influenced by choosing dmax smaller (Fig. 13(a)) or
larger (Fig. 13(b)). The presence of these sheets of lines makes
this dataset of lines ideal for our technique.

4.2.3 Mathematical Shapes

As a last example, Fig. 14 shows a selection of much simpler
and less dense datasets from knot theory. This illustrates that
our method can also handle simple shapes with similar results
as in previous work [10].

4.3 Parametrization

A good set of parameters depends to a certain degree on the
specific dataset. For the illustrations in this paper we chose



(a) fdisplacement(x) = x2 (b) fdisplacement(x) =
√

x

Fig. 15. The effect of using nonlinear displacement functions.

Table 1. Performance measurements, sorted by dataset size.

Fig. Lines Vertices Anagl. Frame rate
1 11 306 260 836 no 123fps
8 11 306 260 836 yes 65fps

11 786 278 849 no 290fps
10(a) 150 352 1 625 472 no 24fps
12 1 400 2 603 605 no 43fps

wline and wstrip such that wline is 4–8 times as large as wstrip, for
point data the factor was 8–27. The size of wline also depends on
the specific data and needs to be smaller for datasets with more
elements. The maximum displacement, dmax, is set to 0.01 for
all illustrations in this paper. Setting dmax to zero has the effect
of giving all lines a halo, potentially blocking other lines, see
Fig. 2(c). In general, once a good setup for these parameters is
found for a given dataset, they do not need to be changed for
interactive exploration and filtering or when visualizing lines
resulting from a different ROI.

Unless otherwise indicated, we always use the same linear
displacement function fdisplacement(x) = x. Changing this func-
tion can easily be accomplished by adapting the function in the
shader or by using a non-linear gray-ramp texture. The result-
ing visual effect differs to some degree from previously shown
images as shown in Fig. 15 and can be used to achieve the im-
pression of more or less densely packed bundles. For example,
using fdisplacement(x) = x2 results in less emphasis for the bun-
dles but more individual lines being visible (Fig. 15(a)), while
fdisplacement(x) =

√
x has the opposite effect (Fig. 15(b)).

4.4 Performance and Limitations of the Technique

In Table 1 we give average frame rates for a selection of
datasets. The measurements were taken on a 3GHz Intel Core2
Extreme with 4GB RAM, running Windows Vista, and using an
NVIDIA GeForce 8800 GTX graphics card. The rendering per-
formance for both lines and points is determined mainly by the
number of lines, the number of vertices, the size of the dataset
on the screen, and the size of the strips or quads. For the mea-
surements, we maximized each visualization on the 812 × 600
pixel rendering window and then measured the average speed
for animating a rotation, with vertical sync disabled and without
anti-aliasing or filtering. The offline pre-processing to extract
streamlines from 3D vector data took in the order of several
seconds to several minutes and was done with VTK.

Besides the obvious limit in the number of lines and vertices
that the technique can handle as just indicated by the perfor-
mance data, there are two aspects that are of further importance.
One is that, while the technique works well when the data ele-

ments inherently form a surface or closely bundled structures,
it performs not as well for datasets with less structured but still
dense elements. For example, if a volume were to be filled
with a dense set of random lines, the technique would not cre-
ate meaningful visualizations. The second limitation is that
the technique performs best for visualizing the outer layer of
closely bundled elements. While filtering does allow to look at
subsets of the data, it still does not allow to look beyond the
surface of the visible structures. Transparency based on a given
parameter cannot easily be added because this would require
sorting based on individual line segments which would greatly
diminish the technique’s performance and, thus, its suitability
to large and dense line datasets.

5 CONCLUSION

We have presented a technique for illustrative visualization of
dense line datasets. We create depth-attenuated halos around
lines that do not overlap each other if the lines are close in depth,
but do occlude lines located further away in depth. This has
the effect of emphasizing tightly bundled line structures and ab-
stracting from less organized regions in the data. An additional
important illustrative effect is the resulting visual depth clus-
tering of visually connected regions. The visually connected
regions portray surfaces implicitly existing in the dataset due
to its inherent structure. These illustrative rendering techniques
are augmented by traditional interaction and line rendering tech-
niques such as filtering and depth cueing. While supporting the
rendering at interactive to real-time frame rates depending on
the size of the dataset, the technique is also capable of produc-
ing high-quality black-and-white renderings so that the results
can easily be used in printed materials.

An informal evaluation with domain experts revealed that our
visualizations are successful in illustrating brain fiber structures,
showing detail, emphasizing fiber bundles, and depicting spa-
tial relationships. While these results are encouraging, we need
to continue our evaluation and explore both a richer collection
of data sources (i. e., other than DTI) and evaluate the technique
in the other domains for which we have created visualizations.
In particular, one of the requests in the informal evaluation was
to provide additional context for the line rendering, which was
recently realized by Svetachov et al. [32].

Additional future work includes, for example, adapting the
process of turning lines into view-oriented triangle strips which
consists of a data duplication part that unnecessarily uses too
much memory. This can be avoided by using modern graphics
cards extensions such as geometry shaders or the instanced ar-
rays extension. The visual appearance could also be improved
by exploring alpha-blending, for instance guided by the filter-
ing process. By employing line style rendering techniques such
as used in [38] it may even be possible to maintain the black-
and-white character necessary for high-quality print output.
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