
Chapter 3
Halftoning and Stippling

Oliver Deussen and Tobias Isenberg

This is an author-prepared version of the book chapter published by Springer as part of the book
“Image and Video based Artistic Stylisation,” edited by Paul Rosin and John Collomosse. It can
found online at doi: 10.1007/978-1-4471-4519-6_3 . The text of this version is virtually identical
to the published one. Notice, however, that many of the images contained in the publisher’s online
version are of such insufficient quality that they do not support the discussion in the text. The
images contained in this author-prepared version are the correct ones and have sufficient quality.

Abstract One important origin of non-photorealistic computer graphics comes from
printing technology. Halftoning is a reproduction technique for photography in
printing. The continuous tones of the images are represented by fulltone dots of
varying size, shape and density. While printing technology brought this to perfec-
tion over time, computer graphics researchers developed methods that modified this
process for artistic purposes. For purposes of halftoning, dots are distributed in
repetitive patterns. Stippling, an artistic illustration technique, distributes them in
a random but expressive way. Illustrators aim at representing tone and texture of
an object by such patterns. Interestingly, the distributions can be described mathe-
matically and a simple optimization scheme allows computers to imitate the artistic
process quite well. The method can be extended towards distributing other shapes.
In this case the optimization is extended to move and rotate the objects. This allows
users not only to create other forms of illustrations but also to generate mosaics.

3.1 Halftoning

Shortly after photography was invented, images became part of printed newspapers
and books. William Fox Talbot, one of the inventors of photography, already men-
tioned an etching method (intaglio printing) for processing photographic screens
which was commercialized in the 1880s.

Georg Meisenbach, a German inventor, developed and patented a halftone pro-
cess on the basis of sets of parallel lines that were superimposed with the input

Oliver Deussen
Dept. of Computer and Information Science, University of Konstanz, Germany
e-mail: oliver.deussen@uni-konstanz.de

Tobias Isenberg
INRIA Saclay, Orsay, France
e-mail: tobias@isenberg.cc

1

http://dx.doi.org/10.1007/978-1-4471-4519-6_3

2 Oliver Deussen and Tobias Isenberg

(a) (b) (c)

(d) (e)

Fig. 3.1 Reproducing a photograph by multiple line patterns. (a) First line screen; (b) second line
screen; (c) resulting screening pattern; (d) Input Image: Rosemary Ratcliff / FreeDigitalPhotos.net;
(e) resulting halftoning pattern.

photograph. He created his pattern by engraving lines in glass and darkened them
using asphalt. Two or more such line patterns were superimposed and worked as a
filter for the input image that divided it into dots of varying size (see Figure 3.1).

3.1.1 Digital Halftoning

In digital halftoning, the screening process is implemented by representing the input
image by electronically generated dots. Companies such as Linotype in the 1970s
developed film recorders where the film was electronically illuminated dot by dot
using precision optics.

3 Halftoning and Stippling 3

(a) (b)

Fig. 3.2 (a) Quantization with fixed threshold; (b) threshold is varied randomly.

When fully digital printing was invented for laser printers, halftoning meant to
convert grayscale images into black and white pixels, that were directly realized by
printers.

3.1.2 Threshold Quantization

The easiest way to convert a given grayscale image into black and white pixels is to
use a threshold, typically half of the highest intensity. Doing so, the resulting image
shows large black and white areas (cf. Figure 3.2(a)). A random variation of the
threshold avoids such large areas but introduces noise (Figure 3.2(b)).

Each decision if a pixel is represented in white or in black introduces a visual
error. If the threshold is randomly varied, this error statistically averages and the
overall image appears in the right tonal values. However, the noise remains and thus
better techniques were developed.

Floyd and Steinberg [3] invented error diffusion for halftoning. When represent-
ing a pixel in white or black, the error in grayscale is determined and diffused to the
neighbor pixels. The simplest case is one-dimensional (cf. Algorithm 3.1), here a
line of pixels is processed left to right and the error is diffused to the right neighbor.

In Figure 3.3(a) the result of one-dimensional Floyd Steinberg quantization is
shown. Vertical patterns appear since for every line almost the same error is dis-
tributed leading to almost the same patterns in every line. The two-dimensional
variant of the algorithm (see Algorithm 3.2) avoids such patterns since here the er-

4 Oliver Deussen and Tobias Isenberg

Algorithm 3.1 One-dimensional Error Diffusion

Input: A grayscale image
Output: An image of black and white pixels approximating the input

for y := height to 0 step 1 {
for x := 0 to width-1 step 1 {

if (input[x, y] > 127)
K := 255;

else
K := 0;

error := input[x,y] – K;
input[x+1, y] := input[x+1, y] + error;

}
}

ror is not just distributed to the right neighbor but to the local neighborhood of the
pixel.

Here four pixels around the current pixel are updated. The error is distributed
with individual weights that were found by experiments. Figure 3.3(b) shows the
improvement in the visual output.

Many other halftoning techniques have been developed. Screening techniques
imitate Meisenbach’s superposition of an image with a repeating structure of varying
width. A dither kernel (a small matrix of threshold values) that is repeatedly placed

(a) (b)

Fig. 3.3 Floyd Steinberg quantization: a) in the one-dimensional version vertical patterns appear;
b) the two-dimensional variant avoids this.

3 Halftoning and Stippling 5

Algorithm 3.2 Floyd Steinberg Error Diffusion

Input: A grayscale image
Output: An image of black and white pixels approximating the input

for y := height to 0 step 1 {
for x := 0 to width-1 step 1 {

if (input[x, y] > 127)
K := 255;

else
K := 0;

error := input[x, y] – K;
input[x+1, y] := input[x+1, y] + 7/16 * error;
input[x-1, y-1] := input[x-1, y-1] + 3/16 * error;
input[x, y-1] := input[x, y-1] + 5/16 * error;
input[x+1, y-1] := input[x+1, y-1] + 1/16 * error;

}
}

on the input image. Since the threshold values repeat regularly, the image impression
is also more regular than with error diffusion.

3.2 Stippling

Stippling is an illustration technique that relies on dots. In contrast to halftoning
methods, dots are distributed manually. The artists tries to set dots randomly but in
most cases with almost uniform point-to-point distances.

The technique allows artists to represent tone plus material of an object, thus
such techniques are used by scientific illustrators when objects have to be printed in
black and white while faithfully representing their surface details. An example from
biology is shown in Figure 3.4, the surface of a bone is represented by the smooth
arrangements of the dots, especially in the lighter areas almost uniform point-to-
point distances are visible.

While in Figure 3.4 silhouette lines were also used, in the following we want to
concentrate on how to distribute points with the necessary characteristics by means
of computers.

So called Centroidal Voronoi Tessellations create dot distributions that arrange
points in the desired manner. Du et al. [2] describe them thoroughly, an analysis
of different configurations of such tessellations and corresponding energy levels are
given in [5, 16].

Centroidal Voronoi Tessellations for creating stipple patterns were introduced
in [1, 17]. Other applications for such point sets are sampling [9] and numerical
integration [18, 19]. In both cases the spectral characteristics of such sets (Blue
Noise characteristics) are the reason for their usage.

6 Oliver Deussen and Tobias Isenberg

Fig. 3.4 Manually generated stipple drawing. Image courtesy by Brian L. Sidlauskas, Oregon State
University.

3.2.1 Voronoi Tessellations and Lloyd Relaxation

Let us assume that we have n points S = s1, ..,sn on our paper. The Voronoi cell
V (si) of a point is the area around si for which each additional point on the paper
would be closer to si than to any other point of the given set S. The regions of all
points in S form a tessellation of the plane, meaning that they are pairwise distinct
and jointly covering the entire plane.

Such tessellations are called the Voronoi diagrams VD(S) of S. Since a tessella-
tion of the entire plane would have open Voronoi regions for the outer points of S,
typically such regions are closed by intersecting them with a (rectangular) frame
that encloses the given point set. This frame is our canvas on which the points are
distributed.

Ordinary Voronoi Tessellations use the Euclidean metric as a distance function.
Many other distance functions can be used. However, for the purpose of Stippling
the Euclidean distance is sufficient since it is a “natural” distance function with an
intuitive relation between value and perceived distance.

Centroidal Voronoi Tessellations (CVTs) are ordinary Voronoi Tessellations with
the additional property that every point si is placed in the centroid ci of its Voronoi
cell V (si). The centroid (xci,yci) is defined by the moments of the area

m0,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)
dxdy

m1,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)
x dxdy

m0,1
i =

∫ yi2

yi1

y
∫ xi2(y)

xi1(y)
dxdy (3.1)

3 Halftoning and Stippling 7

(a) (b)

Fig. 3.5 (a) Voronoi Diagram; (b) Movement of points during relaxation.

xci =
m0,0

i

m1,0
i

, yci =
m0,0

i

m0,1
i

(3.2)

with Ai being the area of the Voronoi Cell and xi1,xi2,yi1,yi2 the boundary of the
cell. Such a Cendroidal Voronoi Tessellation is shown in Figure 3.5(b). The points
are still almost at random but now with much less variance in their point to point
distances.

Cendroidal Voronoi Tessellations can be achieved by applying the Lloyd relax-
ation to the points. This algorithm was invented by S.Lloyd in the 1960s at Bell
Labs and later published in [11]. Each step of one iteration of this algorithm moves
each point towards the centroid of its Voronoi region. If ci = (xci,yci) is the centroid
of a Voronoi Region the movement can be represented

s(t+1)
i = s(t)i +α

(
c(t)i − s(t)i

)
, (3.3)

where α ∈ (0,1] determines the speed of the movement. In the original algorithm α

is set to one. The iteration is repeated until the movement of the points is below a
given threshold. Figure 3.5(b) visualizes the movement during such a relaxation.

The CVT minimizes the following energy function, which measures the com-
pactness of the Voronoi Regions (see [2]):

Fv(S,V (S)) =
n

∑
i=1

∫
V (Si)
||x− si||2dx. (3.4)

This energy function sums up the integral of all quadratic distances of the points
in a Voronoi Cell towards the corresponding point si. This is minimal for compact
regions with almost uniform aspect ratio, thereby approximating hexagons [2]. Fur-
thermore, it implies an almost uniform distribution of point-to-point distances since
these distances are maximized for compact regions.

The Lloyd relaxation minimizes Equation 3.4 and therefore can be used as a lo-
cal optimization method for F . It moves the points into a distribution with almost
uniform point-to-point distance. If continued for too long, it converges to a hexago-

8 Oliver Deussen and Tobias Isenberg

(a) (b)

Fig. 3.6 (a) Initial Point distribution for a face; (b) Point distribution after 20 steps of Lloyd’s
relaxation. The points spread over the entire drawing plane, image details are lost.

nal distribution. This is not desired and typically iterating is stopped after a smaller
number of steps.

3.2.2 Weighted Voronoi Tessellations

The Lloyd iteration distributes points in a uniform manner. However, for represent-
ing an input image we need varying density and thus have to find ways to modify
the sizes of the Voronoi cells locally. Secord [17] published a variant of the iteration
in which every point on the plane is assigned a weight in proportion to the needed
point density (grayscale value).

For doing so, the definition of the moments from Equation 3.1 is modified in
order to encapsulate the weights:

m0,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)
ρ(x,y)dxdy

m1,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)
xρ(x,y)dxdy

m0,1
i =

∫ yi2

yi1

y
∫ xi2(y)

xi1(y)
ρ(x,y)dxdy (3.5)

with ρ(x,y) being the density function that reflects the needed point density on the
image. Parts of the equations can be precomputed, see [17] for details, this allows
for a fast computation of the integrals.

Let us have a look what can be produced with this simple optimization scheme.
Since the method only moves points, an initial set has to be given. Usually one uses
one of the above described halftoning methods and for every black pixel one dot is
created.

3 Halftoning and Stippling 9

(a) (b)

Fig. 3.7 (a) Point distribution in weighted Voronoi Tessellation; (b) Point distribution with points
in white regions omitted.

Fig. 3.8 Automatically stipple illustration of the bone from Figure 3.4.

Figure 3.6(a) shows such an initial point distribution for the face of a woman.
If we apply the normal Lloyd Iteration for this point set, the points are spread over
the entire drawing plane and all the details of the face are lost (cf. Figure 3.6(b)).
In Figure 3.7(a) a weighted Centroidal Voronoi Tessellation is displayed. Here, in
addition to the initial distribution the image itself was given to determine density
and weights. Due to the weights the details of the face are captured better. If all
points that are placed on white areas are removed the result looks similar to a stipple
drawing (cf. Figure 3.7(b)).

Finally, in Figure 3.8 the automatically stippled version of the bone of Figure 3.4
is shown. Please note that this result is entirely automatic and no additional lines are
inserted.

10 Oliver Deussen and Tobias Isenberg

Algorithm 3.3 Modified Lloyd relaxation

Input: A set of objects oi on the plane and a density function ρ(x,y)
Output: A relaxed centroidal Voronoi tessellation and a relaxed object-distribution.

1.Determine the mass centroids and main inertia axes of the objects oi
repeat

2. Determine the Voronoi-Regions V (oi) of the oi
for i=1 to n do begin

3. Calculate the mass centroids (xci,yci) of the Voronoi cell V (oi)
4. Move the mass centroids of the objects onto the

mass centroids (xci,yci) of the Voronoi cells
5. rotate the objects main axis so that it matches the main axis ϕ of V (oi)

end
until the object positions converge

3.3 Beyond Stippling

In general, Lloyd’s relaxation method can be applied to arbitrary objects, provided
that their Voronoi Diagram can be calculated. For each object the center of gravity
is determined. During iteration, the object is moved so that its center of gravity lies
upon the center of gravity of its Voronoi Region. Additionally, objects can now be
rotated (see Algorithm 3.3).

To compute the rotations we need to determine the second-order moments of the
Voronoi cells:

m1,1
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)
xydxdy

m2,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)
x2 dxdy

m0,2
i =

∫ yi2

yi1

y2
∫ xi2(y)

xi1(y)
dxdy (3.6)

Using these moments and mass centroids one is able to calculate the main inertia
axes and the desired rotation angle ϕ for the object . The two-dimensional inertia
tensor is given as

J =

(
µ2,0 µ1,1
µ1,1 µ0,2

)
The eigenvalues of J form the maximal and the minimal inertia moments j1, j2:

j1,2 =
1
2
(µ2,0 +µ0,2±

√
(µ2,0−µ0,2)2 +4µ2

1,1. (3.7)

The angle ϕ of the main inertia axis is the angle of the eigenvector v1 of J which
belongs to the eigenvalue j1:

3 Halftoning and Stippling 11

Fig. 3.9 Mapping the axes of the object (solid arrows) to the axes of the Voronoi cell (dashed
arrows) defines the rotation of the object.

ϕ =
1
2

arctan
(

2µ1,1

µ2,0−µ0,2

)
. (3.8)

Fig. 3.10 A set of points and lines are relaxed using the extended relaxation method. © Eurograph-
ics Association, used by permission.

Figure 3.9 shows an object with its main axes (solid arrows), its Voronoi cell and
its main axes (dashed arrows). These axes are determined for each iteration and the
object is rotated so that the axes match.

This allows the user to set up the algorithm for the extension of Lloyd’s relaxation
that is able to incorporate object rotations. Within the process, it is assumed that first
the mass centroid of the object is moved over the mass centroid of the corresponding
Voronoi cell, and that the orientation is then adapted.

In Figure 3.10(a) a set of points and lines is shown. Applying the method an even
distribution as shown in Figure 3.10(b) is achieved. Please note that the iteration
works well with the very badly distributed initial set shown in Figure 3.10(a).

The variants of the iteration can be mixed while working with an object set.
Similar to what was proposed earlier [1], an interactive editor was built that allows
the user to model sets of objects in various ways. One can move objects, insert or
delete them using a number of “brushes”. A special variant of the editor allows the
user to apply one or more steps of each variant of the iteration.

The editor also enables the user to generate mosaics [4] (for more detail see
Chapter 10). Here, small tiles have to be arranged in order to follow important struc-

12 Oliver Deussen and Tobias Isenberg

Fig. 3.11 A stipple illustration that uses different small objects as stipple marks. © Eurographics
Association, used by permission.

Fig. 3.12 Computer-assisted mosaics using the modified Lloyd’s relaxation. © Eurographics As-
sociation, used by permission.

tures in the input image, also the tile size was reduced for important regions such as
the eyes to enhance precision. Examples are found in Figures 3.11 and 3.12.

3 Halftoning and Stippling 13

3.4 Stippling by Example

The techniques described so far create stipple patterns with a single characteristic—
despite the fact that artists most often develop variants of such a patterns according
to their own taste and style. It would, therefore, be desirable to create such stipple
distribution patterns from examples given by the artists.

Such an approach was presented by Kim et al. [7]. For this work an example
of a stipple drawing has to be given that incorporates different tonal values. In a
first step patterns for a set of tonal values are extracted and their dot distribution is
determined.

Since in hand-made stipple drawings the stipple marks have a variety of forms,
such forms are extracted and stored together with the stipple distribution. A sta-
tistical analysis of the distribution [12] is used to find parameters for the stipple
synthesis done on the basis of a texture synthesis algorithm.

Figure 3.13 shows example results of Kim et al.’s [7] approach. The grayscale
image in Figure 3.13(a) and the artistic stipple distribution in Figure 3.13(b) is given
as input. The algorithm produces the new stipple drawing shown in Figure 3.13(c).
In contrast to the standard solution using weighted Voronoi Stippling (see Fig-
ure 3.13(d)), the distribution of dots follows the characteristics of the input.

Another approach of stippling by example by Martín et al. [13, 14] does not
look at the statistics of the stipple point distribution but, instead, at the resolution
and scale at which the stipple dots are placed as well as the specific shape of the
individual points. This technique addresses one of the limitations of the previous
one by Kim et al. [7]—namely the inability of Kim et al.’s technique to produce the
nice merging of stipple points in medium gray regions.

To address this issue, Martín et al. [13, 14] no longer treat the stipple points as
black dots on a white background. Instead, they use grayscale scans of actual stipple
points which they distribute based on halftoning. However, they also compute the
correct resolution of stipple points on a paper of a given size, and use stipple dot
scans of the appropriate pixel size so that the resulting scale-dependent images are
produced for a given paper size (e.g., A4 or Letter paper). Moreover, due to the
grayscale treatment, the grayscale stipple dots overlap and thus create the merging
effects known from hand-made stippling. Interestingly, the randomized halftoning
distributions that result from this process exhibit similar statistics as hand-made
stippling, confirmed using Maciejewski et al.’s [12] distribution analysis.

Figure 3.14 shows an example of Martín et al.’s [13, 14] technique. Based on the
input image in Figure 3.14(a), a grayscale stipple image was produced at 600 ppi
for A5 size (Figure 3.14(b)), and the same stipple distribution was generated for
the 1200 dpi black-and-white image in Figure 3.14(c). Notice that due to the scale-
dependence the same stipple dot scans and the same distribution is used for both
images because they were produced for the same paper size—even though they
have a different (pixel) resolution.

14 Oliver Deussen and Tobias Isenberg

(a) (b)

(c) (d)

Fig. 3.13 Stippling by example: (a) grayscale image; (b) artistic stipple example used as the source
of the example-based stipple distribution; (c) computer-generated pattern by example; (d) weighted
Voronoi stippling for comparison. (a) copyright © David Darling, used by permission, (b) copy-
right © 2009 William M. Andrews, used by permission, (c) copyright © 2009 Kim et al., used by
permission.

3.5 Structure-Aware Stippling

One issue raised, among others, also by Martín et al. [13, 14] is that low-level stipple
placement is not sufficient for being able to produce high-quality illustrations. While
Martín et al. analyze the stipple process by traditional stipple artist including such
high-level processing, some authors have tried to incorporate higher-level process-
ing into the NPR stippling pipeline (also compare some of the hatching techniques
described in Chapter 4).

3 Halftoning and Stippling 15

(a)

(b)

(c)

Fig. 3.14 Resolution-dependent stippling by example: (a) input image; (b) grayscale stipple result;
and (c) black-and-white thresholded at a higher pixel resolution. (a) Copyright © 2012 Domingo
Martín, used by permission; (b,c) copyright © 2012 Martín et al., used by permission.

16 Oliver Deussen and Tobias Isenberg

For example, Mould [15] transforms the input image into a regular graph whose
edges are weighted according to the local gradient magnitude. Then, Mould uses
a version of Disjkstra’s algorithm to place stipple dots based on the graph. Next,
Mould places the dots progressively along the frontiers of growing regions, which
preserves the structure of meaningful artifacts such as edges in the images.

A related technique by Kim et al. [6] attempts to re-create the traditional hedcut
illustration style which arranges stipples dots along lines for portraits of people.
They first extract a line map and a tone map of the input image, then build a distance
field and from that offset lines, and then use the extracted maps to optimize the
placement of stipple dots. A different group of authors, Kim et al. [8], extend the
initial portrait stipple approach by adding perceptual depth cues to the stipple image.
Kim et al. [8] extract the image edges as well as a number of isophote lines (i.e., lines
of the same brightness) and use these, similar to Kim et al. [6], as means to place
stipple points. The isophote lines are extracted by quantizing the input image and
extracting edges of identical color value. Based on the edge map and the isophote
map, Kim et al. then produce a weighted distance map which they use to produce
offset lines which, in turn, are used to place stipple points.

Recently, Li and Mould [10] suggested another way for stipple rendering to take
the input image’s structure into account using structure-aware error distribution that
also permits the user to control how many stipple points are being used. For this
purpose, Li and Mould consider one pixel to be one stipple and provide means to
reduce the number of stipples by increasing the positive and reducing the negative
errors to avoid having to place too many stipples (on a regular grid). Both types of
error result in less pixels and, thus, less stipples being placed. This approach results
in a high degree of preservation of the structure in the input image, even if only
relatively few stipple dots are being used to represent the input image. Moreover, Li
and Mould [10] also describe a number of further adjustments that result in different
effects such as screening using textures or patterns.

3.6 Conclusion

Stippling is a powerful but cumbersome illustration technique for scientific illus-
trators since it allows to represent grayscale values and texture at the same time.
It is widely used in archeology and biology. Computer-generated stipple drawings
allow the production of such illustrations, for example for scientific visualization
purposes, much faster since automatic methods exist that mimic what artists do.

Data-driven methods use patterns created by artists. They enable to capture the
style of an illustrator quite precisely. Such methods enable the computer to create
a much larger variety of patterns with different spatial characteristics; however, the
price is that we have to use much more complex methods.

3 Halftoning and Stippling 17

References

1. Deussen, O., Hiller, S., van Overveld, K., Strothotte, T.: Floating Points: A Method for
Computing Stipple Drawings. Computer Graphics Forum 19(4), 40–51 (2000). DOI
10.1111/1467-8659.00396

2. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi Tessellations. SIAM Review 41(4),
637–676 (1999). DOI 10.1137/S0036144599352836

3. Floyd, R., Steinberg, L.: An Adaptive Algorithm for Spatial Grey Scale. Proceedings of the
Society for Information Display 17(2), 75–77 (1976)

4. Fritzsche, L.P., Hellwig, H., Hiller, S., Deussen, O.: Interactive Design of Authentic Look-
ing Mosaics using Voronoi Structures. In: Proc. 2nd International Symposium on Voronoi
Diagrams in Sciene and Engineering 2005, pp. 1–11 (2005)

5. Gersho, A.: Asymptotically Optimal Block Quantization. IEEE Transactions on Information
Theory 25(4), 373–380 (1979). DOI 10.1109/TIT.1979.1056067

6. Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided Image Stippling. Computer
Graphics Forum 27(4), 1209–1216 (2008). DOI 10.1111/j.1467-8659.2008.01259.x

7. Kim, S., Maciejewski, R., Isenberg, T., Andrews, W.M., Chen, W., Sousa, M.C., Ebert, D.S.:
Stippling By Example. In: Proc. NPAR, pp. 41–50. ACM, New York (2009). DOI 10.1145/
1572614.1572622

8. Kim, S., Woo, I., Maciejewski, R., Ebert, D.S.: Automated Hedcut Illustration using Isophotes.
In: Proc. Smart Graphics, pp. 172–183. Springer-Verlag, Berlin, Heidelberg (2010). DOI
10.1007/978-3-642-13544-6_17

9. Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang Tiles for Real-Time
Blue Noise. ACM Transactions on Graphics 25(3), 509–518 (2006). DOI 10.1145/1141911.
1141916

10. Li, H., Mould, D.: Structure-Preserving Stippling by Priority-Based Error Diffusion. In:
Proc. Graphics Interface, pp. 127–134. Canadian Human-Computer Communications Soci-
ety, School of Computer Science, University of Waterloo, Canada (2011)

11. Lloyd, S.P.: Least Squares Quantization in PCM. IEEE Transactions on Information Theory
28(2), 129–137 (1982). DOI 10.1109/TIT.1982.1056489

12. Maciejewski, R., Isenberg, T., Andrews, W.M., Ebert, D.S., Sousa, M.C., Chen, W.: Mea-
suring Stipple Aesthetics in Hand-Drawn and Computer-Generated Images. IEEE Computer
Graphics and Applications 28(2), 62–74 (2008). DOI 10.1109/MCG.2008.35

13. Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Example-Based Stippling using a Scale-
Dependent Grayscale Process. In: Proc. NPAR, pp. 51–61. ACM, New York (2010). DOI
10.1145/1809939.1809946

14. Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Scale-Dependent and Example-Based Stip-
pling. Computers & Graphics 35(1), 160–174 (2011). DOI 10.1016/j.cag.2010.11.006

15. Mould, D.: Stipple Placement using Distance in a Weighted Graph. In: Proc. CAe, pp.
45–52. Eurographics Association, Goslar, Germany (2007). DOI 10.2312/COMPAESTH/
COMPAESTH07/045-052

16. Newman, D.J.: The Hexagon Theorem. IEEE Transactions on Information Theory 28(2),
137–138 (1982). DOI 10.1109/TIT.1982.1056492

17. Secord, A.: Weighted Voronoi Stippling. In: Proc. NPAR, pp. 37–43. ACM, New York (2002).
DOI 10.1145/508530.508537

18. Smith, J.: Recent Developments in Numerical Integration. Journal of Dynamic Systems, Mea-
surement, and Control, Ser. G-1 96(1), 61–70 (1974). DOI 10.1115/1.3426777

19. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer-Verlag (1980)

