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Abstract—We present the VIS30K dataset, a collection of 29,689 images that represents 30 years of figures and tables from each track
of the IEEE Visualization conference series (Vis, SciVis, InfoVis, VAST). VIS30K’s comprehensive coverage of the scientific literature in
visualization not only reflects the progress of the field but also enables researchers to study the evolution of the state-of-the-art and to find
relevant work based on graphical content. We describe the dataset and our semi-automatic collection process, which couples
convolutional neural networks (CNN) with curation. Extracting figures and tables semi-automatically allows us to verify that no images are
overlooked or extracted erroneously. To improve quality further, we engaged in a peer-search process for high-quality figures from early
IEEE Visualization papers. With the resulting data, we also contribute VISImageNavigator (VIN, visimagenavigator.github.io), a
web-based tool that facilitates searching and exploring VIS30K by author names, paper keywords, title and abstract, and years.

Index Terms—Visualization, IEEE VIS, InfoVis, SciVis, VAST, dataset, bibliometrics, images, figures, tables.
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1 INTRODUCTION

V ISUALIZATION is a discipline that inherently relies on images
and videos to explain and showcase its research. Images are

thus an essential component of scientific publications in our field.
They facilitate comprehension of complex scientific concepts [11],
[41] and enable authors to refer to their proposed visualization
solutions, alternatives, and competing approaches or to graphically
explain algorithms, techniques, workflows, and study results.

Browsing a domain’s images can reveal temporal trends
and common practices. It facilitates the comparison of sub-
disciplines [24]. Although figures are ubiquitous in visualization
publications, they are embedded in PDFs and remain largely
inaccessible via scholarly search tools such as digital libraries,
Google Scholar, CiteSeerX, or MS Academic Search. The primary
goal of our work—similar to that of past work on IEEE VIS papers
[15], keywords [16], or EuroVis papers [39]—is to extend the
corpora of data we can use for studies of the visualization field.

Our primary contribution is a dataset we call VIS30K (Fig. 1).
It contains images and tables from 30 years (1990–2019) of the
IEEE VIS conference, spanning all tracks: Vis, InfoVis, SciVis,
and VAST. IEEE VIS is the longest-running and largest conference
focusing on visualization and its images reflect the evolution of the
field. Our primary data sources include IEEE Xplore, conference
CDs, and hard copies of the conference proceedings from which
we obtain the images in their best possible quality. In addition
to images, we include tables as special form of data organization
that can be informative to the community. Our dataset can serve
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many purposes. It enables researchers to study the visual evolution
of the field from an objective, image-centric point of view. It
assists teaching about visualization by providing fast visual access
to refereed research images and contributions. It also can serve
as a data source for researchers in other fields such as computer
vision or machine learning. And, finally, it supports visualization
researchers when browsing and discovering new work.

Collecting these figures and tables was challenging. We opti-
mized data quality with a hybrid solution. We first extracted figures
via convolutional neural networks (CNNs), followed by expert
curation. This way we ensure reliable data (i. e., completeness and
image locations/dimensions), while at the same time requiring a
manageable amount of manual cleaning and verification.

Our secondary contribution is a web-based tool, VISImage-
Navigator (VIN, visimagenavigator.github.io), that allows
people to search and explore our dataset. We cross-link VIN to the
metadata of KeyVis [16] and VisPubData [15] and their detailed
bibliometric metadata. This metadata associated to papers, and thus
all images, allows us to support searching using text-based queries.

2 RELATED WORK

Previous work from three areas inspired our own. The first
surveys past work and offers visual access to past publications.
A second group collects and analyzes metadata derived from
visualization research papers. The third group relates to the CNN-
based extraction algorithms we employed for our data extraction.

Visual Collections of Visualization Research. We are not the
first to attempt a visual overview of the visualization field. Yet
past work generally focuses on specific subareas of the research,
each of which provides an overview of work on the subtopic
rather than a comprehensive and browsable image database. For
instance, some work has focused on providing references and
representative images of specific data or layout techniques: Schulz’s
300 tree-layout methods [35], Kucher and Kerren’s more than
470 text visualizations [21], Aigner et al.’s over 100 temporal
data visualizations [1], and Kehrer and Hauser’s multivariate and

https://visimagenavigator.github.io/
https://doi.org/10.1109/TVCG.2021.3054916
https://visimagenavigator.github.io/
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Fig. 1. A timeline of selected images from all 30 years (1990—2019) of IEEE Visualization conference showing diverse and trending research work.
Best viewed electronically, zoomed in.

multifaced data of more than 160 images [18]. Others examine
specific visualization applications, e. g., Kerren et al.’s biological
data [19], Kucher et al.’s sentiment analysis [22], Chatzimparmpas
and Jusufi’s trustworthy machine learning [4], and Diehl et al.’s
VisGuides [9] on advice and recommendations on visual design. In
contrast to these focused perspectives, VIS30K provides a broader
coverage of all 30 years of IEEE VIS. Our downloadable dataset
comprises all the images contained in each paper, rather than just a
few samples per publication or approach.

The work most closely related to ours is Deng et al.’s VisImages
collection of IEEE InfoVis and IEEE VAST images [8] and Zeng
et al.’s VISstory [44]. Both sets of authors plan to release their
datasets but only provide a subset of our data. VISstory only covers
data from 2009–2018, while VisImages does not include IEEE Vis
and SciVis paper images. Our work also differs in its approach
to quality control. We rely on expert input to check the capture
of all images, while VisImages uses crowd-sourcing. VISstory
only tests a subset of images for quality. Similar to these tools,
we provide a web-based tool to explore the image data although
focus on different aspects. VisImages categorizes image content in
addition to metadata and VISstory focuses on a paper rather than
image-centered views where each paper is encoded as a ring with
sectors standing for individual images.

Meta-Analysis of Visualization Publications. Another direc-
tion of research centers on meta-analyses of the visualization
field, without focusing on visual content. Lam et al. [23], e. g.,
established seven empirical evaluation scenarios by analyzing 850
papers appearing in the ‘information visualization’ subcommunity
of IEEE VIS. Isenberg et al. [17] later extended this historical
analysis of evaluation practices to all tracks of IEEE VIS in
a systematic review of 581 papers. Isenberg et al. [16] further
collected IEEE VIS paper keywords to derive visualization topics
from a metadata collection of IEEE VIS publications [15]. We
make use of metadata from this collection in our work to gather
paper PDFs prior to automatic extraction. Conceptually, our new
VIS30K extends this line of work by leveraging new image-based
extraction methods [27] and search tools to make the figure and
table data accessible.

CNN-based Extraction Algorithms. Using data-driven CNN
algorithms to train classifiers to extract figures and tables is
becoming increasingly popular [6], [31], [37]. Current approaches
to fine-grained recognition involve the important step of preparing
the annotated training data with ground-truth labeling prior to
training a model for prediction. Problems in this area have inspired
research in three major directions. The first is crowdsourcing
to annotate the document manually [37]. We did not use this
solution for two reasons. First, cleaning noisy crowdsourced

annotations is time-consuming in itself and also needs effective
quality control [38]. Second, crowdsourcing lacks flexibility: often
we must know in advance if we are to extract figures, equations,
texts, tables or all of these. It may not be realistic to determine
complete categories in advance. Another solution is to mine
information from an XML schema [6], [29] or from LATEX [38]
or PDF [25] syntax. We could not use this approach since early
IEEE VIS PDF papers are lack corresponding LATEX or XML
source files. The most popular figure-extraction algorithms rely
on manually defined rules and assumptions. These techniques are
typically successful for the particular type of figure for which these
rules are followed, but suffer from the classical problem with rule-
based approaches: when rules are broken, the algorithm fails. For
example, an intuitively reasonable rule is to assume captions always
exist. An algorithm can locate a figure by searching for caption
terms such as Fig. and Table [6], [25]. However, about 2% of our
VIS30K images do not satisfy this assumption and thus can cause
the extraction algorithm to fail. Choudhury et al.’s algorithm [5]
focuses on specific figure types, such as line charts and scatter
plots, while our goal is to extract a comprehensive collection of
figures and tables. For these reasons, annotated ground-truth data
are not publicly available for automatic figure and table extraction.

3 DATASET DESCRIPTION

We now describe the data format and information stored for
each figure and table in our database and the decisions we made
concerning the figure extraction task. But we start by defining the
terms we use throughout the remainder of the paper.

3.1 Terms
IEEE VIS. Over its history, IEEE VIS has undergone a number of
name changes ( Fig. 2). It started out in 1990 as IEEE Visualization
(Vis), then added IEEE InfoVis in 1995 followed by IEEE VAST
in 2006. In 2008–2012, all three venues were jointly called IEEE
VisWeek, and since 2013 the blanket name IEEE VIS has been
used. From 2013 onward, the IEEE Vis ceased to exist, replaced
by the IEEE Scientific Visualization (SciVis) conference. Here we
use VIS to refer to all four venues: Vis, InfoVis, VAST, and SciVis,
for the entire time period covered by our dataset.

Figures and Tables. We refer to a figure as a container for
graphical representations. These representations can be images,
screenshots of visualization techniques, user interfaces, photos,
diagrams, and others. We classify algorithms, pseudocode, and
equations as textual content and thus do not include them in VIN.
Including these additions is left as future work. A table is a row-
column representation of relations among related data concepts or
categories [13], usually composed of cells [20], [28].
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(a) Total # of images (figures and tables), by year.
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(b) Average # of images (figures and tables) per page, by year. We included potential color plate pages from early years (1990–2001) in the page
count for this analysis, and only counted an image once if that same image appeared in both the paper and its color plate.

Fig. 2. We extracted 29,689 images (26,776 figures, 2,913 tables) from the 2,916 IEEE Visualization conference papers, spanning 30 years (Vis:
13,509; SciVis: 3,232; InfoVis: 7,834; VAST: 5,114). Numbers for the joint conference are depicted as wide pale gray bars. The individual tracks are
overlaid on top. On average, Vis/SciVis has more images per paper page than InfoVis and VAST.

3.2 Image Data Collection
We collected 29,689 images (26,776 figures and 2,913 tables
from 2,916 conference and journal publications of the IEEE VIS
conference from 1990 to 2019 (Fig. 2). Our collection also includes
case studies and late-breaking results from earlier years as they
are included in the digital library. We do not include the more
recent short papers as only 3 years of data are available. We also
exclude posters as they do not appear consistently in the IEEE
Xplore digital library, our primary data source for the paper PDFs.

We include tables as a separate category alongside figures as
we consider them, unlike unstructured text, as a form of structured
and visual data representation that might be useful to analyze. Not
only the visual layout of tables may be interesting, but also, more
importantly, the relative frequency of tables in published research
results and the amount of space tables occupy in papers. Data
stored in tables can be further extracted and cross-linked into a
knowledge base. Tables can be filtered out for other use cases such
as searching for related work or searching for images for teaching.

3.3 Choosing Figures and Tables
Scholarly articles are often structured based on a template and are
properly referenced, yet authors use varying approaches to generate
figures and tables and to embed them in their papers (Fig. 3). These
varying practices required us to make decisions about which types
of visual representations to include and exclude in our database:

High Variation in Composition of Figures and Tables. Au-
thors often treat algorithms, pseudocode, and tables as figures with
figure numbers. In our data collection, we separated algorithms and
pseudocode from figures and tagged tables and figures separately.
While both pseudocode and algorithms are important scientific
content in papers, they generally consist of text and are not the
forms of visual data representations we target with VIS30K.

Occasionally, authors placed figures and tables wrapped within
the text flow without captions or figure/table numbers. We collected
such figures and tables nonetheless but excluded small, often
repetitive word-scale visualizations and word-scale graphics such
as those in Blascheck et al.’s work [2]. In our dataset, we list
tables that contain primarily text but sometimes also small inline

images (e. g., Fig. 3(f)) as tables. We include other column-row
representations such as heatmap matrices and table lenses (e. g.,
Fig. 3(g)) that use a primarily graphical encoding as figures.

Handling of Subfigures and Subcaptions. A figure can be
composed of multiple images or be a combination of images and
text. Such composite figures are common in visualization papers
(e. g., Fig. 3). We initially hope to dissemble these composite figures
into subfigures, but ultimately choose not to due to their variable
degree of separability. Composite figures, e. g., are used to report
related sets of design results (Fig. 3(a)). They sometimes do not
have subcaptions (Fig. 3(b)). In other cases, the subfigure indices
just label different views of the same data (e. g., (b) is a magnified
view of (a)) and are monolithic (e. g., Fig. 3(c)). Composite figures
also sometimes place subfigures side-by-side to compare techniques
or parameters (Fig. 3(d)). Separating these subfigures would defeat
the functional value of these figure compositions.

Composite figures can contain subcaptions that are explicitly as-
sociated with subfigures through spatial proximity (e. g., Fig. 3(a)).
Subfigures and subcaptions in the same composite figure often
have similar content. Subcaptions can contain a few lines (like
our own Fig. 3), a brief term, or merely an index (e. g., (a)–(g)
as in Fig. 3(a)). Because we maintain composite figures and do
not split them into subfigures, we have no choice but to include
subcaptions in our collection—even though we did remove the
main caption of the figures, except when the caption was inside the
figure’s bounding box (Fig. 3(e)). We also retained the markers of
index-only subcaptions to help viewers to identify the subdivision
of composite figures.

Low Quality and Noisy Figures. Images in IEEE Xplore
papers from 2001 onward generally have excellent visual quality.
However, we found errors and many unclear figures in earlier
papers. We sought to correct these in our data to provide a more
reliable source for IEEE VIS publication figures. In particular,
images from papers from 2000 and earlier often are of low quality.
We replaced images from these early years with better versions
when the paper copy in the ACM DL had better quality, when
we could find it on the conference CD or proceedings, or when
we found a better (author) copy online. Papers published in 1995
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Fig. 7: Visible Human. (a) Volume rendering level �0 (5122 × 1884). Comparison of volume rendering coarser levels (b, e) �1 (2562 × 942),
(c, f) �2 (1282 ×471), and (d, g) �3 (642 ×235). (Top row) Sparse pdf volumes. (Bottom row) Standard pre-filtering and down-sampling. The
logarithmic histograms of the standard data representations are shown on the top along with the transfer function. The standard representation
loses more and more of the bones and teeth toward the coarser levels due to low-pass filtering (observe the changing histograms). Sparse pdf
volumes are able to maintain much better consistency with the original rendering, keeping the important features of the bones and teeth intact.

9.1 Consistent multi-resolution volume rendering
The pdf approximation error analysis in Fig. 6 shows that sparse pdf
volumes preserve the voxel neighborhood pdfs in each resolution level
much better than standard low-pass filtering and down-sampling, as
well as the single Gaussian approximation [40], respectively. This is
the key to consistent volume rendering results even for coarse resolu-
tions. The ground truth for our error analysis is the full 256-bin his-
togram (smoothed using σr in Eq. 6), since this is the function that we
want to preserve. PSNR values are computed against this histogram.

Fig. 1 (b) shows that iteratively low-pass filtering and down-
sampling the Shepp-Logan phantom introduces new values in the data
which leads to inconsistency artifacts in multi-resolution volume ren-
dering. Fig. 1 (c) shows that using a single Gaussian to represent voxel
neighborhood pdfs is not sufficient to capture the multi-modal nature
of pdfs in lower resolutions, which also results in similar artifacts. In
contrast, sparse pdf volumes are able to accurately encode pdfs lead-
ing to (d) more consistent multi-resolution volume renderings that are
almost equivalent to (e) the ground truth using a full histogram with
256 bins. Similarly, Figs. 7 (e,f,g) show that the coarser resolutions of

(a) Sicat et al. [36], Fig. 7
Goal: comparison of volume rendering coarse
levels with subcaptions embedded in the figure

(b) Isenberg and Carpendale [14], Fig. 2
Goal: showing two different tree layouts and

labeling without subcaption

(c) Yu et al. [43], Fig. 11
Goal: showing interaction technique by embedded

views

�a� �b�
Figure 	� Two transfer function evolutions with user evaluations for a simulated high
potential iron protein�

(d) He et al. [12], Fig. 7
Goal: comparing transfer function

design; many views

 
 

(a)  Scatterplot plot of 276 
nodes 

 

Figure 3.  SocialAction allows 
users to rank nodes by two 
different features in a 
scatterplot.  The colors of 
nodes in the network 
visualization are determined by 
the scatterplot position.  This 
allows users to find nodes 
exhibiting characteristics they 
seek, as well as outliers.  For 
instance, nodes with low-
degree but high betweenness 
centrality are colored bright 
green.  These nodes can be 
quickly spotted even in the 
otherwise unkempt network 
visualization. 

 

(e) Perer and Shneiderman [32], Fig. 3
Goal: saving space by placing the

figure caption into an empty corner;
we did not remove such captions
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Fig. 3. A classification scheme for deriving comparative visual cues that address the tasks (T1, T2, T3, T4, T5, T6) for climate model fidelity
analysis. The visual cues, by leveraging the perceptual principles of visual encoding, help minimize comparison complexity by letting scientists
readily spot patterns of disagreement and stability across many combinations of models, metrics, and output variables

of many participatory design sessions, we derived a set of compara-
tive visual cues through a classification scheme. Comparative visual
cues leverage pre-attentive properties of visual encodings to facilitate
efficient search across many combinations of models, variables, and
metrics, for spotting small differences while maximizing accuracy of
comparisons. In this section, we first discuss the classification scheme
and then discuss the task-driven visual cues.

5.1 Classification Scheme

We adapted and extended the classification scheme proposed by Gle-
icher [10] for deriving a set of task-driven visual cues. In Figure 3,
we describe our classification scheme. Elements indicate what, among
models, metrics, and output variables, are being compared; and also
how many elements are being compared to indicate the complexity of
the task. Combining multiple elements, like hundreds of models and
tens of variables has a multiplicative effect on the scale and complex-
ity of comparisons. In terms of relationships among the compared
elements, scientists are mainly interested in finding small differences
in magnitude and also understanding which metrics, models, or output
variables, and their combinations, are most dissimilar than others. In our
scheme, we describe how we summarize these relationships which ulti-
mately guide how they are visually communicated through comparison
designs like juxtaposition or implicit and explicit encoding [11]. When
the relationships among data objects are approximately recoverable
but not precisely encoded in a visualization, we term this as implicit
encoding. A simple scatter plot is a good example, where the degree
of correlation between two dimensions is approximately recoverable
even without any explicit encoding of the correlation. Other examples
include quality metric [3] based reordering of layouts or dimensions
where one can gauge how closely related data objects are, using the
metrics as the guides. The last part of our classification scheme is about
realizing the comparison tasks by optimizing the visual search process.
To this end, we first needed to know which patterns we should optimize
for and accordingly decide the visual cues necessary for guiding sci-
entists’ attention to those patterns. A sequential search for patterns for
each of the many possible comparisons would be time-consuming and

ineffective. These comparative cues leverage the human vision system’s
capability to preattentively process patterns [14], thereby leading to a
much more efficient parallel visual search. The patterns that scientists
are mainly looking for are as follows:
Visualizing disagreement: Fidelity is a lens to understand how much
disagreement there is among models: two different fidelity scores imply
that the the model outputs were different. Similarity of fidelity levels is
the “normal” pattern because simulations, if perfectly parameterized
and calibrated, should all produce similar outputs resulting in similar
fidelity scores. However, in reality, scientists have to reliably under-
stand, where disagreements occur and exercise their expert judgment
to reason about and resolve those.
Visualizing stability: Stability of a model output or a metric is given
by the degree to which the fidelity levels are insensitive to different
weights assigned to multiple variables. These are important factors for
scientists to consider while they come to the final judgment of which
models are the best and the worst, and also, which metrics are most
effective in capturing the “true” fidelity of a model. Usually, there
are inherent trade-offs exploring which scientists can conclude under
which specific scenarios or conditions models and metrics are stable.

5.2 Cues for comparing model dissimilarity

To satisfy T1, which is the simplest among all the tasks, a visualization
needs to facilitate relative judgment of rank and magnitude (i.e., the
average fidelity scores) with a high degree of accuracy. To satisfy
T2, a point-based visualization is needed for looking at the magnitude
distribution of all models: one which is scalable with respect to about
100 models while at the same time allowing scientists to readily identify
a particular model.
Elements: The comparison (1 : n) involves many models for under-
standing small differences in average fidelity scores. T4 involves an
n : n comparison as one has to compare two sets of models, with two
different weighing schemes.
Relationship: For comparing magnitude difference across all models,
we use the average scores of models (across all variables) for ranking,
that can be used for sub-setting the top-ranked or bottom-ranked models.

(f) Dasgupta et al. [7], Fig. 3
Goal: tabular view of textual and

figure elements that we classified as
a table

Year ’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 ’99
% 0 2 6 6 4 12 27 48 49 50
Year ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09
% 70 73 82 97 84 96 99 98 85 91
Year ’10 ’11 ’12 ’13 ’14 ’15
% 84 86 87 100 99 95

(g) Isenberg et al. [16], Table 2
Goal: table lens view of quantitative
data; mix of table & figure elements

which we classified as a figure

Fig. 3. The use of figures and tables shows great variation. Here, we place subfigures side-by-side for comparison to present different techniques,
as in (a). Subfigures may not have subcaptions (b). They can be embedded (c) or contain tabular views of different parameter choices (d). Figure
captions sometimes appear inside the figure’s rectangular bounding box (e). Tables often contain visual separators, but the content can be hierarchical
and can contain figures (f) or use table lenses (g). These variations lead us to retain composite figures and tables in our data cohort to preserve the
functional values of these paper elements. All images © IEEE, used with permission.

or earlier often have color-plate pages, causing IEEE and ACM
to list different page numbers for some papers. Also, figures in
these color-plate pages may or may not be the same as the figures
on the main paper pages. When they were the same, we used the
color version. Otherwise we collected both. We corrected errors
such as missing pages in the printed or digital library version
(e. g., Dovey [10]) and added additional pages found in conference
proceedings. We also found entries on IEEE Xplore that linked to
a paper under a different title or in which the last page was the
first page of the next paper. Some papers contained white pages or
duplication which we excluded from the total paper pages count.

4 FIGURE AND TABLE COLLECTION PROCEDURE

We designed and implemented a new CNN-based data-driven
solution to harvest figures and tables embedded in IEEE VIS
research papers to avoid manual labeling. The input to our CNNs
is the paper pages and the output is a structured representation of
all the figures and tables within the input files and the associated
bounding box locations.

4.1 Overview

The main idea behind our approach is to train a CNN with
automatically synthesized papers. Our approach works by ‘pasting’
different paper component parts including figures, tables, and text
onto a white image to create a “pseudo-paper” collection. These
pseudo-papers are sufficient to guide CNNs to detect and localize
the figures and tables from real documents. While the simulation
approach has been used in other realistic environments [42], ours
is to our knowledge the first use for scholarly document analysis.

Our approach leverages the simple assumption that the form and
structural content of a page are more important for detecting images
than the factual content. The advantage is that, in theory, it allows
a CNN algorithm to act on any document layout and labels, even
new and unknown ones. Rule-based or XML-based methods would
require us to keep stipulating new rules or define suitable XML tags

to cope with complex documents. Our method, in contrast, always
generates its own synthetic appearance to minimize the differences
between the training data and the real papers, to improve prediction
accuracy as it produces accurate “ground-truth” data (Fig. 4).

4.2 Training Data Preparation: Pseudo-Papers
The essential part of our approach is to treat training data as a
composition of individual document elements, where the goals are
(1) to record bounding boxes for each of the labels and components
in a PDF image to produce high-quality labels for the training data;
and (2) to synthesize appearance to reduce the differences between
the training data and the real papers to some extent.

Image and Text Corpora. To reduce the number of training
images needed and to increase training data diversity, we used
image collections from Borkin et al.’s MASSVIS dataset [3]
and from the SciVis memorability data by Li and Chen [26].
Early papers are often black and white and may contain salt-and-
pepper image noise. This variation in image appearance (brightness,
contrast) can reduce our CNN’s image detection accuracy. To match
such visual variations, we doubled the figure/table samples by
converting these images to black and white, with a range of gray-
scale variations. We assembled the text corpus using Stribling et
al.’s SCIgen [40] so the textural content remains coherent, although
not necessarily being relevant to IEEE VIS (Fig. 4(a)).

Pseudo-paper Corpora. We used this image and text corpus
to automatically synthesize a large set of papers to depict paper
titles, abstracts, (body text, document headers, figures, tables, and
captions) (Fig. 4). Our document-production algorithm inserted
the text, figures, and tables into white pages of particular size and
coordinates with particular fonts and styles, to match the IEEE VIS
paper structure. We also inserted bullets and equations because pilot
tests revealed that, without them, bullets and equations from the real
papers were often misclassified as point-based visualizations [3], a
figure type containing dot or scatter plots or similar elements.

In total, we generated 13,000 pages (10,000 for training, 3,000
for validation), each with 1075 × 1400 pixel resolution and labeled
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The image 
appearance is close 

to those in VIS. 
The textual content  
is irrelevant to VIS.

(a) An inner page with two figures each occupying a single column.

Header

Abstract

Title Table

Caption
Figure

Body 
text

(b) A first page without figure, and an inner page with a table crossing
two columns and a single-column figure.

Fig. 4. Automatically rendered pseudo-paper pages in our training data
generation with ground-truth labels. The text content in (a) is grammati-
cally correct but not semantically meaningful in the visualization domain.
Page samples of (b), header, title, abstract, body text, figure, table,
captions, and other document components are shown. We diversified
the page layout structures to render pages both with and without images.
When images are shown, they appear in single or double columns.

as selected categories of figure, table, or text (Fig. 4). Each
component on these pages features accurate bounding boxes.

4.3 Integrating CNN Models for Figure Extraction

We trained two complementary CNNs, YOLOv3 [33] and Faster
R-CNN [34], independently for subsequent figure extraction from
the actual papers. One may think of this combination as a means to
boost performance of our learning algorithm as we only used a very
small set of labeled examples, compared to millions of training
samples in other solutions [38]. YOLOv3 is a single-stage detector
network—fast and accurate for object detection. Faster R-CNN [34]
is a multi-stage proposal and sampling-based approach where a
certain number of candidates were sampled from a large pool of
generated ROIs. Both YOLOv3 and Faster R-CNN returned the
four coordinates of each bounding box, along with class labels. We
trained both models under TensorFlow and executed it on a single
nVIDIA GeForce RTX 2080 Ti GPU, with 11 GB memory.

In the prediction stage, we downloaded the paper PDFs by
following the links in the VisPubData database [15]. We excluded
short papers, posters, panels, and keynote files, so our collection
comprised 2,916 full papers for the years 1990–2019. We first
converted these PDFs to PNG pixel images using the convert
command with dpi = 300 and pixel resolution up to 2353×3213.
This conversion was necessary to capture all images in their camera-
ready rendered visual form in the paper PDF, including scanned
pages from early years, vector images, pixel graphics, simple text
versions, and any combinations thereof. We then fed these images
into the CNNs to extract figures, tables, captions, etc. For each

Region error: CNN did not include the sub-captions as part of the 
images.

Class error: CNN mis-
categorized  the table as point-
based visualization, a figure type.

Class and region errors: CNN did 
not label the caption and combined 
the caption with the figures.

Table

Caption

Fig. 5. Fine-grained human recognition to correct CNN errors. The orange
boxes show the machine prediction and the green boxes the human
results to curate bounding box regions.

paper page, we thus produced the bounding boxes of the 17 classes
(6 textual content, 11 figures/tables).

After model prediction, we used heuristics in [27] to combine
both models’ results by merging the bounding boxes from Faster
R-CNN (better localization) with any additional images/bounding
boxes detected by YOLOv3 (better detection) into an initial set of
labeled bounding boxes. We further tightened or expanded these
bounding boxes to acquire accurate regions for each figure and
table. Since the visualization type is not of current interest and
since CNN models make mistakes, we combined the 10 figure
classes into a single figure label type in our post-processing.

4.4 Fine-Grained Recognition and Data Validation
Fine-grained recognition refers to the task of distinguishing very
similar categories or correcting the results to obtain the ground
truth. CNN results can lead to errors or imprecision in image
detection and localization [31]. We obtained the final cohort by
manually cleaning the CNNs’ predictions using a collaborative
annotation tool with two interfaces: one enables us to edit the
content of the dataset and the other provides an overview of the
data collection by year (see supplementary materials Sec. B for
these two interfaces). We used the first interface to examine all
pages in our dataset and check the labeling to remove, add, move,
and resize the machine-generated bounding boxes as needed. After
this individual pass, the first two authors of this paper used the
second interface to verify the results for the entire dataset. Through
this process we cleaned 26,776 figures and 2,913 tables from all 30
years of the IEEE Visualization conference, as described in Sec. 3.

Using the manually cleaned data as the ground truth, we
evaluated our CNN-based labeling following the evaluation
metrics of PDFFigure2.0 [6], using intersection over union
(IoU = area o f overlap/area o f union) as 0.8. We found the
overall recall of our CNN-based extraction approach on the VIS30K
images to be 0.84, with precision 0.94 and F1 score 0.89. For this
analysis we only used the “image” label in our dataset because
our training phase images came from two limited datasets—they
did not capture the full range of images in visualization papers.
Nonetheless, we analyzed the entire dataset, including the early
years with their low-quality images for which other algorithms
would fail. We considered predicted figures and tables that did



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

not exist in the final human-curated labels as false positives. As a
figure could contain multiples, we also considered it as detected if
we detected such multiples in the form of several bounding boxes.

The present measurement results mean that our CNN model
requires at least 22% manual effort (to add 16% false negatives
and remove 6% false positives). Removing false positives requires
us to detect duplicate “detection frames,” while false negatives
are images that go undetected. In addition to the cost of cleaning
(22%), there are aspects of the manual labor that are difficult to
measure, i. e., fine-tuning results that are considered correct using a
machine’s standard (IoU ≥ 80%), but not based on human-centered
heuristics. Fig. 5 shows three example cases when a user needs to
locate and resize the bounding boxes (region error) or update the
class labels manually (class error). These are instances of region
error where subcaptions are excluded or included in the prediction
of multi-composite views. Class errors are also corrected when a
table is inferred to be a figure. We estimate that about 20% of the
images required a final adjustment to fine-tune the CNNs’ output.

5 VISIMAGENAVIGATOR (VIN): EXPLORING FIG-
URES AND TABLES IN THE LITERATURE

We posit that our ability to extract data must be accompanied by
the community’s ability to use, further classify, manage, and reason
about the content of the figures and tables. Our second contribution
is thus the design and implementation of VISImageNavigator (VIN;
see Fig. 6 and visimagenavigator.github.io), a lightweight
online browser to view and query the dataset and its metadata. VIN
can be used to explore VIS figures and tables, VIS publication
venues, keywords, and authors over time.

5.1 Browsing the Image Collection

The VIN interface has three styles: The default browser layout
(Fig. 6(a)) was inspired by the VizioMetrix search engine [24].
Figures are arranged next to each other following the “brick
wall” metaphor. The second timeline-centric paper piles facilitates
viewing temporal trends (Fig. 6(b)), while the last one presents
a paper-centric view (Fig. 6(c)). Figure and table captions are
available on demand. The images are ordered by conference
year and by the order of appearance in the proceedings. VIN
is not designed to support dedicated statistical analyses of the data
itself. We implemented backend by indexing the authors, captions,
and author keywords, crossed-linked to the paper keywords in
keyvis.org [16]. We also implemented term-based search in
titles and abstracts. The by-title-and-abstract mode enables users
to directly search by title and abstract explore and often returns
more complete results than searching images by author keywords,
likely because not all papers comprise author keywords or these do
not cover all aspects.

Naturally, the results can be sorted several ways: by author to
study people’s presentation styles or by year to retrieve the most
recent images for a given search term. Using VIN, the user can
answer questions such as ‘Which figures are used in evaluation
papers?’ by searching for “evaluation” and reading the results. One
can also just examine the figures but not tables or ask ‘What are the
result figures in John T. Stasko’s evaluation papers?’ by filtering
both the authors and terms fields (Fig. 6(b)).

Since VIS is the premier conference of our field, decisions about
what topics appear and what methods are published can profoundly
influence applications. Consider questions like what illustrative

(a) Image-centric view using a “brick wall” layout.

(b) Timeline-centric view of paper image cards. Here results show all
images where the paper title and abstract contain the term “evaluation”
of authors field “Stasko T. John”.

(c) Paper-centric view using a paper layout for a query of papers
appeared between 2017 and 2019.

Fig. 6. Our VISImageNavigator (VIN) interface and search engine. We
arranged figures and tables using (a) a “brick wall” layout, (b) a timeline
view, or (c) a paper list layout We color-coded the images with frames
based on the conference types. Users can query the database, by terms
(using authors’ keywords or terms in titles and abstracts), by image
type (figure, table, or both), by conference category (Vis, SciVis, InfoVis,
VAST), or by year. A click on an image displays article details including
authors and a hyperlink to the full PDF in IEEE’s digital library.

visualization techniques have been developed? and what are the
techniques in domains such as “brain imaging” and “quantum
physics”? (cf. see Fig. 10 of the supplemental material Sect. D). To
answer this question using VIN, the user can query the term ‘brain’
to reveal diverse advances in showing tomography in the nineties,
tensor lines, as well as metaphorical maps. In contrast, searching
“quantum” returns fewer results with a major focus on depicting
symmetrical structures. Switching to the paper-centric view reveals
the paper titles that confirm that most ‘quantum’ papers use volume
rendering to show particle interactions.

5.2 Use-Cases for VIS30K
We envision the following use-cases for VIN and VIS30K:

1. Identifying Related Work. Typically, when researchers
search for related work, they either rely on text search in digital
libraries or they manually follow trails of citations from one paper
to the next. In addition to offering a text-based search in paper
metadata, VIN offers a focused, visual way to quickly browse

http://visimagenavigator.github.io/
http://keyvis.org/
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related work that is impossible with other research databases or
generic online image search tools. This visual search can comple-
ment the traditional related work search and enable researchers to
stumble upon papers with similar layouts, data representations, or
interfaces that may not show up in text searches. Image overviews
also help them to see and describe differences in data visualization
styles spanning multiple years that may be more difficult to grasp
from images confined to individual papers.

2. Teaching and Communication. Our image database and
VIN can also be used to quickly find images for teaching and
communication. By filtering out later years of the conference, for
example, historic examples from the community can be retrieved
and compared to the current state-of-the-art. Browsing the most
recent years reveals new contributions and the latest advances.
Our images are stored in a lossless format at a resolution that
supports their use for teaching and communication. In addition,
extracting paper references is made simple through the VIN
interface (Fig. 6(c)). Further, there may be users outside the
community who are interested in the types of representations
published by the community but lack easy access to papers or are
not accustomed to reading scientific content. For these groups
of users, VIN can serve as an entry point to research in the
visualization community and spark interest in exploring its work
further. Thus, VIN also serves as a bridge to other communities.

3. Understanding VIS. Both the Visualization community
itself and external researchers interested in the history of visual
data analysis may be curious about the evolution of the field. Past
efforts on understanding practices in the community were listed in
Sec. 2. Complementing this past work, our data and tool now offers
overviews of our community’s visual output both in the form of
both figures and tables. Researchers can either engage assess and
analyze the data qualitatively using VIN or download it to build
additional tools that use their own metrics to support quantitative
study of the image content.

4. Tool Building and Testing. Our database can be used by
others to extend VIN or build novel tools for other types of
image analysis tasks. For example, future projects could build
a dedicated image similarity search tool on top of VIN, use the
database as training data for machine learning algorithms, or look
into visualizing image content (e. g.visual question answering
and visualization re-targeting). The database can also be used
for computer vision projects. Our results demonstrate that the
state-of-the-art CNN solutions and figure and table extractions
do not achieve human-level accuracy. This finding suggests that
our VIS30K dataset could present a grand challenge for future
benchmarking of machine learning research.

6 DISCUSSION AND CONCLUSION

We introduce VIS30K, a curated and complete dataset of all figures
and tables used in IEEE VIS conference publications over its 30-
year history. We also provide a data exploration tool, VIN, that
facilitates interactive exploration of this scholarly resource as well
as a collection of the relevant metadata. For the first time, our VIN
tool enables researchers and practitioners to search for approaches
related to their own or solutions for their data analysis problems
in a visual way—after all, most of us remember images we have
seen in the past much better than the specific names of the relevant
papers. Our search also enables researchers to quickly find related
work they may not even be aware of, without requiring them to read
and download several possibly related papers from digital libraries.

In addition to these immediate benefits of our interactive search,
our dataset will allow us to explore a number of interesting research
questions in the future. For example, how has visual encoding been
used in the past, and has this changed over time? Do the three
conference tracks use specific forms of encoding in a similar way
or are there differences? How can we create a visualization with a
similar style?

Our work also has implications that arise from our specific
extraction approach. We used CNNs to extract the image and
table locations via generated pseudo papers, followed by a manual
cleaning step to ensure quality. Without CNNs, a huge amount
of manual work would have been needed. Without our manual
cleaning, similarly, we could not have ensured our high data
quality. While we worked on published papers, our hybrid CNN-
manual approach is not limited to such documents: it could well
be applied more broadly, e. g., to XML-based solutions such as
GROBID [29]. We also anticipate that DeepPaperComposer [27],
a newer model for non-textual content extraction can provide
a scalable solution for information extraction from future VIS
publications. Our constructive experience could inspire future work
on pipelines that seek to extract images and tables from documents.

Naturally, our work is not without limitations. Our dataset does
not represent all of visualization scholarship. We examined papers
in only a single venue and did not collect scholarly figures presented
at other venues, e. g., EuroVis, PacificVis, CHI, and other related
conferences. We also did not collect visualization-related journal
articles in the IEEE Transactions on Visualization and Computer
Graphics and in IEEE Computer Graphics and Applications. As
the visualization field in itself is cross-disciplinary, we also did
not examine domain-specific journals that provide applications and
real-world impact (see an excellent review of visualization uses in
studying the human connectome by Margulies et al. [30]).

Reproducibility. We have released three data collections and
our CNN models. The main contribution in this work is the
VIS30K image collection and ground-truth bounding box types
and locations of all images released through the IEEE dataport at
DOI 10.21227/4hy6-vh52. Metadata for our VIS30K dataset is
accessible via a public Google spreadsheet (go.osu.edu/vis30k).
The 13K training and validation data of the synthetic pages
and their ground-truth and the text and image corpora are
accessible via go.osu.edu/vis30ktrainingdata. The tensor-
flow models we used are accessible online through the VIN
website. We have also released the pre-trained CNN models at
go.osu.edu/vis30kpretrainedmodels.
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VIS30K: A Collection of Figures and Tables from IEEE
Visualization Conference Publications

Additional material

A. DATABASES

Our dataset collection includes figures and tables in the 2,916
conference and journal publications of the IEEE VIS conference
from 1990 to 2019. We store the IEEE VIS paper images in PNG
format in our VIS30K data. Metadata of the dataset is accessible
via a public Google spreadsheet (go.osu.edu/vis30k) whose
columns A–D are:

A The paper DOI as a unique identifier to cross-link to other
databases such as VisPubData [15], KeyVis [16], and the
Practice of Evaluating Visualization [17], [23].

B A thumbnail of each image, which is a low-resolution
version of each image extracted from the paper. This provides
a gateway to data analyses, e. g., through Google CoLab.

C The image type: either figure (F) or table (T).
D An image link that points to its web storage address where a

full-resolution version is accessible through IEEE DataPort.
Please note that all image files are copyrighted, and for most
the copyright is owned by IEEE. Some have creative commons
licenses or are in the public domain. Yet other images are
subject to different, specific copyrights as indicated in the
figure caption in the paper.

B. INTERACTIVE LABEL CLEANING TOOLS

Fig. 7 shows screenshots of two tools we used during our interactive
cleaning process.

C. IMAGE DISTRIBUTION IN THE TRAINING DATA
CORPUS

The diversity of image data in the training data is critical for
developing useful image data extraction algorithms. We employed
two databases collected by Borkin et al. [3] and Li and Chen [26].
We removed images if they contained abundant text. We construct
an image dataset with 12 categories shown in Table 1.

D. ADDITIONAL USE-CASES

In the paper we present three interfaces in an interactive web-
based tool, VIN, that allows the general public to perform their
own analyses on the entire 30 years of IEEE visualization image
datasets. We show in this part example questions the VIN tool can
help answer.

What are the illustrative visualization techniques in litera-
ture? Looking at images allows scholars to “see” the techniques
invented over the years and obtain a gist of the development
of techniques over time. Fig. 8 shows an exploratory process
for someone, here Jerry, who has taken a visualization class
in graduate school to explore techniques related to “illustrative
visualization”. Jerry puts “illustrative visualization” in the query

by author keywords and ses that the tool returned 243 figures
and 13 table images ranging from see-through views to distorted
rendering to depth-based techniques. Jerry first observes that most
of the early techniques were about transfer functions and then
newer techniques address interactive exploration and augmented
depth perception (Fig. 8(a)–(b)). The most recent work in 2019 is
different enough to catch Jerry’s attention in that only one paper
at InfoVis was about non-spatial data (Fig. 8(a)). Wondering what
that paper is about, Jerry switches to the paper-centric view to learn
that it was about setting parameters in a high-dimensional space.
Apparently this paper has a novel use of terminology compared to
other papers, which largely focused on spatial data representation.
Curious about why he did not see Ebert and Rheingans’ work on
shading-based illustrative visualization, Jerry tries a similar term
‘non-photorealistic rendering’ and added ‘Penny Rheingans’ to the
author’s name field; now it returned several of Rheingans’ and her
students’ work (Fig. 8(b)). Trying the same keywords and author’s
field and filtering by ‘title and abstract’ instead returns fewer
results (Fig. 8(c)). Jerry learns that next time he should try both
search options. Further exploration by updating the keywords to
“illustration” reveals that this term was largely used in hand-drawn
techniques (Fig. 8(d)).

What work has been published by Sheelagh Carpendale?
Assume that André is a new PhD student working with Prof.
Carpendale at Simon Fraser University who would like a quick
understanding of Prof. Carpendale’s work in interactive visualiza-
tion before reading her other HCI (human-computer interaction)
journal and conference papers. André selects the author’s name
from the author category and then clicks the timeline view to obtain
an overview of the work (Fig. 9). He sees diverse contributions in
visual representations and novel interaction techniques on tabletop
and large displays. Since André likes interactive techniques, André
quickly begins to explore the early papers related to focus+context.
Curious what concepts these focus plus context describe, André
switches to the paper view. Here he learns that Dr. Carpendale
published several focus+context applications in the area of biology.
Interested, André decides that he should read these papers to learn
about the details.

What visualization applications center around quantum
physics? For Emma, a scholar whose goals are related to examine
complex structures in quantum physics data, our VIN tool is a
resource for research techniques she could adapt or reuse rather
than reinventing the wheel. Emma knows that she could query
“quantum” from the authors’ keywords or more specific terms in
abstract and title that target specific design choices (e. g., showing
the data with line or volume rendering) or stylistic decisions (e. g.,
color space and line styles) (Fig. 10). She is interested in the
most frequent visual encodings (e.g., what data attributes are
mapped to which marks and channels) and best practices (e.g.

https://go.osu.edu/vis30k
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TABLE 1
The image class distribution of our training data corpus. Our pseudo-paper page composer randomly pastes 10 classes of figures and one table, and

one bullets and equations classes onto white paper pages. These images are subset of figures and tables from the MASSVIS and scientific
visualization images collected by Borkin et al. [3] and Li and Chen [26].

Table Area and circles Bars Bullets and equations Line chart Maps
232 148 362 380 330 268
Matrix and parallel coordinates Multiple types Photos Point-based Scientific data visualization Tree and Networks
62 460 120 120 262 134

(a) Interface to verify results for individual coders.

(b) Interface to examine all coders’ results.

Fig. 7. Screenshots of the tools used to clean the results of CNN-based labels. Although large labeled databases in natural scenes are becoming
standard, they are comparatively rare in scholarly document databases. This tool is used for easily correcting, adding, and annotating figures and
tables using the orange bounding boxes and tags.
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Early work 
on transfer 
functions

Work on 
depth and 
interaction

Hand-drawn  style  
illustrations 

published in VAST 
(green-boxed)

Where is Ebert and 
Rheingans’s work? 

Filter using a 
similar term and 
author’s name

Try to query by 
‘title & abstract’ 

instead of ‘paper 
authors’ keywords’

Try to filter using 
another term 
‘illustration’. 

(b)

(c)

(d)

(a)

Fig. 8. VIN use-case scenario: Identify work related to “illustrative visualization.” This scenario illustrates a use case when the user identifies the
related work. VIN offers a focused, visual way to quickly browser related work progressively. It can complement the traditional text-based related work
search.

Many focus 
plus context 
techniques

Sustained 
contributions

Tabletop and other 
large display and 

whiteboard related 
techniques 

Novel 
representation 

techniques 

Fig. 9. VIN use-case scenario: Students searching for scholarly work by Prof. Sheelagh Carpendale at IEEE Vis and InfoVis. This scenario describes
how VIN can facilitate learning and communication. It shows the types of representations published by a specific scholar in VIS.

the use of transfer functions in volume graphics). She finds that the
brick wall interface provides a better understanding of the design
patterns, and shows which techniques are most frequently used to

show topological structures. She understands that she could create
new methods to meet the data exploration goals of the quantum
physicists’ new design goals.
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(a)

(b)

Fig. 10. VIN use-case scenario: Paper images containing “brain” or “quantum” in the paper title or abstract. We see significant advances in brain
visualization compared to those for exploring quantum data.
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