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Figure 1: In our study, we presented participants with two visualizations and text extracted (Contents A and B above) from the
[PCC Synthesis Report Summary for Policy Makers [19] (specifically from Figure SPM3). We showed the same content using
two different presentation styles: compact (Style 1) and segmented (Style 2). Participants saw either A1 and B2, or A2 and B1.

ABSTRACT

We explore the validity and applicability of educational and cogni-
tive science theoretical frameworks for designing and evaluating data
visualizations. Specifically, we are interested in using well-known
frameworks from other domains to learn about how the subjective
readability of a visualization relates to the perceived cognitive load
required to acquire knowledge from it. To that end, we conducted an
online randomized study in which each participant performed learn-
ing tasks on two different data visualizations. One was presented
in three successive parts, following the segmenting principle from
the Cognitive Theory of Multimedia Learning, and the other was
presented as a single image. Although most learners preferred the
segmented style, this treatment did not significantly affect the over-
all mental effort they reported. Subjective measures of extraneous
cognitive load, however, significantly and negatively correlated with
visualizations’ perceived readability measures. In other words, if a
learner found a visualization more readable, they felt it required less
mental effort to parse relevant information from it for learning. In
addition to a qualitative analysis of learners’ preferences, we also
contribute an interdisciplinary perspective on cognitive processing
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of visualizations and a discussion of implications for designing and
evaluating data visualizations beyond educational contexts.

Index Terms: Cognitive load, readability, multimedia learning.

1 INTRODUCTION

Researchers in Human-Computer Interaction [8], as well as in data
visualization specifically [30], have advocated for a deeper integra-
tion of insights from external disciplines’ theories. How people can
gain knowledge from visual data representations has been studied by
researchers from various domains such as education [24, 75], cog-
nitive psychology [28, 34], health decision making [31], computer
science [11, 15], neuroscience [20, 21], and medias studies [70].
In this work, we build upon previous research that connects educa-
tional science to the design and evaluation of visualizations (e.g.,
[1,5, 16, 37, 77]) to inform how we conceptualize and assess users’
experiences with visualizations from a learning science perspective.

We propose using concepts from the cognitive psychology of
learning as conceptual lenses to better describe and support readers’
cognitive processes in data visualization. Specifically, as illustrated
in Fig. 2, we focus on the Cognitive Load Theory (CLT) [80] and the
Cognitive Theory of Multimedia Learning (CTML) [51], and how
they might help us to study the readability of data visualizations,
which we broadly define as “how easy it is for people to retrieve
useful information from a visual representation of data” [17].

CLT is organized around the concept of cognitive load, which
represents the workload a learning task imposes on the learner’s cog-
nitive system [62]. CTML provides us with a theoretical framework
for designing instructional messages that can support meaningful
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Figure 2: We propose to leverage concepts from the instructional
design literature—specifically, from the Cognitive Load Theory
(CLT) and the Cognitive Theory of Multimedia Learning (CTML)
—as conceptual lenses to study communicative data visualization.

learning—i. e., improve learners’ memorization and understanding.
In the first part of this work, we describe components from both
theories and propose connections to existing concepts in data visu-
alization design and evaluation. To explore how borrowing from
CLT and CTML can help us learn about people’s experience of
visualizations, we then conduct a study. In the study we examine
the effect of applying a specific instructional design principle from
CTML on both the perceived readability of a data visualization and
the subjective cognitive load experienced by readers, as interpreted
through the components described in CLT.

2 RELATED WORK

We are not the first to be interested in applying theories from educa-
tional science to data visualization [71]. There is a growing body of
work proposing, for instance, to adapt Bloom’s taxonomy of educa-
tional goals to identify and assess different levels of understanding
in data visualization viewers [16] and to determine visualization task
complexity levels [58]. Another stream of research proposes using
learning objectives as a specification framework for designing and
evaluating visualizations [1, 49]. Research on visualization onboard-
ing systems [77] and constructive visualization [38] is also clearly
grounded in educational theories [78]. Beyond these publications
that explicitly draw from educational sciences, a few works in our
field focus on visualization understanding, recall, and recognition.
Such studies examine the memorability of data visualizations [10, 11],
effective design strategies for supporting readers’ understanding and
retention of information from a data visual representation [9], or how
people make sense of unfamiliar visualizations [47]. Although the
aforementioned studies were not conducted in educational settings,
their measured outcomes are comparable to learning goals as defined
in the context of multimedia learning [40]: remembering (i. e., re-
tention) and understanding (i. e., transfer). Educational theories are
thus likely to provide us with useful insights into the visualization
field at large, which motivated the work we present here.

2.1 Cognitive load and instructional design

Cognitive Load Theory (CLT) explains that a learner must allocate
cognitive resources to a learning task in order to acquire knowledge
or develop a skill [62]. “Cognitive load,” in this context, refers to
the total amount of cognitive resources required for a task. CLT also
relies on the assumption that a learner’s pool of cognitive resources
cannot be increased, and that learning cannot occur effectively if
the demands of the task exceed the learner’s available cognitive

resources. There are three main cognitive load components in CLT:
intrinsic load, extraneous load, and germane load—also called rele-
vant information load.

Intrinsic load is imposed by the nature and basic structure of the
information that a learner needs to process simultaneously to achieve
a learning goal. It relates to the notion of information complexity,
known in CLT as “element interactivity””: the number of interacting
pieces of information that the learner must process together. While
most measures of information complexity refer purely to the char-
acteristics of information, from a CLT perspective, intrinsic load is
heavily influenced by the learner’s prior knowledge on the topic at
hand. This is because knowledge acquisition facilitates the integra-
tion of multiple pieces of information into single, more manageable
units [61]. For example, a kid who is learning to read aloud will
have to put effort in processing the individual letters “a”, “n”, and
“y”, while a more experienced reader will be able to process and
articulate the word “any” as a single entity. In CLT, intrinsic load
is completely independent of the form in which the information is
presented. As a result, the intrinsic load of a learning task cannot
be altered other than by increasing the learner’s prior knowledge or
changing the learning goal itself.

Extraneous load, in contrast, is solely imposed by the design of
learning material and activities. It stems from the mental resources a
learner must allocate to processing the representation of information,
and is thus influenced by how efficient this representation is to con-
vey relevant information to a specific learner. In addition, processing
any piece of information that is NOT relevant to the learning goal
also adds to extraneous load.

Germane load—also referred to as relevant information load
by some authors [61]—represents the mental effort a learner invests
in knowledge acquisition itself—i. e., updating their mental represen-
tations of the world with new, relevant information. It is thus closely
linked to intrinsic load, as more complex information often requires
greater cognitive engagement for meaningful learning. Germane
load is also thought of as having a redistributing function [82]: rather
than adding to overall load, germane load reflects a beneficial use of
cognitive resources, ideally redirected from unnecessary processing
(i. e., extraneous load) toward activities germane to learning.

Since learners have a limited pool of cognitive resources, learning
can only effectively occur if the sum of intrinsic and extraneous
cognitive loads remains lower than the learner’s cognitive capacity
limit, so that the learner can dedicate resources for acquiring new,
relevant information. Thus, CLT suggests that efficient instructional
design should aim to reduce extraneous cognitive load, enabling
learners to allocate a greater portion of their cognitive resources to
issues that are directly relevant to the learning goal, rather than to
processing extraneous information or inefficient representations of
relevant information. In this context, instructional design refers to
the planning of pedagogical strategies and the design of effective
learning materials and activities to support specific learning goals.
Fig. 3 presents 4 different learning scenarios along with examples of
instructional design strategies to prevent cognitive overload.

The concept of cognitive load is not new to visualization re-
searchers, although it is not often discussed as such. In particular,
electroencephalography-based studies have explored how different
visualization formats affect cognitive load [3, 89]. While some
researchers focused on isolating extraneous cognitive load by con-
trolling for germane load and intrinsic load in their experimental
design [3], others did not attempt to obtain distinct measures of
extraneous, intrinsic, and germane load [89]. As CLT predicts the
effects of instructional design manipulations on specific types of cog-
nitive load, we included distinct measurements for overall, intrinsic,
extraneous, and germane cognitive loads in our study design.

2.2 Cognitive Theory of Multimedia Learning

For the past 25 years, the Cognitive Theory of Multimedia Learning
[54] (CTML) has been a framework for integrating, refining, and
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Figure 3: Four learning scenarios in CLT.
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Case 1: After accounting for intrinsic and extraneous load, the
learner has sufficient cognitive resources available to filter out irrele-
vant information and engage in effective learning.

Case 2 : Extraneous load is too high—the learner is overwhelmed
by the way information is presented or by irrelevant details. Example
solutions: remove irrelevant content, find a representation that is
easier to process for this learner, or improve the learner’s ability to
process the chosen type of representation (e. g., in data visualization
contexts, by increasing the learner’s idiom-specific visualization
literacy, or their ability to leverage the system’s interactive features).

Case 3: The knowledge to acquire is intrinsically too complex for
this learner, leading to cognitive overload and loss of information.
Example solutions: build the learner’s prior knowledge on the topic
or adjust the learning goal.

Case 4 : Once intrinsic and extraneous loads have been addressed,
the learner is operating near their cognitive capacity. Their available
bandwidth for germane processing is constrained, possibly hinder-
ing their ability to redirect cognitive resources from extraneous to
intrinsic processing. Example solutions: if extraneous load has al-
ready been reduced to a minimum, provide scaffolds for germane
processing, e. g., by breaking the learning task into smaller steps or
by supporting meta-cognitive strategies.

extending CLT and other cognitive and learning theories within the
specific context of multimedia learning. Multimedia instructional
material is broadly defined in CTML as “a communication contain-
ing words and pictures intended to foster learning” [53]. Although
initially focused on pictorial and diagrammatic representations, re-
searchers working in the CTML paradigm have also investigated data
charts and graphs (e. g., [43, 74]). Data visualizations commonly use
both graphical and textual content, thus align with CTML’s scope.
The extensive empirical work on CTML resulted in an evolving
set of design principles and provides an elaborate framework dedi-
cated to multimedia instructional design. The main design principle
in CTML is the multimedia principle [52], which echoes Paivio’s
dual-coding theory [23, 64] in stating that people learn better from
words and pictures than from words alone. Other principles in CTML
define the conditions to optimize multimedia learning outcomes [54].
Those guidelines aim to reduce extraneous cognitive load, help the

learner focus on relevant information processing (i. e., support ger-
mane cognitive load), foster engagement and active learning, and
integrate social and affective components in instructional design.

Visualization researchers are increasingly applying instructional
design principles from CTML such as the cueing—or signaling—
principle [84] to develop effective visualization guidance systems
(e.g., [7, 73]). Several relevant principles, however, remain less
explored within the visualization community. One such example
is the expertise reversal principle [42, 41], which emphasizes the
importance of adapting multimedia content to the learner’s level of
expertise. While novice learners often benefit from structured guid-
ance that simplifies problem-solving, the same support may hinder
more advanced learners by limiting their autonomy. This principle
resonates with visualization research focused on characterizing the
needs of novice and expert users (e.g., [88, 47]).

We explore the application of the segmenting principle as a strat-
egy for helping data visualization readers manage their cognitive
load. By breaking complex information into smaller, user-controllab-
le segments, this principle aims to reduce extraneous load and enable
learners to allocate more cognitive resources to relevant information
processing at their own, self-regulated pace. Although this effect is
well-studied in multimedia learning, its application in data visualiza-
tion has been limited. Prior work, moreover, has primarily focused
on onboarding scenarios—helping users learn how to interpret novel
visualizations (e.g., [79, 45])—rather than supporting them as they
engage with familiar visualizations under cognitive load.

On the educational literature side, research in multimedia learning
often focuses on visual representations, such as diagrams, to sup-
port learning [56]. Visual data representations like charts or graphs,
however, are discussed much less frequently. Even when studying
learning activities with data visualizations, cognitive load measure-
ments are rare. For instance, a study [50] showed that visual cues
and added explanatory visual material could increase the number of
relational and causal statements that learners can infer from a graph.
Yet the authors focused on learning outcomes without examining
whether these improvements were linked to reduced cognitive load
as predicted by CTML principles. Measuring outcomes alone can
show that learning occurred, but without cognitive load evaluation
it remains unclear why the design was effective or how it might be
adapted for different learners or contexts. To help bridge this gap,
we focused on cognitive load evaluation rather than learning out-
comes. Understanding how and why design choices affect knowledge
acquisition—through their impact on mental effort—is essential for
developing effective, generalizable instructional strategies.

If we think of data visualization as a learning problem [1], we
can use CTML principles to improve the design of data visual rep-
resentations for communicative purposes. We can also evaluate
visualization activities as learning experiences using cognitive load
measurements. Although visualization researchers [1, 36] proposed
somewhat similar ideas, they did not put forward a theoretical analy-
sis of how various characteristics of data visualizations might affect
different types of cognitive load in viewers. To bridge this gap, we
propose such an analysis and examine how we can connect concepts
from the CLT and CTML framework to data visualization literature.

3 FACTORS OF COGNITIVE LOAD IN DATA VISUALIZATION

CLT is, in essence, relevant to the presentation of any complex infor-
mation that requires a reduction in cognitive workload [81]. Early
work on visualization complexity showed that visual representations
of data can deliver overwhelming amounts of information [13]. From
a visualization viewpoint, some of this complexity can be attributed
to the nature of the underlying data, some to the appropriateness and
efficiency of the visual design, some to the viewer’s knowledge on
the topic, and some to their data visualizations reading skills [39].
Conversely, in CLT and the CTML the notion of complexity relates
only to the core of informational content.



SUMMARY: KEY CONCEPTS FROM COGNITIVE LOAD THEORY

Cognitive load: The total amount of cognitive resources required for a
knowledge acquisition task.

Intrinsic load: The load imposed on the learner based on the complexity of
the relevant information, regardless of how it is presented. The complexity
of relevant information also varies according to each individual learner’s
prior knowledge.

Extraneous load: The load imposed by the design of learning material
and activities, regardless of the intrinsic complexity of information, and by
the processing of irrelevant information.

Germane load: The cognitive resources a learner invests in knowledge
acquisition itself, and in distributing mental effort between relevant and
irrelevant processing.

Instructional design: The planning of pedagogical strategies and the
design of effective learning materials and activities to support specific
learning goals.

In this context, element interactivity is described in CLT as the
amount of novel elements of information that a learner needs to
process simultaneously to achieve the learning goal. The level of
relevant element interactivity is the primary factor that determines
intrinsic load: for a given learning task with a specific learner’s
level of prior knowledge on the topic, intrinsic load is fixed [61].
When it comes to data visualizations, underlying datasets are usually
too large to be held in a learner’s memory—in fact, visual represen-
tations have early-on been described as a form of external memory
[46]—but a reader’s domain knowledge could mediate intrinsic load.
Regardless of the domain, data visualizations also frequently present
information with high element interactivity because they depict rela-
tions between multiple variables, i. ., data dimensions, and/or across
a large number of entities, or data points. If all represented data
dimensions and data points are relevant to the learning goal, increas-
ing their number would directly lead to higher intrinsic cognitive
load in data visualization.

Such dataset elements, however, are not always necessary to
achieve a given learning task. As the inclusion of non-essential ele-
ments in learning materials can lead to unnecessary cognitive effort
for the learner, a visualization showing superfluous data dimensions
or points will generate extraneous load. Another essential data
visualization quality criterion relating to extraneous load is read-
ability, which broadly refers to the ease with which a reader can
visually retrieve information from a visualization [18, 32, 83]. Vi-
sual design choices significantly impact readability. For instance,
not all visual channels—such as color, position, size, or shape—used
to represent data are equally expressive (i.e., effective) [59]. Fur-
thermore, visualization effectiveness is task-dependent [65]. This
means that how well a representation supports relevant visualization
tasks [2] will also affect readability and, consequently, extraneous
cognitive load. The characteristics of learners also play a crucial
role in readability [90]. In particular, learners with low visualization
literacy [12, 48] may struggle to interpret data representations, thus
experiencing lower readability [17]—and higher extraneous cogni-
tive load. Overall, we can expect a data visualization to generate less
extraneous load when it is more readable. Our study includes sub-
jective measures of extraneous load and readability to help bridge
the gap between visualization research and CLT and CTML. A
strong correlation between participants’ ratings of extraneous load
and perceived readability would indicate that instructional theories
can provide a relevant framework for evaluating data visualizations.

Beyond this list of readability-related characteristics, digital rep-
resentations of data often feature interactive elements, which can

also affect the learner’s cognitive load. Poorly designed interactive
features will increase extraneous cognitive load again. Conversely,
well-designed features can provide learners with greater control over
the pace of information display and on-demand access to more de-
tailed information [72]—echoing Shneiderman’s mantra “Overview
first, zoom and filter, and details on-demand” [76]. According to
CTML, giving learners control over instructional content level and
pacing can help learners to better manage the allocation of cognitive
resources to germane load [55]. More specifically, multiple stud-
ies [67] have shown that segmenting the presentation of information
in smaller chunks and allowing learners to control the pace of display
can aid learning and reduce the overall cognitive load. The segment-
ing principle finds a parallel in data comics [6]—visualization story-
telling formats using sequential panels and data-driven narratives to
guide the reader. Constructive data comics [87], in particular, explain
the visual encoding choices, supporting readers in building concep-
tual understanding of a representation. By sequentially unfolding
information across panels, data comics implement a form of seg-
mentation that may help reduce extraneous cognitive load. However,
data comics also leverage storytelling, visual cueing, and graphical
conventions from traditional comics, making it difficult to isolate the
effects of segmentation. To examine the specific impact of segmenta-
tion in a data visualization context, we compare cognitive load ratings
between a segmented visualization and a non-segmented control.

To summarize, we found strong indications in the literature that
Cognitive Load Theory (CLT) should provide a relevant framework
to assess visualization efficiency. In addition, the related Cognitive
Theory of Multimedia Learning (CTML) should also provide rele-
vant design principles for improving data visualizations. We thus
want to address the following research question: To what extent
do CLT and CTML apply to information retrieval from data
visualizations? To answer it, we derived two hypotheses from the
reviewed literature:

e H1: When learning from data visualizations, extraneous cognitive
load and data visualization readability are negatively correlated.

« H2: Applying the segmenting principle to data visualizations
decreases the overall cognitive load in learners.

4 METHOD

We conducted a pre-registered osf.io/ptsne cross-sectional exper-
imental study with a within-subject design. Our goal was to assess
the correlation between perceived visualization readability and learn-
ers’ subjective extraneous cognitive load and to assess the effects of
applying the CTML segmenting principle to the presentation of data
visualizations on learners’ cognitive load. We collected subjective
ratings of readability and cognitive load from learners on two differ-
ent data visualization stimuli: a control stimulus, and a segmented
stimulus. To gain a more comprehensive understanding of our par-
ticipants’ experiences with the visualizations, we also collected their
feedback about which visualization their preferred and why.

4.1 Participants

To recruit participants, we disseminated a message to our personal
and academic international networks via e-mail, Discord, Facebook,
and WhatsApp groups. The invitation message contained a short
description of the study and stated that participants would not re-
ceive compensation. Participants were required to be fluent English
speakers, of legal age in their country of residency, to have normal or
corrected to normal vision, and to use a computer device to ensure a
minimum display width of 1024 pixels. As pre-registered, we closed
the survey after 10 days because we had reached our minimum sam-
ple size target of 20 participants. 34 participants fully completed
the survey, although three were unable to express their visualization
preferences in the last question due to a technical issue; two others
chose not to explain their preferences. As a result, five participants
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were not included in the qualitative analysis, but their other answers
in the survey were still used for quantitative analyses.

All age groups from 18—24 to 65+ were represented, but most
participants belonged to the 25-34 age group (N = 22). 18 par-
ticipants identified as men (cis or transgender), 15 as women (cis
or transgender), and one as non-binary. Most of the participants
had completed a Master’s degree (N = 21) or a Bachelor’s degree
(N =9). The majority resided in Europe (N = 23, including 16 peo-
ple living in France), five participants resided in Asia, three in Africa,
two in North America, and one in Oceania. Table 5 in App. D.1
reports all collected demographics. Participants’ mean self-reported
familiarity with the topic of climate change was 3.76 (SD = 1.05)
on a 7-point Likert scale (1 = I don’t know what climate change is
to 7 = I am a climate scientist myself). Most participants reported
they rarely (a few times a year) (N = 6), sometimes (1-3 times a
month) (N = 16), or frequently (once a week or more) (N = 8) read
or watched content related to climate change; four participants re-
ported having already created content related to the topic (see Tabs. 6
and 7 in App. D.2 for details).

4.2 Materials

Learning tasks. Participants had to complete three different learn-
ing tasks for each visualization: (1) write one to five key takeaways
they could learn from the visualization, (2) write one to five ques-
tions they could answer using the visualization, and (3) select correct
statements from a list of 6, in which there were 3 false and 3 correct.
We derived these tasks from previous work [66], which indicated
that different tasks elicit different response patterns in people, in line
with existing survey design recommendations [44].

Data visualizations. Each participant completed learning tasks on
two different data visualizations (see teaser Figure 1). We chose to
use existing visualizations in order to recreate conditions as close
as possible to real-world scenarios. Specifically, we selected vi-
sualizations related to climate change due to prior work showing
that such visualizations are likely to elicit high cognitive load in
learners. First, climate visualizations can be hard to understand for
non-experts [57], potentially eliciting a high level of intrinsic load.
And, second, authors from the Intergovernmental Panel on Climate
Change (IPCC) [33] often encounter challenges in overcoming vi-
sual complexity when designing their visualizations, which could
lead to a high level of extraneous load. We chose to use density maps
because we wanted to control the effect of participants’ visualization
literacy on extraneous cognitive load, and Lee et al. [48] found that
similar representations were easy to decode for most people.

We selected two visualizations from Figure SPM.3 in the IPCC
6th Assessment Synthesis Report Summary for Policy Makers [19].
Figure SPM.3 (see the online version) presents three topics with
multiple density maps each. We chose the first two topics because
they had similar layouts, showed four maps each, and used the
same colors, thus minimizing the possible effects of graphic design
on extraneous load. Both images presented maps with projections
across different scenarios of global warming for heat-humidity risks
to human health (Content A) and species loss risk (Content B). In
Content A, one of the maps depicted historical conditions, while
the other three represented projections for different global warming
ranges. Maps in content A only showed data for terrestrial parts
of the world. In content B, all four maps showed projections at
specific levels of global warming. Maps in content B showed data
for both oceanic and terrestrial areas. To ensure good conceptual
understandability for all participants regardless of their prior topic
knowledge, we created short explanatory texts based on the IPCC
Synthesis Report [19], IPCC’s Working Group II full report, and
their underlying studies. Each text first introduced the visualization’s
topic, explained the scientific mechanisms linking the data to climate
risks, and briefly summarized projected trends over different global
warming scenarios (we provide further details in App. A.1).

Presentation styles. we created two versions for each visualization:
either Compact (style 1) or Segmented (style 2), as depicted in Fig. 1,
and further detailed in Figs. 7 to 9 in App. A. The Compact style
combined the data visual representation and text in a single image.
The legend, title, and in-representation explanations mirrored those
in the original IPCC report and we included our explanatory text
below the image. In the Segmented style, we divided the same
content into three images: (1) the visualization’s title with the topic
introduction part of our text, (2) the visualization’s color legend
along with the portion of our text explaining ecological or biological
mechanisms at play, and (3) the visual representation, title, and
legend, supplemented with the final part of our text describing trends
across global warming scenarios. A slideshow container displayed
these images, allowing survey respondents to control the pace of
display by clicking on Previous / Next buttons (as shown in Fig. 10 in
App. B), or using arrow keys on their keyboard. The content did not
differ between styles, except for the legend, which appeared twice in
the Segmented versions. All images had a fixed width of 800 pixels,
ensuring identical sizes of texts and maps across all stimuli.

4.3 Measures

Cognitive load. We measured cognitive load through subjective
mental effort ratings, as it has shown to correlate with other cognitive
load measures such as electroencephalogram (EEG) [86], while
being “unintrusive” [62] and easy to implement. Paas [60] first
developed a 9-point Likert rating question that allowed learners to
self-report mental effort invested in a learning task with responses
ranging from very, very low mental effort to very, very high mental
effort. Researchers have since adapted the wording in an effort to
help learners disambiguate between different types of cognitive load
in self-reports. Specifically, to assess intrinsic load, participants
can rate how easy the learning content is from very, very easy to
very, very difficult [4]. Similarly, to measure extraneous load,
participants can report how easy it was to learn with the material
from very, very easy to very, very difficult [22]. Finally, researchers
suggested germane load could be measured by asking participants
to rate how concentrated they were during learning from very, very
little to very, very much [69, 86]. In this study, we adapted from
these works (e. g., by replacing ’learning content” [22] with “data
content” for intrinsic load). To increase the reliability of collected
data [25], we fully labeled all Likert answer options. In App. C.1,
we provide the complete list of items and discuss their reliability.
Perceived readability. As we measured cognitive load from subjec-
tive ratings, we also collected subjective ratings of readability using
PREVis [18], a validated questionnaire for evaluating perceived
readability in data visualization. Respondents answered readability
items on a 7-point bipolar agreement Likert scale, fully labeled. The
instrument includes 11 items across four scales (see App. C.2 or the
PREVis website for details):
# UNDERSTAND: how easily participants find they can understand
how to read the visualization (three items, @ = 0.93 for Style 1 and
o = 0.92 for Style 2),

LAYouT: how clear they find the representation’s visual layout
(three items, @ = 0.79 for Style 1 and w = 0.92 for Style 2),
¢ DATAREAD: how easily they feel they can find and read data
points (three items, @ = 0.92 for Style 1 and @ = 0.91 for Style 2),

DATAFEAT: how easily they feel they can read data features such
as extremums, patterns, or trends (two items, r = 0.70 in Style 1,
and r = 0.53 in Style 2).
We provide additional reliability analyses in App. C.2.
Participants answered each scale on a separate screen in random
order, and items within each scale also appeared at random positions.
Style preference. At the end of the survey, participants indicated
their style preference or their lack of preference for any style. They
also provided a brief comment explaining their choice.
Data collection. We collected all measures electronically using ou
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Figure 4: Overview of the study main part procedure.

Participants repeated the blue segment for each of the two visualizations they saw.

institutional LimeSurvey platform. We detail exclusion criteria in
Sec. D.3 (e. g., mobile devices were not supported, and we included
attention check questions).

4.4 Procedure

Each participant saw two visualizations: one was presented in three
parts, according to the segmenting principle from CTML; and the
other was presented as a single image. Both the content and order of
appearance of these visualizations were randomized (see Figure 4).
Due to participant dropout, however, the final number of complete
submissions was uneven across conditions (see App. D.4). After
clicking on the link in the invitation message, participants accessed
the survey’s welcome page, which stated again the requirements for
entering the study. On the survey’s next page, participants had to
agree to an informed consent form, before they could proceed with
the core part of the survey, which we describe in Fig. 4. Just before
seeing the first visualization, the survey displayed an information
page providing some context in the form of the first sentence from
[19], the IPCC report from which we extracted the visualizations. We
also included a brief message acknowledging that emotions arising
in response to the climate crisis can be uncomfortable. We reminded
participants that they could leave the survey anytime and provided
an online list of resources to help cope with eco-anxiety. After
participants had answered all questions about the first visualization,
the survey recommended taking a short break before continuing
with the final part of the study. On average, participants spent
almost one hour on the survey (M = 55 min, SD = 34), removing
one outlier participant whose recorded time was 545 min. Large
discrepancies in recorded times for each question tend to indicate
that some participants did not complete the survey in one go. A
complete copy of the survey is available on osf.io/cj3pe
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Figure 5: Repeated measures correlation matrix for sub-
jective ratings of cognitive load (CL) and readability
(PREVis ¢++9).

Readability and extraneous cognitive load correlation.

We created a repeated measures correlation matrix using the
rmcorr package in R to examine the correlation between the per-
ceived readability of visualizations and subjective extraneous cog-
nitive load in the associated learning task. The resulting matrix in
Figure 5 shows that readability ratings negatively correlated with
extraneous load ratings (that is, a higher readability was associ-
ated with a lower extraneous cognitive load). To account for mul-
tiple comparisons between extraneous cognitive load ratings and
PREVis #+++ scales ratings, we applied a Bonferroni correction,
adjusting the significance threshold to .0125. The correlation was
moderate for the
strong for the ¢ UNDERSTAND (r = —.77, p=15.58x107%), ¢
LAYouT (r=—.63, p=4.49 x 107 ), and ¢ DATAREAD (r = —.64,
p =3.59 x 1077 ) ratings. These findings support our first hypothe-
sis (H1): the more readable participants found a visualization, the
less extraneous cognitive load they experienced (i. e., mental effort
required to learn from the visualization). We provide details and
describe other correlations as exploratory analyses in App. F.1.1.
Effect of segmentation on cognitive load.
t-test showed that, although learners tended to experience a higher
overall cognitive load in the compact condition (M = 5.59, SD =
1.5) compared to the segmented condition (M = 5.21, SD = 1.39),
the difference did not reach the conventional significance threshold
of .05 (¢(33) = 1.601, p = .060). Since the results were marginally
non-significant, and due to the small sample size for each random-
ized condition Group x Order, we did not conduct the other analyses
planned in the pre-registration regarding this hypothesis. We did,
however, conduct a series of exploratory paired-samples ¢-tests to as-
sess the effect of presentation style on other cognitive load measures
(see App. F.2.1). Fig. 6 shows the corresponding point estimates and
confidence intervals. There was a significant difference for extrane-

DATAFEAT ratings (r = —.50, p = .002) and

A paired-samples

ous load between the compact and segmented styles, with a point

5.1 AQuantitative analyses

Table 1 describes the collected cognitive load and perceived readabil-
ity ratings across conditions. 20 participants preferred the segmented
style, six preferred the compact style, five had no preference, and
three encountered a technical issue that caused missing data only
for this very last question in the survey. We describe collected style
preferences in App. D.5.

estimate at —.88, but not for intrinsic and germane load.

As there were significant correlations between extraneous cogni-
tive load and readability measurements, we also conducted a series
of exploratory paired-samples z-tests to assess the effect of style on
perceived readability (details in App. F.2.2). There were significant
differences for the ¢ UNDERSTAND, ¢ LAYOUT, and ¢ DATAREAD
scales, but not for the

DATAFEAT scale (details in App. F.2.2).
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Table 1: Collected ratings of cognitive load and readability for each Style x Content condition. ntrinsic CL
ntrinsic
Random group Group 1 (N =15) Group 2 (N =19) Extraneous CL
Stimulus Compact A Seg ted B Segmented A Compact B
mean std mean std mean std mean std
Germane CL
Overall CL 5.80 1.37 5.27 1.28 5.16 1.50 542 1.61
Instrinsic CL 5.13 1.68 4.67 1.59 4.79 1.36 5.05 1.47
Extraneous CL 467 176 393 153 | 326 133 426 194 Overall CL
Germane CL 6.07 1.16 5.33 1.40 5.47 1.35 5.37 1.54
-2 -1 0 1
PREVis Understand 473 140 556 L12 | 556 129 496 162 geumented-Compact difference with 95 and 99% CI
PREVis Layout 4.27 1.42 5.02 1.78 5.35 1.40 3.86 1.87
PREVis Data Features 4.90 1.71 5.43 1.49 5.11 1.52 4.74 1.65 . A ce
PREVis Data Reading 438 1.51 4.96 127 539 134 472 1.72 Figure 6:  Segmented—Compact within-

5.2 Qualitative analysis of preference statements

At the end of the survey, participants expressed their preference in
terms of presentation style and motivated their choice with a few
sentences. We conducted a thematic analysis on the 29 comments
we received. We provide the list of codes and themes in App. E and
participants’ coded answers in our osf.io/pvrgh repository.
This analysis revealed that many participants who preferred the
segmented version felt that it guided them in progressively process-
ing the information, and a few (P11, P13, P15) mentioned that the
segmented style felt like a “story”. In fact, P7 and P15 wrote about
progressing from general context towards detailed information: “The
segmented visualization felt like it told me the core takeways up
front and then expanded into details” (P7). Such comments res-
onate with Shneiderman’s ([76]) visual information-seeking mantra:
“Overview first, zoom and filter, then details-on-demand”. For partic-
ipants who preferred the segmented version, the compact style felt
“distracting” (P17, P23, P26, P28), “crowded” (P3, P6, P25, P28),
or even “overwhelming” (PS5, P17, P29), which could hinder their
willingness to engage at all with the visualization: P5 mentioned
they felt “discouraged by the look of the content”. Some partici-
pants mentioned the compact presentation required more effort: “We
have to find where to start and do this work ourself” (P15). The
segmented version, in contrast, felt “clear” (P23, P26) or “appealing”
(P9, P22) and required less effort as it was easier to “read” (P9, P18)
and “understand” (P13, P14, P21). A portion of the participants,
regardless of their preference, noted that having to go back and forth
in the interactive version cost them time or was “annoying” (P4,
P6, P12, P24, P29). Participants who either had no preference or
preferred the compact version explained they found it better to see
everything in one image (P1, P3, P24, P29). P24 and P30, who
preferred the compact version, mentioned it made it easier to under-
stand the content: “Having text and visualization in one place was
easier for going back and forth to understand the topic better” (P24).
It is worth noting that the segmented style was overall preferred and
that the preferences were similarly distributed among self-reported
levels of exposure to and familiarity with the topic (see Fig. 15).

6 DISCUSSION

In our study, we observed patterns consistent with CLT-based predic-
tions, with clear effects observed in extraneous load and perceived
readability. These results, though exploratory, suggest that CLT and
CTML can meaningfully inform how we conceptualize and assess
cognitive processes in visualization. Our first hypothesis—that per-
ceived readability ¢+ ++ would negatively correlate with subjective
extraneous load ratings—was fully supported. Overall, this study’s
correlational findings add to existing empirical evidence supporting
the relevance of CLT as a framework for evaluating data visualiza-
tions [3, 36, 50]. Our results specifically align with those of Huang
et al. [36], who suggested linking visualization task performance
to cognitive load. Further research should investigate the validity
of other extraneous cognitive load measurements for evaluating
readability—such as EEG measurements, secondary-task response

participants Cognitive Load (CL) differences.

time, or eye activity [26, 3, 63].

In addition, the ® UNDERSTAND readability scale showed a notably
strong correlation with subjective ratings of extraneous cognitive
load (r = 0.77), suggesting that participants’ ability to comprehend
how to read a data visualization greatly affected the amount of un-
necessary cognitive load they experienced during learning tasks.
This result supports the call from Stoiber et al. [77] to develop visu-
alization onboarding practices, defined as “the process of supporting
users on how to read, interpret, and extract information of visual
representations of data.” We further suggest that such onboarding
procedures could benefit from integrating the CTML segmenting
principle, which supports learners by presenting complex informa-
tion in manageable chunks. Data visualization designers can imple-
ment segmentation through a progressive, scaffolded construction
of data encodings—whether learners actively build the visualization
themselves [38] or navigate through a pre-defined visual sequence,
as in the present study. Some participants, however, found it cumber-
some to navigate between segments in the visualization, suggesting
that interactive features must be carefully designed to accommodate
diverse preferences and avoid generating extraneous load. Non-
interactive comics [87] also provide an relevant solution space.

As a second hypothesis (H2), we expected learners’ overall men-
tal effort to be lower in the segmented condition than in the compact
condition. Although observed overall cognitive load differences
approached conventional significance thresholds, we should not in-
terpret them as evidence supporting H2. In their meta-analysis, Rey
et al. [67] found that segmenting generally had a small effect on
overall cognitive load, and no significant effect for learner-paced
segmentation, as was our case. It is possible that the sample size in
our current work was too small to detect a small effect, or that seg-
menting does not reduce overall cognitive load when learning from
data visualizations. Another explanation relates to how germane
cognitive load is thought to redistribute resources from extraneous
activities to relevant information processing activities; in this view,
segmentation would not affect the overall cognitive load, but would
allow the learner to re-allocate resources from extraneous processing
towards intrinsic load [82], thus improving the quality of learning. A
study assessing learning gains—especially on topic understanding—
through pre- and post-testing would help evaluate this hypothesis.

Beyond cognitive load redistribution, the expertise reversal effect
in CTML [41, 42] may also account for the lack of significant effect
of segmentation on overall cognitive load. This principle states that
some design choices benefiting learners with low prior topic knowl-
edge can have opposing effects on learners with high expertise—and
vice-versa. Rey et al. [67] identified prior domain knowledge as a
moderating factor in their meta-analysis, although they found ef-
fects contradictory to what the theory predicted. In a chapter on
learner control, Scheiter [72] argues that only those with strong topic
knowledge and clear guidance benefit from having control over their
learning content and pacing. Novice learners, lacking the resources
to make informed choices, may find this control to be a cognitive
burden rather than a benefit. Unfortunately, our sample size was also
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too small to control for stimulus content and display order while
examining potential interactions and effects on the overall cognitive
load of style, self-reported topic familiarity, and topic exposure fre-
quency. Besides, self-reports are not necessarily reliable indicators
of objective prior knowledge. Further work could thus build on
existing work [35, 68] to examine how the reversal expertise effect
applies in data visualization, and investigate the mediating effect of
objectively assessed domain knowledge on viewers’ cognitive load.

To properly interpret these early findings, we must consider sev-
eral limitations of the current study. First, the small sample size
relative to the target population (general population, worldwide) lim-
its the generalizability and precision of our findings. In addition, we
lack reliable instruments for collecting subjective ratings of different
types of cognitive load. As unreliable measuring instruments can
significantly impede our ability to observe a phenomenon [27], a
priority for future work is to develop and validate cognitive load
assessment scales tailored to data visualization and other multimedia
learning contexts, echoing recent calls to address the specificity of
evaluation needs in visualization systems [85]. Finally, the study’s
online, unsupervised setting with unpaid participants also limited
the reliability of cognitive load measurements and the usefulness
of task time records (which we plot as additional information in
App. G) as converging evidence of participants’ cognitive engage-
ment. Some participants may not have completed the survey in one
go, which likely affected the results because subjective cognitive
load ratings are highly sensitive to variations in mental workload
[62]. Future work should aim to ensure more controlled experimen-
tal conditions to improve the accuracy of results. While our findings
offer promising insights, additional research is required to address
these limitations, and to identify possible mediating factors for data
visualization-based knowledge acquisition, such as the viewer’s
prior knowledge or visualization literacy. As is often the case in both
learning and data visualization contexts, no one-size-fits-all solution
exists. Yet, our findings already indicate than CLT and CTML can
serve as a generative theoretical framework [8] for evaluating and
designing data visualizations.

7 CONCLUSION

In this work, we proposed an approach grounded in Cognitive
Load Theory (CLT) and Cognitive Theory of Multimedia Learning
(CTML) to design and evaluate data visualizations. We have only
begun to explore the potential bridges between CLT and CTML,
and visualization design and evaluation. In particular, many instruc-
tional design principles [54] remain untapped to shed light on, or
to improve existing data visualization practices—for example: the
animation principle for data-video design, the generative activity,
mapping, and drawing principles for visualization educational ac-
tivities, or the guided-discovery principle for system onboarding
design. Visualization researchers might also consider how sup-
porting metacognition and self-regulated learning strategies—like
outlined in the metacognition in multimedia learning model and the
cognitive load self-management principle—could assist even expert
practitioners for complex visual analyses, or help them in learning
how to use a new visual analytics system.

Visualization research is interdisciplinary by nature—just like
cognitive science, and educational science. Visualization researchers
thus have much to gain from borrowing conceptual frameworks
from related fields such as cognitive psychology or educational sci-
ence [71]. Initiatives like the EduVis workshop go a step further by
building two-way bridges, notably through dual tracks—Ed4 Vis and
Vis4Ed—that connect both communities. We also see an opportunity
for the data visualization community to contribute back to cognitive
and learning sciences by providing a rich testing ground for theo-
retical development. In this sense, studies in visualization contexts
could help us refine CTML and CLT: indeed, insights from more
“applied” research domains, such as human-computer interaction,

can raise new fundamental research questions for domains like cog-
nitive or behavioral psychology. Visualization researchers, just like
educational practitioners, can thus play an active role in advancing
a translational cognitive science agenda [29], and help establish a
dialogue between foundational research and applied practice.

Ultimately, by integrating knowledge from human-computer in-
teraction research, educational science, and cognitive psychology,
we can develop systems that better assist readers in comprehending
information from data visualizations. This is particularly crucial
when it comes to communicating about topics as significant as the
risks associated with climate change.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on osf.io/pvrgh released
under the Creative Commons Attribution 4.0 International (€@
CC BY 4.0) license. In particular, they include the pseudonymized
data collected from this study and a full version of this paper with
all appendices.
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The visualizations visible in Fig. 1 (teaser image) and Figs. 7 to 9 in
App. A are the property of the IPCC and protected by intellectual
property laws. All other figures have been created by the authors and
shared under the Creative Commons Attribution 4.0 International
(@@ CC BY 4.0) license at osf.io/pvrgh .
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A STIMULI DESIGN: FIGURES AND ACCOMPANYING TEXT

As described in Sec. 4.2, we based our stimuli on two visualizations from Figure SPM.3 in the IPCC 6th Assessment Synthesis Report Summary
for Policy Makers [19]. We found it would be hard for participants to fully understand the content once taken out of the context of the Summary
Report. Additionally, the provided captions in the Summary Report were quite technical (see below in App. A.1.1 and App. A.1.2). We thus
replaced the original captions with an explanatory text based on the full report from IPCC Working Group II, and the relevant underlying
studies, as detailed below.

A.1 Compact Style (Style 1)

Figs. 7 and 8 below present the study’s stimuli contents in the Compact style (Style 1). Upper parts of the figures correspond to the original
representations from parts a) and b) of Figure SPM3 in [19]. The text block below corresponds to the explanatory text we created, which in the
Compact style resembled a caption below the visualization.

A.1.1  Content A: Heat-humidity risk to human health

< ———
Heat-humidity 250 300 365 days
risks to
human health

b

Hisorical 1991-2005 17-2.3°C \ 2.4-31°C 4.2-5.4°C

Days per year where *Projected regional impacts utilize a global threshold beyond which daily mean surface air temperature and relative humidity may induce
combined temperature and hyperthermia that poses a risk of mortality. The duration and intensity of heatwaves are not presented here. Heat-related health outcomes
humidity conditions pose a vary by location and are highly moderated by socio-economic, occupational and other non-climatic determinants of individual health and

risk of mortality to individuals*  socio-economic vulnerability. The threshold used in these maps is based on a single study that synthesized data from 783 cases to
determine the relationship between heat-humidity conditions and mortality drawn largely from observations in temperate climates.

The visualization above presents climate change data related to the risk of heat-humidity conditions that exceed human
thermoregulatory capacity. Heat-humidity risk is not only related to temperature: the boundary at which the environment’s
temperature becomes deadly decreases with increasing relative humidity (Mora et al., 2017). If the external temperature is too hot, the
body must sweat (i.e., perspiration) to regulate its internal temperature. However, if the air is too humid, the sweat cannot evaporate,
and the body’s temperature cannot decrease. The more days of exposure to such conditions, the more likely humans are to die from
hyperthermia or to suffer heat-related metabolic stress, leading to increased morbidity. Different climate change scenarios relate to
varying levels of risk in the future; the visualization above shows projections for the year 2100 according to 3 different global warming
scenarios. Without rapid, deep, and sustained mitigation and accelerated adaptation actions, losses and damages will continue to
increase, and they will disproportionately affect the most vulnerable populations.

Figure 7: Content A presented in Style 1 (compact).

The upper part is identical to the original visualization SPM3 part b). The original associated caption in the Summary Report reads as
follows:
“Risks to human health as indicated by the days per year of population exposure to hyperthermic conditions that pose a risk of
mortality from surface air temperature and humidity conditions for historical period (1991-2005) and at GWLs of 1.7°C-2.3°C (mean
=1.9°C; 13 climate models), 2.4°C-3.1°C (2.7°C; 16 climate models) and 4.2°C-5.4°C (4.7°C; 15 climate models). Interquartile
ranges of GWLs by 2081-2100 under RCP2.6, RCP4.5 and RCP8.5. The presented index is consistent with common features found
in many indices included within WGI and WGII assessments. ”

We replaced these technical specifications with a text composed of three parts:

1. An explanation of the physical and physiological mechanisms at play for this risk:
“The visualization above presents climate change data related to the risk of heat-humidity conditions that exceed human thermoregu-
latory capacity. Heat-humidity risk is not only related to temperature: the boundary at which the environment’s temperature becomes
deadly decreases with increasing relative humidity (Mora et al., 2017). If the external temperature is too hot, the body must sweat
(i.e., perspiration) to regulate its internal temperature. However, if the air is too humid, the sweat cannot evaporate, and the body’s
temperature cannot decrease.”

2. An explanation of the key indicator chosen in the visualization, in this case, the number of days of exposure per year, which was
encoded as a binned, linear color scale:

“The more days of exposure to such conditions, the more likely humans are to die from hyperthermia or to suffer heat-related
metabolic stress, leading to increased morbidity.”

3. A overview-level takeaway on the topic:
“Different climate change scenarios relate to varying levels of risk in the future; the visualization above shows projections for the year
2100 according to 3 different global warming scenarios. Without rapid, deep, and sustained mitigation and accelerated adaptation
actions, losses and damages will continue to increase, and they will disproportionately affect the most vulnerable populations.”
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To develop this explanatory text, we consulted relevant sections of the IPCC Working Group II report: “Climate Change 2022: Impacts,
Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change.” doi:10.1017/9781009325844. Much of the information on heat-humidity presented in the full report—and underlying
the Summary Report visualization—derived from a single study: C. Mora et al., “Global risk of deadly heat,” Nature Clim Change, vol.
7, no. 7, pp. 501-506, 2017, doi: 10.1038/nclimate3322. We therefore also reviewed this study to inform our written content and ensure
scientific accuracy.

A.1.2 Content B: Risk of species losses

0% 0.1 1 5 10 20 40 60 80 100%

; © . ——
Risk of J»

species losses
P 2Projected temperature conditions

above the estimated historical
(1850-2005) maximum mean
annual temperature experienced
by each species, assuming no
species relocation.

Percentage of animal
species and seagrasses’
exposed to potentially Vs,
dangerous temperature N !
conditions? - —
1.5°C
'Includes 30,652 species of birds,
mammals, reptiles, amphibians,
marine fish, benthic marine
invertebrates, krill, cephalopods,
corals, and seagrasses.

Underpinning projections of temperature are from 21 Earth system models and do not consider extreme events impacting ecosystems such as the Arctic.

Extinction of species is an irreversible impact of climate change and has negative consequences on ecosystem integrity and
functioning (WGl report, p.279). The figure above includes data for 30,652 species of birds, mammals, reptiles, amphibians, marine
fish, benthic marine invertebrates, krill, cephalopods, corals, and seagrasses

Many of the most sudden and severe ecological effects of climate change can occur when conditions become unsuitable for several
species simultaneously, causing catastrophic die-offs (Trisos et al., 2020). While we're not exactly sure what the 'safe limits' are for
losing species while still maintaining ecosystem function, studies suggest that a 20% drop in species diversity could be one potential
threshold.

In tropical regions, where the climate has historically stayed relatively stable and temperatures don't vary much, many species are
already living at temperatures very close to the maximum they can tolerate across their entire habitat range. This makes them
particularly vulnerable to climate change impacts. (Trisos et al., 2020).

Figure 8: Content A presented in Style 1 (compact).

The upper part is identical to the original visualization SPM3 part a). The original associated caption in the Summary Report read as follows:

“Risks of species losses as indicated by the percentage of assessed species exposed to potentially dangerous temperature conditions,
as defined by conditions beyond the estimated historical (1850-2005) maximum mean annual temperature experienced by each
species, at GWLs of 1.5°C, 2°C, 3°C and 4°C. Underpinning projections of temperature are from 21 Earth system models and do not
consider extreme events impacting ecosystems such as the Arctic.”

We replaced these technical specifications with a text composed of three parts:
1. An explanation of the ecological mechanisms at play for this risk:

“Extinction of species is an irreversible impact of climate change and has negative consequences on ecosystem integrity and
functioning (WGII report, p.279). The figure above includes data for 30,652 species of birds, mammals, reptiles, amphibians, marine
fish, benthic marine invertebrates, krill, cephalopods, corals, and seagrasses.”

2. An explanation of the key indicator chosen in the visualization, in this case, the percentage of species losses, on a binned, non-linear
scale centered around 20%:
“Many of the most sudden and severe ecological effects of climate change can occur when conditions become unsuitable for several
species simultaneously, causing catastrophic die-offs (Trisos et al., 2020). While we’re not exactly sure what the ’safe limits’ are for
losing species while still maintaining ecosystem function, studies suggest that a 20% drop in species diversity could be one potential
threshold.”

3. A overview-level takeaway on the topic:
“In tropical regions, where the climate has historically stayed relatively stable and temperatures don’t vary much, many species
are already living at temperatures very close to the maximum they can tolerate across their entire habitat range. This makes them
particularly vulnerable to climate change impacts. (Trisos et al., 2020).”
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To develop this explanatory text, we consulted relevant sections of the IPCC Working Group II report: “Climate Change 2022: Impacts,
Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change.” doi:10.1017/9781009325844. Much of the information on the risk of species losses presented in the full report—and underlying
the Summary Report visualization—derived from a single study: C. H. Trisos, C. Merow, and A. L. Pigot, “The projected timing of
abrupt ecological disruption from climate change,” Nature, vol. 580, no. 7804, pp. 496-501, 2020, doi: 10.1038/s41586-020-2189-9. We
therefore also reviewed this study to inform our written content and ensure scientific accuracy.

A.2 Segmented Style (Style 2)

The content of stimuli in the Segmented style remained the same as in the Compact style (Style 1, Figs. 7 and 8) but was segmented as described
in the Method subsection 4.2. The main difference was that the legend was first introduced in the second segment along with part 2 of the
explanatory text we created (see details in App. A.1). The legend was thus presented twice. The interface for navigating between segments is

presented in App. B Fig. 10.

66 The visualization you are about to view presents climate change data related to the
° risk of heat-humidity conditions that exceed human thermoregulatory capacity.
L Heat-humidity risk is not °"2’ related :,0 ‘Z’I“F’:’a‘“"*: the b:‘_’”d”y at W"‘IC"_"‘E Extinction of species is an irreversible impact of climate change and has negative
ronment's ecomes deadly decreases with increasing relative - o ety o fisvrii ety
risks to humidity (Mora et al., 2017). Riskof [ | ™
human health i the external tore s 100 hot, the body must sweat ation ¢ hal The figure you are about to view includes data for 30,652 species of birds,
 external temperature s too hot, the body must sweat (.e., perspiration) to species l0SSes  ammals, reptiles, amphibians, marine fish, benthic marine invertebrates, kill
regulate its internal temperature. However, if the air is too humid, the sweat cannot
¢ cephalopods, corals, and seagrasses
evaporate, and the body's temperature cannot decrease.
The more days of exposure to such conditions, the more likely humans are to die from Many of the most sudden and severe ecological effects of climate
hyperthermia or to suffer heat-related metabolic stress, leading to increased morbidity. change can occur when conditions become unsuitable for several
species simultaneously, causing catastrophic die-offs (Trisos et al., 2020).
While we're not exactly sure what the ‘safe limits' are for losing species
L I —— while still maintaining ecosystem function, studies suggest that a 20%
0days 1 10 50 100 150 200 250 300 365 days drop in species diversity could be one potential threshold.
;
Days per year where combined temperature and humidity conditions pose a risk of mortality to individuals.*
“Projected regional impacts utilize a global threshold beyond which daily mean surface air temperature and relative
humidity may induce hyperthermia that poses a risk of mortality. The duration and intensity of heatwaves are not v
presented here. Heat-related health outcomes vary by location and are highly moderated by socio-economic
occupational and other non-climatic determinants of individual health and socio-economic vulnerability. The 0% 0.1 1 5 10 20 40 60 80 100%
threshold used in these maps is based on a single study that synthesized data from 783 cases to determine the Percentage of animal specles and seagrasses exposed to potentially dangerous temperture conitons
relationship between heat-humidity conditions and mortality drawn largely from observations in temperate climates.
Different climate change scenarios relate to varying levels of risk in the future; the visualization F In tropical regions, where the climate has historically stayed relatively stable and
below shows projections for the year 2100 according to 3 different global warming scenarios. . - temperatures don't vary much, many species are already living at temperatures very
" . L . Risk of ™ close to the maximum they can tolerate across their entire habitat range. This makes
Without rapid, deep, and sustained mitigation and accelerated adaptation actions, losses and species losses  them partcularly vuinerable to climate change impacts. (Trisos et al., 2020).
damages will continue to increase, and they will disproportionately affect the most vulnerable
populations. PE—
A
5 s o (- )
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SN 4 ; ¥
Heat-humidity { Cony . o
risks to | % o ®
human health > e -
Historical 1991-2005
T e
Y 3.0°C 4.0°C
b (2
24-31°C 0% 0.1 1 5 10 20 40 60 80 100%
Percentage of animal species and seagrasses exposed o potentially dangerous temperature conditions
0 days 1 10 50 100 150 200 250 300 365 days Underpinning projections of temperature are from 21 Earth system models
and do not consider extreme events impacting ecosystems such as the Arctic.

Days per year where combined temperature and humidity conditions pose a risk of mortality to individuals.*

Content A presented in Style 2. Content B presented in Style 2.

Figure 9: Segmented versions of the visualizations (Style 2). Source: Figure SPM3 in [19].
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B SURVEY SCREENSHOT (SEGMENTED VISUALIZATION CONDITION)
Please read the following text and data visualization.

Imagine that you find the visualization below in an online news article.
You are interested in learning about the topic, and decide to study it with attention,
along with the accompanying caption and labels.

Scrolling down, you will find a visualization comprising three (3) successive views. Only one view is visible at a time.
You can use the round buttons or the arrows on your keyboard to navigate between the views.

Take as long as you want to read and learn information from the visualization and accompanying texts.

You may then scroll further down to answer the first question. Please note that you can only continue to the next
screen once you have seen all three (3) parts of the visualization.

Many of the most sudden and severe ecological effects of climate
change can occur when conditions become unsuitable for several
species simultaneously, causing catastrophic die-offs (Trisos et al., 2020).
While we're not exactly sure what the 'safe limits' are for losing species
while still maintaining ecosystem function, studies suggest that a 20%
drop in species diversity could be one potential threshold.

0% 0.1 1 5 10 20 40 60 80 100%
Percentage of animal species and seagrasses exposed fo potentially dangerous temperature conditions

Figure 10: Example screenshot for the presentation of visualization B2, i.e., content B (risk of species loss) in style 2 (Segmented). The image
in the figure shows the second segment out of three. The screenshot also shows the survey’s accompanying text above the visualization and
up/down buttons available to navigate between visualization segments in the Segmented condition. In this condition, participants needed to see
each segment at least once before being allowed to move on to the next page in the survey.
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C MEASURING INSTRUMENTS
C.1 Cognitive load

Cognitive load Item question 9-point Likert labeling
dimension
Overall load How much mental effort did you invest to complete the task? ~ From very, very low mental effort to very, very high mental effort
Instrinsic load How simple was the data content? From very, very simple to very, very complex
Extraneous load How easy was it to use the data visualization for completing  From very, very simple to very, very complex
the task?
Germane load How focused were you during task completion? From very, very little to very, very much

Table 2: Questions and Likert extremum labels used to collect subjective cognitive load ratings. All points were numbered and labeled, as
shown in Figure 11 above.

Since there are no standardized questionnaires to measure the different types of cognitive load components from Cognitive Load Theory ,
we based our items for assessing subjective cognitive load on previous works—as we describe in Sec. 4.3. Tab. 2 above shows the final items
(question and answer option labels) we implemented in our survey. We adapted from the original items in the literature as follows:

* Overall cognitive load: the original question [60] asked learners how much mental effort they invested “in the problem”. Since our
learning task did not involve solving a problem, we adapted the question with the words “to complete the task”.

Intrinsic cognitive load: similarly, the original question was created in a problem-solving context [4] and asked learners to rate “how
easy or difficult they found each calculation” on a 7-point scale ranging from 1 (extremely easy) to 7 (extremely difficult). In subsequent
research [22], researchers used a different question: “How difficult was the learning content for you?”. Participants responded using a
six-point Likert-type scale ranging from “not at all” (1 point) to “extremely” (6 points).

We adapted our question to help learners focus on the data underlying the visualization and asked “How simple was the data content?” To
increase the reliability of the ratings across all four subjective cognitive load ratings, we expanded the answer options into a 9-point
Likert scale ranging from 1 (very, very simple) to 9 (very, very complex).

» Extraneous cognitive load: The original question used to evaluate subjective extraneous load read asked “How difficult was it for you to
learn with the material?”” on a six-point Likert-type scale ranging from “not at all” (1 point) to “extremely” (6 points) [22]. Because we
did not frame our questions as an educational intervention, we reworded as follow: “How easy was it to use the data visualization for
completing the task?” and aligned the answer options to a 9-point Likert scale.

* Germane cognitive load: Similarly to extraneous load, the original germane cognitive load question asked participants to rate on a
4-point Likert scale how much they concentrated during “reading” or “watching”, depending on the experimental condition [69]. In
subsequent work [22], researchers replaced the term with “learning” and used a six-point Likert-type scale ranging from “not at all” (1
point) to “extremely” (6 points). We asked our participants how focused they were “during task completion” and expanded the answer
options to match the other questions’ 9-point Likert scale.

As a final adjustment, to increase the reliability of collected data [25], we fully labeled all Likert answer options, as described in Fig. 11.

Regarding the visualization above and the accompanying text, please rate your learning experience.

How easy was it to use the data visualization to complete the task?

O @] O O O O O @] O
1 2 3 4 5 6 7 8 g
Very, very easy Very easy Easy Somewhat easy Neutral Somewhat Difficult Very difficult Very, very
difficult difficult

Figure 11: Screenshot of the “Extraneous load” rating item and answer options.

Because all four questions targeted related aspects of mental effort (overall, intrinsic, extraneous, and germane cognitive load) but weren’t
standardized items, we examined internal consistency as a reliability check. In the Compact (Style 1) condition, the group of questions
demonstrated good internal consistency (& = 0.81 and @ = 0.86). In the Segmented (Style 2) condition, internal consistency was somewhat
lower but still acceptable (o = 0.7 and @ = 0.78 ).

To explore the lower internal consistency observed in the Segmented condition (Style 2), we inspected inter-item correlations for each style
(see Fig. 12). In Style 1, cognitive load questions showed moderate to strong positive correlations, indicating that participants responded
similarly across questions targeted at different types of mental effort. In contrast, correlations were notably weaker in Style 2, suggesting
that participants more clearly distinguished between aspects of cognitive load—possibly reflecting changes in how cognitive resources were
allocated under the two visualization styles.
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In particular, Extrinsic load showed such weaker correlations with Overall load in the Segmented condition (r = .17) than in the Compact
condition (r = .53), suggesting that participants’ perceptions of the mental effort required to process the visualization were less associated with
their overall sense of mental effort. This may indicate that the segmented format reduced the perceived impact of representational processing
demands on overall task difficulty. Similarly, Extrinsic load showed much weaker correlations with Intrinsic load in the Segmented condition
(r = .28) compared to the Compact condition (r = .68), suggesting that the Segmented visualization may have helped participants to isolate
essential content from design-induced difficulties, resulting in a clearer separation between different types of cognitive load.
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Style 1 o N < o o N <& o
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Style1 CL Overall 0.03 0.05 0.37

0.857 0.763 0.031

Style1 CL Intrinsic 0.08 0.14 0.03

0.658 0.427 0.886

Style1 CL Extraneous -0.00 0.25 0.03

0.999 0.160 0.847

Style1 CL Germane -0.24 0.03 0.09

0.176 0.857 0.620
Style2 CL Overall 0.17
0.342

Style2 CL Intrinsic ~ 003 008 -000 = -0.24 028 042

0.857 0.658 0.999 0.176 0.112 0.015

Style2 CL Extraneous 0.05 0.14 0.25 0.03 0.17 0.28 0.27

0.763 0.427 0.160 0.857 0.342 0.112 0.126
Style2 CL Germane 0.37 0.03 0.03 0.09 0.42 0.27
0.031 0.886 0.847 0.620 0.015 0.126

Style 2:
Segmented

Figure 12: Inter-items correlations for cognitive load subjective ratings for each stimulus style (Compact and Segmented).

C.2 Perceived readability (PREVis)

Table 3: PREVis rating scales, items and answer options.

Scale Item code Answer options

It is obvious for me how to read this visualization
4 UNDERSTAND I can easily understand how the data is represented in this visualization

I can easily understand this visualization 1 - Strongly disagree

I don’t find this visualization messy 2 - Disagree
¢ LAavout I don’t find this visualization crowded j . il;i ilrtz disagree
I don’t find parts of the visualization distracting 5- Slightly agree
© DATAFEAT I find data features (for example, a minimum, or an outlier, or a trend) visible in this visualization 6 - Agree
I can clearly see data features (for example, a minimum, or an outlier, or a trend) in this visualization 7 - Strongly agree
I can easily retrieve information from this visualization
¢ DATAREAD I can easily identify relevant information in this visualization

I can easily find specific elements in this visualization
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Table 4: Internal consistency for PREVis scales in our survey (N = 34). For scales with 3 items, we calculate Cronbach’s o and McDonald’s .
The ¢ DATAFEAT scale has only two items: in this case, Cronbach’s ¢ is mathematically equivalent to Pearson’s r and we cannot calculate

MacDonald’s m.

Subscale Stimulus style a 0] Pearson’s r
Styl . . -
¢ UNDERSTAND ylel 092 093
Style 2 0.91 0.92 -
Style 1 . . -
¢ LAYouT e 0.79 079
Style 2 091 0.92 -
DATAFEAT Style 1 B - 070
Style 2 - - 0.53
+ DATAREAD Style 1 091 0.92 -
Style 2 0.87 0.91 -

L )

Strongly disagree Disagree

Strongly disagree Disagree
Strongly disagree Disagree

Previous

_

| don't find this visualization messy

@ 'S 'S
L] (- L

Slightly disagree MNeutral Slightly agree

I don't find this visualization crowded

® O
Slightly disagree Meutral Slightly agree

| den't find parts of the visualization distracting

O O ®
Slightly disagree Neutral Slightly agree

Figure 13: Example screenshot of the “Layout” PREVis scale.
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D DESCRIPTION OF COLLECTED DATA
D.1 Demographics table

Table 5: Demographics of participants (categories without participants are omitted).

N
18-24 3
25-34 22
Age 35-44 4
45-54
55-64
65+
Man 18
Gender Non-binary
‘Woman 15
Bachelor 9
Education Master 21
PhD 3
Secondary 1
Australia 1
Austria 2
France 16
Germany 4
Country Kenya 3
Netherlands 1
Pakistan 2
Saudi Arabia 3
USA 2
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D.2 Previous exposure to climate change

Table 6: Count of participants’ answers for the climate change familiarity self-report: “How familiar are you with the topic of climate change

science?”.

Likert value Description N
1 I don’t know what climate change is. 0
2 — 3
3 — 11
4 I actively follow the discussion in the media on climate change. 14
5 — 3
6 — 3
7 T am a climate scientist myself. 0

Table 7: Count of participants’ answers for the climate change information frequency self-report: “How often do you interact with documents
or media related to climate change science?”

Likert value Description N
1 I have never read or watched any content related to climate change in my life. 0
2 I rarely (a few times a year) read or watch content related to climate change in my life. 6
3 I sometimes (1-3 times a month) read or watch content related to climate change, such as in news articles. 16
4 I frequently (once a week or more) read or watch content related to climate change, such as in news articles. 8
5 I sometimes (a few times a year) create content related to climate change, either for work or as a hobby. 3
6 I frequently (several times per month) create content related to climate change, either for work or as a hobby. 0
7 Studying climate change and/or creating related content represents the core of my daily activities as a professional. 1
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D.3 Data exclusion
D.3.1 Incomplete answers

Out of 475 people who accessed the online survey, 425 of them didn’t proceed past the first page. A reason for this high dropout rate could be
that, even though we specified in the invitation that participants needed to access the survey from a desktop computer, many people may have
clicked on the link without reading this information. In order to highlight this requirement, we had included the image from Figure 14 on the
first page. As a result, many individuals may have dropped off from the first page because they tried to open the survey on their smartphones,
only to then realize we required a desktop setting.

5 |l o

O
AR ]

Figure 14: We included this image on the survey’s first page to draw respondents’ attention to the device requirements in order to participate in
this study.

A total of 50 participants started the survey and provided their consent. Only 34, however, reached the survey’s last page. We conducted data
analyses using only information from these 34 participants and we deleted the other entries. A few hours after starting the data collection, we
checked the first answers using Python. We discovered that the style preference had not been recorded for three participants due to a technical
error in one condition (Group 2 with the order visualization A2 then B1). We promptly rectified this error and there was no other loss of data.
Since these participants had completed the survey regarding the learning tasks and visualizations’ ratings, we retained their data for the main
inferential analyses and considered them as missing data for preference analysis (see Figure 15).

D.3.2 Attention checks

As pre-registered on osf.io/ptsne, we included two exclusion criteria to guarantee the quality of data before conducting any analysis. The
first criterion consisted of passing at least one out of two attention checks in the rating scales; the second consisted of verifying that all answers
to open-ended learning questions were sensical—that is, that participants showed they had indeed attempted to learn from the visualization, as
required per the survey’s instructions.

The first test consisted of attention check items included in the PREVis questionnaire, such as “For attention check purposes, please select
slightly agree with this item”. There was one attention check item per PREVis questionnaire. It was not technically possible to randomize
their appearance; instead, the survey displayed them as part of different scales depending on the visualization (Al: among Understand items,
A2: among Layout items, B1: among Data Feature items, and B2: among Data Read items). Each participant thus answered two attention
checks: one required that they selected slightly agree, while the other required they chose the slightly disagree. We chose these labels from
pre-test interviews conducted during the development of PREVis last year. At the time, the attention check items had more extreme choice
requirements, and a few participants in that study mentioned they were not at ease with choosing from the extremes of a scale, even for attention
check purposes. We are now careful to avoid extreme answer options in attention check items.

Six participants failed one attention check, but none of them failed both of them, which was our exclusion criteria. Therefore, we included
all 34 participants for the second quality check, which consisted of verifying that all answers to open-ended learning tasks were sensical. A few
answers did not entirely meet the instructions (for example, P2 provided statements instead of questions in one of the question tasks). All
answers were, however, sensical. In addition, all but one were completely related to the topic at hand. The only exception was a comment from
P5: (“Don’t read a scientific paper when you’re tired.”) As a result, we did not exclude a single participant from the data analysis based on
answer quality checks.

D.4 Conditions imbalance

In our study design, both the content and order of appearance of the two stimuli were randomized. However, due to participant dropout and the
way our survey system assigned random conditions, the final number of complete submissions was uneven across conditions. Group 1 (Al and
B2) had N = 15 participants, while group B (A2 and B1) had N = 19 participants. Overall, 13 people saw Style 1 (compact) first and Style 2
(segmented) second, while 21 people saw Style 2 first and Style 1 second. This also shows we had a larger dropout rate on case where people
saw Style 1 (compact) first Overall, 16 people saw content A first and content B second, while 18 people saw content B first and content A
second.

Table 8: Participant distribution by randomized group, visualization order, and style order

Group Order of stimuli  Order of stimuli N
content style
A then B 1 then 2 5
1(Al and B2) en et
B then A 2 then 1 10
A then B 2 then 1 11
2 (A2 and B1)
B then A 1 then 2 8
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D.5 Style preferences

The segmented style was overall preferred; preferences were similarly distributed among self-reported levels of exposure to and familiarity
with the topic.
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Figure 15: Top: style preferences distribution among all participants. Middle: style preferences by topic familiarity. Bottom: style preferences
by exposure frequency.
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E QUALITATIVE ANALYSIS OF PREFERENCE MOTIVATIONS

We conducted an inductive thematic analysis [14] of participants’ comments regarding their style preferences. We adopted a realist perspective
and carried out our analysis at the semantic level, focusing on participants’ explicitly stated reasons in order to identify what they felt motivated
their choices. We also focused solely on content that was related to our overarching question in this work, i. e., what participants experienced as
easy or hard when retrieving information from the visualizations. As a result, we did not code the comment “NOTE: The image used for the
compact presentation is different from the one shown in the survey.” The first author conducted the analysis in multiple steps:
1 Fully read and re-read all comments. At that stage, the first author also read comments alongside the open-ended answers participants
provided to tasks 1 and 2 for both stimuli, in order to contextualize participants’ experiences.

2 Free coding across all comments, with a two-column structure: one for each style (compacted and segmented), as the goal was to identify
what motivated participants’ choices.

3 Establishing the codebook (see Figure 16 below) and harmonizing codes across all participants (see result on osf.io/c73ys).

4 Grouping codes into themes: this was an iterative process, merging and splitting themes, until finding coherent data groups. The first
author used a simple table a visual representation, not a thematic map. We report the prevalence of themes among participants in Table 9.

code codename overall theme
clear clear clarity

compact is crowded crowded clarity

in segmented having to scroll back and forth is annoying annoying cost of interaction
scrolling costs time scroll_time cost of interaction
compact requires focus focus_required |effort
segmenting makes it easier to read the data easy_read effort

easier to learn from a single view easy_learn effort

easy to understand easy_understand |effort

had to read the compact version twice read_twice effort

less effort or mental strain less_effort effort
distracting distracting effort
segmented provides guidance guidance getting oriented
segmented with interaction allowed to recall where information was easily recall getting oriented
in compact it takes time to find key informations key_lost getting oriented
segmented provides key takeways up front key_guidance getting oriented
in the compact | have to find where to start lost getting oriented
focus on what is relevant focus_guidance |getting oriented
compact can be overwhelming or discouraging overwhelming motivation
visually appealing appealing motivation
segmented gives information gradually gradually progression
overview first, then details S_mantra progression
segmented is like a story story progression
compact provides good overview of data - it's more practical all in one place single_view single view

text is distracting text_distracting |text

compact has a lot of text text_amount text

more effort more_effort effort

Figure 16: Codes and themes from the participants’ comments on their choice of preferred style.

Table 9: Theme prevalence among participants.

Theme N
text 3
single view 4
motivation 5
cost of interaction 6
clarity 7
progression 12
getting oriented 19
effort 21

23


https://osf.io/c73ys

F INFERENTIAL DATA ANALYSIS
F.1 Repeated measures correlations
F.1.1 Correlation matrix

Extraneous CL

Germane CL 0.33
p =0.051

Instrinsic CL 0.55
p = 6.6x10*

Overall CL (Y 0.71
p=9.1x10% p = 1.6x10°

-0.33
p =0.053

¢ Data Features -0.28

# Data Reading

¢ Layout BELRGK] 0.63 0.77
p=4.5x10° p=5.5x10° | p=7.8x10*

© Understand

\ \ .~ CL \ es \ N\ d
Crane® Gorman® (inse© ove‘i“i)%a Fe%, Dt Rea™ 4 L0 gerste”

Figure 17: Repeated measures correlation matrix for subjective ratings of cognitive load (CL) and readability (PREVis ¢+ ++) generated using
the rmcorr package in R.

Figure 17 above represents the same data Figure 5, but we included all exact p values. For a more detail account, Table 10 on the next
page provides repeated measures correlation coefficients and 0.95 confidence intervals, exact p values, and degrees of freedom for all pairs of
variables.

As presented in the Results subsection 5.1, the correlation analysis reveals that perceived readability ratings negatively correlated with
subjective ratings of extraneous cognitive load. Most negative correlations between extraneous cognitive load and PREVis ¢+« + scales [18]
were strong, except for the ¢ DATAFEAT scale. The reliability indices for this particular scale were slightly weaker (o« = 0.67 and w = 0.86)
than those of the other subscales (¢ ranged from 0.80 to 0.86, and w ranged from 0.93 to 0.96, as reported in subsection 4.3). Lower reliability
for the @ DATAFEAT scale could have affected the strength of its correlations with other measurements. This lack of reliability might be due to
the study’s small sample size combined with a lower number of items in the data features scale compared to other PREVis items (see Table 3).
It is also possible that these items caused confusion among respondents as their wording is more complex than that of other PREVis items.

Further exploration of this matrix shows that the ¢ DATAREAD and ¢ LAYOUT ratings also moderately and negatively correlated with germane,
intrinsic, and overall cognitive load ratings (r < -.40, p < 0.05). In addition, PREVis ¢ UNDERSTAND ratings moderately correlated with
intrinsic and overall cognitive load ratings (r < —.41, p < 0.05). There were no other significant correlations between readability and cognitive
load ratings.

Finally, PREVis««++ ratings moderately to strongly correlated amongst each other (r > .58, p < 0.001), and similarly for cognitive load
ratings among each other (r > .50, p < 0.01), to the exception of germane and extraneous loads for which the correlation was weak and
non-significant (r = .33, p > 0.05).
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Table 10: Detailed repeated measures correlation values: degree of freedom for each pair, repeated measures correlation coefficient, CI
boundaries (at the 0.95 level), and exact p values.

Measure 1 Measure 2 df Trm Lower CI Upper CI p value
Overall CL Intrinsic CL 33 0.71 0.50 0.84 1.6x 107
Overall CL Extraneous CL 33 0.54 0.25 0.74 0.00091
Overall CL Germane CL 33 0.50 0.20 0.71 0.0022
Overall CL @ Understand 33 -0.41 -0.65 -0.08 0.015
Overall CL 4 Layout 33 -0.42 -0.66 -0.10 0.011
Overall CL Data features 33 -0.28 -0.56 0.06 0.11
Overall CL # Data read 33 -0.58 -0.76 -0.30 0.00027
Intrinsic CL Extraneous CL 33 0.55 0.26 0.75 0.00066
Intrinsic CL Germane CL 33 0.64 0.39 0.80 3.4x107°
Intrinsic CL @ Understand 33 -0.45 -0.68 -0.14 0.0067
Intrinsic CL ¢ Layout 33 -0.40 -0.65 -0.08 0.018
Intrinsic CL Data features 33 -0.33 -0.60 0.00 0.053
Intrinsic CL @ Data read 33 -0.53 -0.73 -0.24 0.0011
Extraneous CL Germane CL 33 0.33 -0.00 0.60 0.051
Extraneous CL @ Understand 33 -0.77 -0.88 -0.59 5.6x 1078
Extraneous CL ¢ Layout 33 -0.63 -0.80 -0.38 45%107°
Extraneous CL Data features 33 -0.50 -0.71 -0.20 0.0023
Extraneous CL @ Data read 33 -0.64 -0.80 -0.39 3.6x107°
Germane CL @ Understand 33 -0.31 -0.58 0.03 0.071
Germane CL ¢ Layout 33 -0.42 -0.66 -0.10 0.012
Germane CL Data features 33 -0.30 -0.58 0.03 0.075
Germane CL # Data read 33 -0.46 -0.69 -0.15 0.0059
4 Understand 4 Layout 33 0.64 0.38 0.80 4.1x107°
@ Understand Data features 33 0.58 0.31 0.77 0.00026
@ Understand # Data read 33 0.61 0.35 0.78 0.00011
¢ Layout Data features 33 0.63 0.37 0.79 5.5%x107
4 Layout # Data read 33 0.77 0.58 0.88 7.8x 1078
Data features @ Data read 33 0.68 0.45 0.83 7.6 x107°
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F.2 Paired-samples ttests

F.2.1 Effect of presentation style on cognitive load ratings

Table 11 provides descriptive values for cognitive load measurements across styles. As reported in the Results section 5.1, we conducted a
series of paired-samples 7-tests to assess the effect of presentation style on cognitive load ratings. The results are detailed in Table 12 below.
There was a significant difference in extraneous cognitive load between compact (M = 4.44, SD = 1.85) and segmented (M = 3.56, SD =

1.44) styles, #(33) = -2.520, p < .01. There were no significant differences for overall, intrinsic, and cognitive load measurements.

Table 11: Descriptive statistics for cognitive load ratings between compact presentation style (style 1) and segmented presentation style (style

2).

N Mean Median SD SE
Style1 CL Extraneous 34 444 4.00 185 032
Style2 CL Extraneous 34 3.56 3.00 144  0.25
Style1 CL Overall 34 5.59 6.00 150 0.26
Style2 CL Overall 34 5.21 6.00 139 024
Style1 CL Intrinsic 34 5.09 5.50 154 0.26
Style2 CL Intrinsic 34 4.74 5.00 144  0.25
Style1 CL Germane 34 5.68 6.00 141 024
Style2 CL Germane 34 5.41 6.00 135 023

Table 12: Paired sample 7-tests for cognitive load ratings between style 1 (compact presentation) and style 2 (segmented presentation).

95% Confidence
Interval
statistic  df p E;:::t Lower Upper
Stylel CL Extraneous  Style2 CL Extraneous "Y€ 520 330 0008 gc’henls 0432 00774 0781
Style1 CL Overall Style 2CL Overall students 4601 330 0060 SOhe”‘S 0274 -00700 0615
Stylel CLintrinsic  Style2 CLintrinsic 9™ 1015 330 0159 gOhen's 0174 -0.1660 0511
Style CLGermane  Style2 CLGermane  ~U9€M'S 0808 330 0207 SOhe”‘S 0.142  -0.1969 0479

Note. Ha U Measure 1 - Measure 2 > 0
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Having found a significant difference in extraneous cognitive load between compact and segmented styles, we conducted a post hoc
repeated measures analysis of variance to assess whether the visualizations’ content (rand_group) or their order of appearance (vis_order)
significantly affected participants’ ratings of extraneous cognitive load, or if these factors interacted with the presentation style. We used the
random group variable to test the effect of content because the visualizations’ content for a given style was different depending on the random
group assigned to participants (see Figure 4). Results in Tabs. 13 and 14 showed that only the primary within-participant effect of style was
significant, albeit very small (F(1,30) =6.11,p < .05, n; = 0.17). There were no other significant effects or interactions between factors: for
a given style, the visualizations’ content and appearance order did not affect learners’ extraneous cognitive load.

Table 13: Repeated Measures ANOVA: Within-subjects effects of style, order of display (vis_order), and visualization content (rand_group)
on extraneous cognitive load.

Within Subjects Effects

Sum of Squares df Mean Square F P I‘]zp
Style 13.53 1 13.53 6.11 0019 0.17
Style =k vis_order 0.21 1 0.21 0.09 0.761 0.00
Style * rand_group 0.28 1 0.28 0.13 0.725 0.00
Style =k vis_order sk rand_group 1.55 1 1.55 070 0410 0.02
Residual 66.47 30 2.22

Note. Type 3 Sums of Squares

Table 14: Repeated Measures ANOVA: Between subjects effects of order of display (vis_order) and visualization content (rand_group) on
extraneous cognitive load.

Between Subjects Effects

2
Sum of Squares df Mean Square F P np
vis_order 0.04 1 0.04 0.01 0912 0.00
rand_group 5.07 1 5.07 143 0241 0.05
vis_order ¥ rand_group 0.94 1 0.94 0.27 0610 0.01
Residual 106.22 30 3.54

Note. Type 3 Sums of Squares
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F.2.2 Effect of presentation style on readability ratings

Table 15 provides descriptive values for readability measurements across styles. Having found significant negative correlations between
extraneous cognitive load and readability measures as well as a significant effect of style on extraneous cognitive load, we conducted a series
of exploratory paired-samples z-tests to assess the effect of presentation style on readability, as shown in Tab. 16. There were significant
differences between compact and segmented styles for the ¢ UNDERSTAND, ¢ LAYOUT, and ¢ DATAREAD readability scales but not for the

DATAFEAT scale. The reliability indices for this particular subscale were slightly weaker (o = 0.67 and @ = 0.86) than those of the other
subscales (¢ ranged from 0.80 to 0.86, and  ranged from 0.93 to 0.96, as reported in subsection 4.3). Lower reliability for the
scale could have affected the strength of its correlations with other measurements. This lack of reliability might be due to the study’s small
sample size combined with a lower number of items in the data features scale compared to other PREVis items (see Table 3). It is also possible

that these items caused confusion among respondents as their wording is more complex than that of other PREVis items.

DATAFEAT

Table 15: Descriptive statistics for perceived readability ratings between Compact stimuli (Style 1) and Segmented stimuli (Style 2).

N Mean Median SD SE
Style 1 Understand ¢ 34 4.86 5.00 1.51 0.26
Style 2 Understand ¢ 34 5.56 5.67 120 0.21
Style 1 Layout ¢ 34 4.04 3.83 1.68 029
Style 2 Layout ¢ 34 5.21 6.00 156 027
Style 1 DataRead & 34 4.57 5.00 162 028
Style 2 DataRead ¢ 34 5.20 5.50 131 022
Style 1 DataFeat 34 4.81 5.00 166 0.28
Style 2 DataFeat 34 5.25 5.50 149 0.26

Table 16: Paired sample ¢-tests for perceived readability ratings between Compact stimuli (Style 1) and Segmented stimuli (Style 2).

95% Confidence

Interval
statistic df p E;:::t Lower Upper
Style 1 Understand ¢ Style 2 Understand # ft“de”tls 269 330  0.006 g"henls 0461 0812 -0.1041
Style 1 Layout & Style 2 Layout ¢ ft”de”t'S 364 330 <.001 g"henls 0625 -0989 -0.2524
Style 1 DataRead ¢ Style 2 DataRead ¢ ft“de”t'S 219 330 0018 gOhe”IS 0376 -0721 -0.0252
Style 1 DataFeat Style 2 DataFeat ft“de”t's 158 330  0.062 g"henls 0270 -0611  0.0740

Note. Ha i veasure 1 - Measure 2 < 0
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G TIME SPENT
Participants tended to spend less time on tasks in the second visualization they saw, regardless of the style or content. However, multiple issues
limit the insights we can derive from our time records:

* Some participants did not complete the survey in one go. To compute the average time spent by participant in the study, we removed one
outlier whose recorded overall time was 545 min.

Task #1: Write key takeaways Task #1: Write key takeaways
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Figure 18: Point estimate with 95% CI of time spent on tasks per Figure 19: Point estimate with 95% CI of time spent on tasks per
content of presentation (Content A = heat-humidity risks to human style of presentation (Style 1 = Compact, Style 2 = Segmented),
health, Content B = risk of species losses), separated by order of separated by order of appearance.

appearance.
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H TASK PERFORMANCE BY PRESENTATION STYLE

As our focus was on cognitive load measurements and not trask performance, we did not conduct a deep analysis of the tasks’ outcomes (see
Sec. 4.2 for a description of learning tasks). For open-ended tasks #1 and #2, task performance was only evaluated by marking statements and
questions that were relevant to the stimulus, that is, directly related to the content presented in the visualization and accompanying text.

We report below the task performance across different levels of self-reported familiarity with climate change (labeled CCFamiliarity in the
figures) and frequency of exposure to climate change visualizations (labeled CCFrequency in the figures). However, given the small sample
size, limited control over experimental conditions, and the absence of clear performance differences, it is difficult to draw any meaningful
conclusions about the impact of presentation style on task outcomes.

Task 1 - Number or relevant key insights found by Style
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Figure 20: Task performance: Number or relevant key insights found performance by CCFamilarity by Style

Task 1 - Number or relevant key insights found by Style
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Figure 21: Task performance: Number or relevant key insights found performance by CCFrequency by Style

Task 2 - Number of relevant questions proposed by Style
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Figure 22: Task performance: Number of relevant questions proposed performance by CCFamilarity by Style
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Task 2 - Number of relevant questions proposed by Style
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Figure 23: Task performance: Number of relevant questions proposed performance by CCFrequency by Style

Task 3 - Overall score in selecting true statements by Style

Style: Segmented Style: Compact - 3
Il -2
=7 = -1
o =) o
= ~
Ko 1 :
s 'l HEL_ —
1] [0l
<« | < I
2 2
5 | . 5 I
£ £
g2 |l &
(&} 6]
O 1 [&]
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of participants Number of participants

Figure 24: Task performance: Overall score in selecting true statements performance by CCFamilarity by Style

Task 3 - Overall score in selecting true statements by Style

Style: Segmented Style: Compact - 3
. -2
_’:; 7 I:; -1
= < 0
Lo 3 1
Y Hl -
o o [ K]
<« (NI <
2 2
go | N L
o o
g |- g1
Q Q
o1 (]
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of participants Number of participants

Figure 25: Task performance: Overall score in selecting true statements performance by CCFrequency by Style

Task 3 - Number of correct statements selected by Style
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Figure 26: Task performance: Number of correct statements selected performance by CCFamilarity by Style
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Task 3 - Number of correct statements selected by Style
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Figure 27: Task performance: Number of correct statements selected performance by CCFrequency by Style

Task 3 - Number of wrong statements selected (errors) by Style
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Figure 28: Task performance: Number of wrong statements selected (errors) performance by CCFamilarity by Style

Task 3 - Number of wrong statements selected (errors) by Style
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Figure 29: Task performance: Number of wrong statements selected (errors) performance by CCFrequency by Style
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