
Computer Graphics

Volume Rendering
Tobias Isenberg



Overview

• motivation/introduction

• radiative energy transfer

• volume rendering pipeline

• applications



Motivation

• volumetric rendering effects

Images by H. W. Jensen



Motivation

• volumetric rendering effects



Motivation

• volumetric rendering effects

Q: Why is the sky blue?

A: Rayleigh scattering.



Motivation

• volumetric datasets



Motivation

• iso-surface extraction + surface rendering not enough



Motivation/applications

• realistic rendering of (e.g.):
– atmospheric effects

– fluid effects

– translucent solids

– biological tissues

• “scientific” visualization of (e.g.):
– medical data

– biological data

– geological data

– engineering data



(Approximation of the)
Radiative Energy Transfer



Volume rendering

• rendering of a 3D (scalar) field
– no explicitly defined surfaces

– 3D data is projected onto a 2D image

– 2D pixel  3D voxel

• most commonly based on sampled representation
– regular grids

– curvilinear grids

– point clouds



Example: Computed Tomography (CT)



Example: Computed Tomography (CT)









Radiative transfer in volumes

image plane

volume

eye

light source



Radiative transfer in volumes

• light potentially interacts with the medium at every point

• for each pixel on the image plane, we want to compute how 
much light reaches the eye

• we need to solve the volume rendering integral
– analytically only possible in very simple cases (e.g., homogeneous 

media)

– usually, when dealing with inhomogeneous volumes, we use an 
numerical approximation 

– even then, we often use various simplifications to enable a real-time 
solution



Radiative transfer in volumes

in-scattering

absorption out-scattering

emission often
ignored

en
er

g
y

de
cr

ea
se

en
er

g
y

in
cr

ea
se



Analytical model

viewing ray

initial intensity
at 𝑠0

without absorption all 
the initial radiant energy 
would reach the point 𝑠



Analytical model

Extinction 𝜏
Absorption 𝜅

viewing ray

absorption between 𝑠0
and 𝑠



Analytical model

absorption between ǁ𝑠
and 𝑠

active emission 
at point ǁ𝑠

one point ǁ𝑠 along the
viewing ray emits additional
radiant energy

viewing ray



Analytical model

every point ǁ𝑠 along the
viewing ray emits additional
radiant energy

viewing ray



Numerical approximation

Extinction:

approximate integral by Riemann sum:

absorption



Numerical approximation
absorption



Numerical approximation

now we introduce opacity: (light absoption at one sample step)

absorption



Numerical approximation

now we introduce opacity: (light absoption at one sample step)

absorption



Numerical approximation
absorption



Numerical approximation

(emitted light energy at a given interval)

i

(emitted light energy for a given point)

(light arriving at the viewer)



Numerical approximation



Numerical approximation

can be computed recursively:

radiant energy
observed at position 𝑖

radiant energy
emitted at position 𝑖

radiant energy
observed at position 𝑖 − 1

absorption at
position 𝑖



Numerical approximation

back-to-front 
compositing

front-to-back 
compositing

early ray 
termination:
stop the 
calculation when
𝐴𝑖
′ ≈ 1



Back-to-front compositing

𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1.0 𝛼 = 0.4

0 1 2 3



Front-to-back compositing

𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1.0 𝛼 = 0.4

1 0



Summary of the approximation

• emission absorption model

• numerical solutions [pre-multiplied alpha assumed]

back-to-front iteration front-to-back iteration



Image vs. object order

image plane

image-order approach: ray casting

For each pixel {
calculate color of the pixel

}

volume

eye



Side note: Difference to “Raytracing”

• in
traditional
ray casting
and ray tracing
we use only surfaces,
so we ignore the
space between the
camera and the
first hit point



Side note: Difference to “Raytracing”

• in ray casting
for direct
volume
rendering,
we
consider
all samples
between the eye
and the end of the
dataset

image plane
volume

eye



Image vs. object order

image plane

For each slice {
calculate contribution to the image

}

volume

eye

object-order approach: slicing



Ray casting vs. slicing

• today, standard ray 
casting can be 
implemented on the GPU

• on previous hardware 
generations, only slicing 
was possible

eye

image plane



Ray casting vs. slicing

• in ray casting, 
sampling is typically 
performed at 
equidistant points 
along each ray

eye

image plane

0

1

2



Ray casting vs. slicing

eye

image plane

volume

• under perspective 
projection, these 
sample points are 
located on 
concentric 
spherical shells 



Ray casting vs. slicing

eye

image plane

volume
0

1 2
3

4

• this is equivalent 
to sampling all 
the points on one 
shell before 
proceeding to the 
next one



Ray casting vs. slicing

• in slicing, the 
shells are 
typically 
approximated by 
view-aligned 
planes

eye

image plane

volume



Ray casting vs. slicing

• slicing
– advantages in terms of memory access pattern

– sampling pattern can cause artifacts

– optimizations (e.g., early ray termination) difficult

• ray casting
– easier to implement on current hardware

– early ray termination is trivial

– more flexible than slicing



Splatting

• alternative object-order approach
– project voxel footprints (splats) onto image plane

– traverse only non-transparent parts of the volume

– most useful if data is very sparse  few splats

– rarely used nowadays (does not map well to GPUs)

– can have quality advantages

45

slicing (left) vs. splatting (right)



Volume Rendering Pipeline



Volume rendering pipeline

volume data final image

reconstruction

classification

shading

compositing

volume rendering pipeline



Reconstruction

• usually, volume data sets are
a grid of discrete samples
– for rendering purposes, we want to

treat them as continuous
three-dimensional functions

• we need to choose an appropriate reconstruction filter
(i.e., way of interpolation between the samples)
– requirements: high-quality reconstruction, but small performance 

overhead



Reconstruction



Reconstruction

• simple extension of linear interpolation to three dimensions

• advantage: current GPUs automatically do trilinear 
interpolation of 3D textures

50

(𝑥𝑝,𝑦𝑝, 𝑧𝑝)

𝑣𝑝

𝑣000 𝑣100

𝑣110

𝑣111

𝑣101

𝑣011

𝑣001

𝑣010



Reconstruction filters

• if higher quality is needed, more complex reconstruction 
filters may be required; need quality test:

– Marschner-Lobb function is a common test signal to evaluate the 
quality of reconstruction filters [Marschner and Lobb 1994]

– the signal has a high amount of its energy near its Nyquist frequency

– Nyquist frequency: the minimum rate at which a signal can be 
sampled without introducing errors, which is twice the highest 
frequency present in the signal

– makes it a very demanding test for accurate reconstruction



Reconstruction filters

• Marschner-Lobb test signal (analytically evaluated)



Reconstruction filters

• trilinear reconstruction of Marschner-Lobb test signal



Reconstruction filters

• cubic reconstruction of Marschner-Lobb test signal



Reconstruction filters

• b-spline reconstruction of Marschner-Lobb test signal



Reconstruction filters

• windowed sinc reconstruction of Marschner-Lobb test signal



Reconstruction filters

• Marschner-Lobb test signal (analytically evaluated)



Classification

• definition of the appearence of the data by the user
– Which parts are transparent?

– Which parts have which color?



Classification: Transfer functions

• mapping of data attributes to optical properties

• simplest: color table with opacity over data value



Classification: Transfer functions



Classification: Transfer functions

real-time update of the transfer function important



Classification order

• classification can occur before or after reconstruction
– this decision has significant impact on quality

• pre-interpolative classification
– classify all data values and then interpolate between RGBA-tuples

• post-interpolative classification
– interpolate between scalar data values and then classify the result



Classification order

o
p

ti
c
a
l 

p
ro

p
e
rt

ie
s

data value

in
te

rp
o

la
ti

o
n

PRE-INTERPOLATIVE

o
p

ti
c
a
l 

p
ro

p
e
rt

ie
s

data value

interpolation

POST-INTERPOLATIVE



Classification order

post-interpolative

classified data

supersamplingtransfer function

supersampling

transfer function

analytical solution pre-interpolative

transfer function

continuous data discrete data

scalar value

a
lp

h
a
 v

a
lu

e



Classification order

same transfer function, resolution, and sampling rate

pre-interpolative post-interpolative



Classification order

pre-interpolative post-interpolative

same transfer function, resolution, and sampling rate



Problem with small TF windows

transfer Function

transfer function

supersampling

Analytical Solution post-interpolative TF

continuous data discrete data

scalar value

a
lp

h
a

v
a
lu

e

Classified data



Solution: Pre-integration

• assume the following
general setup:

image plane

slab (i.e., configurable range 
in data space, potentially

thicker than a slice)

eye

sf

sb



Pre-integration instead of only evaluating
the TF at Sf and Sb at runtime,

pre-integrate the TF for all possible 
combinations of Sf and Sb

sf sb store integral (color 
+ alpha values) into table

sf

sb

d

front 
slice

back 
slice

Assume
sampling distance d

sbsf

this also records the
effects of small peaks
in the TF



Pre-integration: Comparison

supersamplingtransfer Function

transfer function

supersampling

Analytical Solution post-interpolative TF

pre-integrated

transfer function

pre-Integrated TF

continuous data discrete data

scalar value

a
lp

h
a

v
a
lu

e

Classified data



Pre-integration

no pre-integration pre-integration



Pre-integration

284 slices 128 slabs128 slices



Shading

• make structures in volume data sets more realistic by 
applying an illumination model
– shade each sample in the volume like a surface

– any model used in real-time surface graphics suitable

– common choice: Blinn-Phong illumination model



Shading

• local illumination, similar to surface lighting
– diffuse/Lambertian reflection

light is reflected equally in all directions

– specular reflection
light is reflected scattered around the direction of perfect reflection



Shading
unshaded volume rendering shaded volume rendering



Gradient estimation

• normalized gradient vector of the scalar field used to 
substitute for the surface normal

• gradient vector: the first-order derivative of the scalar field

partial derivative
in x-direction

partial derivative
in y-direction

partial derivative
in z-direction



Gradient estimation

• estimate the gradient vector using finite differencing 
schemes, e.g. central differences:

• noisy data may require more complex estimation schemes



Gradient magnitude

• magnitude of gradient vector can be used to measure the 
“surfaceness” of a point
– strong changes  high gradient magnitude

– homogenity  low gradient magnitude

• applications
– use gradient magnitude to modulate opacity of sample

– interpolate between unshaded and shaded sample color using 
gradient magnitude as weight



Compositing

• alpha compositing
– physically-based

– optical model for emission & absorption

– may require complex transfer function

– visual cues due to accumulation and shading

• maximum intensity projection
– practically-motivated

– project maximum value along each viewing ray

– suffices with window/level setting

– spatial ambiguities caused by order-independency 



Maximum intensity projection
data value
maximum value



Alpha compositing
data value
maximum value

accumulated opacity
accumulated color



Volume rendering pipeline

volume data final image

reconstruction

classification

shading

compositing

volume rendering pipeline



Implementation Considerations



Basic ray setup & termination

• two main approaches:
– procedural ray/box intersection

[Röttger et al., 2003], [Green, 2004]

– rasterize bounding box
[Krüger and Westermann, 2003]

• some possibilities
– ray start position and exit check

– ray start position and exit position

– ray start position and direction vector



Rasterization-based ray setup

• fragment = ray

• need ray start position, direction vector

• rasterize bounding box of volume data

• identical for orthogonal and perspective projection!

- =



Ray casting optimizations

• early ray termination
– isosurfaces: stop when surface hit

– direct volume rendering:
stop when opacity >= threshold

• several possibilities
– older GPUs: multi-pass rendering with early-z-test

– shader model 3+: break out of ray-casting loop

– current GPUs: early loop exit works well



Ray casting optimizations

• empty space skipping
– skip transparent samples

– depends on transfer function

– start casting close to first hit

• several possibilities
– per-sample check of opacity (expensive)

– traverse hierarchy (e.g., octree) or regular grid

– use tighter bounding geometry



Empty space skipping

• modify initial rasterization step

rasterize bounding box rasterize “tight" bounding geometry



Empty space skipping

• store min-max scalar data values of volume blocks

• cull blocks against transfer function

• rasterize front and back faces of active blocks



Empty space skipping

• rasterize front and back faces
of active min-max bricks

• start rays on brick front faces

• terminate when
– full opacity reached, or

– back face reached

• not all empty space is
skipped



Additional techniques/considerations

• global illumination effects
– in- and out-scattering

(which we previously
ignored)

– shadows

– photon mapping

– …



Applications



Medical applications



Medical + graphics research



Medical + graphics research



Anatomy visualization and illustration



Applications in archaeology
volume rendering of a CT scan of a crocodile mummy
with juveniles on its back



Applications for physical simulations

explosion in the stellar interior
of a 9.6 solar-mass star
170 ms after core bounce



Volume rendering in games

• volume rendering for
dedicated objects
such as procedural
flames and fire balls



Volume rendering in games



Volume rendering in games


