Computer Graphics

- object representations so far
 - polygonal meshes (shading)
 - analytical descriptions (raytracing)
- flexibility vs. accuracy
- now: flexible yet accurate representations
 - piecewise smooth curves:
 Bézier curves, splines
 - smooth (freeform) surfaces
 - subdivision surfaces

Again, why do we need all this?

- not only representation, but also modeling
- and it's all about cars! shiny cars! Image:

Again, why do we need all this?

- not only representation, but also modeling
- and it's all about cars! shiny cars! Image:

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Curves and Smooth Surfaces

Curves

Computer Graphics – Fall 2016/2017 Tobias Isenberg C

Specifying Curves

- functional descriptions
 - -y = f(x) in 2D; for 3D also z = f(x)
 - cannot have loops

- functions only return one scalar, bad for 3D
- difficult handling if it needs to be adapted
- parametric descriptions
 - independent scalar parameter t $\in \Re$
 - typically t \in [0, 1], mapping into \Re^2 / \Re^3
 - point on the curve: P(t) = (x(t), y(t), z(t))

Polynomial Parametric Curves

use control points to specify curves

• set of basis or blending functions:

 $P(t) = \sum_{i=1}^{n} P_{i}B_{i,n}(t)$

Interpolating vs. Approximating

- two different curves schemes: curves do not always go through all control points
 - approximating curves
 - not all control points are on the resulting curve
 - interpolating curves
 all control points
 are on the resulting
 curve

Curves and Smooth Surfaces

Bézier Curves

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Bézier Curves: Blending Functions

- formulation of curve: $P(t) = \sum_{i=0}^{n} P_i B_{i,n}(t)$
- B_{i,n} Bernstein polynomials (control point weights, depend on t):

$$B_{i,n}(t) = \binom{n}{i} t^{i} (1-t)^{n-i} = \frac{n!}{i! (n-i)!} t^{i} (1-t)^{n-i}$$

• Bézier curve example for n = 3:

$$P(t) = P_0 B_{0,3}(t) + P_1 B_{1,3}(t) + P_2 B_{2,3}(t) + P_3 B_{3,3}(t)$$

= $P_0 (1-t)^3 + P_1 3t(1-t)^2 + P_2 3t^2(1-t) + P_3 t^3$

Bernstein Polynomials Visualized

Computer Graphics – Fall 2016/2017 Tobias Isenberg

De Casteljau's Algorithm

- algorithm by Paul de Casteljau trivia: original inventor of Bézier curves (in 1959); Pierre Bézier just publicized them widely in 1962; both working for French car makers (Citroën & Renault)
- geometric & numerically stable way to evaluate the polynomials in Bézier curves

De Casteljau's Algorithm

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Bézier Curves: Examples

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Bézier Curves: Example & B_{i,n}

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Bézier Curves: Properties

- curve always inside the **convex hull** of the control polygon why? $\sum_{i=0}^{n} B_{i,n}(t) = 1 \quad \forall t \in [0,1]$
- **approximating** curve: only first & last control points are interpolated why?
- each control point affects the entire curve,
 limited local control → problem for modeling

Piecewise Smooth Curves

- low order curves give sufficient control
- *idea*: connect segments together
 - each segment only affected by its own control points \rightarrow local control
 - make sure that segments connect smoothly

• *problem*: what are smooth connections?

Continuity Criteria

- a curve s is said to be Cⁿ-continuous if its nth derivative dⁿs/dtⁿ is continuous of value → parametric continuity: shape & speed
- not only for individual curves, but also and in particular for where segments connect
- geometric continuity: two curves are Gⁿcontinuous if they have proportional nth derivatives (same direction, speed can differ)
- Gⁿ follows from Cⁿ, but not the other way
- car bodies need at least G²-continuity

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Continuity Criteria: Examples

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Curves and Smooth Surfaces

Splines

Computer Graphics – Fall 2016/2017 Tobias Isenberg 0

Splines

- term from manufacturing (cars, planes, ships, etc.): metal strips with weights or similar attached
- mathematically in cg: composite curves that are composed of polynomial sections and that satisfy specified continuity conditions

Bézier curves are one class of splines

- Bézier curves: global reaction to change
- goal: find curve that provides local control
- *idea*: approximating curve with many control points where only a few consecutive control points have local influence:

Computer Graphics – Fall 2016/2017

Tobias Isenberg

- mathematical formulation (n+1 control pts): $P(t) = \sum_{i=0}^{n} P_i B_{i,d}(t) \quad 1 \le d \le n$ degree $B_{i,0}(t) = \begin{cases} 1 & \text{if } t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$ knots $B_{i,d}(t) = \frac{t - t_i}{t_{i+d-1} - t_i} B_{i,d-1}(t) + \frac{t_{i+d} - t}{t_{i+d} - t_i} B_{i+1,d-1}(t)$
- recursive definition of B_{i,d}
- B_{i,d} only non-zero for certain range (knots)
- range of each B_{i,d} grows with degree

degree: 1

Computer Graphics – Fall 2016/2017

Tobias Isenberg

degree: 2

Computer Graphics – Fall 2016/2017

Tobias Isenberg

degree: 3

Computer Graphics – Fall 2016/2017

Tobias Isenberg

B-Splines vs. Bézier Curves

B-Splines vs. Bézier Curves

Computer Graphics – Fall 2016/2017 Tobias Isenberg

NURBS

- knots can be non-uniformly spaced in the parameter space
- additional skalar weights for control points
- Non Uniform Rational Basis Spline:

$$P(t) = \frac{\sum_{i=0}^{n} h_{i} P_{i} B_{i,d,k}(t)}{\sum_{i=0}^{n} h_{i} B_{i,d,k}(t)}$$

- "rational" refers to ration, i.e., a quotient
- can also represent, e.g., conic sections

Interpolating Curves

- how to specify smooth curves that interpolate control points?
- *idea*: use 4 control points to specify an interpolating curve between the middle 2
- example: Cardinal splines: $P(t) = P_{k-1}Car_0(t) + P_kCar_1(t) + P_{k+1}Car_2(t) + P_{k+2}Car_3(t)$
- curve defined from P_k to P_{k+1} ; $P_{k-1} \& P_{k+1}$ as well as $P_k \& P_{k+2}$ define tangents:

Open vs. Closed Cardinal Splines

- open curves need extra control points to specify the boundary conditions
- for closed curves no boundary conditions necessary, treat as never-ending curve

Hearn & Baker 2004

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Cardinal Splines: Definition

- Car_i cubic polynomial blending functions: $P(t) = P_{k-1}(-s t^3 + 2s t^2 - s t) +$ $P_{\mu}((2-s) t^3 + 2(s-3) t^2 + 1) +$ $P_{k+1}((s-2) t^3 + (3-2s) t^2 + s t) +$ $P_{k+2}(s t^3 - s t^2)$ Baker 2004 $s = \frac{1 - tension}{s}$ Hearn & t < 0t > 0
- tension parameter
 to control curve path and overshooting

Cardinal Splines: Examples

Smooth Curves: Summary

- parametric definition using parameter t
- flexible control points to control path
- blending functions compute each control point's contribution for a given parameter *t*
- works for 2D and 3D curves alike: just use 2D or 3D control points
- two ways to gain local control:
 - stitching low-degree curves together
 - using b-splines with degree parameter

Curves and Smooth Surfaces

Freeform Surfaces

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Freeform Surfaces

- base surfaces on parametric curves
- Bézier curves → Bézier surfaces/patches
- spline curves \rightarrow spline surfaces/patches
- mathematically: application of curve formulations along two parametric directions

Freeform Surfaces: Principle

 Bézier surface: control mesh with m × n control points now specifies the surface: $P(u,v) = \sum_{i=1}^{m} \sum_{j=1}^{n} P_{j,i} B_{j,m}(v) B_{i,n}(u)$ $\overline{i=0}$ $\overline{i=0}$

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Freeform Surfaces: Examples

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Freeform Surfaces: Examples

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Trivia: The Utah Teapot

- famous model used early in CG
- modeled from Bézier patches in 1975
- is even available in GLUT
- used frequently in CG techniques as an example along with other "famous" models like the Stanford bunny

The Utah Teapot

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Freeform Surfaces: How to Render?

- freeform surface specification yields

 points on the surface (evaluating the sums)
 order of points (through parameter order)
- extraction of approximate polygon mesh
 - chose parameter stepping size in u and v
 - compute the points for each of the steps
 - create polygon mesh using the inherent order
- can be created as detailed as necessary

Tessellation (parameter space sampling)

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Tessellation (parameter space sampling)

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Tessellation (parameter space sampling)

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Curves and Smooth Surfaces

Subdivision Surfaces

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Subdivision Surfaces

- but we already have so many polygon models, is there anything we can do?
- sure there is: **subdivision surfaces**!
- basic idea:
 - model coarse, low-resolution mesh of object
 - recursively refine the mesh using rules
 - use high-resolution mesh for rendering
 - limit surface should have continuity properties and is typically one of the freeform surfaces

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Subdivision Schemes for Surfaces

- quad-based vs. triangle-based subdivision
- quad-based subdivision
 - Doo-Sabin
 - Catmull-Clark
 - Kobbelt
- triangle-based subdivision
 - Loop
 - (modified) butterfly

Face Splitting vs. Vertex Splitting

• face splitting: faces directly subdivided:

vertex splitting: vertices are "split"

Position of New Vertices

- positions computed based on weighted averages from neighbouring original vertices or new vertices
- each scheme has its own weights (look up for implementation)
- special weights for sharp edges or borders
- extraordinary vertices

Doo-Sabin Subdivision

• approximating (quad mesh) vertex split

• example:

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Catmul-Clark Subdivision

approximating quad mesh face-split

• example:

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Kobbelt Subdivision

interpolating quad-mesh face-split

 using different weights than the Catmull-Clark scheme

Loop Subdivision

approximating triangle mesh face-split

• example:

Computer Graphics – Fall 2016/2017

Tobias Isenberg

Modified Butterfly Subdivision

• interpolating triangle mesh face-split,

using different weights compared to Loop scheme

• example:

Computer Graphics – Fall 2016/2017

Tobias Isenberg

$\sqrt{3}$ subdivision

approximating triangle mesh face-split

• only 1:3 triangle increase, not 1:4

Computer Graphics – Fall 2016/2017

Tobias Isenberg

Adaptive Subdivision

- subdivide only where detail is needed
- special care for boundary of subdivided region to maintain smooth transition

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Adaptive Subdivision

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Subdivision and Freeform Surfaces

- limit surfaces of subdivision have also certain continuity properties:
 - C¹: Doo-Sabin, Kobbelt, Modified Butterfly
 - $-C^2$: Loop, $\sqrt{3}$, Catmull-Clark
- for some schemes, the limit surfaces are Bézier/spline surfaces

Application: Subdivision Modeling

- model coarse meshes as usual
- apply subdivision to get smooth surfaces
- now used often in animated features to aid the modeling of characters and objects

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Intermission: Geri's Game

Computer Graphics – Fall 2016/2017 Tobias Isenberg

Curves and Surfaces: Summary

- need to model smooth curves & surfaces
- use of control points
- polynomial descriptions
- continuity constraints Cⁿ/Gⁿ, important both for curves and surfaces
- surfaces from curves
- subdivision surfaces