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Curves and Smooth Surfaces

• object representations so far

– polygonal meshes (shading)

– analytical descriptions (raytracing)

• flexibility vs. accuracy

• now: flexible yet accurate

representations

– piecewise smooth curves:

Bézier curves, splines

– smooth (freeform) surfaces

– subdivision surfaces
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Again, why do we need all this?

• not only representation, but also modeling

• and it’s all about cars! shiny cars! 
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Curves and Smooth Surfaces

Curves
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Specifying Curves

• functional descriptions

– y = f(x) in 2D;

for 3D also z = f(x)

– cannot have loops

– functions only return one scalar, bad for 3D

– difficult handling if it needs to be adapted

• parametric descriptions

– independent scalar parameter t  

– typically t  [0, 1], mapping into 2 / 3

– point on the curve: P(t) = (x(t), y(t), z(t))
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Polynomial Parametric Curves

• use control points to specify curves

• n+1 control points for a curve segment

• set of basis or blending functions:
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Interpolating vs. Approximating

• two different curves schemes: curves do 

not always go through all control points

– approximating curves

not all control

points are on the

resulting curve

– interpolating curves

all control points

are on the resulting

curve
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Curves and Smooth Surfaces

Bézier Curves
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Bézier Curves: Blending Functions

• formulation of curve:

• Bi,n – Bernstein polynomials

(control point weights, depend on t):

• Bézier curve example for n = 3:
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Bernstein Polynomials Visualized
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De Casteljau’s Algorithm

• algorithm by Paul de Casteljau
trivia: original inventor of Bézier curves (in 1959);

Pierre Bézier just publicized them widely in 1962;

both working for French car makers (Citroën & Renault)

• geometric & numerically stable way to 

evaluate the polynomials in Bézier curves

t = 0.25 t = 0.75
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De Casteljau’s Algorithm



Curves and Smooth SurfacesTobias IsenbergComputer Graphics – Fall 2016/2017

Bézier Curves: Examples



Curves and Smooth SurfacesTobias IsenbergComputer Graphics – Fall 2016/2017

Bézier Curves: Example & Bi,n
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Bézier Curves: Properties

• curve always inside the convex hull of the

control polygon – why?

• approximating curve: only first & last 

control points are interpolated – why?

• each control point

affects the entire curve,

limited local control

 problem for modeling
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Piecewise Smooth Curves 

• low order curves give sufficient control

• idea: connect segments together

– each segment only affected

by its own control points  local control

– make sure that segments connect smoothly

• problem: what are smooth connections?
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Continuity Criteria

• a curve s is said to be Cn-continuous if its 

nth derivative dns/dtn is continuous of value

 parametric continuity: shape & speed

• not only for individual curves, but also and 

in particular for where segments connect

• geometric continuity: two curves are Gn-

continuous if they have proportional nth de-

rivatives (same direction, speed can differ)

• Gn follows from Cn, but not the other way

• car bodies need at least G2-continuity
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Continuity Criteria: Examples

G0 = C0

G1

C1
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Curves and Smooth Surfaces

Splines
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Splines

• term from manufacturing

(cars, planes, ships, etc.):

metal strips with weights

or similar attached

• mathematically in cg:

composite curves that are

composed of polynomial

sections and that satisfy specified 

continuity conditions

• Bézier curves are one class of splines
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B-Splines

• Bézier curves: global reaction to change

• goal: find curve that provides local control

• idea: approximating curve with many 

control points where only a few conse-

cutive control points have local influence:
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B-Splines

• mathematical formulation (n+1 control pts):

• recursive definition of Bi,d

• Bi,d only non-zero for certain range (knots)

• range of each Bi,d grows with degree
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B-Splines

degree: 1
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B-Splines

degree: 2
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B-Splines

degree: 3
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B-Splines vs. Bézier Curves
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B-Splines vs. Bézier Curves

cubic B-spline degree 5 B-spline and Bézier curve
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NURBS

• knots can be non-uniformly spaced

in the parameter space

• additional skalar weights for control points

• Non Uniform Rational Basis Spline:

• “rational” refers to ration, i.e., a quotient

• can also represent, e.g., conic sections
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Interpolating Curves

• how to specify smooth curves that 

interpolate control points?

• idea: use 4 control points to specify an 

interpolating curve between the middle 2

• example: Cardinal splines:

• curve defined from Pk to Pk+1;

Pk-1 & Pk+1 as well as

Pk & Pk+2 define tangents:

)()()()()( 3221101 tCarPtCarPtCarPtCarPtP kkkk  

Hearn & Baker 2004
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Open vs. Closed Cardinal Splines

• open curves need extra control points to 

specify the boundary conditions

• for closed curves no boundary conditions 

necessary, treat as never-ending curve

Hearn & Baker 2004
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Cardinal Splines: Definition

• Cari – cubic polynomial blending functions:

• tension parameter

to control curve path and overshooting
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Cardinal Splines: Examples

Hearn & Baker 2004
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Smooth Curves: Summary

• parametric definition using parameter t

• flexible control points to control path

• blending functions compute each control 

point’s contribution for a given parameter t

• works for 2D and 3D curves alike:

just use 2D or 3D control points

• two ways to gain local control:

– stitching low-degree curves together

– using b-splines with degree parameter
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Curves and Smooth Surfaces

Freeform Surfaces
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Freeform Surfaces

• base surfaces on parametric curves

• Bézier curves  Bézier surfaces/patches

• spline curves  spline surfaces/patches

• mathematically:

application of curve formulations

along two parametric directions
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Freeform Surfaces: Principle

• Bézier surface: control mesh with m × n 

control points now specifies the surface:
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Freeform Surfaces: Examples
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Freeform Surfaces: Examples
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Trivia: The Utah Teapot

• famous model used early in CG

• modeled from Bézier patches in 1975

• is even available in GLUT

• used frequently

in CG techniques

as an example

along with other

“famous” models

like the

Stanford bunny
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The Utah Teapot



Curves and Smooth SurfacesTobias IsenbergComputer Graphics – Fall 2016/2017

Freeform Surfaces: How to Render?

• freeform surface specification yields

– points on the surface (evaluating the sums)

– order of points (through parameter order)

• extraction of approximate polygon mesh

– chose parameter stepping size in u and v

– compute the points for each of the steps

– create polygon mesh using the inherent order

• can be created as detailed as necessary
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Tessellation (parameter space sampling)

u

v
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Tessellation (parameter space sampling)

u

v
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Curves and Smooth Surfaces

Subdivision Surfaces
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Subdivision Surfaces

• but we already have so many polygon 

models, is there anything we can do?

• sure there is: subdivision surfaces!

• basic idea:

– model coarse, low-resolution mesh of object

– recursively refine the mesh using rules

– use high-resolution mesh for rendering

– limit surface should have continuity properties 

and is typically one of the freeform surfaces
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Subdivision Surfaces: Example
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Subdivision Surfaces: Example
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Subdivision Schemes for Surfaces

• quad-based vs. triangle-based subdivision

• quad-based subdivision

– Doo-Sabin

– Catmull-Clark

– Kobbelt

• triangle-based subdivision

– Loop

– (modified) butterfly

– √3
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Face Splitting vs. Vertex Splitting

• face splitting: faces directly subdivided:

• vertex splitting: vertices are “split”
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Position of New Vertices

• positions computed based on weighted 

averages from neighbouring original 

vertices or new vertices

• each scheme has its

own weights (look up

for implementation)

• special weights for

sharp edges or borders

• extraordinary vertices
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Doo-Sabin Subdivision

• approximating (quad mesh) vertex split

• example:
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Catmul-Clark Subdivision

• approximating quad mesh face-split

• example:
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Kobbelt Subdivision

• interpolating quad-mesh face-split

• using different weights than the

Catmull-Clark scheme
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Loop Subdivision

• approximating triangle mesh face-split

• example:
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Modified Butterfly Subdivision

• interpolating triangle mesh face-split,

using different

weights compared

to Loop scheme

• example:

Loop
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√3 subdivision

• approximating triangle mesh face-split

• only 1:3 triangle increase, not 1:4

K
o

b
b

e
lt
, 

2
0

0
0

Loop scheme:



Curves and Smooth SurfacesTobias IsenbergComputer Graphics – Fall 2016/2017

Adaptive Subdivision

• subdivide only where detail is needed

• special care for boundary of subdivided 

region to maintain smooth transition
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Adaptive Subdivision

Kobbelt, 1996
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Subdivision and Freeform Surfaces

• limit surfaces of subdivision have also 

certain continuity properties:

– C1: Doo-Sabin, Kobbelt, Modified Butterfly

– C2: Loop, √3, Catmull-Clark

• for some schemes, the limit surfaces are 

Bézier/spline surfaces
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Application: Subdivision Modeling 

• model coarse meshes as usual

• apply subdivision to get smooth surfaces

• now used often in animated features to aid 

the modeling of characters and objects
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Intermission: Geri’s Game
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Curves and Surfaces: Summary

• need to model smooth curves & surfaces

• use of control points

• polynomial descriptions

• continuity constraints Cn/Gn,

important both for curves and surfaces

• surfaces from curves

• subdivision surfaces


