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Curves and
Smooth Surfaces



Curves and Smooth Surfaces

* object representations so far
— polygonal meshes (shading)
— analytical descriptions (raytracing)

* flexibility vs. accuracy

* now: flexible yet accurate
representations ;; \\
— piecewise smooth curves:

— smooth (freeform) surfaces
— subdivision surfaces

Bézier curves, splines
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Again, why do we need all this?

* not only representation, but also modeling
« and it’s all about cars! shiny cars! ©
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Curves and Smooth Surfaces

curves
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Specifying Curves

 functional descriptions
—y =1f(x) In 2D;
for 3D also z = f(x)

— cannot have loops
— functions only return one scalar, bad for 3D
— difficult handling if it needs to be adapted

« parametric descriptions
— Independent scalar parametert € R
—typically t € [0, 1], mapping into K2/ R3
— point on the curve: P(t) = (x(t), y(t), z(t))
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Polynomial Parametric Curves

* use control points to specify curves

/ J
* n+1 control points for a curve segment

kset of\bvasis or blending functions:
P(t)=Y PB,,(1)
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Interpolating vs. Approximating

 two different curves schemes: curves do
not always go through all control points

&

—approximating curves
not all control
points are on the
resulting curve

— Interpolating curves
all control points
are on the resulting
curve
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Curves and Smooth Surfaces

Bézier Curves
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Bézier Curves: Blending Functions

* formulation of curve: P(t)= ZP, B, . (t)

* B,,— Bernstein polynomlals
(control point weights, depend on t):

Bi,n(t>=[?\ti(1—t>“i— R

1/ (n—1)/

« Bézier curve example for n = 3:

P(t) — I:)oBo,s (t) + PlBl,3 (t) + Psz,s (t) + P3Bs,3 (t)
=P, (1-t)° +P, 3t(1-t)* +P, 3t°(1-t)+ P, t°
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Bernstein Polynomials Visualized

+P[3ta-t)7+ P,[3t2 - )} P,
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De Casteljau’s Algorithm

» algorithm by Paul de Casteljau

trivia: original inventor of Bézier curves (in 1959);
Pierre Bézier just publicized them widely in 1962;
both working for French car makers (Citroén & Renault)

« geometric & numerically stable way to
evaluate the polynomials in Bézier curves

T
\

/

—

t=0.25 t=0.75
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De Casteljau’s Algorithm

Computer Graphics — Fall 2016/2017 Tobias Isenberg Curves and Smooth Surfaces



Bézier Curves: Examples

ﬂ}
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Bézier Curves: Example & B,
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Bézier Curves: Properties

e curve always inside the convex hull of the
control polygon — why? 2. B.(t)=1 vte[0]]

e approximating curve: only first & last
control points are interpolated — why?

* each control point
affects the entire curve,
limited local control
— problem for modeling
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Piecewise Smooth Curves

* low order curves give sufficient control

 |[dea: connect segments together

— each segment only affected
by its own control points — local control

— make sure that segments connect smoothly

N

« problem: what are smooth connections?
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Continuity Criteria

e acurve s is said to be C"-continuous If Its
nt" derivative d"s/dt" is continuous of value
— parametric continuity: shape & speed

* not only for individual curves, but also and
In particular for where segments connect

* geometric continuity: two curves are G"-
continuous if they have proportional n'" de-
rivatives (same direction, speed can differ)

« G" follows from C", but not the other way
 car bodies need at least G2-continuity
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Continuity Criteria: Examples

GO = CO

Gl

Cl
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Curves and Smooth Surfaces

Splines
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Splines

 term from manufacturing
(cars, planes, ships, etc.):
metal strips with weights
or similar attached

* mathematically in cg:
composite curves that are | .

composed of polynomial
sections and that satisfy specified
continuity conditions

« Bézier curves are one class of splines
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B-Splines

« Bézier curves: global reaction to change
 goal: find curve that provides local control

 |dea: approximating curve with many
control points where only a few conse-
cutive control points have local influence:
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B-Splines

« mathematical formulation (n+1 control pts):
P(t)=)> PB,,(t) 1<d<n
=0

k degree
1 ift <t<t,
B. () = — 2 knots
’ 0 otherwise
t—t t. —t
B (t) = Bi,d—l(t) + —d Bi+Ld—1(t)
ti+d—1 o ti ti+d o ti+1

* recursive definition of B;
* B, 4 only non-zero for certain range (knots)
* range of each B, ; grows with degree
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B-Splines

degree: 1
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B-Splines

degree: 2
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B-Splines

degree: 3
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B-Splines vs. Bézier Curves
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B-Splines vs. Bézier Curves

cubic B-spline degree 5 B-spline and Bézier curve
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NURBS

» knots can be non-uniformly spaced
INn the parameter space

 additional skalar weights for control points
* Non Uniform Rational Basis Spline:

>'h P, B, (1)
P(t) ==

Z Ny By (1)

* “rational” refers to ration, i.e., a quotient
* can also represent, e.g., conic sections
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Interpolating Curves

* how to specify smooth curves that
Interpolate control points?

 |dea: use 4 control points to specify an
iInterpolating curve between the middle 2

« example: Cardinal splines:
P(t)=P._Cary(t)+PCar,/t)+ P, ,Car,(t)+P_,Car,(t)

* curve defined from P to Py,;; | /f\‘\
i Pr +1
P.1 & Py, as well as S

P, & P,,, define tangents: e - R T

pk o Hearn & Baker 2004
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Open vs. Closed Cardinal Splines

* open curves need extra control points to
specify the boundary conditions

 for closed curves no boundary conditions
necessary, treat as never-ending curve

~
=
=
P
+_
BRI IRalE G sy By sy

= ®*Pi+2

Hearn & Baker 2004
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Cardinal Splines: Definition

 Car; — cubic polynomial blending functions:
Pt)=P_,(-st’+2st’-st)+
P((2-s)t’+2(s-3)t*+1)+
P.((s-2)t°+(3-2s)t°+st)+
P_(st’—st?)

1—tension /‘\ /\
S =

2 < t >0

i (Looser Curve) (Tighter Curve)
* tension parameter
to control curve path and overshooting

Hearn & Baker 2004
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Cardinal Splines: Examples
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Hearn & Baker 2004
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Smooth Curves: Summary

« parametric definition using parametert
* flexible control points to control path

* blending functions compute each control
point’s contribution for a given parameter t

« works for 2D and 3D curves alike:
just use 2D or 3D control points
* two ways to gain local control:

— stitching low-degree curves together
— using b-splines with degree parameter
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Curves and Smooth Surfaces

Freeform Surfaces
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Freeform Surfaces

* pase surfaces on parametric curves
« Bézier curves — Bézier surfaces/patches
 spline curves — spline surfaces/patches

* mathematically:
application of curve formulations
along two parametric directions
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Freeform Surfaces: Principle

« Bézier surface: control mesh with m x n
control points now specifies the surface:

P(uyv)= iipj,i Bj,m(v) B, ,(u)

i=0i=0
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Freeform Surfaces: Examples
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Freeform Surfaces: Examples
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Trivia: The Utah Teapot

« famous model used early in CG
* modeled from Bézier patches in 1975
* |s even avallable in GLUT

* used frequently
In CG techniques
as an example
along with other
“famous” models
like the
Stanford bunny
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The Utah Teapot
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Freeform Surfaces: How to Render?

 freeform surface specification yields
— points on the surface (evaluating the sums)
— order of points (through parameter order)

 extraction of approximate polygon mesh
— chose parameter stepping size in u and v
— compute the points for each of the steps
— create polygon mesh using the inherent order

* can be created as detailed as necessary
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Tessellation (parameter space sampling)

V]
ﬁ
u
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Tessellation (parameter space sampling)
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Tessellation (parameter space sampling)
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Curves and Smooth Surfaces

Subdivision Surfaces
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Subdivision Surfaces

* pbut we already have so many polygon
models, Is there anything we can do?

e sure there is: subdivision surfaces!

 basic idea:
— model coarse, low-resolution mesh of object
— recursively refine the mesh using rules
— use high-resolution mesh for rendering

— [imit surface should have continuity properties
and is typically one of the freeform surfaces
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Subdivision Surfaces: Example
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Subdivision Surfaces: Example
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Subdivision Surfaces: Example
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Subdivision Surfaces: Example
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Subdivision Surfaces: Example
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Subdivision Schemes for Surfaces

* guad-based vs. triangle-based subdivision

« guad-based subdivision
— Doo-Sabin
— Catmull-Clark
— Kobbelt

* triangle-based subdivision
— Loop

— (modified) butterfly
-3
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Face Splitting vs. Vertex Splitting

 face splitting: faces directly subdivided:

: \A/\)Q/\)ﬁ

> | \ /\ \H%&%N

VANVANRY ANRVAN

* vertex splitting: vertices are “split”

4)...

N Vo i
F[eo .. oo

=
o
Zorin et al., 2000
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Position of New Vertices

 positions computed based on weighted
averages from neighbouring original
vertices or new vertices

* each scheme has its ZZ
own weights (look up | W B
for Implementation) Z ]Z

<
» special weights for / o o

NS
SENEK .
sharp eo!ges or b(?rders &Xﬁ@""%‘ﬂ*ﬁ; A
- extraordinary vertices RSN LRI
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Doo-Sabin Subdivision

« approximating (quad mesh) vertex split
* example:

OO0
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Catmul-Clark Subdivision

« approximating quad mesh face-split

* example:

000
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Kobbelt Subdivision

* Interpolating quad-mesh face-split

——

/

* using different weights than the
Catmull-Clark scheme

—— ——
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Loop Subdivision

* approximating triangle mesh face-split

JANY. N

* example:
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Modified Butterfly Subdivision

* Interpolating triangle mesh face-split,

using different
weights compared
to Loop scheme

* example:
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V3 subdivision
* approximating triangle mesh face-split

* only 1:3 triangle increase, not 1:4 | |
-~ oosceme.
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Adaptive Subdivision

 subdivide only where detall iIs needed

» special care for boundary of subdivided
region to maintain smooth transition
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Subdivision and Freeform Surfaces

* [imit surfaces of subdivision have also
certain continuity properties:
— C'. Doo-Sabin, Kobbelt, Modified Butterfly
— C2: Loop, V3, Catmull-Clark

 for some schemes, the limit surfaces are
Bézier/spline surfaces
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Application: Subdivision Modeling

« model coarse meshes as usual
* apply subdivision to get smooth surfaces
* now used often in animated features to aid

the modeling of characters and objects

-

|

Pixar, 1997 / DeRose et al., 1998
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Intermission: Geri’s Game
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Curves and Surfaces: Summary

* need to model smooth curves & surfaces
 use of control points
* polynomial descriptions

* continuity constraints C"/G",
iImportant both for curves and surfaces

e surfaces from curves
e subdivision surfaces
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