
Computer Graphics

Shadow Computation
Tobias Isenberg



Overview

• motivation/introduction

• several shadow computation techniques
– projected shadows & shadow textures

– shadow mapping

– shadow volumes

– soft shadows



Shadows: Important for perception



Shadows: Important for perception



Shadows: Important for perception



Shadows: Important for perception



Shadows: Important for perception



Shadows: Important for perception



Shadows: Important for perception



Shadows: Important for perception



Shadows: Important for perception

• position in 3D space

• recognition of hidden shapes

• depends on the number of light sources

• depends on the type of light sources

• depends on the color of light sources

• reveals shape of (back)ground surface



Shadows: Terminology/shadow types



Shadows: Terminology/shadow types



Shadows: Terminology/shadow types



Planar Shadows & Shadow Textures



Planar shadows

• typical situation: objects in space, one ground plane

• goal: determine shadow on the (infinite) plane



Planar shadows

• constraints: point light source

• approach: project object
(polygons, its vertices) onto
(axis-aligned) plane

• same approach as in image
projection of graphics pipeline

z

y

(x’, y’, d)

(x, y, z)

COP

(0, 0, 0)

image

plane

l

p

v

y

x



Planar shadows

• constraints: point light source

• approach: project object
(polygons, its vertices) onto
(axis-aligned) plane

• same approach as in image
projection of graphics pipeline

l

p

v

𝑝𝑥 − 𝑙𝑥
𝑣𝑥 − 𝑙𝑥

=
𝑙𝑦

𝑙𝑦 − 𝑣𝑦

y

x

𝑝𝑥 =
𝑙𝑦𝑣𝑥 − 𝑙𝑥𝑣𝑦

𝑙𝑦 − 𝑣𝑦



Planar shadows

• arbitrary plane

• computation based on plane equation

l

p

v

k

𝑛 ∙ 𝑝 − 𝑘 = 0
𝑛 ∙ 𝑝 = 𝑛 ∙ 𝑘

𝑝 = 𝑙 + 𝛼 𝑣 − 𝑙

𝑛 ∙ 𝑙 + 𝛼 𝑣 − 𝑙 = 𝑛 ∙ 𝑘

𝑛 ∙ 𝑙 + 𝛼𝑛 ∙ 𝑣 − 𝑙 = 𝑛 ∙ 𝑘

𝛼 =
𝑛 ∙ 𝑘 − 𝑛 ∙ 𝑙

𝑛 ∙ (𝑣 − 𝑙)

𝑝 = 𝑙 + (𝑣 − 𝑙)
𝑛 ∙ 𝑘 − 𝑛 ∙ 𝑙

𝑛 ∙ (𝑣 − 𝑙)



Planar shadows: Limitations

• restricted to projection onto one planar object

• shadows generated as projected triangles (polygons):
results in z-fighting



Planar shadows: Limitations

• need to be re-computed for each frame

• mathematic formulation is generic, issues with some setups:



Shadow textures

• rendering-based method to avoid some of these issues

• approach: two-pass rendering
– first identify the occluder

– light-source-rendering: produces grayscale texture of occlude

– texture-map shadow texture on background, render from camera

view from light source shadow texture view from camera



Shadow textures

• pros
– works for large receivers, simple to realize

– no analytic projection of triangles, no z-fighting

• cons
– occluders and receivers need to be explicitly identified

– texture resolution may lead to sampling artifacts



Shadow Mapping



Shadow mapping

• improvement on shadow texture approach
to realistic, complex scenes

• idea: remove need to identify occluder/
receiver by recording the distance from
the light source
 use of z-buffer
 simple shadows: points are considered

to be fully in shadow or fully illuminated

• same two-pass rendering as before



View frustum and light frustum



Shadow mapping

• first render pass: generate z-buffer from the light source

• z-buffer records distance of objects from light source

scene viewed from the light source z-buffer from the light source



Shadow mapping

• second pass: “normal” rendering from camera with additional 
shadow map depth test
– project vertex to camera coordinates (for normal shading)

– project vertex to light source coordinates
(model-view and projection matrices from 1st rendering pass)

– compare light source coordinates with shadow map depth buffer

visualization of
depth map projected

onto the scene

shadow map
test failures

shown in white



Shadow mapping

shadow

illuminated

depth map from camera depth map from light source



Shadow mapping: advantages

• no prior geometry analysis needed anymore

• works for any geometry



Shadow mapping: result



Shadow mapping: disadvantages

• works only for point light sources

• can exhibit shadow acne

• sampling artifacts



Perspective shadow maps

• quality of shadows depends on distance of objects
from the light source



Perspective shadow maps

• quality of shadows depends on distance of objects
from the light source

far-away light
sources mean
that only few
pixels of the
light source’s
z-buffer are
used to compute
the shadow of
close objects



Perspective shadow maps

• solution: compute shadow map in post-perspective space
(from the perspectively projected position of the light source)

close objects
thus become
larger and
are better
covered in
shadow map

near/front
clipping
plane far/back

clipping
plane

view
volume

x/y

z

x/y

z

0
1

-1

1



Perspective shadow maps

• solution: compute shadow map in post-perspective space
(from the perspectively projected position of the light source)

close objects
thus become
larger and
are better
covered in
shadow map



Cascaded shadow maps

• problem with aliasing depending on distance from the camera

• compute different shadow maps for different distances from 
the viewer



Cascaded Shadow Map



Shadow Volumes



Shadow volumes

• problem with shadow maps:
– quality depends on pixel resolution of the shadow map z-buffer

– higher quality need multiple render passes (cascaded shadow maps) 
or generally more memory for shadow map

– several light sources need several render passes

• take idea of shadow map z-buffer
and extend to an analytic process
– shadow map represents a volume

of space that is in the shadow 



Inspiration: Shadows in raytracing



Shadow volumes

• idea: extend rays from
light source to object
silhouette and beyond

• connect to (analytic)
polygonal shapes that
enclosed the area that
is in the shade



Shadow volumes



Shadow volumes: construction

• use geometry shader:
– extrude shadow volume

along the direction of light

– each illuminated
(front-facing to the
light source) polygon is
extruded

– result: shadow geometry

– use stream output
to store result



Shadow volumes: At render time

• “count” all intersections
of a ray through the
pixel with shadow
volumes
(entering = +1; leaving = -1)
– count = 0  point is illuminated

– count ≠ 0  point in the shadow



Shadow volumes: At render time

• counting using the stencil buffer; z-pass approach
1. 1st render to initialize z-buffer (ambient light only, flat shading)

2. turn off z-buffer/frame buffer, turn on stencil buffer;
stencil buffer counts intersections by rendering shadow volumes

• 1st stencil pass with shadow volume: with back face culling enabled, font 
faces of shadow volume increment the stencil buffer
if the depth test passes

• 2nd stencil pass with shadow volume: with front face culling enabled, back 
faces of the shadow volume decrement the stencil buffer if the depth test 
passes

 counts the number of shadow volumes in front of the objects



front-facing:
increment stencil buffer by 1
(if depth test passes)

z-pass approach

result: stencil buffer has the number of shadow volumes in front of an object, thus we know what is in the shadow (stencil > 0)

back-facing:
decrement stencil buffer by 1
(if depth test passes)



Problems with z-pass approach

• eye in shadow volume:
count number of
volumes that enclose
the eye

• shadow volumes that
intersect near plane:
can miss intersections



Solution: z-fail approach “Carmack's Reverse”

1. 1st render to initialize z-buffer (ambient light only, flat 
shading)

2. turn off z-buffer/frame buffer, turn on stencil buffer;
stencil buffer counts intersections by rendering shadow 
volumes

– 1st stencil pass with shadow volume: with front face culling enabled, 
font faces of shadow volume increment the stencil buffer if the 
depth test fails

– 2nd stencil pass with shadow volume: with back face culling 
enabled, back faces of the shadow volume decrement the stencil 
buffer if the depth test fails

 counts the number of shadow volumes behind the objects



front-facing:
decrement stencil buffer by 1
(if depth test fails)

z-fail approach

result: stencil buffer has the number of shadow volumes behind an object, thus we know what is in the shadow (stencil > 0)
 shadows behind an object mean that there’s also shadows in front of them

back-facing:
increment stencil buffer by 1
(if depth test fails)



Solution: z-fail approach “Carmack's Reverse”

• similar issues as before,
but at the back plane

• shadow-casting object
fully behind back plane
no longer a problem

• problem only from shadow
objects intersecting
back plane

• solution: cap the
shadow volumes
at the back plane



Shadow Volumes: First used in Doom 3



Evaluation

• pros
– occluders can shadow themselves

– no need to analyze geometry to extract occluders/receivers

– high precision, not bound by resolution of a shadow map

• cons
– 4 render passes plus shadow volume extraction needed

– many shadow volumes cover many pixels (rendering costs)

– slower than shadow mapping for many shadows

– still only discrete/hard shadows



Alternative: Shadows from raytracing



Soft Shadows



Point light sources vs. areal lights



Soft shadows

• several possible approaches

• image-based techniques, e.g.
– combine several occlusion maps

– shadow map with quantitative information

• object-based techniques, e.g.
– point light source position sampling

– smoothies

– soft shadow volumes



Several occlusion maps

• render planar shadow from
several points close to the
light source

• each render leads to an
occlusion map

• combine all to an attenuation map

• use in illumination of receiver



Shadow map with quantitative information

• simple case: linear light source

• compute 2 shadow maps: 1 per end

• detect discontinuities in shadow maps

• create vertical polygons that connect
occluder and receiver w.r.t. light source

• render these from the other sample with
Gouraud shading: visibility channel

• real render: check both shadow maps, for unclear situations 
use visibility channel



Point light source position sampling

• render scene several
times, each time slightly
changing the location
of the light source

• blend the resulting
images for a soft
shadow effect



Smoothies

• generate shadow maps

• generate smoothie buffer that
extends the objects’ silhouette
from the view of the light

• smoothie buffer alpha records
ratio of distances between light,
occluder, and receiver

• final render blends results from
shadow map and smoothie buffer



Soft shadow volumes

• based on regular shadow volumes

• create penumbra wedges from silhouette

• use of separate buffer: visibility buffer

• first render normal shadow
volume: hard shadows

• then render wedges
using fragment shader
that computes penumbra

• use visibility buffer



Soft shadow volumes: Result



Soft shadows: Other results



Soft shadows: Other results



Shadow Art



Shadow art



Shadow art



Shadow computation: Summary

• shadows not included in plain rendering,
but essential for scene perception

• variety of algorithms for computation
– shadow mapping

– shadow volumes

• choice depends on scene complexity

• soft shadows more complicated, more expensive

• heuristics for soft shadows


