Computer Graphics

Accelerating 3D Graphics With
Dedicated Hardware

Tobias Isenberq &zzza~

Overview

» introduction to graphics hardware

« the graphics hardware (rendering) pipeline

* general purpose computation on the GPU
(GPGPU)

What is graphics hardware?

[ATI/nVidia]

What is graphics hardware?

« rendering traditionally implemented on CPU (C/C++/ASM)

« late 90's: several companies (nVidia, ATI, 3Dfx) started
releasing consumer hardware to remove rendering from CPU

What is graphics hardware?

today: all desktops/laptops with dec
— application logic still controlled by CPU

icated graphics hardware

- assets (3D meshes, texture maps, ...) u

nloaded to GPU at start up

- CPU issues rendering commands to GPU
- GPU performs rendering (transformations, lighting, etc.)

- results sent directly to the display

1990s

Why is graphics hardware effective?

power supply/
management

graphics
memory

-

Y.
,’l

display connectors

[nVidia]

Why is graphics hardware effective?

« example: AMD ATI Radeon
HD 5870 (1600 cores)

» graphics engine:
fixed-function hardware

» SIMD engines:
single instruction,
multiple data
- i.e., lots of simple cores
- massive parallel processing
~ perfect for graphics tasks [T) (e) e) (R) L
HE BEE BE BN 1w

G e Iy
L

| sayoe) ainxaj 11 |
]

= b
S}iu
!jl

Why is graphics hardware effective?

4)

- J
System Memory

CPU: multiple cores

GPU: hundreds to thousands of cores

Why is graphics hardware effective?

» 3D rendering can easily be parallelized:

- meshes contain thousands of vertices & more; for each vertex we:

« transform (object space — eye/camera space — screen space)

« light (compute vectors, attenuation, etc.)

 various other tasks ...
- rendered images have millions of pixels; for each plxel/fragment we:

* interpolate coordinates/normals E%gm%{y =
perform texture mapping -1
perform blending
compute illumination
various other tasks ...

..7

A-’
— ﬁ AA‘
E T | \

| ' “7‘—1-
= "o /s

Why is graphics hardware effective?

* GPU throughput
increasing faster
than CPU throughput

Theoretical GFLOP/s

5750
5500
5250
5000
4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000
750
500
250
0

Apr-01

NVIDIA GPU Single Precision
et NVIDIA GPU Double Precision

Intel CPU Double Precision
=mgmm|ntel CPU Single Precision

Testa K40
Tesla K20X

Tesla M2090

Tesla C2050
Tesla C1060
Harpertown

vy Bridge
Sandy Bridge
Woodcrest

Bloomfield Westmere

Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

[nVidia]

Virtually all rendering requires GPUs

L 3
1 <
»
)#\
ST ? 4
/p/ g‘i @ W
\ = &
SELL
s >0 's—;i«;::z;;.

o= SR

_;-’:."d

—STAR-WARS e

BATTLEFRONT [g

Virtually all rendering requires GPUs

Q Search

B ®» @& & =

Stories [> Play All

s ar ¢

Your Story ~ George Amanda Colby

%, What's on your mind? (8

Photo

ﬁ Guillermo Moreno with Josephine
‘ﬂ: Williams and 2 others. =
' Yesterday at 10:14 PM - @

Good friends, good food and a lot of laughs.

CALLS

WhatsApp Q =
CONTACTS
Whitmans Chat 11:45AM
Ned: Yeah, | think | know wha... @)

Stewart Family 11:39 AM

/ Steve: Great, thanks!)

Alice Whitman YESTERDAY

1 Image
Jack Whitman FRIDAY

0:07
Lunch Group FRIDAY

You: Sounds good!

Jane Pearson FRIDAY

) ot

Symbols
Gym level 2

GENGAR

C.P;]_97 : :
/

A

The computer graphics pipeline

: . lacement of ..
modelling of | | transformation into| _ plEEETEnt @ transformation into
cameras and

eometr | world coordinates | | ’ i
g y light sources camera coordinates

backface R . | clipping w.r.t.
: > projection > :
culling view volume
hidden surface R . _ illumination and
»| rasterization — .
removale (hsr) shading

» traditional pipeline can closely be mapped to the modern
hardware/GPU pipeline

The graphics hardware pipeline

Vertex Geometry Fragment

Tessellation Rasterizer

Shader Shader Shader

Stream
Output

Index and vertex buffers (mesh data), textures, etc.

= Configurable Stage ‘ = Pipeline Flow Note: terminology can vary between
APIs; for example, OpenGL uses the
= Programmable Stage —> = Memory Access term ‘fragment shader’, while

Direct3D uses the term ‘pixel
= Memory Resource shader

Controlling the pipeline (CPU)

graphics API: programmer submits data/commands to GPU
- OpenGL: open standard maintained by the Khronos group @GL

- OpenGL ES: cut-down version for use on embedded systems @GL\ESM
- Direct3D: developed by Microsoft for their systems DirectX
- Vulkan: successor to OpenGL by the Khronos group Wuian.
APIs are constantly evolving, e.g.:

OpenGL 1.0 (1992): only configurable; some stages still missing

OpenGL 2.0 (2004): vertex and fragment stages programmable

OpenGL 3.0 (2008): added geometry shader as a programmable stage

OpenGL 4.0 (2010): added tessellation support as a programmable stage

Using an API GorGL

 before rendering commences, load relevant data onto the GPU
- glGenBuffers(...), glBindBuffer(...), glBufferData(...), etc.

» also set up shaders for the programmable pipeline stages
— glCreateShader(...), glShaderSource(...), glCompileShader(..), etc.

* once set up is complete, issue rendering commands
— glDrawArrays, etc.

Vertex shader

Vertex . Geometry . Fragment
Shader Tessellation Shader Rasterizer Shader

Stream
Output

Index and vertex buffers (mesh data), textures, etc.

Vertex shader

. . o \ * : .
Input: vertices -S:;z- . . output: projected vertices

» one of the first pipeline stages to become fully programmable
(OpenGL 2.0)

 executed for each vertex in the in input data

« most important role—apply transformations:
- transform vertex into eye/camera space
— project vertex into clip space
- possibly lighting (illumination) calculations (Gouraud shading)

Vertex shader: Example

Vertex shader: Example

« per-vertex diffuse lighting (Gouraud)

void main()
{
// compute the diffuse light intensity
vec3 normal = normalize(gl_NormalMatrix * gl Normal);
vec3 lightDir = normalize(vec3(gl_LightSource[@].position));
float NdotL = max(dot(normal, lightDir), 0.0);
vec4 diffuselLight = NdotL * gl FrontMaterial.diffuse * gl LightSource[0].diffuse;

// assign the results to variables to be passed to the next stage
gl FrontColor = diffuselight;
gl TexCoord[@] = gl MultiTexCoordo;

gl Position = gl ProjectionMatrix * gl ModelViewMatrix * gl Vertex;

Vertex shader: Advanced uses

o particle systems
— each particle modelled as single vertex
- position and colour changed over time by the vertex shader

* animation
- time passed to shader to animate the mesh

- key-frame animation:
shader blends between predefined frames

- skeletal animation:
* each vertex is attached to a ‘bone’

» CPU updates bone transformation
» vertex shader applies this to each vertex

Vertex shader: Character animation

Tessellation shader

Vertex . Geometry . Fragment
Shader Tessellation Shader Rasterizer Shader

Stream
Output

Index and vertex buffers (mesh data), textures, etc.

Tessellation shader
primitive - ecallation subdivided primitive > A

» |ater addition to the hardware pipeline (OpenGL 4.0

* used to increase the number of primitives via subdivision

» programmable, so various subdivision approaches possible
- effective when combined with displacement mapping

Geometry shader

Vertex . Geometry . Fragment
Shader Tessellation Shader Rasterizer Shader

Stream
Output

Index and vertex buffers (mesh data), textures, etc.

Geometry shader
A primitive primitive(s) > A /\ /\

« later addition to the pipeline (OpenGL 3.0)

« operates on primitives (e.g., lines and triangles)
- input: usually the set of vertices the primitive consists off
- shader has access to adjacency information
- mesh processing algorithms such as smoothing and simplification

 multiple output primitives for each input primitive possible
« modified geometry can also be saved to memory (stream out)

Geometry shader: Stream output

Vertex Geometry

Shader Tessellation Shader

Stream
Output

Index and vertex buffers (mesh data), textures, etc.

Geometry shader: Duplication example

Geometry shader: Duplication example

void main(void)
{
// output a copy tinted blue and raised up
for(int i=0; i<gl VerticesIn; i++) {
gl Position = gl PositionIn[i] + vec4(0.0, 250.0, 0.0, 0.90);
gl FrontColor = gl FrontColorIn[i] - vec4(0.3, 0.3, 0.0, 0.0);
gl TexCoord[@] = gl TexCoordIn[i][@]; EmitVertex();
}

EndPrimitive();

// output a copy tinted red and lowered down

for(int i=0; i<gl VerticesIn; i++) {
gl Position = gl PositionIn[i] - vec4(©.0, 250.0, 0.0, 0.0);
gl FrontColor = gl FrontColorIn[i] - vec4(9.0, 0.3, 0.3, 0.90);
gl TexCoord[@] = gl TexCoordIn[i][@]; EmitVertex();

}

EndPrimitive();

Geometry shader: Advanced uses

 procedural geometry
— can also generate primitives procedurally
- e.g., metaballs; mathematical surface which
that can be evaluated on the GPU
* particle systems
- particles usually drawn as quad (requires four vertices)
- send a single point, shader expands it into a quad

 shadow volume extrusion
- extrude object boundary in shader, reduces CPU load
- boundary used to determine what is in shadow

Rasterizer

Vertex . Geometry . Fragment
Shader Tessellation Shader Rasterizer Shader

Stream
Output

Index and vertex buffers (mesh data), textures, etc.

Rasterizer

primitive fragments e
A | Rasterizer >

* converts primitives into fragments
- performs culling and clipping of primitives
- generates fragments from primitives
- property interpolation (color, texture coordinates, etc.)

* not programmable, but configurable:
- backface culling
— anti-aliasing
— depth biasing

Fragment shader

Vertex . Geometry . Fragment
Shader Tessellation Shader Rasterizer Shader

Stream
Output

Index and vertex buffers (mesh data), textures, etc.

Fragment shader

e fragments Fragment colored fragments
JHEEE | shader > S

« also one of the oldest programmable stages (OpenGL 2.0)

» calculates fragment colour based on interpolated vertex
values, texture data, and user supplied variables.

 fragment: ‘candidate pixel
- may end up as a pixel in final image
- may get overwritten, combined with other fragments, etc.

« common uses: per-pixel (Phong) lighting, texture application

Fragment shader: Fog example

Fragment shader: Fog example

» texturing and fog

void main(void)
{
// sample the texture at the position given by texcoords
vec4 textureSample = texture2D(checkerboard,gl TexCoord[0].st);

// compute some depth-based fog
const float fogDensity = 0.0015;
float depth = gl FragCoord.z / gl FragCoord.w;
float fogFactor = 1.0 - (depth * fogDensity);

// compute the output color
gl FragColor = gl Color * textureSample * fogFactor;

Fragment shader: Advanced uses

 procedural textures
- compute texture based on an algorithm
— Perlin noise, Voronoi noise, fractals, etc.

» reflection
- environment map, stored in cubemap texture
- applied to object, accounting for the view direction

 normal (bump) mapping

- add extra surface detail to a model
- adjust the surface normal based on bump map

Output merger

Vertex . Geometry . Fragment
Shader Tessellation Shader Rasterizer Shader

Stream
Output

Index and vertex buffers (mesh data), textures, etc.

Output merger

= s Fragment colours Output Pixel colour =

« combines fragment shader output with any existing contents
of the render target

 keyroles:
- depth testing (z-buffer)

- blending: combine fragment color with pre-existing pixel in the
render target (transparency, lighting, etc.)

« configurable, but not programmable

Performance considerations

pipeline approach:
- minimize state changes to avoid flushes
- balance workload across stages

slow memory: values can also be computed (t

o avoid look-up)

quality/performance trade-off by moving operations between

vertex and fragment shader (e.qg., lighting)
vertices often shared by multiple triangles

- GPU implements a caching mechanism to avoid reprocessing

— order triangles so that those sharing a vertex arer
consecutively

endered ﬁ

The future?

. reaI -time photorealism still not achieved
"Requires roughly 2000x today’s best GPU hardware”
(Tim Sweeney in 2012)
» continuing increase in the power of GPUs
- more pixels (screens: UHD/4K, 8K, ..)
- more detail (i.e., triangles)
- more processing (animation, physics simulation, Al, ...)
- increasing programmability and flexibility

« different direction:
real-time raytracing! voxel/point-based graphics?

* increasing use of graphics hardware for non-graphics tasks

General purpose computing on the GPU

* increasing GPU programmability: application beyond graphics

« most effective for problems with a high degree of parallelism
- define a kernel and apply it to many pieces of data simultaneously

« example applications:
- image processing: blurring/sharpening,
segmentation, feature detection, etc.

- physics simulation: fluid simulation,
rigid bodies, cloth, etc.

- non-shading rendering: raytracing,
radiosity

General purpose computing on the GPU

« CPU is still in overall control (like when rendering)
- typically only small part of an application moved to the GPU

» several APIs for GPGPU computing

- OpenCL (Khronos group) ¢ S
- CUDA (nVidia) £ QCBVSZA'
- DirectCompute (Microsoft) Openct :

» several generalized concepts:
- use of general arrays instead of operation on textures/render targets
- more flexible memory access

» additional concepts:
- support for synchronisation between processing cores

GPGPU—-Simple example: Adding arrays

parallelized using GPGPU (OpenCL)

__kernel void AddArrays(__global float* a, __global float* b, _ _global float* c)

CPU

// allocate some arrays
const int num = 190;

float *a = new float[num];
float *b = new float[num];
float *c = new float[num];

// fill 'a' and 'b' with some data

for(int i = 0; i < num; i++) {
a[i] = b[i] = 1.0f * i;

}

// compute

for(int i = 0; i < num; i++) {
c[i] = a[i] + b[i];

by

// print the result

for(int i=0; i < num; i++) {
printf("c[%d] = %f\n", i, c[i]);

}

c' as the sum of 'a' and 'b'

// determine which element of the array we are working on

{
unsigned int i = get_global_id(0);
// perform the addition
c[i] = a[i] + b[i];

}

CPU setup code (some details omitted)

// create an OpenCL kernel from the kernel source
cl_kernel kernel = clCreateKernel(program, "AddArrays", &err);

// upload the data to the GPU

cl _mem cl_a = clCreateBuffer(context,
sizeof(float) * num, a, &err);

cl _mem cl b = clCreateBuffer(context,
sizeof(float) * num, b, &err);

cl _mem cl c = clCreateBuffer(context,
sizeof(float) * num, NULL, &err);

// execute the kernel
clEnqueueNDRangeKernel (command_queue,
NULL, ©, NULL, &event);

CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,

CL_MEM_WRITE_ONLY,

kernel, 1, NULL, workGroupSize,

GPGPU & Combination with rendering

» general computation and rendering possible in one program
- e.g., simulation on the GPU, render results also with the GPU
— CPU can be removed from the process almost entirely!

 example: fluid simulation on the GPU
- fluid treated as large number of particles in an array
- kernel applied to each array element to update positions
- particles rendered as spheres, adding smoothing and refraction

GPGPU & Combination with rendering

PhysX Fluid Demo Yérsion 1.0.0 .8
nulating 64032 Tluid particles
imu lation made: Hw

F1 for help

General purpose computing on the GPU

bitcoin

& ETHEREUM

(%) MONERO

General purpose computing on the GPU

Advanced Password
Recovery

Graphics Hardware: Summary

» pipeline approach like introduced before
» pipeline stages become increasingly programmable

- CPU

sets up environment, GPU computes/renders

» advantages due to massively parallel processing for a

com

* GPG
com

* Ccom

outation problem that can easily be parallelized

PU processing for applying the same approach to general
nutation/simulation

ninations of GPGPU computation and GPU rendering

