
Computer Graphics

Accelerating 3D Graphics With 
Dedicated Hardware
Tobias Isenberg



Overview

• introduction to graphics hardware

• the graphics hardware (rendering) pipeline

• general purpose computation on the GPU
(GPGPU)



What is graphics hardware?

[ATI/nVidia]



What is graphics hardware?

• rendering traditionally implemented on CPU (C/C++/ASM)

• late 90’s: several companies (nVidia, ATI, 3Dfx) started 
releasing consumer hardware to remove rendering from CPU

1990s



What is graphics hardware?

• today: all desktops/laptops with dedicated graphics hardware
– application logic still controlled by CPU

– assets (3D meshes, texture maps, …) uploaded to GPU at start up
– CPU issues rendering commands to GPU

– GPU performs rendering (transformations, lighting, etc.)

– results sent directly to the display

1990s



Why is graphics hardware effective?

[nVidia]

display connectors

power supply/
management

graphics
memory

GPU



Why is graphics hardware effective?

• example: AMD ATI Radeon
HD 5870 (1600 cores)

• graphics engine:
fixed-function hardware

• SIMD engines:
single instruction,
multiple data
– i.e., lots of simple cores

– massive parallel processing

– perfect for graphics tasks
[ATI/AMD]



Why is graphics hardware effective?

Cache

Core 3 Core 4

Core 1

System Memory

Core 2

CPU: multiple cores

Device Memory

GPU: hundreds to thousands of cores



Why is graphics hardware effective?

• 3D rendering can easily be parallelized:
– meshes contain thousands of vertices & more; for each vertex we:

• transform (object space  eye/camera space  screen space)

• light (compute vectors, attenuation, etc.)

• various other tasks …

– rendered images have millions of pixels; for each pixel/fragment we:
• interpolate coordinates/normals

• perform texture mapping

• perform blending

• compute illumination

• various other tasks …



Why is graphics hardware effective?

• GPU throughput
increasing faster
than CPU throughput

[n
V

id
ia

]



Virtually all rendering requires GPUs

[EA]



Virtually all rendering requires GPUs



The computer graphics pipeline

• traditional pipeline can closely be mapped to the modern 
hardware/GPU pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
illumination and

shading

transformation into

camera coordinates



The graphics hardware pipeline

Vertex 
Shader

Tessellation
Geometry 

Shader
Rasterizer

Fragment 
Shader

Output 
Merger

Stream 
Output

Index and vertex buffers (mesh data), textures, etc.

= Configurable Stage

= Programmable Stage

= Memory Resource

= Pipeline Flow

= Memory Access

Note: terminology can vary between 
APIs; for example, OpenGL uses the 
term ‘fragment shader’, while 
Direct3D uses the term ‘pixel 
shader’



Controlling the pipeline (CPU)

• graphics API: programmer submits data/commands to GPU
– OpenGL: open standard maintained by the Khronos group

– OpenGL ES: cut-down version for use on embedded systems

– Direct3D: developed by Microsoft for their systems

– Vulkan: successor to OpenGL by the Khronos group

• APIs are constantly evolving, e.g.:
– OpenGL 1.0 (1992): only configurable; some stages still missing

– OpenGL 2.0 (2004): vertex and fragment stages programmable

– OpenGL 3.0 (2008): added geometry shader as a programmable stage

– OpenGL 4.0 (2010): added tessellation support as a programmable stage



Using an API

• before rendering commences, load relevant data onto the GPU
– glGenBuffers(…), glBindBuffer(…), glBufferData(…), etc.

• also set up shaders for the programmable pipeline stages
– glCreateShader(…), glShaderSource(…), glCompileShader(…), etc.

• once set up is complete, issue rendering commands
– glDrawArrays, etc.



Vertex shader

Vertex 
Shader

Tessellation
Geometry 

Shader
Rasterizer

Fragment 
Shader

Output 
Merger

Stream 
Output

Index and vertex buffers (mesh data), textures, etc.



Vertex shader

• one of the first pipeline stages to become fully programmable 
(OpenGL 2.0)

• executed for each vertex in the in input data

• most important role—apply transformations:
– transform vertex into eye/camera space
– project vertex into clip space
– possibly lighting (illumination) calculations (Gouraud shading)

Vertex 
Shaderinput: vertices output: projected vertices



Vertex shader: Example



Vertex shader: Example

• per-vertex diffuse lighting (Gouraud)

void main()

{

// compute the diffuse light intensity

vec3 normal = normalize(gl_NormalMatrix * gl_Normal);

vec3 lightDir = normalize(vec3(gl_LightSource[0].position));

float NdotL = max(dot(normal, lightDir), 0.0);

vec4 diffuseLight = NdotL * gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;

// assign the results to variables to be passed to the next stage

gl_FrontColor = diffuseLight;

gl_TexCoord[0] = gl_MultiTexCoord0;

gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * gl_Vertex;

}



Vertex shader: Advanced uses

• particle systems
– each particle modelled as single vertex

– position and colour changed over time by the vertex shader

• animation
– time passed to shader to animate the mesh

– key-frame animation:
shader blends between predefined frames

– skeletal animation:
• each vertex is attached to a ‘bone’

• CPU updates bone transformation

• vertex shader applies this to each vertex



Vertex shader: Character animation



Tessellation shader

Vertex 
Shader

Tessellation
Geometry 

Shader
Rasterizer

Fragment 
Shader

Output 
Merger

Stream 
Output

Index and vertex buffers (mesh data), textures, etc.



Tessellation shader

• later addition to the hardware pipeline (OpenGL 4.0)

• used to increase the number of primitives via subdivision

• programmable, so various subdivision approaches possible

• effective when combined with displacement mapping

Tessellation
primitive subdivided primitive



Geometry shader

Vertex 
Shader

Tessellation
Geometry 

Shader
Rasterizer

Fragment 
Shader

Output 
Merger

Stream 
Output

Index and vertex buffers (mesh data), textures, etc.



Geometry shader

• later addition to the pipeline (OpenGL 3.0)

• operates on primitives (e.g., lines and triangles)
– input: usually the set of vertices the primitive consists off

– shader has access to adjacency information
– mesh processing algorithms such as smoothing and simplification

• multiple output primitives for each input primitive possible

• modified geometry can also be saved to memory (stream out)

Geometry 
Shader

primitive primitive(s)



Geometry shader: Stream output

Vertex 
Shader

Tessellation
Geometry 

Shader
Rasterizer

Fragment 
Shader

Output 
Merger

Stream 
Output

Index and vertex buffers (mesh data), textures, etc.



Geometry shader: Duplication example



Geometry shader: Duplication example
void main(void)

{

// output a copy tinted blue and raised up

for(int i=0; i<gl_VerticesIn; i++) {

gl_Position = gl_PositionIn[i] + vec4(0.0, 250.0, 0.0, 0.0);

gl_FrontColor = gl_FrontColorIn[i] - vec4(0.3, 0.3, 0.0, 0.0);

gl_TexCoord[0] = gl_TexCoordIn[i][0];   EmitVertex();

}

EndPrimitive();

// output a copy tinted red and lowered down

for(int i=0; i<gl_VerticesIn; i++) {

gl_Position = gl_PositionIn[i] - vec4(0.0, 250.0, 0.0, 0.0);

gl_FrontColor = gl_FrontColorIn[i] - vec4(0.0, 0.3, 0.3, 0.0);

gl_TexCoord[0] = gl_TexCoordIn[i][0];    EmitVertex();

}

EndPrimitive();

}



Geometry shader: Advanced uses

• procedural geometry
– can also generate primitives procedurally
– e.g., metaballs; mathematical surface which

that can be evaluated on the GPU

• particle systems
– particles usually drawn as quad (requires four vertices)
– send a single point, shader expands it into a quad

• shadow volume extrusion
– extrude object boundary in shader, reduces CPU load
– boundary used to determine what is in shadow



Rasterizer

Vertex 
Shader

Tessellation
Geometry 

Shader
Rasterizer

Fragment 
Shader

Output 
Merger

Stream 
Output

Index and vertex buffers (mesh data), textures, etc.



Rasterizer

• converts primitives into fragments
– performs culling and clipping of primitives

– generates fragments from primitives

– property interpolation (color, texture coordinates, etc.)

• not programmable, but configurable:
– backface culling

– anti-aliasing

– depth biasing

primitive fragments
Rasterizer



Fragment shader

Vertex 
Shader

Tessellation
Geometry 

Shader
Rasterizer

Fragment 
Shader

Output 
Merger

Stream 
Output

Index and vertex buffers (mesh data), textures, etc.



Fragment shader

• also one of the oldest programmable stages (OpenGL 2.0)

• calculates fragment colour based on interpolated vertex 
values, texture data, and user supplied variables.

• fragment: ‘candidate pixel’
– may end up as a pixel in final image

– may get overwritten, combined with other fragments, etc.

• common uses: per-pixel (Phong) lighting, texture application

Fragment 
shader

fragments colored fragments



Fragment shader: Fog example



Fragment shader: Fog example

• texturing and fog

void main(void)
{

// sample the texture at the position given by texcoords
vec4 textureSample = texture2D(checkerboard,gl_TexCoord[0].st);

// compute some depth-based fog
const float fogDensity = 0.0015;
float depth = gl_FragCoord.z / gl_FragCoord.w;
float fogFactor =  1.0 - (depth * fogDensity);

// compute the output color
gl_FragColor = gl_Color * textureSample * fogFactor;

}



Fragment shader: Advanced uses

• procedural textures
– compute texture based on an algorithm

– Perlin noise, Voronoi noise, fractals, etc.

• reflection
– environment map, stored in cubemap texture

– applied to object, accounting for the view direction

• normal (bump) mapping
– add extra surface detail to a model

– adjust the surface normal based on bump map



Output merger

Vertex 
Shader

Tessellation
Geometry 

Shader
Rasterizer

Fragment 
Shader

Output 
Merger

Stream 
Output

Index and vertex buffers (mesh data), textures, etc.



Output merger

• combines fragment shader output with any existing contents 
of the render target

• key roles:
– depth testing (z-buffer)

– blending: combine fragment color with pre-existing pixel in the 
render target (transparency, lighting, etc.)

• configurable, but not programmable

Fragment colours Pixel colourOutput 
Merger



Performance considerations

• pipeline approach:
– minimize state changes to avoid flushes

– balance workload across stages

• slow memory: values can also be computed (to avoid look-up)

• quality/performance trade-off by moving operations between 
vertex and fragment shader (e.g., lighting)

• vertices often shared by multiple triangles
– GPU implements a caching mechanism to avoid reprocessing

– order triangles so that those sharing a vertex are rendered 
consecutively



The future?

• real-time photorealism still not achieved
– “Requires roughly 2000x today’s best GPU hardware”

(Tim Sweeney in 2012)

• continuing increase in the power of GPUs
– more pixels (screens: UHD/4K, 8K, …)
– more detail (i.e., triangles)
– more processing (animation, physics simulation, AI, …)
– increasing programmability and flexibility

• different direction:
real-time raytracing! voxel/point-based graphics?

• increasing use of graphics hardware for non-graphics tasks



General purpose computing on the GPU

• increasing GPU programmability: application beyond graphics

• most effective for problems with a high degree of parallelism
– define a kernel and apply it to many pieces of data simultaneously

• example applications:
– image processing: blurring/sharpening,

segmentation, feature detection, etc.

– physics simulation: fluid simulation,
rigid bodies, cloth, etc.

– non-shading rendering: raytracing,
radiosity



General purpose computing on the GPU

• CPU is still in overall control (like when rendering)
– typically only small part of an application moved to the GPU

• several APIs for GPGPU computing
– OpenCL (Khronos group)
– CUDA (nVidia)
– DirectCompute (Microsoft)

• several generalized concepts:
– use of general arrays instead of operation on textures/render targets
– more flexible memory access

• additional concepts:
– support for synchronisation between processing cores



GPGPU—Simple example: Adding arrays

// allocate some arrays
const int num = 10;
float *a = new float[num];
float *b = new float[num];
float *c = new float[num];

// fill 'a' and 'b' with some data
for(int i = 0; i < num; i++) {

a[i] = b[i] = 1.0f * i;
}

// compute 'c' as the sum of 'a' and 'b'
for(int i = 0; i < num; i++) {

c[i] = a[i] + b[i];
}

// print the result
for(int i=0; i < num; i++) {

printf("c[%d] = %f\n", i, c[i]);
}

__kernel void AddArrays(__global float* a, __global float* b, __global float* c)
{

// determine which element of the array we are working on
unsigned int i = get_global_id(0);

// perform the addition
c[i] = a[i] + b[i];

}

// create an OpenCL kernel from the kernel source
cl_kernel kernel = clCreateKernel(program, "AddArrays", &err);

// upload the data to the GPU
cl_mem cl_a = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,

sizeof(float) * num, a, &err);
cl_mem cl_b = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,

sizeof(float) * num, b, &err);
cl_mem cl_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(float) * num, NULL, &err);

// execute the kernel
clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, workGroupSize,

NULL, 0, NULL, &event);

CPU parallelized using GPGPU (OpenCL)

CPU setup code (some details omitted)



GPGPU & Combination with rendering

• general computation and rendering possible in one program
– e.g., simulation on the GPU, render results also with the GPU

– CPU can be removed from the process almost entirely!

• example: fluid simulation on the GPU
– fluid treated as large number of particles in an array

– kernel applied to each array element to update positions

– particles rendered as spheres, adding smoothing and refraction



GPGPU & Combination with rendering



General purpose computing on the GPU



General purpose computing on the GPU



Graphics Hardware: Summary

• pipeline approach like introduced before

• pipeline stages become increasingly programmable

• CPU sets up environment, GPU computes/renders

• advantages due to massively parallel processing for a 
computation problem that can easily be parallelized

• GPGPU processing for applying the same approach to general 
computation/simulation

• combinations of GPGPU computation and GPU rendering


