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Overview

• introduction to graphics hardware

• the graphics hardware (rendering) pipeline

• general purpose computation on the GPU
(GPGPU)



What is graphics hardware?

[ATI/nVidia]



What is graphics hardware?

• rendering traditionally implemented on CPU (C/C++/ASM)

• late 90’s: several companies (nVidia, ATI, 3Dfx) started 
releasing consumer hardware to remove rendering from CPU

1990s



What is graphics hardware?

• today: all desktops/laptops with dedicated graphics hardware
– application logic still controlled by CPU

– assets (3D meshes, texture maps, …) uploaded to GPU at start up
– CPU issues rendering commands to GPU

– GPU performs rendering (transformations, lighting, etc.)

– results sent directly to the display

1990s



Why is graphics hardware effective?

[nVidia]
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Why is graphics hardware effective?

• example: AMD ATI Radeon
HD 5870 (1600 cores)

• graphics engine:
fixed-function hardware

• SIMD engines:
single instruction,
multiple data
– i.e., lots of simple cores

– massive parallel processing

– perfect for graphics tasks
[ATI/AMD]



Why is graphics hardware effective?
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Why is graphics hardware effective?

• 3D rendering can easily be parallelized:
– meshes contain thousands of vertices & more; for each vertex we:

• transform (object space  eye/camera space  screen space)

• light (compute vectors, attenuation, etc.)

• various other tasks …

– rendered images have millions of pixels; for each pixel/fragment we:
• interpolate coordinates/normals

• perform texture mapping

• perform blending

• compute illumination

• various other tasks …



Why is graphics hardware effective?

• GPU throughput
increasing faster
than CPU throughput
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Virtually all rendering requires GPUs

[EA]



Virtually all rendering requires GPUs



The computer graphics pipeline

• traditional pipeline can closely be mapped to the modern 
hardware/GPU pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
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shading

transformation into

camera coordinates



The graphics hardware pipeline
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Geometry 

Shader
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Fragment 
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Output 
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Stream 
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Index and vertex buffers (mesh data), textures, etc.

= Configurable Stage

= Programmable Stage

= Memory Resource

= Pipeline Flow

= Memory Access

Note: terminology can vary between 
APIs; for example, OpenGL uses the 
term ‘fragment shader’, while 
Direct3D uses the term ‘pixel 
shader’



Controlling the pipeline (CPU)

• graphics API: programmer submits data/commands to GPU
– OpenGL: open standard maintained by the Khronos group

– OpenGL ES: cut-down version for use on embedded systems

– Direct3D: developed by Microsoft for their systems

– Vulkan: successor to OpenGL by the Khronos group

• APIs are constantly evolving, e.g.:
– OpenGL 1.0 (1992): only configurable; some stages still missing

– OpenGL 2.0 (2004): vertex and fragment stages programmable

– OpenGL 3.0 (2008): added geometry shader as a programmable stage

– OpenGL 4.0 (2010): added tessellation support as a programmable stage



Using an API

• before rendering commences, load relevant data onto the GPU
– glGenBuffers(…), glBindBuffer(…), glBufferData(…), etc.

• also set up shaders for the programmable pipeline stages
– glCreateShader(…), glShaderSource(…), glCompileShader(…), etc.

• once set up is complete, issue rendering commands
– glDrawArrays, etc.



Vertex shader
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Vertex shader

• one of the first pipeline stages to become fully programmable 
(OpenGL 2.0)

• executed for each vertex in the in input data

• most important role—apply transformations:
– transform vertex into eye/camera space
– project vertex into clip space
– possibly lighting (illumination) calculations (Gouraud shading)

Vertex 
Shaderinput: vertices output: projected vertices



Vertex shader: Example



Vertex shader: Example

• per-vertex diffuse lighting (Gouraud)

void main()

{

// compute the diffuse light intensity

vec3 normal = normalize(gl_NormalMatrix * gl_Normal);

vec3 lightDir = normalize(vec3(gl_LightSource[0].position));

float NdotL = max(dot(normal, lightDir), 0.0);

vec4 diffuseLight = NdotL * gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;

// assign the results to variables to be passed to the next stage

gl_FrontColor = diffuseLight;

gl_TexCoord[0] = gl_MultiTexCoord0;

gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * gl_Vertex;

}



Vertex shader: Advanced uses

• particle systems
– each particle modelled as single vertex

– position and colour changed over time by the vertex shader

• animation
– time passed to shader to animate the mesh

– key-frame animation:
shader blends between predefined frames

– skeletal animation:
• each vertex is attached to a ‘bone’

• CPU updates bone transformation

• vertex shader applies this to each vertex



Vertex shader: Character animation



Tessellation shader
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Tessellation shader

• later addition to the hardware pipeline (OpenGL 4.0)

• used to increase the number of primitives via subdivision

• programmable, so various subdivision approaches possible

• effective when combined with displacement mapping

Tessellation
primitive subdivided primitive



Geometry shader
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Geometry shader

• later addition to the pipeline (OpenGL 3.0)

• operates on primitives (e.g., lines and triangles)
– input: usually the set of vertices the primitive consists off

– shader has access to adjacency information
– mesh processing algorithms such as smoothing and simplification

• multiple output primitives for each input primitive possible

• modified geometry can also be saved to memory (stream out)

Geometry 
Shader

primitive primitive(s)



Geometry shader: Stream output
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Geometry shader: Duplication example



Geometry shader: Duplication example
void main(void)

{

// output a copy tinted blue and raised up

for(int i=0; i<gl_VerticesIn; i++) {

gl_Position = gl_PositionIn[i] + vec4(0.0, 250.0, 0.0, 0.0);

gl_FrontColor = gl_FrontColorIn[i] - vec4(0.3, 0.3, 0.0, 0.0);

gl_TexCoord[0] = gl_TexCoordIn[i][0];   EmitVertex();

}

EndPrimitive();

// output a copy tinted red and lowered down

for(int i=0; i<gl_VerticesIn; i++) {

gl_Position = gl_PositionIn[i] - vec4(0.0, 250.0, 0.0, 0.0);

gl_FrontColor = gl_FrontColorIn[i] - vec4(0.0, 0.3, 0.3, 0.0);

gl_TexCoord[0] = gl_TexCoordIn[i][0];    EmitVertex();

}

EndPrimitive();

}



Geometry shader: Advanced uses

• procedural geometry
– can also generate primitives procedurally
– e.g., metaballs; mathematical surface which

that can be evaluated on the GPU

• particle systems
– particles usually drawn as quad (requires four vertices)
– send a single point, shader expands it into a quad

• shadow volume extrusion
– extrude object boundary in shader, reduces CPU load
– boundary used to determine what is in shadow



Rasterizer
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Rasterizer

• converts primitives into fragments
– performs culling and clipping of primitives

– generates fragments from primitives

– property interpolation (color, texture coordinates, etc.)

• not programmable, but configurable:
– backface culling

– anti-aliasing

– depth biasing

primitive fragments
Rasterizer



Fragment shader
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Fragment shader

• also one of the oldest programmable stages (OpenGL 2.0)

• calculates fragment colour based on interpolated vertex 
values, texture data, and user supplied variables.

• fragment: ‘candidate pixel’
– may end up as a pixel in final image

– may get overwritten, combined with other fragments, etc.

• common uses: per-pixel (Phong) lighting, texture application

Fragment 
shader

fragments colored fragments



Fragment shader: Fog example



Fragment shader: Fog example

• texturing and fog

void main(void)
{

// sample the texture at the position given by texcoords
vec4 textureSample = texture2D(checkerboard,gl_TexCoord[0].st);

// compute some depth-based fog
const float fogDensity = 0.0015;
float depth = gl_FragCoord.z / gl_FragCoord.w;
float fogFactor =  1.0 - (depth * fogDensity);

// compute the output color
gl_FragColor = gl_Color * textureSample * fogFactor;

}



Fragment shader: Advanced uses

• procedural textures
– compute texture based on an algorithm

– Perlin noise, Voronoi noise, fractals, etc.

• reflection
– environment map, stored in cubemap texture

– applied to object, accounting for the view direction

• normal (bump) mapping
– add extra surface detail to a model

– adjust the surface normal based on bump map



Output merger
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Output merger

• combines fragment shader output with any existing contents 
of the render target

• key roles:
– depth testing (z-buffer)

– blending: combine fragment color with pre-existing pixel in the 
render target (transparency, lighting, etc.)

• configurable, but not programmable

Fragment colours Pixel colourOutput 
Merger



Performance considerations

• pipeline approach:
– minimize state changes to avoid flushes

– balance workload across stages

• slow memory: values can also be computed (to avoid look-up)

• quality/performance trade-off by moving operations between 
vertex and fragment shader (e.g., lighting)

• vertices often shared by multiple triangles
– GPU implements a caching mechanism to avoid reprocessing

– order triangles so that those sharing a vertex are rendered 
consecutively



The future?

• real-time photorealism still not achieved
– “Requires roughly 2000x today’s best GPU hardware”

(Tim Sweeney in 2012)

• continuing increase in the power of GPUs
– more pixels (screens: UHD/4K, 8K, …)
– more detail (i.e., triangles)
– more processing (animation, physics simulation, AI, …)
– increasing programmability and flexibility

• different direction:
real-time raytracing! voxel/point-based graphics?

• increasing use of graphics hardware for non-graphics tasks



General purpose computing on the GPU

• increasing GPU programmability: application beyond graphics

• most effective for problems with a high degree of parallelism
– define a kernel and apply it to many pieces of data simultaneously

• example applications:
– image processing: blurring/sharpening,

segmentation, feature detection, etc.

– physics simulation: fluid simulation,
rigid bodies, cloth, etc.

– non-shading rendering: raytracing,
radiosity



General purpose computing on the GPU

• CPU is still in overall control (like when rendering)
– typically only small part of an application moved to the GPU

• several APIs for GPGPU computing
– OpenCL (Khronos group)
– CUDA (nVidia)
– DirectCompute (Microsoft)

• several generalized concepts:
– use of general arrays instead of operation on textures/render targets
– more flexible memory access

• additional concepts:
– support for synchronisation between processing cores



GPGPU—Simple example: Adding arrays

// allocate some arrays
const int num = 10;
float *a = new float[num];
float *b = new float[num];
float *c = new float[num];

// fill 'a' and 'b' with some data
for(int i = 0; i < num; i++) {

a[i] = b[i] = 1.0f * i;
}

// compute 'c' as the sum of 'a' and 'b'
for(int i = 0; i < num; i++) {

c[i] = a[i] + b[i];
}

// print the result
for(int i=0; i < num; i++) {

printf("c[%d] = %f\n", i, c[i]);
}

__kernel void AddArrays(__global float* a, __global float* b, __global float* c)
{

// determine which element of the array we are working on
unsigned int i = get_global_id(0);

// perform the addition
c[i] = a[i] + b[i];

}

// create an OpenCL kernel from the kernel source
cl_kernel kernel = clCreateKernel(program, "AddArrays", &err);

// upload the data to the GPU
cl_mem cl_a = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,

sizeof(float) * num, a, &err);
cl_mem cl_b = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,

sizeof(float) * num, b, &err);
cl_mem cl_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(float) * num, NULL, &err);

// execute the kernel
clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, workGroupSize,

NULL, 0, NULL, &event);

CPU parallelized using GPGPU (OpenCL)

CPU setup code (some details omitted)



GPGPU & Combination with rendering

• general computation and rendering possible in one program
– e.g., simulation on the GPU, render results also with the GPU

– CPU can be removed from the process almost entirely!

• example: fluid simulation on the GPU
– fluid treated as large number of particles in an array

– kernel applied to each array element to update positions

– particles rendered as spheres, adding smoothing and refraction



GPGPU & Combination with rendering



General purpose computing on the GPU



General purpose computing on the GPU



Graphics Hardware: Summary

• pipeline approach like introduced before

• pipeline stages become increasingly programmable

• CPU sets up environment, GPU computes/renders

• advantages due to massively parallel processing for a 
computation problem that can easily be parallelized

• GPGPU processing for applying the same approach to general 
computation/simulation

• combinations of GPGPU computation and GPU rendering


