Computer Graphics

... and beyond

What will the exam be about?

- what we talked about in class
 - principles
 - algorithms
 - techniques
 - approaches
 - deriving core algorithms/techniques
- use slides to study
- use book for in-depth repetition

Exam

- multiple-choice
- in English
- statements about the contents of the lecture
- mark the correct statements
- typically not time-limited
- no negative points

+1/1/60+
Exa

Materials allowed: Pencils, erasers

Introd

Please write your answers directly on the exam paper.

 \leftarrow Encode your student number here, and write the student number again as well as your given name and family name below. If you cannot remember your student number, use the number X you see at the top of the exam sheet in this code +X/Y/Z+.

Exam on 23/03/2016

Stud	ent	nun	nbe	r:											
 Give	 n na	e	 :		• •	•	• •	•	 • •						•
Fami	 ly n	am	 e:		• •			•	 	•	•	•			•

- The questions with the symbol \$ can have none, one, or more than one possible correct answers All other questions have exactly one correct answer.
- To correct, clearly erase the wrong mark and put a new one (if needed). If you cannot erase because you did not bring a pencil, make the incorrect box completely black.
- All multiple-choice questions are worth one point. For it to be counted as answered correctly. all correct answers and no incorrect answer have to be selected.
- Do not fold the answer sheet(s), do not write on the back.

Question 1 Student did NOT bring a pencil. Do NOT fill out yourself

Student brought a pencil

Student did not bring a pencil.

Multiple-Choice Questions:

Question 2 Driving to the supermarket but ending up at work is an example of which type of error

description error
a mistake
capture error

none of the above mode error

Exam: Hypothetical negative points

Computer Graphics

Exam: How-To

- bring soft pencil & eraser (HB or softer)
- or some other pen that you can erase/fix
- bring your student ID card (not ISIC)
- please fill in the boxes as follows:
- not ok:
- possibly multiple correct answers (marked by *) vs. single correct answer (no *)
 - use of consistency checks ("none of the answers are correct")

Exam: Grading

- each box (
) is a binary decision
 - if it should be marked:
 - gets you points if you mark it (correctly)
 - does not get you points if you do not mark it
 - if it should not be marked:
 - gets you points if you do not mark it (correctly)
 - does not get you points if you mark it
 - each question is worth 1 point
 - partially correctly answered questions are graded proportionally

-e.g., 3/5 boxes correctly marked: 0.6 points

Computer Graphics

Exam: Example question (single)

- What is greatest/coolest algorithm in CG? Bresenham's midpoint algorithm. 1/1 points
- Cohen and Sutherland's bitmask clipping.
- Liang and Barsky's intersection point method.
- Flood fill.
 - None of these answers is correct.

Exam: Example question (single)

- What is greatest/coolest algorithm in CG?
 Bresenham's midpoint algorithm.
- Cohen and Sutherland's bitmask clipping.
- Liang and Barsky's intersection point method.
- Flood fill.
- None of these answers is correct.

Exam: Example question (single)

- What is greatest/coolest algorithm in CG? Bresenham's midpoint algorithm. 0/1 points
- Cohen and Sutherland's bitmask clipping.
- Liang and Barsky's intersection point method.
- Flood fill.

None of these answers is correct.

- • Which of these statments is/are correct?
- The speed of rendering does not matter, as long as the results are correct.
- The precision of rendering does not matter, as long as it is fast.
 - Rendering should be both fast and correct.
 - The needed rendering precision is guided by the pixel resolution.
 - None of these answers is correct.
 - 1/1 points

- • Which of these statments is/are correct?
- The speed of rendering does not matter, as long as the results are correct.
- The precision of rendering does not matter, as long as it is fast.
 - Rendering should be both fast and correct.
 - The needed rendering precision is guided by the pixel resolution.
- None of these answers is correct.
- 0.75/1 points

- • Which of these statments is/are correct?
- The speed of rendering does not matter, as long as the results are correct.
- The precision of rendering does not matter, as long as it is fast.
 - Rendering should be both fast and correct.
 - The needed rendering precision is guided by the pixel resolution.
 - None of these answers is correct.
- 0.5/1 points

- • Which of these statments is/are correct?
- The speed of rendering does not matter, as long as the results are correct.
- The precision of rendering does not matter, as long as it is fast.
 - Rendering should be both fast and correct.
 - The needed rendering precision is guided by the pixel resolution.
 - None of these answers is correct.
- 0.5/1 points

- • Which of these statments is/are correct?
- The speed of rendering does not matter, as long as the results are correct.
- The precision of rendering does not matter, as long as it is fast.
 - Rendering should be both fast and correct.
- The needed rendering precision is guided by the pixel resolution.
- None of these answers is correct.
- 0.25/1 points

- • Which of these statments is/are correct?
- The speed of rendering does not matter, as long as the results are correct.
- The precision of rendering does not matter, as long as it is fast.
 - Rendering should be both fast and correct.
- The needed rendering precision is guided by the pixel resolution.
 - None of these answers is correct.
 - 0/1 points

- • Which of these statments is/are correct?
- The speed of rendering does not matter, as long as the results are correct.
- The precision of rendering does not matter, as long as it is fast.
 - Rendering should be both fast and correct.
 - The needed rendering precision is guided by the pixel resolution.
 - None of these answers is correct.

0/1 points

- • Which of these statments is/are correct?
- The speed of rendering does not matter, as long as the results are correct.
- The precision of rendering does not matter, as long as it is fast.
 - Rendering should be both fast and correct.
- The needed rendering precision is guided by the pixel resolution.
- None of these answers is correct.
 - 0/1 points

Exam: Strategies

- not answering a question definitely does not get you any points
- marking all boxes for all questions will be considered as trying to cheat
- if you don't know an answer, use your best guess (pure chance gets you 50% on average [for ♣ questions])
 → educated guesses get you more!
- please no empty questions!

- only basics covered so far
 - fundamental algorithms & techniques
 - fundamental issues & approaches
 - approximations that are visually good enough
 - speed, speed, speed
 - tools to apply for larger problems
- many more topics open or to come (a bit biased)
 - animation & advanced rendering techniques
 - scientific and information visualization
 - interaction & interfaces

1. quick CG recap advanced illumination models, BRDFs

Computer Graphics

Tobias Isenberg

1. quick CG recap advanced illumination models, BRDFs

Blinn-Phona

Blinn-Phong (higher exponent)

Computer Graphics

Tobias Isenberg

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing
- 4. shadow computation sub-surface scattering

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing
- 4. shadow computation sub-surface scattering

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing
- 4. shadow computation sub-surface scattering
- 5. curves and surfaces image-based rendering

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing
- 4. shadow computation sub-surface scattering
- 5. curves and surfaces image-based rendering

Modeling and Rendering Architecture from Photographs Debevee, Taylor, and Malik 1996

Original photograph with marked edges

Recovered model Model edges projected onto photograph Synthetic rendering

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing
- 4. shadow computation sub-surface scattering
- 5. curves and surfaces image-based rendering
- 6. non-photorealistic rendering

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing
- 4. shadow computation sub-surface scattering
- 5. curves and surfaces image-based rendering
- 6. non-photorealistic rendering
- voxels & volume rendering applications, topics in visualization

- 1. quick CG recap advanced illumination models, BRDFs
- 2. global illumination: raytracing & radiosity
- 3. CG on the GPU real-time GPU raytracing
- 4. shadow computation sub-surface scattering
- 5. curves and surfaces image-based rendering
- 6. non-photorealistic rendering
- voxels & volume rendering applications, topics in visualization

implementation of a raytracer

Computer Graphics

Tobias Isenberg

• implementation of a raytracer

Computer Graphics

Tobias Isenberg

Animation Techniques

• hierarchies & bones, mocap, cloth etc.

Computer Graphics

Tobias Isenberg

Animation Techniques

• animation principles: squash & stretch etc.

Computer Graphics

Tobias Isenberg

Other Illumination Models

 Blinn-Phong model

Blinn-Phong

Phong

Blinn-Phong (higher exponent)

 Cook-Torrance model

Tobias Isenberg
Global Illumination: Radiosity

Computer Graphics

Tobias Isenberg

Ambient Occlusion

Computer Graphics

Tobias Isenberg

Global Illumination: Raytracing

Computer Graphics

Tobias Isenberg

Realtime Raytracing

Computer Graphics

Tobias Isenberg

Hardware-Supported Rendering

[nVidia]

Computer Graphics

Shadow Rendering

Computer Graphics

Tobias Isenberg

Sub-Surface Scattering

Computer Graphics

Tobias Isenberg

• rendering silhouettes, outlines, features

Computer Graphics

Tobias Isenberg

cartoon shading and other shading styles

Computer Graphics

Tobias Isenberg

rendering illustration styles: hatching

Computer Graphics

Tobias Isenberg

rendering illustration styles: stippling

Computer Graphics

Tobias Isenberg

stroke-based rendering: "cg painting"

Meier 1997

Curtis et al. 1997

Computer Graphics

Tobias Isenberg

distortion & non-real modeling

Computer Graphics

Tobias Isenberg

distortion & non-real modeling

Sketch-Based Modeling & NPR

Computer Graphics

Tobias Isenberg

Computer Graphics

Tobias Isenberg

Computer Graphics

Tobias Isenberg

Computer Graphics

Tobias Isenberg

medical visualization and illustration

2 x Bruckner and Gröller, 2007

Computer Graphics

Depth-Dependent Halos: Illustrative Rendering of Dense Line Data

Everts et al., 2009

Computer Graphics

Tobias Isenberg

DTI in Context: Illustrating Brain Fiber Tracts in Situ

Svetachov et al., 2010

Computer Graphics

Tobias Isenberg

visualization of multi-dimensional data

Computer Graphics

Tobias Isenberg

Information Visualization: A Quiz

• Which country of each pair has the higher child mortality rate?

Sri Lanka	or	Turkey
Poland	or	South Korea
Malaysia	or	Russia
Pakistan	or	Vietnam
Thailand	or	South Africa

Hans Rosling, 2006, at TED (http://www.ted.com/talks/view/id/92)

Computer Graphics

Tobias Isenberg

visualization of multi-dimensional data

Computer Graphics

Tobias Isenberg

visualization of multi-dimensional data

Balzer and Deussen, 2005

Computer Graphics

Tobias Isenberg

visualization of graph structures

Computer Graphics

Tobias Isenberg

interaction with data visualizations

Tobias Isenberg

Computer Graphics

Tobias Isenberg

software visualization

P2P traffic visualization in the EZEL tool, Voinea et al., 2004

peers

Computer Graphics

Tobias Isenberg

software visualization

	1998	1999	2001

D D

Computer Graphics

Tobias Isenberg

software visualization

Lommerse et al., 2005

Computer Graphics

Tobias Isenberg

Interaction & User Interfaces

traditional vs. novel interaction platforms

Carpendale et al.

Computer Graphics

Tobias Isenberg

Interaction & User Interfaces

Direct-Touch Interaction for the Exploration of 3D Scientific Visualization Spaces

submission ID 205

Computer Graphics

Tobias Isenberg

Interaction & User Interfaces

[Coffey et al., 2012]

Computer Graphics

Tobias Isenberg

Internships @ Internation / Saviz

Visual Analytics Project

Computer Graphics

Tobias Isenberg

Computer Graphics

Tobias Isenberg

Computer Graphics and Beyond

Computer Graphics

Tobias Isenberg

Computer Graphics and Beyond

The End

Computer Graphics

Tobias Isenberg

Computer Graphics and Beyond