Computer Graphics

Clipping

What do we need clipping for?

* rectangular screen
* shows a section of 3D world
* clipping for removing invisible parts
— avoid processing — view volume clipping

— avoid raster conversion — viewport clipping
— avoid color computation — viewport clipping

— faster rendering!

* also for exploration of volumetric data
— clip surfaces to view Inside

Computer Graphics Tobias Isenberg Clipping

Rendering Pipeline

modelling of transformation into HEGEMERL: O)F transformation into
geometry | world coordinates [¢@merasand = camera coordinates
light sources
backface . lippi I.t.
: > projection o .pplng A
culling view volume
hidden surface J rasterization R illumination and
removale (hsr) shading

Computer Graphics Tobias Isenberg Clipping

Basic Clipping Objectives

» simple case: clipping of lines on
an axis-aligned rectangle in 2D

 decides for each \
line whether it

— can be discarded \

— can be drawn /
IN Its entirety

— has to be

further examined I

« efficiency!

Computer Graphics Tobias Isenberg Clipping

Simple Algorithm

* classify endpoints of line segments

* both inside the rectangle
— draw line segment \

e ohe Inside and

one outside \/
— find Intersection
— draw Inside part

* both outside —

— not clear
— could be partially inside

Computer Graphics Tobias Isenberg Clipping

Clipping

Cohen-Sutherland Algorithm

Computer Graphics Tobias Isenberg Clipping

Cohen-Sutherland Algorithm

* by Danny Cohen and Ivan Sutherland

image: Wikipedia author Kvgd

image: Dick Lyon

» created 1967 to realize a flight simulator

« Sutherland also created touch input,
graphical Uls, much of computer graphics

Computer Graphics Tobias Isenberg Clipping

Cohen-Sutherland Algorithm

* general idea: 9 regions with binary codes

* each bit records
whether point is 1001 0001 0101
outside a clip line

— 1St bit: < X

— 2nd hit- 1000 0000 0100
2" bit: > X0

— 3 bit: <y, .-

— 4th bit: >y
— order of these
does not matter

1010 0010 0110

Computer Graphics Tobias Isenberg Clipping

Cohen-Sutherland Algorithm

» all endpoints classified according to these
outcodes

* using bit operations 101 0001 0101
for efficient test

if ('(oc(P;) | oc(P,)) {
accept(); return; } 100 //9966//// 0100
if (oc(P;) & oc(P,)) {
reject () ; return; } /

else {

intersect segment(); 101J \\\jﬁﬂg\\\ 0110

return; }

* only one logic operation per test needed!

Computer Graphics Tobias Isenberg Clipping

Cohen-Sutherland Algorithm

Example 1
« oc(P,) = 0000
o oc(Pz) = 0000 1001 0001 0101

* first test:
oc(P,) | oc(P,) = 0000

100)w/ 0100
—> accept!

* no further test /

necessary 1010\ TToel0 0110

Computer Graphics Tobias Isenberg Clipping

Cohen-Sutherland Algorithm

Example 2
« oc(P,) =1000
o oc(Pz) = 1010 1001 0001 0101

e first test:
oc(P,) | oc(P,) = 1010 100* /O%O/ oo
— examine further

e second test: /

| —

oc(P,) & oc(P,) = 1000 z010' | Toea__ /| o110
— reject!

Computer Graphics Tobias Isenberg Clipping

Cohen-Sutherland Algorithm

Example 3

« oc(P,) = 0001

o oc(Pz) = 0100 1001 0001 \ 0101

 first test: N
oc(P,) | oc(P,) = 0101
— examine further 100 /O%O/ o

* second test: \ /
oc(P,) & oc(P,) = 0000 z010' | Toea__ /| o110
— Intersect!

Computer Graphics Tobias Isenberg Clipping

Cohen-Sutherland Algorithm

Example 4
« oc(P,) = 0100
o OC(PZ) = 0010 1001 0001 0101

e first test:
oc(P,) | oc(P,) = 0110 Lo /O%O/ oo
— examine further

e second test: \ /
oc(P,) & oc(P,) = 0000 1010
— Intersect!

Computer Graphics Tobias Isenberg Clipping

Clipping

Line Intersections with the
Liang-Barsky Algorithm

Computer Graphics Tobias Isenberg Clipping

Line Intersections: Liang-Barsky

* by You-Dong Liang and Brian A. Barsky

e created in 1984

Computer Graphics Tobias Isenberg Clipping

Line Intersections: Liang-Barsky

* find intersections of line segments with
(axis-aligned) clip lines

* using the parametric line equation
P(t) = Py + (P,-Py)t

* fO=<t<1thenP(t) € line segment

/
P(t)
/

Computer Graphics Tobias Isenberg Clipping

Line Intersections: Liang-Barsky

 additional point on the clip line: E

* consider the two vectors:
P(t) — E and a vector | to clip line —» N

* P(1) Is Intersection point when both vectors
perpendicular

—
VS

P(t)
/

Computer Graphics Tobias Isenberg Clipping

Line Intersections: Liang-Barsky

 additional point on the clip line: E

* consider the two vectors:
P(t) — E and a vector | to clip line —» N

* P(1) Is Intersection point when both vectors
perpendicular

Computer Graphics Tobias Isenberg Clipping

Line Intersections: Liang-Barsky

« 0 =<N, P(t) - E> ‘
= <N, P, + (P,-P)t - E>
=<N, P, —E + (P,-P)t>
= <N, P, —E> +t <N, (P,-P,)>

Computer Graphics Tobias Isenberg Clipping

Line Intersections: Liang-Barsky

' <N, E-P,>
<N, (PZ-P1)>
« efficiency? how many operations (2D)?
— (2A to get vectors, 2M+1A for dot product) x 2
— 6A + 4M + 1D In total

Computer Graphics Tobias Isenberg Clipping

Line Intersections: Liang-Barsky

'i= SNE-Pp N=(}
<N, (PZ-P1)> 0
+ efficiency? what If clip line Is axis-aligned?
— (1A to get vectors, nothing for dot product) x 2
—2A + OM + 1D In total

Computer Graphics Tobias Isenberg Clipping

Clipping

Using both Algorithms:
Cohen-Sutherland + Liang-Barsky

Computer Graphics Tobias Isenberg Clipping

Determining the Visible Parts

Having all intersections, what part to draw?

determine all 4 intersections, also fort ¢ [0, 1]
classify each

_ _ 1001 \ 0001 0101
intersection as \

entering or leaving NG

(w.r.t. line direction) Loo /MO/ o
depending on their t

sort intersections
/
if 2"d js leaving & 3" 1010\ o0 /0110
IS entering then discard
otherwise draw middle segment of line, t € [0, 1]

Computer Graphics Tobias Isenberg Clipping

Determining the Visible Parts

* entering and leaving the “inside” zones

Computer Graphics Tobias Isenberg Clipping

Determining the Visible Parts

« comparison of both cases

Computer Graphics E/./ Tobias Isenberg Clipping

Determining the Visible Parts

Classifying intersections:

using normal N for each c
<N, P,-P;> >0 1001

Ip line

0101

normal and line
have same direction
<N, P,-P,> <0
normal and line

100

\ 0001
N =X

T

0100

have different g
direction

S—

Computer Graphics Tobias Isenberg

Clipping

Determining the Visible Parts

Example:

e 4 Intersections:
—t,=—0.2, entering 1001

—t, = 0.5, entering

—t; = 2.4, leaving

—t, = 2.8, leaving
» draw from t, to t;

1000

— draw segment 1010
t=05t01.0

Computer Graphics Tobias Isenberg Clipping

Overall Clipping Approach

1. Cohen-Sutherland (bitcodes) to trivially
accept and reject some edges

2. Liang-Barsky to intersect the rest
(derive 4 Intersection points, t-values)

3. sort the points Iin ascending t order

4. draw if 2"d s entering and 3 is leaving
(only visible part, i.e. t € [0, 1])

Computer Graphics Tobias Isenberg Clipping

Cohen-Sutherland Algorithm in 3D

» extension to clipping in 3D easily possible

* SIX bit outcodes

— previous four bits similar, now for peripheral
clipping planes instead of edges
(left, right, bottom, and top)

— two more bits for front and back clipping
planes

Computer Graphics Tobias Isenberg Clipping

Clipping in 3D

* general vs. canonical view frustum:
pyramid stump vs. axis-aligned box

— 6 bits of Cohen-Sutherland for 6 sides of box
— Liang-Barsky analogously to 2D: axis-aligned
— thus whole algorithm analogous to 2D case

Computer Graphics Tobias Isenberg Clipping

Advanced Clipping

Computer Graphics Tobias Isenberg Clipping

Advanced Clipping

Computer Graphics Tobias Isenberg Clipping

Advanced Clipping: Portal Rendering

» core idea: easlly reject large portions of
geometry based on potential visibility
(determined as pre-process)

% _
F E

dynamic graph for fast look-up

Computer Graphics Tobias Isenberg Clipping

Implication: Rendering transparency

* need to alpha-blend transparent object
on top of objects behind it

* sorting needed! (z-buffer of transparent
object prevents rendering behind it)

Computer Graphics Tobias Isenberg Clipping

Implication: Rendering transparency

— sorting too expensive to do for all triangles
— also not needed: only behind / in front of

* use portal rendering

A S| for “sorting”:
@ — render objects in A,
B, D first (depending
D on portal status)
— alpha-blend
E F G transparent object
— render objects in C

Computer Graphics Tobias Isenberg Clipping

Clipping

Polygon Clipping:
Sutherland-Hodgman Algorithm

Computer Graphics Tobias Isenberg Clipping

Sutherland-Hodgman algorithm
* by Ivan Sutherland and Gary W. Hodgman

Tobias Isenberg

image: Dick Lyon

e created in 1974

Clipping

Computer Graphics

Sutherland-Hodgman Clipping

 arbitrary polygons can be clipped
 clip against each clip edge individually

- |-
~[4

Computer Graphics Tobias Isenberg Clipping

Sutherland-Hodgman Algorithm

 four cases depending on edge location
* Input vertex series — output vertex series
 # of vertices may change during process

C C C C
d d d__|—3 d |
a] Q a — | a
b b b b
output: a output: e output: nothing output: f, d

Computer Graphics Tobias Isenberg Clipping

Sutherland-Hodgman Algorithm

* repeat process for each clip edge
* has been implemented in hardware

@+
B -

Computer Graphics Tobias Isenberg Clipping

Related: Volume Data Clipping

* showing insides of volumetric data sets
 MRI, CT, visual data
* clipping planes in 3D
« complete or partial clipping; 1-3 planes

Computer Graphics Tobias Isenberg Clipping

Related: Volume Data Clipping

» example: Visible Human Project

» {
B/ s]
N . _—— ==
i = = = el
~ § ‘A = — i
X) A
1 B
2000 I ersity of Hai , Germany

© IMDM, University of Haburg, Germany

Computer Graphics Tobias Isenberg Clipping

Related: Volume Data Clipping

The National Library of Medicine's

Visible Human Project (T

Human-Computer Interaction Lab
Univ. of Marvland at Colleze Park

© University of Maryland at College Park

Computer Graphics Tobias Isenberg Clipping

Related: Volume Data Clipping

» example: Visible Human Project

right kidney

© IMDM, University of Hamburg Germany

Computer Graphics Tobias Isenberg Clipping

Clipping Summary

» 3 step process for clipping line segments

— trivially accept/reject segments using
Cohen-Sutherland technique (outcodes)

— determine all intersection points using
Liang-Barsky technique

— find part to be drawn using classifications
* clipping of complex polygons using
Sutherland-Hodgman algorithm

* usage: clip 3D geometry on view frustum
» advanced clipping for larger scenes

Computer Graphics Tobias Isenberg Clipping

