
Computer Graphics

Texture Mapping



Texture MappingTobias IsenbergComputer Graphics

Introduction and Motivation

• so far: detail through polygons & materials

• images look very “plasticy”

[i
m

a
g

e
: 

M
a

ri
jn

S
to

ll
e

n
g

a
]



Texture MappingTobias IsenbergComputer Graphics

Introduction and Motivation

• example: brick wall

• problem: extremely

many polygons

& materials needed for

detailed structures

 inefficient for memory and processing

• new approach necessary: texture mapping

• introduced by Ed Catmull (1974),

extended by Jim Blinn (1976)



Texture MappingTobias IsenbergComputer Graphics

Introduction and Motivation

• several properties can be modified

– color: diffuse component of surface

– reflection: specular component of surface to 

simulate reflection (environment mapping)

– normal vector: simulate 3D surface structure 

(bump mapping)

– actual surface: raise/lower points to actually 

modify surface (displacement mapping)

– transparency: make parts of a surface entirely 

or to a certain degree transparent



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping

General Approach



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping

• texture: typically 2D pixel image

• texel: pixel in a texture

• determines the appearance of a surface

• procedure to map the texture onto the 

surface needed

– easy for single triangle

– complex for arbitrary 3D surface

• goal: find easy way to do this mapping



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping

[images: Gabriel Gambetta]texel



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping

• rendering pipeline slightly modified to use 

new texture mapping function

• algorithm: for each pixel to be rendered 

– find depicted surface point

– find point in texture (texel) that corresponds

to surface point

– use texel color to modify the pixel’s shading



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Definitions

• 2D texture: function that maps points on 

the (u, v) plane to (r, g, b) values:

(r, g, b) = ctex(u, v)

v

u [image: Gabriel Gambetta]



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Definitions

• texture mapping function maps (u, v) 

values to (x, y, z) positions on objects:

(x, y, z) = Fmap (u, v)

v

u [i
m

a
g

e
s
: 

G
a

b
ri

e
l G

a
m

b
e

tt
a

]

Fmap (u, v)

 for instance, Fmap (u, v)

specified in modeling sofware



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Definitions

• for rendering, we need to solve the inverse 

function: find (u, v) for a (x, y, z) position:

(u, v) = Fmap
-1 (x, y, z)

v

u [i
m

a
g

e
s
: 

G
a

b
ri

e
l G

a
m

b
e

tt
a

]

Fmap
-1 (x, y, z)



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: General Procedure

• general texture mapping pipeline:

1. compute texture color for surface point

2. use to modify parameters in Phong 

illumination

possibly more

processing

modify

illumination

determine

surface position

find texture 

coordinates

find corres-

ponding texel

(r,g,b)

(x,y,z)(x,y) (u,v) (s,t)

(s,t) (r,g,b)



Texture MappingTobias IsenbergComputer Graphics

u,v-Coordinates: Projector Functions

• goal: derive u, v texture coordinates from a 

given 3D point that is being rendered

• Fmap
-1: 3  2, so Fmap

-1 (x, y, z) = (u, v)

• several typical possibilities

– (manual) parameterization of the surface

– use of inherent (u, v) coordinates (e.g., 

freeform surfaces or primitive shapes)

– two step technique



Texture MappingTobias IsenbergComputer Graphics

(Manual) Surface Parameterization

• simplest technique: specification of (u, v) 

texture coordinates during modeling for all 

vertices of a polygon

• interpolation between these values for 

points inside the polygon (e.g., barycentric 

interpolation for triangles)

(0.3, 0.2)

(0.4, 0.23)

(0.35, 0.6)

(0.34, 0.31)



Texture MappingTobias IsenbergComputer Graphics

Inherent (u, v) Coordinates

• (u, v) coordinates derived from parameter 

directions of surface patches

(e.g., Bézier and spline patches)

v

u



Texture MappingTobias IsenbergComputer Graphics

Inherent (u, v) Coordinates

• obvious (u, v) coordinates derived for 

primitive shapes (e.g., boxes, spheres, 

cones, cylinders, etc.)

v

u

u
v

v

u

v

u



Texture MappingTobias IsenbergComputer Graphics

Inherent (u, v) Coordinates

• obvious (u, v) coordinates derived for 

primitive shapes (e.g., boxes, spheres, 

cones, cylinders, etc.)

u

v

[image: Flickr Kevin Gill]



Texture MappingTobias IsenbergComputer Graphics

Inherent (u, v) Coordinates

• examples for simple shapes, with (u, v) 

coordinates mapped to red-blue color



Texture MappingTobias IsenbergComputer Graphics

u,v-Coordinates: Projector Functions

• manual specification:

 flexible, but tedious

and inconvenient

• inherent (u, v) coordinates:

 inflexible (relies on

a few simple shapes)

but easy to compute

• combination of both that is flexible and 

easy to compute?  two-step approach

(0.3, 0.2)

(0.4, 0.23)

(0.35, 0.6)(0.34, 0.31)

v

u



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping

Two-Step Approach



Texture MappingTobias IsenbergComputer Graphics

Two Step Approach

• problem with previous techniques:

– not flexible enough (inherent coordinates)

– too tedious (manual parameterization)

• new idea:

– texture mapped on simple intermediate 

surface that has inherent coordinates

– then transfer onto complex objects

• common intermediate surfaces:

cylinder, sphere, plane, box



Texture MappingTobias IsenbergComputer Graphics

Two Step Approach

• two steps:

– mapping of 2D texture coordinates onto 

simple 3D surface (s-mapping)

– mapping of the now 3D texture pattern onto 

complex object (o-mapping)

1

0
0.2

0.7



Texture MappingTobias IsenbergComputer Graphics

Two Step Approach

• in practice – inverse approach:

– mapping of object point onto simple surface

O: f(xo, yo, zo) = (xi, yi, zi)

– mapping of surface point onto texture

S: f(xi, yi, zi) = (u, v)

1

0

0.4

0.4



Texture MappingTobias IsenbergComputer Graphics

Cylindrical Mapping

• mapping onto cylinder 

surface given by 

height h0 and angle 0

using scaling factors 

c, d, and the radius r

• discontinuity along 

one line parallel to 

center axis from R. Wolfe: Teaching Texture Mapping









 )(

1
),(),(),(: 00 hh

dc

r
vuhS 



Texture MappingTobias IsenbergComputer Graphics

Examples of Cylindrical Maps



Texture MappingTobias IsenbergComputer Graphics

Examples of Cylindrical Maps



Texture MappingTobias IsenbergComputer Graphics

Spherical Mapping

• mapping onto surface 

of a sphere given by 

spherical coordinates

• no non-distorting 

mapping possible 

between plane and 

sphere surface

from R. Wolfe: Teaching Texture Mapping








 











)2/(
,

2
),(),,(: vurS



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• spherical texture map = cylindrical map projection!

the latter does not use cylindrical but spherical textures 

• notice the distortion at the polar regions



Texture MappingTobias IsenbergComputer Graphics

Examples for Spherical Maps

• but this distortion disappears if the 

spherical map is applied to a sphere



Texture MappingTobias IsenbergComputer Graphics

Planar Mapping

• mapping onto planar 

surface given by 

position vector v0 and 

two vectors s and t

• scaling factor k and

v = Pi – v0 (describes 

point position w.r.t. 

the origin of the plane) from R. Wolfe: Teaching Texture Mapping













 


k

tv

k

sv
vuzyxS



,),(),,(:



Texture MappingTobias IsenbergComputer Graphics

Example of Planar Mapping



Texture MappingTobias IsenbergComputer Graphics

Box Mapping

• enclosing box is 

usually axis-parallel 

bounding box of 

object

• six rectangles onto 

which the texture is 

mapped

• similar to planar 

mapping

from R. Wolfe: Teaching Texture Mapping



Texture MappingTobias IsenbergComputer Graphics

Example of Box Mapping



Texture MappingTobias IsenbergComputer Graphics

O Mapping: Object to Surface

• necessary for all named techniques

• four methods:
reflected ray, object normal, object center, 
and normal of intermediate surface

– reflected ray:
trace a ray
from viewer
to object and
reflect it onto
the intermediate
surface



Texture MappingTobias IsenbergComputer Graphics

O Mapping: Object to Surface

• necessary for all named techniques

• four methods:
reflected ray, object normal, object center, 
and normal of intermediate surface

– object normal:
intersection of
normal vector
of object with
intermediate
surface



Texture MappingTobias IsenbergComputer Graphics

O Mapping: Object to Surface

• necessary for all named techniques

• four methods:
reflected ray, object normal, object center, 
and normal of intermediate surface

– object center:
intersection of
ray from object
center through
the object surface
with the
intermediate
surface



Texture MappingTobias IsenbergComputer Graphics

O Mapping: Object to Surface

• necessary for all named techniques

• four methods:
reflected ray, object normal, object center, 
and normal of intermediate surface

– normal of intermediate
surface:
trace this normal
vector towards
the object and
determine
intersection
with it



Texture MappingTobias IsenbergComputer Graphics

O Mapping: Object to Surface



Texture MappingTobias IsenbergComputer Graphics

When to do the 2-step mapping?

• typically at model time, works for most

schemes:

 uv coordinates stored with vertices/normals

• but reflection mapping depends on view 

direction, so needs to be computed at 

render time:



Texture MappingTobias IsenbergComputer Graphics

Application of Texture Values

• from an (x, y, z) position we derived

an (r, g, b) color value from the texture, 

potentially with a transparence value

• is typically used to modify illumination

• methods:

– replace: surface color value is replaced with 

texture color

– decal: a blending of texture and original color

– modulate: multiplication of original color value 

with texture color



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Ambient & Diffuse

• done!

• well,

almost ...



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping

Affecting Other Properties



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Bump Mapping

• recall: the brick wall

• texture captures visuals

• problem: illumination

captured in the texture,

conflicting visuals

• solution part 1: capture texture under 

diffuse light only – how?

• solution part 2: bump mapping 

change illumination handling with texture



Texture MappingTobias IsenbergComputer Graphics

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture

Texture Mapping: Bump Mapping



Texture MappingTobias IsenbergComputer Graphics

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture

Texture Mapping: Bump Mapping



Texture MappingTobias IsenbergComputer Graphics

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture

Texture Mapping: Bump Mapping



Texture MappingTobias IsenbergComputer Graphics

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture

Texture Mapping: Bump Mapping



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Bump Mapping

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Bump Mapping

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Bump Mapping

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Bump Mapping

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Bump Mapping

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Bump Mapping

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Bump Mapping

• bump maps:

vector offsets

to the normal

vectors

• illumination

computed

as usual

• bump maps

should match

visual texture



Texture MappingTobias IsenbergComputer Graphics

How to create bump maps?

1. Model/carve detailed object and “render” 

normals into a bump map.

2. Some image processing tools (e.g., 

Photoshop CC) allow one to create 

normal maps from regular images.



Texture MappingTobias IsenbergComputer Graphics

Affecting other Properties

• actual surface positions

(as opposed to normal vectors only):

displacement mapping

• transparency

• simulation of reflection:

environment mapping

• many more things

with GPU processing



Texture MappingTobias IsenbergComputer Graphics

Environment Mapping



Texture MappingTobias IsenbergComputer Graphics

Environment Mapping



Texture MappingTobias IsenbergComputer Graphics

Environment Mapping



Texture MappingTobias IsenbergComputer Graphics

Environment Mapping



Texture MappingTobias IsenbergComputer Graphics

Environment Mapping



Texture MappingTobias IsenbergComputer Graphics

Environment Mapping



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping

Quality Considerations



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Mip Mapping

• optimal texture mapping (speed & quality):

texel size ≈ pixel size

• idea: use stack of textures and select the 

most appropriate one w.r.t. situation

128 × 128

256 × 256

64 × 64 … 1 × 1



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Mip Mapping

• optimal texture mapping (speed & quality):

texel size ≈ pixel size

• interpolation: GL_NEAREST_MIPMAP_NEAREST

select nearest mipmap level, select nearest pixel of 2×2 neighbourhood



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Mip Mapping

• optimal texture mapping (speed & quality):

texel size ≈ pixel size

• interpolation: GL_LINEAR_MIPMAP_NEAREST

select nearest mipmap level, linearly interpolate pixel in 2×2 neighbourhood



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Mip Mapping

• optimal texture mapping (speed & quality):

texel size ≈ pixel size

• interpolation: GL_NEAREST_MIPMAP_LINEAR

select 2 adjacent mipmap levels, select nearest pixel in 2×2 neighbourhoods, 

then interpolate between them



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Mip Mapping

• optimal texture mapping (speed & quality):

texel size ≈ pixel size

• interpolation: GL_LINEAR_MIPMAP_LINEAR

select 2 adjacent mipmap levels, linearly interpolate pixel in 2×2 neighbourhoods, 

then interpolate between them



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Anisotropic Filtering

• large textures not perpendicular to viewing 

direction: blurring problems w.r.t. angle

• appropriate mip

map selection

not possible



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Anisotropic Filtering

• large textures not perpendicular to viewing 

direction: blurring problems w.r.t. angle

• appropriate mip

map selection

not possible

• generate mip

maps favoring

one direction:
256×128, 256×64,

128×64, 128×32, ...



Texture MappingTobias IsenbergComputer Graphics

Texture Mapping: Summary

• a way to avoid having to model each detail 

using geometry and materials

(modeling & rendering effort!)

• need textures and texture coordinates

• texture coordinates usually using 2 steps

• texture values typically affect diffuse/ 

ambient material color, but can change 

virtually anything in the rendering process



Texture MappingTobias IsenbergComputer Graphics

Pipeline-based Rendering

General Recaps



Texture MappingTobias IsenbergComputer Graphics

Recap: Rendering Pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
illumination and

shading

transformation into

camera coordinates



Texture MappingTobias IsenbergComputer Graphics

Recap: Differences from Cameras

• no shadows, no field of view, no lens flare, 

no motion blur



Texture MappingTobias IsenbergComputer Graphics

Recap: Efficiency & Effectiveness

CG uses several “tricks”/strategies:

• only compute what is

absolutely needed

• trade memory for speed

• trade precision for speed

• pre-“capture” data

• simplify, use heuristics

• reflect about the under-

lying math & computation

L

N

V

R



Texture MappingTobias IsenbergComputer Graphics

Quality vs. Cost (GPU or Memory)



Texture MappingTobias IsenbergComputer Graphics

Quality vs. Cost (GPU or Memory)



Texture MappingTobias IsenbergComputer Graphics

Quality vs. Cost (GPU or Memory)



Texture MappingTobias IsenbergComputer Graphics

Quality vs. Cost (GPU or Memory)



Texture MappingTobias IsenbergComputer Graphics

Quality settings in games



Texture MappingTobias IsenbergComputer Graphics

Quality settings in games


