
Computer Graphics

Viewing & Projections
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Overview

• general approach: a pipeline

→ process from model to final image

– input order must not matter

– output image should always be correct

iStock
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Rendering Pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
illumination and

shading

usually in one step

transformation into

camera coordinates
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Rendering Pipeline

• first part of the pipeline:

transformation into camera coordinates

– model-view transformation: 1st stage,

arranging model w.r.t. camera

• requires camera reference (coordinate system)

– projection: 2nd transformation stage,

coordinate transformation to 2D

• requires complete camera model

• many different projections possible
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Model-View Transformation

• input / foundations:

– object definitions

(including lights etc.)

– including object positions

& orientations

– transformations in 3D

– camera position & parameters

• problem:

– how to arrange objects in space?
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Model-View Transformation

• 1st idea: transformation of all objects

into a (the) world coordinate system

x

y

(½√2, ½√2)

object

coordinate

system



ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• 1st idea: transformation of all objects

into a (the) world coordinate system
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Model-View Transformation

• 1st idea: transformation of all objects

into a (the) world coordinate system
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y

x

y

(-2, 1) object

coordinate

systemworld
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system

(7+½√2, 0+½√2)
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Model-View Transformation

• 1st idea: transformation of all objects

into a (the) world coordinate system

• not flexible: complicated animation
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x
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z

object

coordinate
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coordinate

system
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Model-View Transformation

• 2nd idea: transformation directly into 

camera coordinates: object-dependent
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Model-View Transformation

• 2nd idea: transformation directly into 

camera coordinates: object-dependent

x
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x

y
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(0, 0)

object

coordinate

system

camera

coordinate

system
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Model-View Transformation

• 2nd idea: transformation directly into 

camera coordinates: object-dependent

• each object has its own model-view matrix

• hierarchies possible, objects reusable

x

y

z

x

y

z object

coordinate

system

camera

coordinate

system
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Model-View Transformation





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T



ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• model-view transformation steps:

1. translate object origin to camera location

2. rotate to align coordinate axes

3. possibly also scaling

• this process is used in OpenGL:

no explicit world coordinates!

• object & camera locations and orientations 

may be specified in a world coordinate 

system (e.g., in modeling systems)
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Rendering Pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
illumination and

shading

transformation into

camera coordinates
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Projections

Introduction and Classification
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Introduction

Hans Vredeman de Vries: Perspektiv 1604

A painting [the rendering] is the intersection of a visual pyramid 

[view volume/view frustum] at a given distance, with a fixed center 

[center of projection] and a defined position of light, represented 

by art with lines and colors [the cg pipeline and its primitives] on a 

given surface [the projection plane/frame buffer]. (Alberti, 1435)
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Introduction

planar projection:

• projection rays are straight lines

• projection surface/view plane is planar

• projections of straight lines are also straight

center of

projection
projection rays/

projectors

projection

surface/

view plane
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Introduction – Terms

• parallel projection: characterized by 

direction of projection (dop)

• perspective projection:

center of projection (cop)

• projection on view plane

• vector perpendicular to view plane:

view plane normal (vpn)

• rays characterizing projection:

projectors (parallel or diverging from cop)
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Classification of Planar Projections

• parallel projections:

all projectors parallel to each other

• perspective projections:

projectors diverge from cop

planar projections

perspectiveparallel

orthographic one-point

two-point

three-point

cabinet

cavalier other

top

front

side

axonometric

isometric other

oblique
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Projections

Parallel Projections
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Parallel Projections

• cop at infinity

• projectors are parallel

• no foreshortening: distant
objects do not appear smaller

• parallel lines remain parallel

• classes of parallel projections:

– depending on angles between vpn and dop

– depending on dop and coordinate axes

• parallel projection in CG:
some rendering computations faster



ProjectionsTobias IsenbergComputer Graphics

Parallel Projections

• typical applications:

– architectural drawings

(e.g., buildings which are

mainly characterized by

perpendicular angles)

– medical visualizations

• reason:

 some lengths can be

measured in the

projected image
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Parallel Projections: Special Cases

• top projection, side projection,

front projection

• orthographic projections

• view plane is

perpendicular to one 

of the coordinate axis

or parallel to one of the

coordinate planes or

dop co-linear to one of the coordinate axes 

• used in architecture

Angel (2000)



ProjectionsTobias IsenbergComputer Graphics

Axonometric Parallel Projections

• dop not co-linear to one
of the coordinate axes

• parallel lines remain parallel,
angles are not maintained

• special cases:

– isometric projection: 
same angle of dop to all coordinate axes

– dimetric projection: same angle of dop to 
only two coordinate axes

– trimetric projection: angle of dop to 
coordinate axes is different for all axes
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Axonometric Parallel Projections

Angel (2000)

isometric projections
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Oblique Parallel Projections

• direction of projection (dop) is not 

perpendicular to view plane normal (vpn)

• better spatial perception than with 

orthographic projections

• view plane usually perpendicular to one

       coordinate system plane

Angel (2000)
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Oblique Parallel Projections

• Cavalier projection: 45° angle between dop and view 

plane

• Cabinet projection: 63.4° angle between dop and view 

plane (arctan(2)), z-lengths shorter by ½

• these are not perspective projections!

M . Haller, FH Hagenberg, (2002)
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Oblique Parallel Projections

• Cavalier projection, 45° between dop & view plane

• Cabinet projection, 63.4° between dop & view plane

for α = 45°

and α = 30°

Bender/Brill (2003)

for α = 45°

and α = 30°

Bender/Brill (2003)

Angel (2000)
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Projections

Perspective Projections
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Perspective Projections

• viewer placed into cop

• cop not at infinity

• classification by

vanishing points

Angel (2000)

1 2 3
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Perspective Projection

Hans Vredeman de Vries: Perspektiv 1604

lines to construct the vanishing points, for correct drawing
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Perspective Projection: Vanishing Points

• how many vanishing points maximum?



ProjectionsTobias IsenbergComputer Graphics

Vanishing Points = 3 (roughly)

Wikipedia contributer Anthony Quintano
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Vanishing Points >> 3

Wikipedia contributer Chensiyuan
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Perspective Projection: Vanishing Points

• view plane in relation to coordinate axes

M . Haller, FH Hagenberg, (2002)
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Perspective Projections

• foreshortening in all cases

• parallel lines and angles usually not 

preserved

• vanishing points depend on position of 

view plane with respect to coordinate axes

• three vanishing points if view plane 

intersects all coordinate axes,

two if only two axes are intersected,

one if only one axis is intersected
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Projections

Camera Model for

Computer Graphics
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Perspective Projections: Camera Model

• inspired by real cameras

• parameters:

– position, orientation

– aperture

– shutter time

– focal length, lens type
(zoom/wide) 

– depth of field

– size of resulting image

– aspect ratio (4:3, 16:9, 1.85:1, 2.35:1, 2.39:1)

– resolution (digital) / granularity (analog)



ProjectionsTobias IsenbergComputer Graphics

Perspective Projections: Camera Model

• simplified model in CG

– position: point in 3D (= cop)

– view direction: vector in 3D (vpn)

– image specification: viewport

– clipping planes for cutting off near and far 

objects (near and far clipping plane)

-z

x

y

view plane
far clipping plane

COP
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Perspective Projections: Camera Model

• differences between real and CG camera?
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Pinhole Camera
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Pinhole Camera

U
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i 
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Pinhole Camera
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Pinhole Camera

Camera Obscura, Greenwich Royal Observatory
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Pinhole vs. Lens Camera: Principles

Plenoptic

function or

light field
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Pinhole vs. Lens Camera: Principles

Lens Camera
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Pinhole vs. Lens Camera: Principles

Pinhole Camera
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Lens Flare
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Lens Flare
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Motion Blur
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Motion Blur

cg, with motion blur cg, without motion blur
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Perspective Projections: Camera Model

• differences between real and CG camera?

– position of view plane w.r.t. COP

– orientation of the image

– type of camera (pinhole vs. lens)
• type of “refraction”

• lens effects (lens flare)

• depth of field: none vs. existing

– types of possible projections

– picture taking times: 0 vs. >0

– existence of far clipping plane

– shape of view volume
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Camera Model: Realization

• recall: model-view-transformation:

– transformation from model coordinate system 

into camera coordinate system in one step 

(without projection)

– there is no world coordinate system

– models are usually specified in or w.r.t.

the point of origin of the coordinate system

– updated as different objects are processed
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Camera Model: Realization

• model-view transformation: represented as 

matrix in homogeneous coordinates

• identity matrix by default

• has to be modified to

– arrange objects in the scene

– move camera so that scene is visible

– different for each object at each frame of 

animation

• after model-view transformation: projection
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Camera Model: Realization

• camera specification

– position of the camera (cop)

– view direction or look-at point

– up direction to specify camera coordinate 

system – why?

– computation of

perpendicular basis

for camera coordinate

system using

cross products – how?
Angel (2000)
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Projections

Computing the Projection
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Perspective Projections: Math

• view plane parallel to x-y-plane, distance d

• COP at origin (0, 0, 0); view plane 

• input: point (x, y, z) to be projected

• projected point: x’, y’, d

z

y

(x’, y’, d)

(x, y, z)

COP

(0, 0, 0)

image

plane
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Perspective Projections: Math

• projection line: parametric equation
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Perspective Projections: Math

• description as projection matrix

• matrix in homogeneous coordinates
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Parallel Projections: Math

• view plane placed into x-y-plane

• projectors parallel to z-axis

• thus, z-values are projected to 0

• homogeneous matrix
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Other Parallel Projections

• oblique projection
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Other Parallel Projections

• Cavalier projection:  = 45º

    no foreshortening of

    lengths in z-direction

    since cos²α + sin²α = 1

• Cabinet projection:  = 63.4º

foreshortening by 2 of

lengths in z-direction

since

cos²(α/2)+sin²(α/2) = 1/2
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Projections: Problems

• view frustum is a pyramid shape

→ complex clipping (expensive)

• all objects end up in a single plane

 → no data for hidden surface removal

• solution: normalized processing with 

canonical view volumes
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Projections: Canonical View Volumes

near/front

clipping

plane far/back

clipping
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Projections: Canonical View Volumes
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Projections: Canonical View Volumes
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Projections: Canonical View Volumes

near/front
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plane far/back

clipping

plane

view

volume

x/y

z

x/y

z



ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

• shearing, translation, scaling

• view volume is only implicitly transformed:

included objects are actually transformed!
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clipping
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Projections: Canonical View Volumes

• shearing, translation, scaling

• view volume is only implicitly transformed:

included objects are actually transformed!
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Projections: Canonical View Volumes

• shearing, translation, scaling

• view volume is only implicitly transformed:

included objects are actually transformed!
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Projections: Canonical View Volumes

• shearing, translation, scaling
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Benefits of Canonical View Volumes

• it does not remove the depth information from the 

primitives (needed for hidden surface removal)

• after processing, the outside is nicely box-shaped and 

aligned to the camera coordinate system

→ better for later clipping off the “outside” geometry
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Model-View Transformation Realized
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Model transformation:

• transforms from object coordinates

to camera coordinates

• arranging objects w.r.t. camera

• different for every object or its parts

View transformation:

• transforms from camera coordinates 

to projected geometry

• perspective effects

• identical for all objects, unique to 

camera
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Rendering Pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
illumination and

shading

transformation into

camera coordinates
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