
Computer Graphics

Viewing & Projections

ProjectionsTobias IsenbergComputer Graphics

Overview

• general approach: a pipeline

→ process from model to final image

– input order must not matter

– output image should always be correct

iStock

ProjectionsTobias IsenbergComputer Graphics

Rendering Pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
illumination and

shading

usually in one step

transformation into

camera coordinates

ProjectionsTobias IsenbergComputer Graphics

Rendering Pipeline

• first part of the pipeline:

transformation into camera coordinates

– model-view transformation: 1st stage,

arranging model w.r.t. camera

• requires camera reference (coordinate system)

– projection: 2nd transformation stage,

coordinate transformation to 2D

• requires complete camera model

• many different projections possible

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• input / foundations:

– object definitions

(including lights etc.)

– including object positions

& orientations

– transformations in 3D

– camera position & parameters

• problem:

– how to arrange objects in space?





















−

1000

0cos0sin

0010

0sin0cos





ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• 1st idea: transformation of all objects

into a (the) world coordinate system

x

y

(½√2, ½√2)

object

coordinate

system

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• 1st idea: transformation of all objects

into a (the) world coordinate system

x

y

x

y

(5+½√2, 1+½√2)

object

coordinate

systemworld

coordinate

system

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• 1st idea: transformation of all objects

into a (the) world coordinate system

x

y

x

y

(-2, 1) object

coordinate

systemworld

coordinate

system

(7+½√2, 0+½√2)

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• 1st idea: transformation of all objects

into a (the) world coordinate system

• not flexible: complicated animation

x

y

z

x

y

z

object

coordinate

systemworld

coordinate

system

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• 2nd idea: transformation directly into

camera coordinates: object-dependent

x

y

(½√2, ½√2)

object

coordinate

system

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• 2nd idea: transformation directly into

camera coordinates: object-dependent

x

y

x

y

(7+½√2, ½√2)

(0, 0)

object

coordinate

system

camera

coordinate

system

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• 2nd idea: transformation directly into

camera coordinates: object-dependent

• each object has its own model-view matrix

• hierarchies possible, objects reusable

x

y

z

x

y

z object

coordinate

system

camera

coordinate

system

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation

• model-view transformation steps:

1. translate object origin to camera location

2. rotate to align coordinate axes

3. possibly also scaling

• this process is used in OpenGL:

no explicit world coordinates!

• object & camera locations and orientations

may be specified in a world coordinate

system (e.g., in modeling systems)

ProjectionsTobias IsenbergComputer Graphics

Rendering Pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
illumination and

shading

transformation into

camera coordinates

ProjectionsTobias IsenbergComputer Graphics

Projections

Introduction and Classification

ProjectionsTobias IsenbergComputer Graphics

Introduction

Hans Vredeman de Vries: Perspektiv 1604

A painting [the rendering] is the intersection of a visual pyramid

[view volume/view frustum] at a given distance, with a fixed center

[center of projection] and a defined position of light, represented

by art with lines and colors [the cg pipeline and its primitives] on a

given surface [the projection plane/frame buffer]. (Alberti, 1435)

ProjectionsTobias IsenbergComputer Graphics

Introduction

planar projection:

• projection rays are straight lines

• projection surface/view plane is planar

• projections of straight lines are also straight

center of

projection
projection rays/

projectors

projection

surface/

view plane

ProjectionsTobias IsenbergComputer Graphics

Introduction – Terms

• parallel projection: characterized by

direction of projection (dop)

• perspective projection:

center of projection (cop)

• projection on view plane

• vector perpendicular to view plane:

view plane normal (vpn)

• rays characterizing projection:

projectors (parallel or diverging from cop)

ProjectionsTobias IsenbergComputer Graphics

Classification of Planar Projections

• parallel projections:

all projectors parallel to each other

• perspective projections:

projectors diverge from cop

planar projections

perspectiveparallel

orthographic one-point

two-point

three-point

cabinet

cavalier other

top

front

side

axonometric

isometric other

oblique

ProjectionsTobias IsenbergComputer Graphics

Projections

Parallel Projections

ProjectionsTobias IsenbergComputer Graphics

Parallel Projections

• cop at infinity

• projectors are parallel

• no foreshortening: distant
objects do not appear smaller

• parallel lines remain parallel

• classes of parallel projections:

– depending on angles between vpn and dop

– depending on dop and coordinate axes

• parallel projection in CG:
some rendering computations faster

ProjectionsTobias IsenbergComputer Graphics

Parallel Projections

• typical applications:

– architectural drawings

(e.g., buildings which are

mainly characterized by

perpendicular angles)

– medical visualizations

• reason:

 some lengths can be

measured in the

projected image

ProjectionsTobias IsenbergComputer Graphics

Parallel Projections: Special Cases

• top projection, side projection,

front projection

• orthographic projections

• view plane is

perpendicular to one

of the coordinate axis

or parallel to one of the

coordinate planes or

dop co-linear to one of the coordinate axes

• used in architecture

Angel (2000)

ProjectionsTobias IsenbergComputer Graphics

Axonometric Parallel Projections

• dop not co-linear to one
of the coordinate axes

• parallel lines remain parallel,
angles are not maintained

• special cases:

– isometric projection:
same angle of dop to all coordinate axes

– dimetric projection: same angle of dop to
only two coordinate axes

– trimetric projection: angle of dop to
coordinate axes is different for all axes

ProjectionsTobias IsenbergComputer Graphics

Axonometric Parallel Projections

Angel (2000)

isometric projections

ProjectionsTobias IsenbergComputer Graphics

Oblique Parallel Projections

• direction of projection (dop) is not

perpendicular to view plane normal (vpn)

• better spatial perception than with

orthographic projections

• view plane usually perpendicular to one

 coordinate system plane

Angel (2000)

ProjectionsTobias IsenbergComputer Graphics

Oblique Parallel Projections

• Cavalier projection: 45° angle between dop and view

plane

• Cabinet projection: 63.4° angle between dop and view

plane (arctan(2)), z-lengths shorter by ½

• these are not perspective projections!

M . Haller, FH Hagenberg, (2002)

ProjectionsTobias IsenbergComputer Graphics

Oblique Parallel Projections

• Cavalier projection, 45° between dop & view plane

• Cabinet projection, 63.4° between dop & view plane

for α = 45°

and α = 30°

Bender/Brill (2003)

for α = 45°

and α = 30°

Bender/Brill (2003)

Angel (2000)

ProjectionsTobias IsenbergComputer Graphics

Projections

Perspective Projections

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections

• viewer placed into cop

• cop not at infinity

• classification by

vanishing points

Angel (2000)

1 2 3

ProjectionsTobias IsenbergComputer Graphics

Perspective Projection

Hans Vredeman de Vries: Perspektiv 1604

lines to construct the vanishing points, for correct drawing

ProjectionsTobias IsenbergComputer Graphics

Perspective Projection: Vanishing Points

• how many vanishing points maximum?

ProjectionsTobias IsenbergComputer Graphics

Vanishing Points = 3 (roughly)

Wikipedia contributer Anthony Quintano

ProjectionsTobias IsenbergComputer Graphics

Vanishing Points >> 3

Wikipedia contributer Chensiyuan

ProjectionsTobias IsenbergComputer Graphics

Perspective Projection: Vanishing Points

• view plane in relation to coordinate axes

M . Haller, FH Hagenberg, (2002)

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections

• foreshortening in all cases

• parallel lines and angles usually not

preserved

• vanishing points depend on position of

view plane with respect to coordinate axes

• three vanishing points if view plane

intersects all coordinate axes,

two if only two axes are intersected,

one if only one axis is intersected

ProjectionsTobias IsenbergComputer Graphics

Projections

Camera Model for

Computer Graphics

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections: Camera Model

• inspired by real cameras

• parameters:

– position, orientation

– aperture

– shutter time

– focal length, lens type
(zoom/wide)

– depth of field

– size of resulting image

– aspect ratio (4:3, 16:9, 1.85:1, 2.35:1, 2.39:1)

– resolution (digital) / granularity (analog)

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections: Camera Model

• simplified model in CG

– position: point in 3D (= cop)

– view direction: vector in 3D (vpn)

– image specification: viewport

– clipping planes for cutting off near and far

objects (near and far clipping plane)

-z

x

y

view plane
far clipping plane

COP

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections: Camera Model

• differences between real and CG camera?

ProjectionsTobias IsenbergComputer Graphics

Pinhole Camera

1
7

th
 c

e
n

tu
ry

 i
ll

u
s

tr
a

ti
o

n

ProjectionsTobias IsenbergComputer Graphics

Pinhole Camera

U
ll

i
P

u
rw

in

ProjectionsTobias IsenbergComputer Graphics

Pinhole Camera

C
a

rd
b

o
a

rd
 P

in
h

o
le

 H
a

s
s

e
lb

la
d

ProjectionsTobias IsenbergComputer Graphics

Pinhole Camera

Camera Obscura, Greenwich Royal Observatory

ProjectionsTobias IsenbergComputer Graphics

Pinhole vs. Lens Camera: Principles

Plenoptic

function or

light field

ProjectionsTobias IsenbergComputer Graphics

Pinhole vs. Lens Camera: Principles

Lens Camera

ProjectionsTobias IsenbergComputer Graphics

Pinhole vs. Lens Camera: Principles

Pinhole Camera

ProjectionsTobias IsenbergComputer Graphics

Lens Flare

ProjectionsTobias IsenbergComputer Graphics

Lens Flare

ProjectionsTobias IsenbergComputer Graphics

Motion Blur

ProjectionsTobias IsenbergComputer Graphics

Motion Blur

cg, with motion blur cg, without motion blur

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections: Camera Model

• differences between real and CG camera?

– position of view plane w.r.t. COP

– orientation of the image

– type of camera (pinhole vs. lens)
• type of “refraction”

• lens effects (lens flare)

• depth of field: none vs. existing

– types of possible projections

– picture taking times: 0 vs. >0

– existence of far clipping plane

– shape of view volume

ProjectionsTobias IsenbergComputer Graphics

Camera Model: Realization

• recall: model-view-transformation:

– transformation from model coordinate system

into camera coordinate system in one step

(without projection)

– there is no world coordinate system

– models are usually specified in or w.r.t.

the point of origin of the coordinate system

– updated as different objects are processed

ProjectionsTobias IsenbergComputer Graphics

Camera Model: Realization

• model-view transformation: represented as

matrix in homogeneous coordinates

• identity matrix by default

• has to be modified to

– arrange objects in the scene

– move camera so that scene is visible

– different for each object at each frame of

animation

• after model-view transformation: projection

ProjectionsTobias IsenbergComputer Graphics

Camera Model: Realization

• camera specification

– position of the camera (cop)

– view direction or look-at point

– up direction to specify camera coordinate

system – why?

– computation of

perpendicular basis

for camera coordinate

system using

cross products – how?
Angel (2000)

ProjectionsTobias IsenbergComputer Graphics

Projections

Computing the Projection

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections: Math

• view plane parallel to x-y-plane, distance d

• COP at origin (0, 0, 0); view plane

• input: point (x, y, z) to be projected

• projected point: x’, y’, d

z

y

(x’, y’, d)

(x, y, z)

COP

(0, 0, 0)

image

plane

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections: Math

• projection line: parametric equation

dz

y

z

yd
y

dz

x

z

xd
x

/
'

/
'

=


=

=


=

z

y

(x’, y’, d)

(x, y, z)

COP

(0, 0, 0)

image

plane

z

y

d

y

z

x

d

x

=

=

'

'

ProjectionsTobias IsenbergComputer Graphics

Perspective Projections: Math

• description as projection matrix

• matrix in homogeneous coordinates











































=









































1

'

'

/10/100

0100

0010

0001

d

y

x

dz

z

y

x

z

y

x

d

dz

y

z

yd
y

dz

x

z

xd
x

/
'

/
'

=


=

=


=

NEVER set the

distance of front

clipping plane to

camera position

to zero!!!

ProjectionsTobias IsenbergComputer Graphics

Parallel Projections: Math

• view plane placed into x-y-plane

• projectors parallel to z-axis

• thus, z-values are projected to 0

• homogeneous matrix





















=





















=









































1

0

'

'

1

0

11000

0000

0010

0001

y

x

y

x

z

y

x

ProjectionsTobias IsenbergComputer Graphics

Other Parallel Projections

• oblique projection























 −

=



























−

−





















=

1000

0000

0
)tan(

)sin(
10

0
)tan(

)cos(
01

1000

0
)sin(

1
00

0
)tan(

)sin(
10

0
)tan(

)cos(
01

1000

0000

0010

0001

















P

ProjectionsTobias IsenbergComputer Graphics

Other Parallel Projections

• Cavalier projection:  = 45º

 no foreshortening of

 lengths in z-direction

 since cos²α + sin²α = 1

• Cabinet projection:  = 63.4º

foreshortening by 2 of

lengths in z-direction

since

cos²(α/2)+sin²(α/2) = 1/2



















 −

=

1000

0000

0)sin(10

0)cos(01





P





















 −

=

1000

0000

0
2

)sin(
10

0
2

)cos(
01





P

ProjectionsTobias IsenbergComputer Graphics

Projections: Problems

• view frustum is a pyramid shape

→ complex clipping (expensive)

• all objects end up in a single plane

 → no data for hidden surface removal

• solution: normalized processing with

canonical view volumes











































=









































1

'

'

/10/100

0100

0010

0001

d

y

x

dz

z

y

x

z

y

x

d

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

x/y

z

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

x/y

z

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

x/y

z

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

• shearing, translation, scaling

• view volume is only implicitly transformed:

included objects are actually transformed!

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

x/y

z

0
1

-1

1

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

• shearing, translation, scaling

• view volume is only implicitly transformed:

included objects are actually transformed!

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

x/y

z

0
1

-1

1

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

• shearing, translation, scaling

• view volume is only implicitly transformed:

included objects are actually transformed!

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

x/y

z

0
1

-1

1

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

• shearing, translation, scaling

• view volume is only implicitly transformed:

included objects are actually transformed!

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

x/y

z

0
1

-1

1

ProjectionsTobias IsenbergComputer Graphics

Projections: Canonical View Volumes

• shearing, translation, scaling

• view volume is only implicitly transformed:

included objects are actually transformed!

near/front

clipping

plane far/back

clipping

plane

view

volume

x/y

z

x/y

z

0
1

-1

1

ProjectionsTobias IsenbergComputer Graphics

Benefits of Canonical View Volumes

• it does not remove the depth information from the

primitives (needed for hidden surface removal)

• after processing, the outside is nicely box-shaped and

aligned to the camera coordinate system

→ better for later clipping off the “outside” geometry

ProjectionsTobias IsenbergComputer Graphics

Model-View Transformation Realized





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T




















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T





















=

ponm

lkji

hgfe

dcba

T

x/y

z

0

-1

1

x/y

z

0 1

-1

1

Model transformation:

• transforms from object coordinates

to camera coordinates

• arranging objects w.r.t. camera

• different for every object or its parts

View transformation:

• transforms from camera coordinates

to projected geometry

• perspective effects

• identical for all objects, unique to

camera

ProjectionsTobias IsenbergComputer Graphics

Rendering Pipeline

modelling of
geometry

transformation into
world coordinates

placement of
cameras and
light sources

backface
culling

projection
clipping w.r.t.
view volume

hidden surface
removale (hsr)

rasterization
illumination and

shading

transformation into

camera coordinates

	Slide 1
	Slide 2: Overview
	Slide 3: Rendering Pipeline
	Slide 4: Rendering Pipeline
	Slide 5: Model-View Transformation
	Slide 6: Model-View Transformation
	Slide 7: Model-View Transformation
	Slide 8: Model-View Transformation
	Slide 9: Model-View Transformation
	Slide 10: Model-View Transformation
	Slide 11: Model-View Transformation
	Slide 12: Model-View Transformation
	Slide 13: Model-View Transformation
	Slide 14: Model-View Transformation
	Slide 15: Rendering Pipeline
	Slide 16: Projections
	Slide 17: Introduction
	Slide 18: Introduction
	Slide 19: Introduction – Terms
	Slide 20: Classification of Planar Projections
	Slide 21: Projections
	Slide 22: Parallel Projections
	Slide 23: Parallel Projections
	Slide 24: Parallel Projections: Special Cases
	Slide 25: Axonometric Parallel Projections
	Slide 26: Axonometric Parallel Projections
	Slide 27: Oblique Parallel Projections
	Slide 28: Oblique Parallel Projections
	Slide 29: Oblique Parallel Projections
	Slide 30: Projections
	Slide 31: Perspective Projections
	Slide 32: Perspective Projection
	Slide 33: Perspective Projection: Vanishing Points
	Slide 34: Vanishing Points = 3 (roughly)
	Slide 35: Vanishing Points >> 3
	Slide 36: Perspective Projection: Vanishing Points
	Slide 37: Perspective Projections
	Slide 38: Projections
	Slide 39: Perspective Projections: Camera Model
	Slide 40: Perspective Projections: Camera Model
	Slide 41: Perspective Projections: Camera Model
	Slide 42: Pinhole Camera
	Slide 43: Pinhole Camera
	Slide 44: Pinhole Camera
	Slide 45: Pinhole Camera
	Slide 46: Pinhole vs. Lens Camera: Principles
	Slide 47: Pinhole vs. Lens Camera: Principles
	Slide 48: Pinhole vs. Lens Camera: Principles
	Slide 49: Lens Flare
	Slide 50: Lens Flare
	Slide 51: Motion Blur
	Slide 52: Motion Blur
	Slide 53: Perspective Projections: Camera Model
	Slide 54: Camera Model: Realization
	Slide 55: Camera Model: Realization
	Slide 56: Camera Model: Realization
	Slide 57: Projections
	Slide 58: Perspective Projections: Math
	Slide 59: Perspective Projections: Math
	Slide 60: Perspective Projections: Math
	Slide 61: Parallel Projections: Math
	Slide 62: Other Parallel Projections
	Slide 63: Other Parallel Projections
	Slide 64: Projections: Problems
	Slide 65: Projections: Canonical View Volumes
	Slide 66: Projections: Canonical View Volumes
	Slide 67: Projections: Canonical View Volumes
	Slide 68: Projections: Canonical View Volumes
	Slide 69: Projections: Canonical View Volumes
	Slide 70: Projections: Canonical View Volumes
	Slide 71: Projections: Canonical View Volumes
	Slide 72: Projections: Canonical View Volumes
	Slide 73: Projections: Canonical View Volumes
	Slide 74: Benefits of Canonical View Volumes
	Slide 75: Model-View Transformation Realized
	Slide 76: Rendering Pipeline

