Computer Graphics

Geometric Transformations



Overview

* coordinate systems

— scalar values, points, vectors, matrices y|
— right-handed and left-handed

coordinate systems
— mathematical foundations z

e transformations

— mathematical descriptions of
geometric changes, 2D and 3D

— matrices: efficient representation
— matrices for common transformations
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The Basics

Introduction and Motivation
Mathematical Tools
Coordinate Systems
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Introduction and Motivation

* 3D models (usually) represented as
points/vertices, edges, polygons
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Introduction and Motivation

* 3D models (usually) represented as
points/vertices, edges, polygons ...
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* ... In 3D coordinate systems:
— object coordinate systems
—world coordinate system
— camera coordinate system

— screen coordinate system
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* ... In 3D coordinate systems:
— object coordinate systems
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* ... In 3D coordinate systems:
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Introduction and Motivation

* ... In 3D coordinate systems:
— camera coordinate system
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Introduction and Motivation

* ... In 3D coordinate systems:
— screen coordinate system
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Introduction and Motivation

 transformations necessary

» foundation: geometry and linear algebra
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Scalars, Points, Vectors, Matrices

» scalar values: real (rational) numbers: 7.39
* points: position in nD space: (2.53, -1.78)T
 vectors: directions in nD space

— have no position in space

— Is linear combination of basis vectors
of the vector space, e.qg.,
(a,b,c)T=a(1,0,0"+b(0,1,0)T +c(0, 0, 1)
* matrices (n x m):
transformations between vector spaces
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Coordinate System and Coordinates

 coordinate system: set (0, e, €,, ..., €,)
consisting of point o€ A"
and basis (e,, e,, ...,e,) of vector space A"

» position vector v = (op) I
for each peAn <(0,0,1)

 coordinates: scalar
components of v with
respectto (e, €, ...,&,) ol/ _a(1,0,0)
V = X€,HX6,T... X, €, b(0,1,0)

* 0. point of origin /

(a,b,c)
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Coordinate Systems in CG: 2D & 3D

e two-dimensional 1y
X
 three-dimensional [ 1y
— 2 mirrored systems ,
— cannot be matched / y y
by rotation left-handed ] right-handed ]
] coordinate system coordinate system
— we use right-handed .
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Transformations

in 2D:
Translation, Scaling, Rotation
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Transformations in 2D

* goal: represent changes and movements
of objects In the vector space

* common transformations:
— translation
— rotation
— scaling

— mirroring /
— shearing

— combinations of these
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Transformations in 2D

* goal: represent changes and movements
of objects In the vector space
* common transformations:
— translation
— rotation
— scaling

— mirroring /
— shearing

— combinations of these
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2D Translation

 move point (x, y)T on a
straight line to (X', y’)T

* represent translation 4 e
by a translation vector W
that is added dy Y2

S/

N

)L an

D

e vector: movement from

one point to another .

dx
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2D Uniform Scaling

* center of scalingis o
 scaling uniformly in all

directions ]\

« stretching of (x, y)"’s /

position vector by scalar

factor o to get (X, y')T /

N

Xy

* mathematically: /<

multiplication with o

(x’ ij [ax] (x,y)
! = a =
Y ) Y oy
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2D Non-Uniform Scaling

* center of scalingis o
 scaling In x-direction by

o and In y-direction by 3

(scaling vector (a, B)7)

« mathematically:

multiplication with o and N
B according to axis
(le ) (aX\ O& A \(X’,y’)
y' By ] \\) X
 application: mirroring T Ou)
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2D Rotation

e center of rotationis o

» point (X, y)' is rotated by ?

an angle o around o to

obtain (x’, y’)T

* positive angles a mean

77’
/

counter-clockwise / N

rotation

L
“\//
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2D Rotation — Derivation of Formula

» distances (x,y)' — 0 & (X’,y’)" — o are both r
* X =rcos¢ and y =rsind

* X =rcos(a+p) and y =rsin(a+d)
 addition theorems ’

* X’ =T COSa COSH — (""V')ff
I sino SiNg 7
=X coSa—Y Sina
* V' =rSsina cosd + / o
. (x,y)
r cosa. sind C\d) N

=X Siha +Yy cosa reos(a +¢)  rCoso
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2D Rotation

* X' =X COoSa —Y SIina,
y' = X Sinha + y cosa
* can be expressed as matrix multiplication

X"} (cosa -—sina | X
y') (sina cosa y
* rotations around negative angles result in

clockwise motion

* use symmetry of triginometric functions:
cos(-a)=cos(a) and sin(-a)=-sin(a)
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Transformations in 2D: Results

e translation: addition of translation vector

scaling: multiplication of factor(s)
rotation: matrix multiplication
* problems:

— non-uniform treatment of transformations
— no way to combine N transformation into one

e |dea: all transformations as matrix
multiplications!

» only scaling and translation to do
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Transformations

in 2D:
Matrix Formulation
Homogeneous Coordinates
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Scaling using 2D Matrix

* general 2D matrix multiplication format

BReH

 scaling formula

[X:j = (axj (possibly with o = f)
y') By

 scaling as matrix multiplication

WAt
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Translation using 2D Matrix

 general matrix multiplication format
X} (a bjx
y') ¢ dly

e tanslation formula

BN

* translation as matrix multiplication

X\ (? ?\ X . . _
( ,j= j[ j not possible in 2x2 matrix! ®
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Transformations in 2D: What now?

e translation: addition of translation vector
scaling: matrix multiplication
rotation: mautrix multiplication

* only scaling and rotation possible as
matrix multiplication

* possible solutions
— don’t use translations?

— use both matrices and vector adding?

— mathematical magic:
homogeneous coordinates!
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Homogeneous Coordinates in 2D

 add an additional dimension to our
vector space A". n - n+1

* (X,Y)! represented as (wx, wy, W)T, w# 0
* normalizedusingw=1— (X, vy, 1)T

 homogeneous coordinates are not to be
confused with “regular” 3D coordinates!
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Homogeneous Coordinates in 2D

* each point in A" Is equivalent to a line In
homogeneous space A" that originates in
the origin o but without including o

W A

/y > X
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* each point in A" Is equivalent to a line In
homogeneous space A" that originates in
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Homogeneous Coordinates in 2D

* each point in A" Is equivalent to a line In
homogeneous space A" that originates in
the origin o but without including o

W A
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Homogeneous Coordinates in 2D

* each point in A" Is equivalent to a line In
homogeneous space A" that originates in
the origin o but without including o
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Homogeneous Coordinates in 2D

« advantages of homogeneous coordinates
— uniform treatment of transformations
— all transformations can be represented
— combined transformations as one matrix

* procedure: matrix-vector multiplication
fx’\ /a b C\/X\
y'|=|d e f|y
W) g h 1w,

« goal: derive transformation matrices
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Translation iIn Homogeneous Coords

 general matrix multiplication format

fx’\ /a b C\
y' |=|d e f
w') \g h 1)

[ x )
y

W)

e translation formula

-

dx
dy

* translation as matrix multiplication

(1 0 dx)
0O 1 dy
00 1,

—

fx’\

1 0 dx)
=10 1 dy

1)

00 1,

(%)

y

1)
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Scaling in Homogeneous Coords

« scaling as matrix multiplication

WA

 scaling as homogeneous matrix

multiplication
‘a 0 0)
0 8 0| =

(X"
y

L

(a 0 0)

-0 B 0

(X))
y

0 0 1,

L
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Rotation in Homogeneous Coords

 rotation as matrix multiplication

)

COS«
SInNa

—Sina
COS o

Y

 rotation as homogeneous matrix
multiplication

(CoS«
SinNa
. 0

—sinag 0)
cosa O

0 1

(coS«
Sina
L 0

—sing 0) x)
cosa 0|y
0 101
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Homogeneous Coordinates in 2D

* general transformation matrix

/a b A
d e I
\O 0 1) translation

* what about normalizing w* when done?
—in all basic transformations we get w’ = 1

— no normalization necessary
(x'Y (a b c)x)

y'i=|ld e f|y
(1) 0 0 11
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Transformations

In 2D:
Inverse Transformations
Concatenating Transformations
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Inverse Transformations

* how to reverse basic transformations?

 translation: using negative vector
T-l(dX, dy) — T(-dX, -dy)

* scaling: using inverted factor 1/_
S™H(a) = S(Y,)

* rotation: using negative angle
R*(a) = R(-o)

also: rotation matrices are orthonormal
R1=RT
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Concatenating Transformations

e two translations
(XY (1 0 dx,}(1 0 dx,\x)

y’201dy201dy1y:>
1) 00 1) 0 0 1 A1)

x' 1 0 dxq;+dxy\ /x
(y’) = (0 1 dy; + dyz) <)’>
0 O 1 1

1

e translations are additive

e result iIs a translation
by the sum of both vectors
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Concatenating Transformations

* two scalings

/X’\

0 75

/0‘10‘2

(a, 0 0

0

0 0 1,

0

0 Ap

. 0

0

(o, 0 0)
0 B O

(%)

y

0 0 1,
0) x
Oy
1)1

 scaling Is multiplicative
* result is a scaling

by the product of both factors

1)
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Concatenating Transformations

e two rotations

X"\ (cosa, -sina, 0)cosa, -sinag, 0)X)
y'|=| sina, cosa, O] sina;, cosea, O|y|=
1) U O 0 1) O 0 111,
(x"\ (cos(a,+a,) —sin(a,+a,) 0) X
y'|=| sin(e; +@,) cosS(a,+a,) Oy
1) v 0 0 11

* rotation Is additive (addition theorems)

e result iIs a rotation around
the sum of both angles
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Concatenating Transformations

* In general, concatenating transformations
by multiplying their homogenous matrices

 given n transformations T, T,, ..., T,

» all are to be concatenated so that T, IS
processed first, T, second, ..., and T, last

e PP=T.,....T,:T;-P
» only for column vectors (points)!

row vectors (points): P' = P-T,-T,-...- T
* We use column vectors (points)
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Using Concatenated Transformations

« example: rotation around arbitrary point P,

 three steps:
— translation into origin
— rotation
— Inverse translation to bring back to P,

« PP=T,.R-T-P
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Using Concatenated Transformations

+ all matrices for one concatenated
transformation can be multiplied into one
(as preprocessing)

 but: matrix multiplication Is not
commutative! the order matters!
(as with normal transformations, too)

e T .. T,T,P=T,T,.T.P=T,T,..T,P
INn most cases (depending on T))

 some transformations are commutative
(Just translating; just scaling; just rotating)
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Concatenating Transformations

_§2\
/
/\\

2 / 1
\ |
<@
Rotation and Translation P =T-R-P PP=R.T-P
2 1 2
1
Scaling and Translation P'=T-S-P PP=S.T-P
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Concatenating Transformations

Kar
Pl
<_3 > 2
% 1
Rotation, Scaling, Translation P =T-S:R-P P =R.-T-S:-P
4
y
\i / \
— = / 3N
3 | 1
2

?

Rot., Scal., neg. Rot., Trans. P’ =T:-R.:S:R,-P :
P =R, T-R:S-P

Computer Graphics Tobias Isenberg Geometric Transformations



Concatenating Transformations

« efficiency example
— model with 1,000,000 vertices
— operations: scaling, rotation, translation

— Individual matrix multiplications:
3 x (9M + 6A) x 1,000,000 = 27,000,000M
18,000,000A
— one concatenated matrix :
(9M + 6A) x 1,000,000 = 9,000,000M
6,000,000A
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Other Transformations in 2D

* mirroring
* non-uniform scaling
using -1 & 1 as factors

(-1 0 0)
M,=/0 1 0O

\' Y4
N

~
A
A

o
W]

4D
' %
V
A

/

0 0 1,

(1 0 0)
M,=/0 -1 O
0 0 1

)
N
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Other Transformations in 2D

» shearing
* In X-direction
(1 a 0) (x) (x+ay
T=/0 1 0| |Y'|=| VY
00 1) (1 1
. ) 1)\ ) o
* in y-direction Q) e PMo
(1 0 0) (X)) ( x -
T=(b 1 O y'|=|Yy+DbX . G//
00 1) (1) ( 1 )=
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Escaping Flatland
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Computer Graphics

3D Geometric Transformations
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Contents

e transformations continued
— transitioning from 2D to 3D
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Geometric Transformations in 3D

e same approach as in 2D

 also use homogeneous coordinates
(for the same reasons)

 vectors/points from 3D to 4D

(X))
y

\Z)

(%)

y
Z

1)

e transformation matrices are now 4x4

(instead of 3x3)
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Transformation Matrices in 3D

* translation (1 0 0 dx)
— translation vector +_|0 10 dy
(dx, dy, dz)T 0 0 1 dz
» scaling 0 00 1,
— for uniform scaling s, 0 0 0
Sy =S, =S, <_|0 s 00
— otherwise individual 0O 0 s, O
factors may differ .0 0 0 1)

— mirroring using factors of -1 and 1
depending on the mirror plane
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Transformation Matrices in 3D

e rotation

— rotation around 3 axes

possible now

— each has individual

rotation matrix

— rotation around positive
angles in right-handed
coordinate system

— rotation axis stays
unit vector in matrix

RX

R =

y

1
0
0
0

CoOS o

—Sina

COSa —Sina
SINa COS«

0 0
COSa -—Sina
Sind COS«

0 0

0 sina
0 1 O

O cosa
0 0O O

0 0
0 0

b O O O - O OO0 » O O O

o - O O
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Transformation Matrices in 3D

° rota’[ion cosa 0O sina O
: : 0 1 0 O
—why are signs different R =| | ; X
from 2D case for R, ? —siha D COSa
0 0O 0 1
by .
ANZ '
contrast to 2D case:
/ y mirroring on x-axis
\ > = (X, _Y)

right-handed
Z coordinate system
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Concatenating Transformations in 3D

* matrix multiplication just as in 2D
» general transformation matrix in 3D

®
IS N~ ™ &

O x4Q 0

p) translation
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Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
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Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
P’ = P

~®

X
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Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
P’ = T eP

O X
zZ
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Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
P’ = R,*T.*P

' X

Computer Graphics Tobias Isenberg Geometric Transformations



Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
P’ = R,*R,*T.*P

' X
zZ
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Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
P’ = RR*R*R, *T.*P

Computer Graphics Tobias Isenberg Geometric Transformations



Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
P’ = Ry *Rr*R,*R,*T.*P
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Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
PP= R,*R,*Rgy*R,*R,*T.*P

X
yA
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Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
P’=T,*R,*R,*Ry*R,*R,*T.*P

ylk I
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Concatenating Transformations in 3D

* rotation around arbitrary axis in 3D
P’=T,*R,*R,*Ry*R,*R,*T.*P

o
~®

X
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Transformations: Summary

e geometric transformations:
linear mapping from R" to K"

e We are Interested In

R2 > N2 and R3 - R3
 transformations most relevant for CG:

— translation

— rotation

— scaling

— mirroring

— shearing
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Transformations: Summary

* unified representation of geometric
transformations as matrices in
homogeneous coordinates

« concatenation of transformation by
multiplying the respective matrices

o order matters: for column vectors the first
transformation comes last in the sequence

 concatenated transformations can be
pre-computed (saving run-time)
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