Computer Graphics

Geometric Transformations

Overview

- coordinate systems
 - scalar values, points, vectors, matrices y
 - right-handed and left-handed coordinate systems
 - mathematical foundations
- transformations
 - mathematical descriptions of geometric changes, 2D and 3D
 - matrices: efficient representation
 - matrices for common transformations

The Basics

Introduction and Motivation

Mathematical Tools

Coordinate Systems

 3D models (usually) represented as points/vertices, edges, polygons

 3D models (usually) represented as points/vertices, edges, polygons ...

- ... in 3D coordinate systems:
 - object coordinate systems
 - world coordinate system
 - camera coordinate system
 - screen coordinate system

- ... in 3D coordinate systems:
 - object coordinate systems

- ... in 3D coordinate systems:
 - world coordinate system

• ... in 3D coordinate systems:

camera coordinate system

- ... in 3D coordinate systems:
 - screen coordinate system

transformations necessary

foundation: geometry and linear algebra

Scalars, Points, Vectors, Matrices

- scalar values: real (rational) numbers: 7.39
- points: position in nD space: (2.53, -1.78)^T
- vectors: directions in nD space
 - have no position in space
 - is linear combination of basis vectors of the vector space, e.g., $(a, b, c)^T = a(1, 0, 0)^T + b(0, 1, 0)^T + c(0, 0, 1)^T$
- matrices (n × m): transformations between vector spaces

Coordinate System and Coordinates

coordinate system: set (o, e₁, e₂, ..., e_n)
 consisting of point o∈Aⁿ
 and basis (e₁, e₂, ...,e_n) of vector space Aⁿ

• position vector $v = (\overrightarrow{op})$ for each $p \in A^n$

- coordinates: scalar components of v with respect to (e₁, e₂, ...,e_n)
 v = x₁e₁+x₂e₂+...+x_ne_n
- o: point of origin

Coordinate Systems in CG: 2D & 3D

two-dimensional

- three-dimensional
 - 2 mirrored systems
 - cannot be matched by rotation
 - we use right-handed

Transformations

in 2D:

Translation, Scaling, Rotation

Transformations in 2D

- goal: represent changes and movements of objects in the vector space
- common transformations:
 - translation
 - rotation
 - scaling
 - mirroring
 - shearing
 - combinations of these

Transformations in 2D

- goal: represent changes and movements of objects in the vector space
- common transformations:
 - translation
 - rotation
 - scaling
 - mirroring
 - shearing
 - combinations of these

2D Translation

- move point $(x, y)^T$ on a straight line to $(x', y')^T$
- represent translation by a translation vector that is added

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} dx \\ dy \end{pmatrix}$$

 vector: movement from one point to another

2D Uniform Scaling

- center of scaling is o
- scaling uniformly in all directions
- stretching of (x, y)^T's
 position vector by scalar
 factor α to get (x', y')^T
- mathematically: multiplication with α

$$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \alpha \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \alpha \mathbf{x} \\ \alpha \mathbf{y} \end{pmatrix}$$

2D Non-Uniform Scaling

- center of scaling is o
- scaling in x-direction by α and in y-direction by β (scaling vector $(\alpha, \beta)^T$)
- mathematically: multiplication with α and β according to axis

$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} = \begin{pmatrix} \alpha \mathbf{x} \\ \beta \mathbf{y} \end{pmatrix}$$

• application: mirroring

2D Rotation

- center of rotation is o
- point (x, y)^T is rotated by an angle α around o to obtain (x', y')^T
- positive angles α mean counter-clockwise rotation

2D Rotation – Derivation of Formula

- distances $(x,y)^T o \& (x',y')^T o$ are both r
- $x = r \cos \phi$ and $y = r \sin \phi$
- $x' = r \cos(\alpha + \phi)$ and $y' = r \sin(\alpha + \phi)$
- addition theorems
- $x' = r \cos \alpha \cos \phi r \sin \alpha \sin \phi$
 - $= x \cos \alpha y \sin \alpha$
- $y' = r \sin\alpha \cos\phi + r \cos\alpha \sin\phi$
 - $= x \sin \alpha + y \cos \alpha$

2D Rotation

- $x' = x \cos \alpha y \sin \alpha$ $y' = x \sin \alpha + y \cos \alpha$
- can be expressed as matrix multiplication

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- rotations around negative angles result in clockwise motion
- use symmetry of triginometric functions: $\cos(-\alpha) = \cos(\alpha)$ and $\sin(-\alpha) = -\sin(\alpha)$

Transformations in 2D: Results

translation: addition of translation vector

scaling: multiplication of factor(s)

rotation: matrix multiplication

- problems:
 - non-uniform treatment of transformations
 - no way to combine N transformation into one
- idea: all transformations as matrix multiplications!
- only scaling and translation to do

Transformations

in 2D:

Matrix Formulation
Homogeneous Coordinates

Scaling using 2D Matrix

general 2D matrix multiplication format

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

scaling formula

scaling as matrix multiplication

$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

Translation using 2D Matrix

general matrix multiplication format

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

tanslation formula

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} dx \\ dy \end{pmatrix}$$

translation as matrix multiplication

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 not possible in 2×2 matrix!

Transformations in 2D: What now?

translation: addition of translation vector

scaling: matrix multiplication

rotation: matrix multiplication

- only scaling and rotation possible as matrix multiplication
- possible solutions
 - don't use translations?
 - use both matrices and vector adding?
 - mathematical magic: homogeneous coordinates!

- add an additional dimension to our vector space Aⁿ: n → n+1
- $(x, y)^T$ represented as $(wx, wy, w)^T$, $w \neq 0$
- normalized using $w = 1 \rightarrow (x, y, 1)^T$
- homogeneous coordinates are not to be confused with "regular" 3D coordinates!

- advantages of homogeneous coordinates
 - uniform treatment of transformations
 - all transformations can be represented
 - combined transformations as one matrix
- procedure: matrix-vector multiplication

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

goal: derive transformation matrices

Translation in Homogeneous Coords

general matrix multiplication format

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

translation formula

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} dx \\ dy \end{pmatrix}$$

translation as matrix multiplication

$$\begin{pmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Scaling in Homogeneous Coords

scaling as matrix multiplication

$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

scaling as homogeneous matrix multiplication

$$\begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Rotation in Homogeneous Coords

rotation as matrix multiplication

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

rotation as homogeneous matrix multiplication

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
x' \\
y' \\
1
\end{pmatrix} =
\begin{pmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
1
\end{pmatrix}$$

Homogeneous Coordinates in 2D

general transformation matrix

- what about normalizing w' when done?
 - in all basic transformations we get w' = 1
 - no normalization necessary

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Transformations

in 2D:

Inverse Transformations
Concatenating Transformations

Inverse Transformations

- how to reverse basic transformations?
- translation: using negative vector

$$T^{-1}(dx, dy) = T(-dx, -dy)$$

• scaling: using inverted factor $^{1}/_{\alpha}$

$$S^{-1}(\alpha) = S(^{1}/_{\alpha})$$

rotation: using negative angle

$$R^{-1}(\alpha) = R(-\alpha)$$

also: rotation matrices are orthonormal

$$R^{-1} = R^T$$

two translations

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & dx_2 \\ 0 & 1 & dy_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & dx_1 \\ 0 & 1 & dy_1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \implies$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & dx_1 + dx_2 \\ 0 & 1 & dy_1 + dy_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

- translations are additive
- result is a translation by the sum of both vectors

two scalings

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_2 & 0 & 0 \\ 0 & \beta_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \beta_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \implies$$

$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_2 & 0 & 0 \\ 0 & \beta_1 \beta_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{pmatrix}$$

- scaling is multiplicative
- result is a scaling by the product of both factors

two rotations

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \alpha_2 & -\sin \alpha_2 & 0 \\ \sin \alpha_2 & \cos \alpha_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \alpha_1 & -\sin \alpha_1 & 0 \\ \sin \alpha_1 & \cos \alpha_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \Rightarrow$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\alpha_1 + \alpha_2) & -\sin(\alpha_1 + \alpha_2) & 0 \\ \sin(\alpha_1 + \alpha_2) & \cos(\alpha_1 + \alpha_2) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

- rotation is additive (addition theorems)
- result is a rotation around the sum of both angles

- in general, concatenating transformations by multiplying their homogenous matrices
- given n transformations T₁, T₂, ..., T_n
- all are to be concatenated so that T₁ is processed first, T₂ second, ..., and T_n last
- $P' = T_n \cdot ... \cdot T_2 \cdot T_1 \cdot P$
- only for column vectors (points)!
 row vectors (points): P' = P·T₁·T₂·...·T_n
- we use column vectors (points)

Using Concatenated Transformations

- example: rotation around arbitrary point P₁
- three steps:
 - translation into origin
 - rotation
 - inverse translation to bring back to P₁

•
$$P' = T_+ \cdot R \cdot T_- \cdot P$$

Using Concatenated Transformations

- all matrices for one concatenated transformation can be multiplied into one (as preprocessing)
- but: matrix multiplication is not commutative! the order matters! (as with normal transformations, too)
- T_n...T₂T₁P ≠ T₁T₂...T_nP ≠ T₂T_n...T₁P in most cases (depending on T_i)
- some transformations are commutative (just translating; just scaling; just rotating)

Rotation and Translation

$$P' = T \cdot R \cdot P$$

 $P' = R \cdot T \cdot P$

Scaling and Translation

$$P' = T \cdot S \cdot P$$

$$P' = S \cdot T \cdot P$$

Rotation, Scaling, Translation

$$P' = T \cdot S \cdot R \cdot P$$

 $P' = R \cdot T \cdot S \cdot P$

Rot., Scal., neg. Rot., Trans.

$$P' = T \cdot R \cdot S \cdot R_+ \cdot P$$

 $P' = R_{+} \cdot T \cdot R_{-} \cdot S \cdot P$

- efficiency example
 - model with 1,000,000 vertices
 - operations: scaling, rotation, translation
 - individual matrix multiplications:

```
3 \times (9M + 6A) \times 1,000,000 = 27,000,000M
18,000,000A
```

- one concatenated matrix : $(9M + 6A) \times 1,000,000 =$

9,000,000M 6,000,000A

Other Transformations in 2D

- mirroring
- non-uniform scaling using -1 & 1 as factors

$$M_X = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$M_{Y} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Other Transformations in 2D

- shearing
- in x-direction

$$T = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x + ay \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + ay \\ y \\ 1 \end{pmatrix}$$

in y-direction

$$T = \begin{pmatrix} 1 & 0 & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y + bx \\ 1 \end{pmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ y + bx \\ 1 & 1 \end{bmatrix}$$

Escaping Flatland

Computer Graphics

3D Geometric Transformations

Contents

- transformations continued
 - transitioning from 2D to 3D

Geometric Transformations in 3D

- same approach as in 2D
- also use homogeneous coordinates (for the same reasons)
- vectors/points from 3D to 4D

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

 transformation matrices are now 4×4 (instead of 3×3)

Transformation Matrices in 3D

translation

translation vector
 (dx, dy, dz)^T

scaling

- for uniform scaling $s_x = s_v = s_z$

otherwise individual factors may differ

$$T = \begin{pmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

mirroring using factors of -1 and 1 depending on the mirror plane

Transformation Matrices in 3D

rotation

- rotation around 3 axes possible now
- each has individual rotation matrix
- rotation around positive angles in right-handed coordinate system
- rotation axis stays
 unit vector in matrix

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{y} = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{z} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Transformation Matrices in 3D

- rotation
 - why are signs different from 2D case for R_v?

$$R_{y} = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- matrix multiplication just as in 2D
- general transformation matrix in 3D

$$T = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix}$$
 scaling rotation

rotation around arbitrary axis in 3D

T • **P**

$$R_v \cdot T_\cdot \cdot P$$

$$R_x \cdot R_v \cdot T_v \cdot P$$

$$R_R \cdot R_x \cdot R_y \cdot T_- \cdot P$$

$$R_{-x} \cdot R_R \cdot R_x \cdot R_y \cdot T_- \cdot P$$

$$P' = R_{-y} \cdot R_{-x} \cdot R_R \cdot R_x \cdot R_y \cdot T_- \cdot P$$

$$P' = T_{+} \cdot R_{-y} \cdot R_{-x} \cdot R_{R} \cdot R_{x} \cdot R_{y} \cdot T_{-} \cdot P$$

$$P' = T_+ \cdot R_{-y} \cdot R_{-x} \cdot R_R \cdot R_x \cdot R_y \cdot T_- \cdot P$$

Transformations: Summary

- geometric transformations:
 linear mapping from Rⁿ to Rⁿ
- we are interested in $\Re^2 \to \Re^2$ and $\Re^3 \to \Re^3$
- transformations most relevant for CG:
 - translation
 - rotation
 - scaling
 - mirroring
 - shearing

Transformations: Summary

- unified representation of geometric transformations as matrices in homogeneous coordinates
- concatenation of transformation by multiplying the respective matrices
- order matters: for column vectors the first transformation comes last in the sequence
- concatenated transformations can be pre-computed (saving run-time)