Computer Graphics

Scan Conversion



Computer Graphics Principles

 fastest-possible & most effective technique
desired, best use of avalilable resources
— guality only to the level really wanted
— often: we trade one thing for another

graphics
memory

[nVidia]

Computer Graphics Tobias Isenberg Scan Conversion



Scan Conversion Introduction

Basic Problem
Line Representations
Naive Algorithm
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Raster Displays

Computer Screens

» pixel rasters
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Computer Screens: Raster Displays

* problems

— no such things such as

N 11

“lines”, “circles”, etc.

— need scan conversion

* yields pixel graphic ppnt

* non-raster display or &7

printing technologies

exist as well (plotter)
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Scan Conversion

* to scan: get the right pixels, line by line
* |[Ike an iImage being scanned by a scanner
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Goal: Draw Graphic Primitives

« graphic primitives: lines, circles, ellipsoids
* requirements: N N N N
o NVERNVARN VAN VAANVARNY,
— efficiency A N N N N
_ ||t NN VAN VAN VAN
quality AN AN AN 9_
» problem: how to T Y L
- — SPAANYIRSY
show lines?
] AN AN AN AN N
 task: determine Y Y Y Y Y

the pixels to draw in black
* first: how to draw straight lines
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Scan Conversion: Straight Lines
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Lines: Mathematical Descriptions

* Input: Py(Xy, Y1) and P,(X,, Yo)
AX = Xy — Xq. Ay = Y, =Y. M = Ay/AX

« explicit equation: f(x) = mx + n
m = Ay/AX; n: intersection with y-axis

* parametric description: using parameter t
X = X; + 1(X,-X;) = X; + tAX
y =y, +i(yz-y) =y, + Ay

* Implicit equation : F(x,y) =ax+ by +c =0
— advantage for raster conversion
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Naive Algorithm

* use explicit equation f(x) = mx + n

and iterate P
* problems: <><ﬁ§><ﬁ
— accuracy
(floating point o5 T
computations) 007 /
/X?/ f‘(
— efficiency ij ’ 7
(multiplications) < /
— rounding 7
— sometimes missing pixels or not defined at al
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Implicit Line Equation: Advantage

* not only defines the line but tells us
If a pixel Is on the line or not

e F(X,y)=ax+ by +c

* F(X,Yy) >0 — below the line /A/

* F(x,y) =0 — on the line O

* F(X,y) <0 — above the line

* We can determine on
which side of the (mathematical) line a
(discreet) pixel lies!
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Implicit Line Equation: Getting there

* F(x,y)=ax+by+c=0
* determining a, b, (and c)
f(x) = mx + n; m = Ay/AX
y=mx+n
O=mx—-y+n
O=AyX—AXy+n
FOX, V) =AYy X—AXy+n =0
— a=Ay, b=-Ax

(c = n’ can be determined using one point
but we won't really need it)
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Bresenham’s Midpoint Algorithm

for Lines
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Bresenham Midpoint Algorithm

* by Jack Bresenham (1965)
for controlling a plotter:

— Integer arithmetic (fast, precise)

— no division, as few
multiplications as possible
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Pixel Graphics for Vector Plotters?

stepper
motors
essentially
driven on a
(fine) pixel
raster

mage
by Wikipedia
user Chiffre0O1

B Ve,
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v
\\‘ )
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Bresenham Midpoint Algorithm

* constraints: N

— slope (m)
between 0 and 1
— one octant

— all pixels on
Integer raster

— this also means
rounding start
and end point AN

o |ater:
generalize to other octants
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Bresenham Midpoint Algorithm

* general idea: iterative positioning of pixels
* previous pixel: P

* next pixels: NE or E 1 1 1
» decision depending on _
whether line intersection NE/

-
o/

closer to NE or E Q o
e jterate! /E
¥
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Bresenham: How to Decide?

* Implicit equation revisited

e easier to determine
whether midpoint (M)

IS above or below
the line —» F(M)

current pixel: P(x, V)
midpoint M(x+1, y+%5)

F(M) = F(x+1,y+%2)
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Bresenham: How to Decide?

« if F(M) <O
— midpoint above line
— E next pixel 1. 1.
O & O
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Bresenham: How to Decide?

« IfF(M) <O
— midpoint above line
— E next pixel

If F(M) >0
— midpoint below line

— NE next pixel
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Bresenham: How to Decide?

 IfF(M) <O
— midpoint above line
— E next pixel

If F(M) >0
— midpoint below line

— NE next pixel

e decision variable:

d = F(M) = F(x+1,y+%)

 BUT: we do not re-compute d each time
 INSTEAD: we compute how it changes!
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Bresenham: Iteration, Case 1

NE is next pixel and M, next midpoint

.« F(M) = Fg(x+1:;), (%/(+1/2)})
= a(x+1l) + b(y+%) + c

COE(M) = F((+2), (y+3) OO0
= F((x+1+1), (y+%2+1))
=a(x+1+1) + b(y +¥2+1) + C

- FM)-F(M)=a+Db y+1
FIM)=F(M)+a+Db

~
\S

CDMZ
« we know: a = Ay; b = -Ax By
F(M;) = F(M) + Ay — AX Y b
d=d+ Ay — AX X X+1 X+2
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Bresenham: Iteration, Case 2

E is next pixel and M, next midpoint

* F(M) =F((xt+1), (y+72))
= a(x+1) + b(y+¥2) + c

C F(M) = F((x2), (4H) OO0
M,
E

= F((x+1+1), (y+%2))
=a(x+1+1) + b(y+%) + C

+ F(M,) - F(M) = a y+1
F(M;) = F(M) + a

« we know: a = Ay;,
F(M,) = F(M) + Ay Y
d=d+ Ay X x+1 X+2
Adg = Ay

~
\S

N
®
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Bresenham: Algorithm

* algorithm overview
— first pixel = line starting point (rounded)
— compute d = F(M)
« select E or NE accordingly
e set pixel
 update d according to choice
* Increment x and iterate
— terminate when x, Is reached

* how to compute d,?
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Bresenham: Computing d,

* line starts at P,(X4, Y,)
— dy, = F(M,)
= F((x;+1), (y1+Y%2))
= a(xq+1) + b(y,;+¥2) + C
=axy ta+by,+%b+c
= F(Xpyq) +a+%b
* P, lies on the line —» F(x;,y,) =0
—>dy=a+%b
» problem: we want Integer values!
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Bresenham: Computing d,

« we are only interested In sign of d!
— multiply everything by 2!
« multiplication without effect on the sign
— d, =2a+b
= 2Ay — AX (a = Ay; b = -Ax)
— Adg = 2Ay
— Ady\g = 2Ay — 2AX
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Bresenham: Extension to All Slopes

* use of symmetry:
— compute line

(-YIX) (YIX)

as before (%) (%)
— changing signs

of x and/or y (%) (%)

before drawing

a pixel (-YI-X) (YI-X)

— switching x and y
— combinations of these
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Bresenham: Extension to All Slopes

« examples for using symmetry
to draw lines with other slopes
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Bresenham: Possible Extensions

» special cases for lines along axes

 looking for patterns in lines (when/why?)

— slope m is always a rational number
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Bresenham-Lines: Summary

* Incremental algorithm

 using only Integer arithmetic

 using only additions during Iiterations

* multiplications only for setup

* using symmetry to extend to all octants
« FAST!!
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Bresenham’s Midpoint Algorithm

for Circles
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Let’s Have More Fun: Circles!

* Input: center point C(X., y.) and radius r
e circle equation: F(X,y) = X% + y? = r?
If C = (0, 0)
* general: F(X,y) = (X-X;)* + (y-yc)* = 1°
* naive approach to draw circle:
solve fory

y = £r% = X

and iterate over x
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Problems with Naive Algorithm

e expensive computations
— square roots
— powers of 2 1165 GOt
— inaccurate! i
— slooooow! _{;; Tor
* Incomplete pixels
where [X| = r
* we need something
better! e (ﬁﬁ#§

Scan Conversion
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Parametric Approach for Circles

* Use parametric equation:
X=rcos¢ and y=rsin ¢
* |terate over ¢
* no problems with holes at |x| ~ r anymore

 put: trigonometric functions expensive to
compute

* still not efficient enough!
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Bresenham Midpoint for Circles

e use same idea as with lines:
iImplicit function and decision point

* F(xy) =x2 +y*—r°

= 0 for
< Q for
> ( for

noints on the circle
noints within the circle

noints outside of the circle

(assuming the circle centered at 0,0)

Computer Graphics

Tobias Isenberg Scan Conversion



Bresenham Midpoint for Circles

* use only one octant again

* from pixel P decide
netween E and SE N

* pbased on midpoint’s
nosition to circle O

* goals (again):
— use incremental
algorithm

— avoid divisions
and multiplications

N
J
—O
N
_/
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Bresenham Midpoint for Circles

* midpoint M(x+1,y-%2)
 decision variable

d =F(M) N

= (x+1)? + (y-72)° —r°

 selectEiIfd<0

(circle Is above M)
 select SEIfd>0

(circle on or below M) Q Q Q
* We now need

to compute the increments of d again

N
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Bresenham Midpoint for Circles

Case 1: d < 0O; select E
« d =F(M)
= F((x+1), (y-*2)) o’
= (X+1)=+ (y-Y2)>—r°
« d=FWM,)
= F((x+2), (y-%2)  °
= (X+2)2+ (y-Y2)>— 1
= (L2 + (P2 =12 0
+2X + 3
=F(M)+2x+3 — Adg=2x+3

N

Computer Graphics Tobias Isenberg Scan Conversion



Bresenham Midpoint for Circles

Case 2: d = 0: select SE
« d = F(M)

= F((x+1), (y-%2)) 3\3E A

= (x+1)2+ (y-¥2)2— 12 v Lu
. d' = F(My) N

= F((x+2), (y-) 7 ¢

= (x+2)2+ (y-3/,)2— 13 M,

= (x+1)2 + (y-¥2)2— 12 —O0——0

+2X+3-2y +2
=F(M) + 2x -2y + 5 > Adge = 2(X-y) + 5

e
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Bresenham Midpoint for Circles

Initial value of d

* first pixel P(O, r) — first midpoint M(1, r-%2)
d, = F(1, r-%2) = 12+ (r-%2)°—r> =>/,—r

* d, Is not Integer!

* pbut any d is only ¥4 away from an Integer

« mathematical trick: new decision variable
h:=d-%Y,suchthath,=1—r
MR
|

d d
I I
I I

h h
| |
| |
4

I
-5 -3
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Bresenham Midpoint for Circles

h:=d-1,suchthathy,=1-r
 decisiond <O turnsinto h <-1/,

* but: computation of h uses only Integers

— we don’t care about actual values, we only
care about positive or negative
—>we cantesth<0

— computationally equivalent!
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Bresenham Circle Symmetry

 similar to line octants:

— changing signs
of x and/ory (+9%)
before drawing pixel

— switching x and y (y,%)
— combinations of these

 set all eight pixels
at the same time

» for circles not centered at (O, 0):
offset pixels
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Bresenham Circle Summary

« efficient algorithm
— Incremental and Integer arithmetic
— 1/5 of the circle only
« still multiplications needed for increments
— Adg = 2x + 3 and Adge = 2(x-y) + 5
— line algorithm had constant increments
— can we do this here, too?
 the fun goes on: second order differences
— Idea: compute increments of increments
— how: consider two steps in advance
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Bresenham’s Midpoint Algorithm

for Circles
(and other quadratic curves):
Second Order Differences

Computer Graphics Tobias Isenberg Scan Conversion



Second Order Differences

Case 1: E was selected
* pixel was (X, y) and becomes (x+1, y)

* Increments change as well
old new
Adg =2x+ 3 Ade =2(x+1) + 3
Adge = 2X — 2y + 5|Adgg = 2(X+1) -2y + 5
» differences of the increments
AEAd: =2
AEAdg = 2
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Second Order Differences

Case 2: SE was selected
* pixel was (X, y) and becomes (x+1, y-1)

* Increments change as well

old new

Adg =2x+ 3 Ade =2(x+1) + 3

Adgg = 2X — 2y + 5 Adge = 2(X+1) — 2(y-1) + 5
» differences of the increments

ASEAdD: =2

ASEAdg = 4
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Application of 2"d Order Differences

slightly adjusted algorithm:

e setup hy::=dy—-Y,=1-r

* setup Adg ;= 2%y + 3 and Adgg o = 2(X5 - Yg) + 5
. jterate until we reach x = X, _

e ifh<0(i.e., h<-1, 0ord<0): select E as next pixel
— update h with Adg
— update Adg with AFAdE (i.e., Adg += 2)
— update Adge with AEAdge (i.e., Adgg += 2)
e else (h>0;i.e., h>-Y,ord>0): select SE as next pixel
— update h with Adgg
— update Adg with ASEAd (i.e., Adg += 2)
— update Adgg with ASEAdgg (i.e., Adgg +=4)
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Bresenham’s Midpoint Algorithm

for other curves
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What about ellipses ...?

... or any other curves — the fun never stops

* similar as before:
use simple case of implicit equation
F(X,y) = a’x? + b%y? —ab? =0

« only consider l

axis-aligned ellipses /

. consider 1st quadrant ’
(not octant this time) =

 goal: iIncremental algorithm
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Bresenham: Ellipses

 additional difficulty: 2 regions per quadrant
« change of selection mode during rastering

— first: E or SE
—then: S or SE

* change when slope
changes from > -1
fo<-1

* for first pixel where
a?(x+1) = b?(y-%2)

E
tangential slope = -1
SE
region 1
S SE
region 2

Computer Graphics

Tobias Isenberg
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Bresenham: Ellipses

Region 1: selection of E or SE M(x+1, y-12)
* d=F(M) = a?(x+1)? + b?(y-Y2)* — a%b?
 selecting E, new midpoint M,(x+2, y-%2)
d’ = a?(x+2)? + b?(y-¥2)? — a2b?
= a%(x+1)% + b?(y-¥2)? — a%b? + a%(2x + 3)
* selecting SE, new midpoint M,(x+2, y-3/,)
d’ = a?(x+2)? + b?(y-3/,)? — a%b?
— a2(x+1)2 + b2(y_1/2)2 _ a2b2
+ a%(2x + 3) + b?(-2y + 2)
=d + a?(2x + 3) + b?(-2y + 2)
* region 2 analogously
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Bresenham: Ellipses

* d, based on 1%t pixel (0,a) > M(1, a-%2)
d, = F(M) = a?1? + b?(a-2)? — a’b?
= a’ + a’b? — ab? + /,b% — a?b?
= a*—b?({/, —a)
* when changing regions compute new d,
* rest similar to circle
» second order differences possible
* use symmetry, draw four pixels at a time

* move ellipse by offsetting drawn pixels
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Bresenham: Yet Other Curves

 similar to circle and ellipse

e e.7., parabolay = x?

 derive implicit form
F(X,y)=x4-y=0

 compute d and d" and
derive increments

e use nt" order differences

for curves of degree n
 e.g., 2" order difference for y = x2
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Bresenham: Regions for Parabolas

* change regions if slope crosses 1 or -1

NE

switch at
tangential slope = 1
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Bresenham Midpoint Algorithms

Summary

 fast and simple because
— Incremental technique using Integer arithmetic
— avoiding multiplications/divisions

* possible extensions
— many other curves (implicit equations needed)
— curves not axis-aligned
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Anti-Aliasing

For Lines
And other Technigues
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Anti-Aliasing for Lines

* Bresenham's midpoint algorithm:
— Jaggy shape due to discrete pixels

— perceived width varies
(e.g., diagonal vs. horizontal or vertical)
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Anti-Aliasing for Lines

« 1 pixel wide line assumed
— gray values from pixel coverage
— derived from midpoint value

* OpenGL: glEnable (GL LINE SMOOTH)
plus a glHint () call for quality control
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— super-sampling (2x2, 4x4, etc.)

— pixel color = (2 subpixel colors) / N
— memory & rendering time grow exponentially!
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— super-sampling (2x2, 4x4, etc.)

— pixel color = (2 subpixel colors) / N
— memory & rendering time grow exponentially!
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— super-sampling (2x2, 4x4, etc.)

— pixel color = (2 subpixel colors) / N
— memory & rendering time grow exponentially!
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid 2%x2 super-sampling
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid 2%x2 super-sampling
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid 2%2 super-sampling 4x4 super-sampling
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Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid 2%2 super-sampling 4x4 super-sampling
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Other Techniques for Anti-Aliasing

» example:[no AA| 2x2, and 4x4
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Other Techniques for Anti-Aliasing
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Other Techniques for Anti-Aliasing

« example: no AA, 2x 2 andM

Computer Graphics Tobias Isenberg Scan Conversion



Other Techniques for Anti-Aliasing

* super-sampling Is very expensive

* |ots of computations where more detalil Is
not needed

50x%50 pixel grid 2%2 super-sampling 4x4 super-sampling
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Other Techniques for Anti-Aliasing

* |less expensive technique: multi-sampling
— special case (optimization) of super-sampling
— only z-value (from z-buffer) is truly super-sampled
— HSR aliasing removed, but not other aliasing

4x4 super-sampling 4x4 multi-sampling
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A-Buffer

* Loren Carpenter (1984)
e first used in Star Trek II's Genesis effect

* goals:
— similarly effective and simple as z-buffer
— anti-aliasing of image
— correct handling of transparency
— only modest performance decrease
* |dea:
— subdivide each pixel using a bit mask
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A-Buffer

* 8x4 bit mask to store
sub-pixel fragments

* each regular pixel stores

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

RlR| Rk
RlR| Rk
RlR| Rk
RlR| Rk

a list of fragments that it comprises
* each fragment contains its parameters

(area, color, opacity, z,,and z_...)
and a bit mask for its coverage

* final pixel value by considering coverage
area and color/transparency values of all

fragments using the bit mask

Computer Graphics
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A-Buffer

* first: computing bit mask for one fragment:
— polygon clipped to pixel borders — fragment
— bits right of each fragment’'s edge are set to 1

— both bit masks are XORed to obtain
final bit mask of fragment:

olololololo]o]o olololololololo| [o|lo]lololololo]o
olofofafafa]1]2 olofofola|1][2|2| [o]olo|ANo|o]o]o
XOR -
ololof1l1|1]1]1 olojofo[]2|1]|2| |o]o|of1|w]o]o0]oO
olo|o|1]1]|a|1]2 olojofojoNe|1]|2| [o]o|d|2]1]No]o0]0
/ N / N\

 done for all polygons to obtain all fragments
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A-Buffer

» second: computing a pixel's color by
traversing fragment list

— Inside and outside regions
— processing of fragments front-to-back

— successive computation of inside mask until
pixel covered or fragment list processed

— pixel color computed w.r.t. to covered region
o|lolofo|o]o]o]o o|lolofo|o|o]o]|o| [o]o|o]o]o|o]o]o0
o|olo[Ao]ofo]o o|olofofo]olofo] [o]o|o|[Alo]o]o]o
OR =
o|lojofi[x]o|o]o o|lojofojojofofol |o]|o|of1[x]olo]o]
olo|o|1]1Nofofo| —rrr(a a]a|a|a| ooy e]1N\]1]2
/ N\ / N\
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A-Buffer

* second: computing a pixel's color by
traversing fragment list
— fragments are considered only if overlap mask

— only contribution from the part that is different
from current inside mask (AND operation of
new fragment’'s mask with outside mask)

— transparency: recursion with transparent part
0/j]0|0|0|0O0O|OfO]O 0/]0|0|0|0|0|O0]O 0j]0|0|0|0O|O|O]O
0 OOﬁ\OOOO 0,0/0]0|j0j0jOf0| |0 OOﬂ\OOOO

OR =
o|lojofi[x]o|o]o o|lojofojojofofol |o]|o|of1[x]olo]o]
olo|o|1]1Nofofo| —rrr(a a]a|a|a| ooy e]1N\]1]2

/ N / N
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Genesis Effect by ILM/Lucasfilm ’82
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Summary Scan Conversion

most display are pixel-based

need pixel representations for
mathematical elements: lines, curves, ...

need to carry out many times

fastest-possible realization needed, even
for today’s fast rendering hardware

Bresenham’s midpoint algorithm
for line primitives
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Summary Scan Conversion

* |ater also other shapes:
triangles, polygons, etc.

 also need to understand perception:
aliasing effects and anti-aliasing methods

* dedicated anti-aliasing of lines

» general anti-aliasing through
super-sampling
(1.e., computation of sub-pixels)

« palance of speed and quality
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Summary CG Principles

 fastest & most effective technique desired
— avoid expensive operations
— avoid unnecessary operations
— avoid numerical problems
— mathematical tricks to get needed information

 guality only to the level really wanted
— never compute more than needed

 often: we trade one thing for another
— more complex math for fewer final operations
— more computation for better quality
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