
Computer Graphics

Scan Conversion

Scan ConversionTobias IsenbergComputer Graphics

Computer Graphics Principles

• fastest-possible & most effective technique

desired, best use of available resources

 quality only to the level really wanted

 often: we trade one thing for another

[nVidia]

graphics

memory

GPU

Scan ConversionTobias IsenbergComputer Graphics

Scan Conversion Introduction

Basic Problem

Line Representations

Naïve Algorithm

Scan ConversionTobias IsenbergComputer Graphics

Computer Screens: Raster Displays

• pixel rasters

– (usually)

square pixels

– rectangular raster

– evenly cover

the image

– colors of pixels

give impression

of shapes

(here: circles/dots)

W
ik

ip
e
d

ia
 u

s
e
r

R
z
r9

9
9

Scan ConversionTobias IsenbergComputer Graphics

Computer Screens: Raster Displays

• problems

– no such things such as

“lines”, “circles”, etc.

– need scan conversion

• yields pixel graphic

• non-raster display or

printing technologies

exist as well (plotter)

Scan ConversionTobias IsenbergComputer Graphics

Scan Conversion

• to scan: get the right pixels, line by line

• like an image being scanned by a scanner

Scan ConversionTobias IsenbergComputer Graphics

Goal: Draw Graphic Primitives

• graphic primitives: lines, circles, ellipsoids

• requirements:

– efficiency

– quality

• problem: how to

show lines?

• task: determine

the pixels to draw in black

• first: how to draw straight lines

Scan ConversionTobias IsenbergComputer Graphics

Scan Conversion: Straight Lines

Scan ConversionTobias IsenbergComputer Graphics

Lines: Mathematical Descriptions

• input: P1(x1, y1) and P2(x2, y2)

x = x2 – x1; y = y2 – y1; m = y/x

• explicit equation: f(x) = mx + n

m = y/x; n: intersection with y-axis

• parametric description: using parameter t

x = x1 + t(x2-x1) = x1 + tx

y = y1 + t(y2-y1) = y1 + ty

• implicit equation : F(x, y) = ax + by + c = 0

→ advantage for raster conversion

Scan ConversionTobias IsenbergComputer Graphics

Naïve Algorithm

• use explicit equation f(x) = mx + n

and iterate

• problems:

– accuracy

(floating point

computations)

– efficiency

(multiplications)

– rounding

– sometimes missing pixels or not defined at all

?

Scan ConversionTobias IsenbergComputer Graphics

Implicit Line Equation: Advantage

• not only defines the line but tells us

if a pixel is on the line or not

• F(x, y) = ax + by + c

• F(x, y) > 0 → below the line

• F(x, y) = 0 → on the line

• F(x, y) < 0 → above the line

• we can determine on

which side of the (mathematical) line a

(discreet) pixel lies!

Scan ConversionTobias IsenbergComputer Graphics

Implicit Line Equation: Getting there

• F(x, y) = ax + by + c = 0

• determining a, b, (and c)

f(x) = mx + n; m = y/x

y = mx + n

0 = mx – y + n

0 = y x – x y + n’

F(x, y) = y x – x y + n’ = 0

→ a = y; b = -x

(c = n’ can be determined using one point
but we won’t really need it)

Scan ConversionTobias IsenbergComputer Graphics

Bresenham’s Midpoint Algorithm

for Lines

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint Algorithm

• by Jack Bresenham (1965)
for controlling a plotter:

– Integer arithmetic (fast, precise)

– no division, as few
multiplications as possible

Scan ConversionTobias IsenbergComputer Graphics

Pixel Graphics for Vector Plotters?

image

by Wikipedia

user Chiffre01

stepper

motors

essentially

driven on a

(fine) pixel

raster

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint Algorithm

• constraints:

– slope (m)
between 0 and 1
 one octant

– all pixels on
Integer raster

– this also means
rounding start
and end point

• later:
generalize to other octants

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint Algorithm

• general idea: iterative positioning of pixels

• previous pixel: P

• next pixels: NE or E

• decision depending on

whether line intersection

closer to NE or E

• iterate!
P E

NE

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: How to Decide?

• implicit equation revisited

• easier to determine

whether midpoint (M)

is above or below

the line → F(M)

current pixel: P(x, y)

midpoint M(x+1, y+½)

F(M) = F(x+1,y+½)
P E

NE

M

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: How to Decide?

• if F(M) < 0
 midpoint above line
 E next pixel

P E

NE

M

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: How to Decide?

• if F(M) < 0
 midpoint above line
 E next pixel

if F(M) 0
 midpoint below line
 NE next pixel

P E

NE

M

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: How to Decide?

• if F(M) < 0
 midpoint above line
 E next pixel

if F(M) 0
 midpoint below line
 NE next pixel

• decision variable:
d = F(M) = F(x+1,y+½)

• BUT: we do not re-compute d each time

• INSTEAD: we compute how it changes!

P E

NE

M

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Iteration, Case 1

NE is next pixel and M1 next midpoint

• F(M) = F((x+1), (y+½))
= a(x+1) + b(y+½) + c

• F(M1) = F((x+2), (y+3/2))
= F((x+1+1), (y+½+1))
= a(x+1+1) + b(y +½+1) + c

• F(M1) - F(M) = a + b
F(M1) = F(M) + a + b

• we know: a = y; b = -x
F(M1) = F(M) + y – x

d’ = d + y – x

dNE = y – x

P E

NE

M

M1

M2

x x+1 x+2

y

y+1

y+2

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Iteration, Case 2

E is next pixel and M2 next midpoint

• F(M) = F((x+1), (y+½))
= a(x+1) + b(y+½) + c

• F(M2) = F((x+2), (y+½))
= F((x+1+1), (y+½))
= a(x+1+1) + b(y+½) + c

• F(M2) - F(M) = a
F(M2) = F(M) + a

• we know: a = y;
F(M2) = F(M) + y

d’ = d + y
dE = y

P E

NE

M

M1

M2

x x+1 x+2

y

y+1

y+2

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Algorithm

• algorithm overview

– first pixel = line starting point (rounded)

– compute d = F(M)

• select E or NE accordingly

• set pixel

• update d according to choice

• increment x and iterate

– terminate when x2 is reached

• how to compute d0?

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Computing d0

• line starts at P1(x1, y1)

 d0 = F(M1)

= F((x1+1), (y1+½))

= a(x1+1) + b(y1+½) + c

= ax1 + a + by1 + ½b + c

= F(x1,y1) + a + ½b

• P1 lies on the line F(x1,y1) = 0

 d0 = a + ½b

• problem: we want Integer values!

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Computing d0

• we are only interested in sign of d!

 multiply everything by 2!

• multiplication without effect on the sign

 d0 = 2a + b

= 2y – x (a = y; b = -x)

 dE = 2y

 dNE = 2y – 2x

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Extension to All Slopes

• use of symmetry:

– compute line

as before

– changing signs

of x and/or y

before drawing

a pixel

– switching x and y

– combinations of these

(y,x)(-y,x)

(-y,-x)

(-x,-y)

(-x,y) (x,y)

(x,-y)

(y,-x)

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Extension to All Slopes

• examples for using symmetry

to draw lines with other slopes

(y,x)(-y,x)

(-y,-x)

(-x,-y)

(-x,y) (x,y)

(x,-y)

(y,-x)

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Possible Extensions

• special cases for lines along axes

• looking for patterns in lines (when/why?)

 slope m is always a rational number

Scan ConversionTobias IsenbergComputer Graphics

Bresenham-Lines: Summary

• incremental algorithm

• using only Integer arithmetic

• using only additions during iterations

• multiplications only for setup

• using symmetry to extend to all octants

• FAST!!!

Scan ConversionTobias IsenbergComputer Graphics

Bresenham’s Midpoint Algorithm

for Circles

Scan ConversionTobias IsenbergComputer Graphics

Let’s Have More Fun: Circles!

• input: center point C(xc, yc) and radius r

• circle equation: F(x,y) = x2 + y2 = r2

if C = (0, 0)

• general: F(x,y) = (x-xc)
2 + (y-yc)

2 = r2

• naïve approach to draw circle:

solve for y

and iterate over x

22
xry

Scan ConversionTobias IsenbergComputer Graphics

Problems with Naïve Algorithm

• expensive computations

– square roots

– powers of 2

– inaccurate!

– slooooow!

• incomplete pixels

where |x| r

• we need something

better!

Scan ConversionTobias IsenbergComputer Graphics

Parametric Approach for Circles

• use parametric equation:

x = r cos and y = r sin

• iterate over

• no problems with holes at |x| r anymore

• but: trigonometric functions expensive to

compute

• still not efficient enough!

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint for Circles

• use same idea as with lines:

implicit function and decision point

• F(x,y) = x2 + y2 – r2

= 0 for points on the circle

< 0 for points within the circle

> 0 for points outside of the circle

(assuming the circle centered at 0,0)

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint for Circles

• use only one octant again

• from pixel P decide

between E and SE

• based on midpoint’s

position to circle

• goals (again):

– use incremental

algorithm

– avoid divisions

and multiplications

P E

SE

M M1

M2

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint for Circles

• midpoint M(x+1,y-½)

• decision variable

d = F(M)

= (x+1)2 + (y-½)2 – r2

• select E if d < 0

(circle is above M)

• select SE if d 0

(circle on or below M)

• we now need

to compute the increments of d again

P E

SE

M M1

M2

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint for Circles

Case 1: d < 0; select E

• d = F(M)

= F((x+1), (y-½))

= (x+1)2 + (y-½)2 – r2

• d’ = F(M1)

= F((x+2), (y-½))

= (x+2)2 + (y-½)2 – r2

= (x+1)2 + (y-½)2 – r2

+ 2x + 3

= F(M) + 2x + 3 dE = 2x + 3

P E

SE

M M1

M2

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint for Circles

Case 2: d 0; select SE

• d = F(M)

= F((x+1), (y-½))

= (x+1)2 + (y-½)2 – r2

• d’ = F(M2)

= F((x+2), (y-3/2))

= (x+2)2 + (y-3/2)
2 – r2

= (x+1)2 + (y-½)2 – r2

+ 2x + 3 - 2y + 2

= F(M) + 2x – 2y + 5 dSE = 2(x-y) + 5

P E

SE

M M1

M2

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint for Circles

Initial value of d

• first pixel P(0, r) first midpoint M(1, r-½)

d0 = F(1, r-½) = 12 + (r-½)2 – r2 = 5/4 – r

• d0 is not Integer!

• but any d is only ¼ away from an Integer

• mathematical trick: new decision variable

h ::= d – 1/4 such that h0 = 1 – r

-5 -4 -3 -2 -1 0 1 2 3 4 5

d d d d d d d d d d d
h h h h h h h h h h h

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint for Circles

h ::= d – 1/4 such that h0 = 1 – r

• decision d < 0 turns into h < -1/4

• but: computation of h uses only Integers

– we don’t care about actual values, we only

care about positive or negative

 we can test h < 0

– computationally equivalent!

-5 -4 -3 -2 -1 0 1 2 3 4 5

d d d d d d d d d d d
h h h h h h h h h h h

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Circle Symmetry

• similar to line octants:

– changing signs

of x and/or y

before drawing pixel

– switching x and y

– combinations of these

• set all eight pixels

at the same time

• for circles not centered at (0, 0):

offset pixels

(x,y)(-x,y)

(-x,-y)

(-y,-x)

(-y,x) (y,x)

(y,-x)

(x,-y)

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Circle Summary

• efficient algorithm

– incremental and Integer arithmetic

– 1/8 of the circle only

• still multiplications needed for increments

– dE = 2x + 3 and dSE = 2(x-y) + 5

– line algorithm had constant increments

– can we do this here, too?

• the fun goes on: second order differences

– idea: compute increments of increments

– how: consider two steps in advance

Scan ConversionTobias IsenbergComputer Graphics

Bresenham’s Midpoint Algorithm

for Circles

(and other quadratic curves):

Second Order Differences

Scan ConversionTobias IsenbergComputer Graphics

Second Order Differences

Case 1: E was selected

• pixel was (x, y) and becomes (x+1, y)

• increments change as well

old new

dE = 2x + 3 dE = 2(x+1) + 3

dSE = 2x – 2y + 5 dSE = 2(x+1) – 2y + 5

• differences of the increments

EdE = 2

EdSE = 2

Scan ConversionTobias IsenbergComputer Graphics

Second Order Differences

Case 2: SE was selected

• pixel was (x, y) and becomes (x+1, y-1)

• increments change as well

old new

dE = 2x + 3 dE = 2(x+1) + 3

dSE = 2x – 2y + 5dSE = 2(x+1) – 2(y-1) + 5

• differences of the increments

SEdE = 2

SEdSE = 4

Scan ConversionTobias IsenbergComputer Graphics

Application of 2nd Order Differences

slightly adjusted algorithm:

• setup h0 ::= d0 – 1/4 = 1 – r

• setup dE_0 = 2x0 + 3 and dSE_0 = 2(x0 - y0) + 5

• iterate until we reach x = x1:

• if h ≤ 0 (i.e., h ≤ -1/4 or d ≤ 0): select E as next pixel

– update h with dE

– update dE with EdE (i.e., dE += 2)

– update dSE with EdSE (i.e., dSE += 2)

• else (h > 0; i.e., h > -1/4 or d > 0): select SE as next pixel

– update h with dSE

– update dE with SEdE (i.e., dE += 2)

– update dSE with SEdSE (i.e., dSE += 4)

Scan ConversionTobias IsenbergComputer Graphics

Bresenham’s Midpoint Algorithm

for other curves

Scan ConversionTobias IsenbergComputer Graphics

What about ellipses ...?

... or any other curves – the fun never stops

• similar as before:

use simple case of implicit equation

F(x,y) = a2x2 + b2y2 – a2b2 = 0

• only consider

axis-aligned ellipses

• consider 1st quadrant

(not octant this time)

• goal: incremental algorithm

b-b

-a

a

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Ellipses

• additional difficulty: 2 regions per quadrant

• change of selection mode during rastering

– first: E or SE

– then: S or SE

• change when slope

changes from > -1

to < -1

• for first pixel where

a2(x+1) b2(y-½)

tangential slope = -1
E

SE

S SE
region 1

region 2

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Ellipses

Region 1: selection of E or SE M(x+1, y-½)

• d = F(M) = a2(x+1)2 + b2(y-½)2 – a2b2

• selecting E, new midpoint M1(x+2, y-½)

d’ = a2(x+2)2 + b2(y-½)2 – a2b2

= a2(x+1)2 + b2(y-½)2 – a2b2 + a2(2x + 3)

• selecting SE, new midpoint M2(x+2, y-3/2)

d’ = a2(x+2)2 + b2(y-3/2)
2 – a2b2

= a2(x+1)2 + b2(y-½)2 – a2b2

+ a2(2x + 3) + b2(-2y + 2)

= d + a2(2x + 3) + b2(-2y + 2)

• region 2 analogously

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Ellipses

• d0 based on 1st pixel (0,a) M(1, a-½)

d0 = F(M) = a212 + b2(a-½)2 – a2b2

= a2 + a2b2 – ab2 + 1/4b
2 – a2b2

= a2 – b2(1/4 – a)

• when changing regions compute new d0!

• rest similar to circle

• second order differences possible

• use symmetry, draw four pixels at a time

• move ellipse by offsetting drawn pixels

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Yet Other Curves

• similar to circle and ellipse

• e.g., parabola y = x2

• derive implicit form

F(x, y) = x2 – y = 0

• compute d and d’ and

derive increments

• use nth order differences

for curves of degree n

• e.g., 2nd order difference for y = x2

Scan ConversionTobias IsenbergComputer Graphics

Bresenham: Regions for Parabolas

• change regions if slope crosses 1 or -1

switch at

tangential slope = 1

NE

E

N NE

Scan ConversionTobias IsenbergComputer Graphics

Bresenham Midpoint Algorithms

Summary

• fast and simple because

– incremental technique using Integer arithmetic

– avoiding multiplications/divisions

• possible extensions

– many other curves (implicit equations needed)

– curves not axis-aligned

Scan ConversionTobias IsenbergComputer Graphics

Anti-Aliasing

For Lines

And other Techniques

Scan ConversionTobias IsenbergComputer Graphics

Anti-Aliasing for Lines

• Bresenham’s midpoint algorithm:

– jaggy shape due to discrete pixels

– perceived width varies
(e.g., diagonal vs. horizontal or vertical)

Scan ConversionTobias IsenbergComputer Graphics

Anti-Aliasing for Lines

• 1 pixel wide line assumed

– gray values from pixel coverage

– derived from midpoint value

• OpenGL: glEnable(GL_LINE_SMOOTH)
plus a glHint() call for quality control

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

= =pixel

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– super-sampling (2×2, 4×4, etc.)

– pixel color = (Σ subpixel colors) / N

– memory & rendering time grow exponentially!

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– super-sampling (2×2, 4×4, etc.)

– pixel color = (Σ subpixel colors) / N

– memory & rendering time grow exponentially!

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– super-sampling (2×2, 4×4, etc.)

– pixel color = (Σ subpixel colors) / N

– memory & rendering time grow exponentially!

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– example for 2×2 and 4×4:

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– example for 2×2 and 4×4:

50×50 pixel grid

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– example for 2×2 and 4×4:

50×50 pixel grid 2×2 super-sampling

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– example for 2×2 and 4×4:

50×50 pixel grid 2×2 super-sampling

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– example for 2×2 and 4×4:

50×50 pixel grid 2×2 super-sampling 4×4 super-sampling

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• on the 2D pixel image level (FSAA)

– example for 2×2 and 4×4:

50×50 pixel grid 2×2 super-sampling 4×4 super-sampling

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• example: no AA, 2×2, and 4×4

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• example: no AA, 2×2, and 4×4

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• example: no AA, 2×2, and 4×4

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• super-sampling is very expensive

• lots of computations where more detail is

not needed

50×50 pixel grid 2×2 super-sampling 4×4 super-sampling

Scan ConversionTobias IsenbergComputer Graphics

Other Techniques for Anti-Aliasing

• less expensive technique: multi-sampling
– special case (optimization) of super-sampling

– only z-value (from z-buffer) is truly super-sampled

– HSR aliasing removed, but not other aliasing

4×4 super-sampling 4×4 multi-sampling

Scan ConversionTobias IsenbergComputer Graphics

A-Buffer

• Loren Carpenter (1984)

• first used in Star Trek II’s Genesis effect

• goals:

– similarly effective and simple as z-buffer

– anti-aliasing of image

– correct handling of transparency

– only modest performance decrease

• idea:

– subdivide each pixel using a bit mask

Scan ConversionTobias IsenbergComputer Graphics

A-Buffer

• 8x4 bit mask to store

sub-pixel fragments

• each regular pixel stores

a list of fragments that it comprises

• each fragment contains its parameters

(area, color, opacity, zmin and zmax)

and a bit mask for its coverage

• final pixel value by considering coverage

area and color/transparency values of all

fragments using the bit mask

1 1 1 1 1 1 11

1 1 1 1 1 1 11

1 1 1 1 1 1 11

1 1 1 1 1 1 11

Scan ConversionTobias IsenbergComputer Graphics

A-Buffer

• first: computing bit mask for one fragment:

– polygon clipped to pixel borders fragment

– bits right of each fragment’s edge are set to 1

– both bit masks are XORed to obtain

final bit mask of fragment:

• done for all polygons to obtain all fragments

0 0 0 1 1 1 10

0 0 0 1 1 1 10

0 0 0 0 1 1 10

0 0 0 0 0 0 00

0 0 1 0 0 0 00

0 0 1 0 0 0 00

0 0 1 1 0 0 00

0 0 0 0 0 0 00

0 0 1 1 1 1 10

0 0 1 1 1 1 10

0 0 1 1 1 1 10

0 0 0 0 0 0 00

XOR =

Scan ConversionTobias IsenbergComputer Graphics

A-Buffer

• second: computing a pixel’s color by

traversing fragment list

– inside and outside regions

– processing of fragments front-to-back

– successive computation of inside mask until

pixel covered or fragment list processed

– pixel color computed w.r.t. to covered region

0 0 0 0 0 0 00

0 0 0 0 0 0 00

1 1 1 1 1 1 11

0 0 0 0 0 0 00

0 0 1 0 0 0 00

0 0 1 0 0 0 00

1 1 1 1 1 1 11

0 0 0 0 0 0 00

0 0 1 0 0 0 00

0 0 1 0 0 0 00

0 0 1 1 0 0 00

0 0 0 0 0 0 00

OR =

Scan ConversionTobias IsenbergComputer Graphics

A-Buffer

• second: computing a pixel’s color by

traversing fragment list

– fragments are considered only if overlap mask

– only contribution from the part that is different

from current inside mask (AND operation of

new fragment’s mask with outside mask)

– transparency: recursion with transparent part

0 0 0 0 0 0 00

0 0 0 0 0 0 00

1 1 1 1 1 1 11

0 0 0 0 0 0 00

0 0 1 0 0 0 00

0 0 1 0 0 0 00

1 1 1 1 1 1 11

0 0 0 0 0 0 00

0 0 1 0 0 0 00

0 0 1 0 0 0 00

0 0 1 1 0 0 00

0 0 0 0 0 0 00

OR =

Scan ConversionTobias IsenbergComputer Graphics

Genesis Effect by ILM/Lucasfilm ’82

Scan ConversionTobias IsenbergComputer Graphics

Summary Scan Conversion

• most display are pixel-based

• need pixel representations for

mathematical elements: lines, curves, …

• need to carry out many times

• fastest-possible realization needed, even

for today’s fast rendering hardware

• Bresenham’s midpoint algorithm

for line primitives

Scan ConversionTobias IsenbergComputer Graphics

Summary Scan Conversion

• later also other shapes:

triangles, polygons, etc.

• also need to understand perception:

aliasing effects and anti-aliasing methods

• dedicated anti-aliasing of lines

• general anti-aliasing through

super-sampling

(i.e., computation of sub-pixels)

• balance of speed and quality

Scan ConversionTobias IsenbergComputer Graphics

Summary CG Principles

• fastest & most effective technique desired

– avoid expensive operations

– avoid unnecessary operations

– avoid numerical problems

– mathematical tricks to get needed information

• quality only to the level really wanted

– never compute more than needed

• often: we trade one thing for another

– more complex math for fewer final operations

– more computation for better quality

