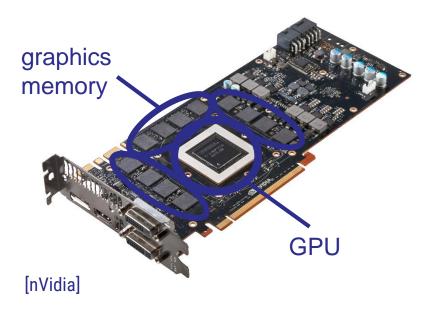
Computer Graphics

Scan Conversion

Computer Graphics Principles

 fastest-possible & most effective technique desired, best use of available resources

 → quality only to the level really wanted
 → often: we trade one thing for another

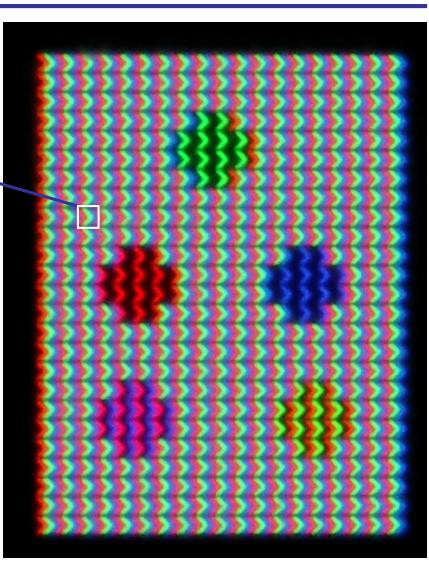


Scan Conversion Introduction

Basic Problem Line Representations Naïve Algorithm

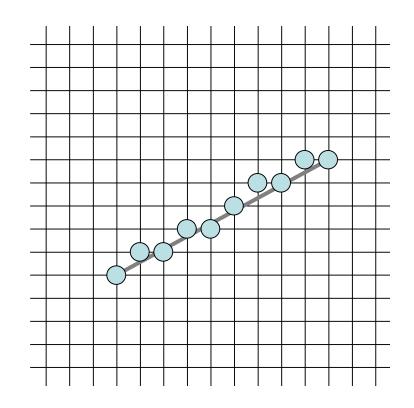
Computer Screens: Raster Displays

- pixel rasters
 - (usually)
 square pixels ~
 - rectangular raster
 - evenly cover
 the image
 - colors of pixels
 give impression
 of shapes
 (here: circles/dots)



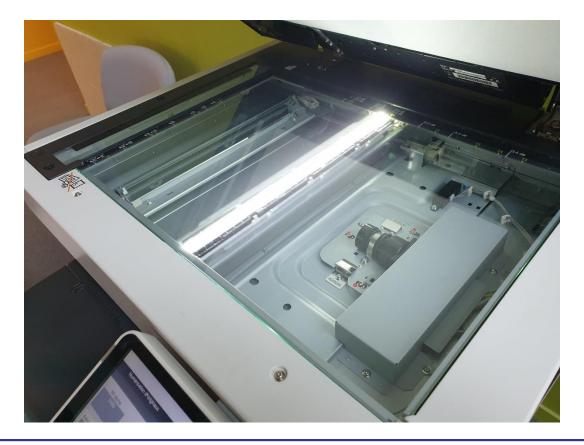
Computer Screens: Raster Displays

- problems
 - no such things such as "lines", "circles", etc.
 need scan conversion
- yields pixel graphic
- non-raster display or printing technologies exist as well (plotter)



Scan Conversion

- to scan: get the right pixels, line by line
- like an image being scanned by a scanner



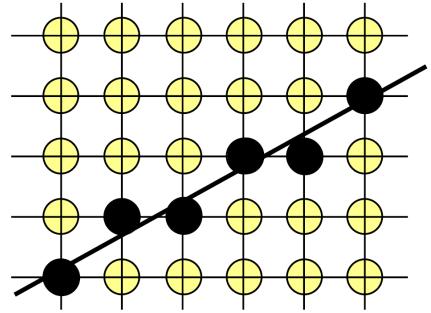
Computer Graphics

Tobias Isenberg

Scan Conversion

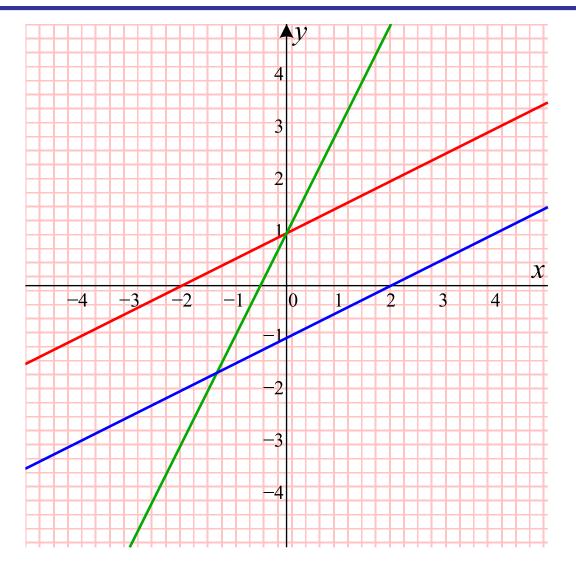
Goal: Draw Graphic Primitives

- graphic primitives: lines, circles, ellipsoids
- requirements:
 - efficiency
 - quality
- problem: how to show lines?



- task: determine
 the pixels to draw in black
- first: how to draw straight lines

Scan Conversion: Straight Lines



Computer Graphics

Tobias Isenberg

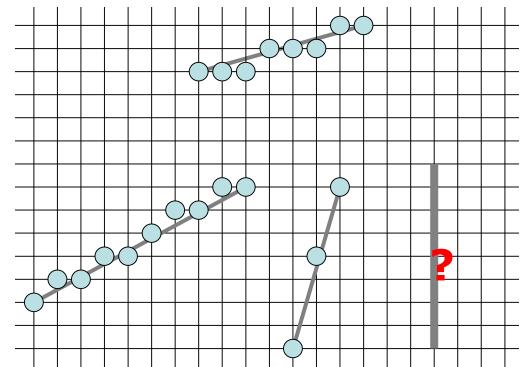
Scan Conversion

Lines: Mathematical Descriptions

- input: $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ $\Delta x = x_2 - x_{1;} \Delta y = y_2 - y_{1;} m = \Delta y / \Delta x$
- explicit equation: f(x) = mx + nm = $\Delta y / \Delta x$; n: intersection with *y*-axis
- parametric description: using parameter t $x = x_1 + t(x_2-x_1) = x_1 + t\Delta x$ $y = y_1 + t(y_2-y_1) = y_1 + t\Delta y$
- implicit equation : F(x, y) = ax + by + c = 0
 → advantage for raster conversion

Naïve Algorithm

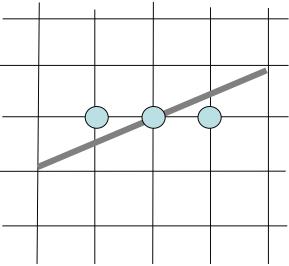
- use explicit equation f(x) = mx + n and iterate
- problems:
 - accuracy
 (floating point computations)
 - efficiency (multiplications)
 - rounding



- sometimes missing pixels or not defined at all

Implicit Line Equation: Advantage

- not only defines the line but tells us if a pixel is on the line or not
- F(x, y) = ax + by + c
- $F(x, y) > 0 \rightarrow$ below the line
- $F(x, y) = 0 \rightarrow on the line$
- $F(x, y) < 0 \rightarrow above the line$
- we can determine on which side of the (mathematical) line a (discreet) pixel lies!



Implicit Line Equation: Getting there

- F(x, y) = ax + by + c = 0
- determining a, b, (and c)
 - $f(x) = mx + n; m = \Delta y / \Delta x$
 - y = mx + n
 - 0 = mx y + n
 - $0 = \Delta y \ x \Delta x \ y + n'$
 - $F(x, y) = \Delta y x \Delta x y + n' = 0$

$$\rightarrow$$
 a = Δy ; b = - Δx

(c = n' can be determined using one point but we won't really need it)

Computer Graphics

Bresenham's Midpoint Algorithm

for Lines

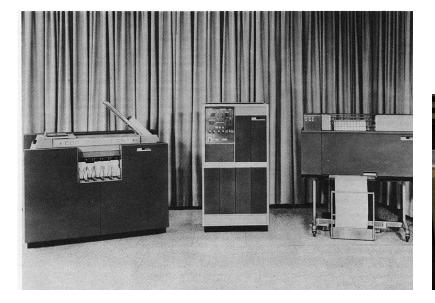
Computer Graphics

Tobias Isenberg

Scan Conversion

Bresenham Midpoint Algorithm

- by Jack Bresenham (1965) for controlling a plotter:
 - Integer arithmetic (fast, precise)
 - no division, as few multiplications as possible

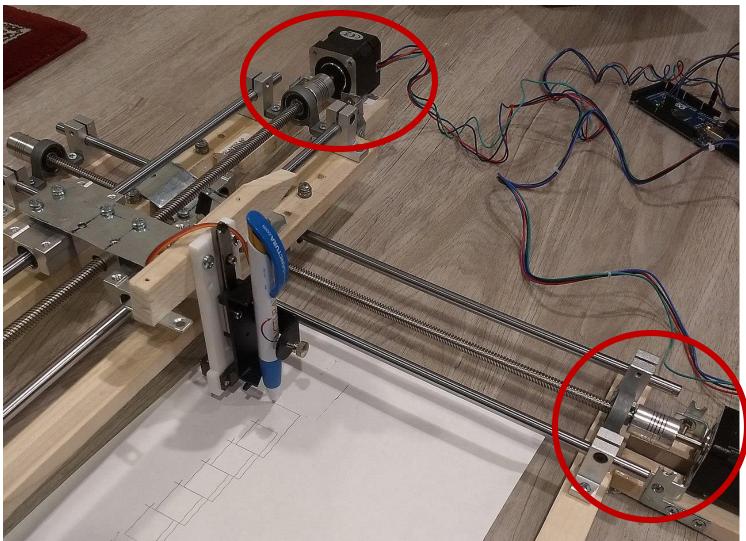


Computer Graphics

Tobias Isenberg

Scan Conversion

Pixel Graphics for Vector Plotters?



stepper motors essentially driven on a (fine) pixel raster

image by Wikipedia user Chiffre01

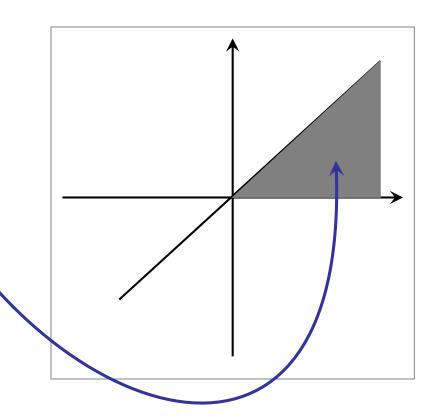
Scan Conversion

Computer Graphics

Tobias Isenberg

Bresenham Midpoint Algorithm

- constraints:
 - slope (m) between 0 and 1
 - \rightarrow one octant
 - all pixels on Integer raster
 - this also means rounding start and end point

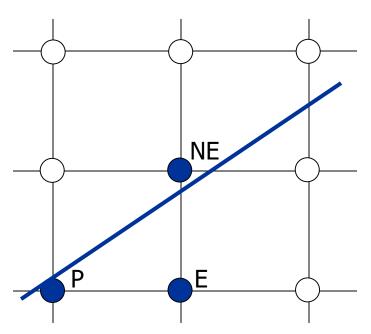


• later:

generalize to other octants

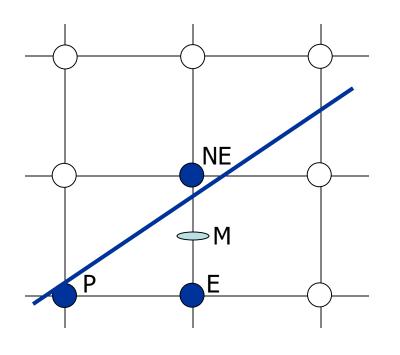
Bresenham Midpoint Algorithm

- general idea: iterative positioning of pixels
- previous pixel: P
- next pixels: NE or E
- decision depending on whether line intersection closer to NE or E
- iterate!



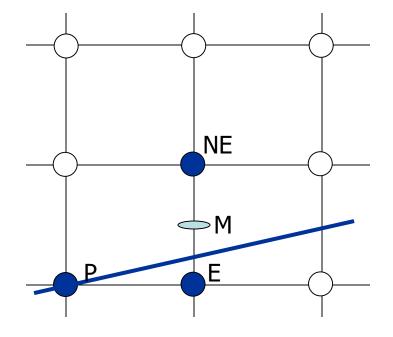
- implicit equation revisited
- easier to determine whether midpoint (M) is above or below the line \rightarrow F(M) current pixel: P(x, y) midpoint M(x+1, y+1/2)

$$F(M) = F(x+1,y+\frac{1}{2})$$



if F(M) < 0

 → midpoint above line
 → E next pixel



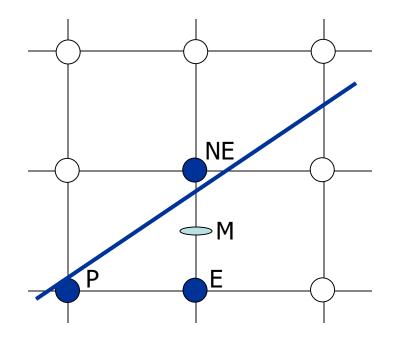
Computer Graphics

Tobias Isenberg

Scan Conversion

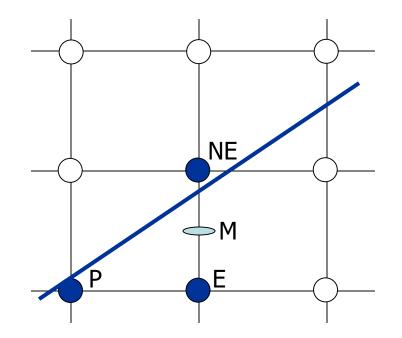
- if F(M) < 0

 → midpoint above line
 → E next pixel
 - if F(M) ≥ 0 → midpoint below line → NE next pixel



- if F(M) < 0

 → midpoint above line
 → E next pixel
 - if F(M) ≥ 0 → midpoint below line → NE next pixel
- decision variable: $d = F(M) = F(x+1,y+\frac{1}{2})$



- BUT: we do not re-compute d each time
- INSTEAD: we compute how it changes!

Tobias Isenberg

Bresenham: Iteration, Case 1

NE is next pixel and M₁ next midpoint

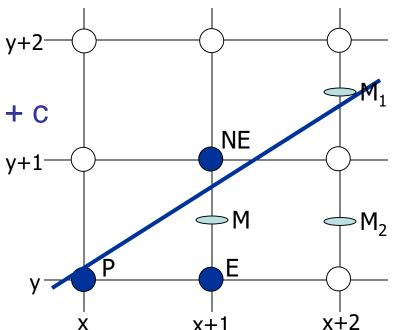
•
$$F(M) = F((x+1), (y+\frac{1}{2}))$$

 $= a(x+1) + b(y+\frac{1}{2}) + c$
• $F(M_1) = F((x+2), (y+\frac{3}{2}))$ y
 $= F((x+1+1), (y+\frac{1}{2}+1))$
 $= a(x+1+1) + b(y+\frac{1}{2}+1) + b(y+\frac{1}{2}+1) + b(y+\frac{1}{2}+1)$

•
$$F(M_1) - F(M) = a + b$$

 $F(M_1) = F(M) + a + b$

• we know: $a = \Delta y$; $b = -\Delta x$ $F(M_1) = F(M) + \Delta y - \Delta x$ $d' = d + \Delta y - \Delta x$ $\Delta d_{NE} = \Delta y - \Delta x$



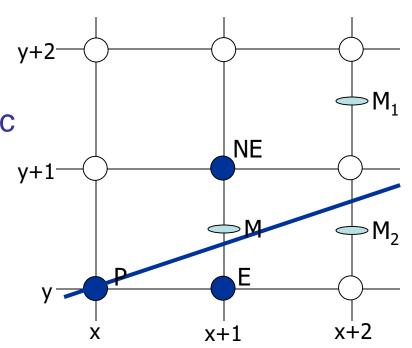
Bresenham: Iteration, Case 2

E is next pixel and M₂ next midpoint

•
$$F(M) = F((x+1), (y+\frac{1}{2}))$$

= $a(x+1) + b(y+\frac{1}{2}) + c$
• $F(M_2) = F((x+2), (y+\frac{1}{2}))$
= $F((x+1+1), (y+\frac{1}{2}))$
= $a(x+1+1) + b(y+\frac{1}{2}) + c$

- $F(M_2) F(M) = a$ $F(M_2) = F(M) + a$
- we know: $a = \Delta y$; $F(M_2) = F(M) + \Delta y$ $d' = d + \Delta y$ $\Delta d_E = \Delta y$



Bresenham: Algorithm

- algorithm overview
 - first pixel = line starting point (rounded)
 - compute d = F(M)
 - select E or NE accordingly
 - set pixel
 - update d according to choice
 - increment x and iterate
 - terminate when x_2 is reached
- how to compute d₀?

Bresenham: Computing d₀

• line starts at
$$P_1(x_1, y_1)$$

 $\rightarrow d_0 = F(M_1)$
 $= F((x_1+1), (y_1+1/2))$
 $= a(x_1+1) + b(y_1+1/2) + c$
 $= ax_1 + a + by_1 + 1/2b + c$
 $= F(x_1, y_1) + a + 1/2b$

- P_1 lies on the line $\rightarrow F(x_1, y_1) = 0$ $\rightarrow d_0 = a + \frac{1}{2}b$
- problem: we want Integer values!

Computer Graphics

Tobias Isenberg

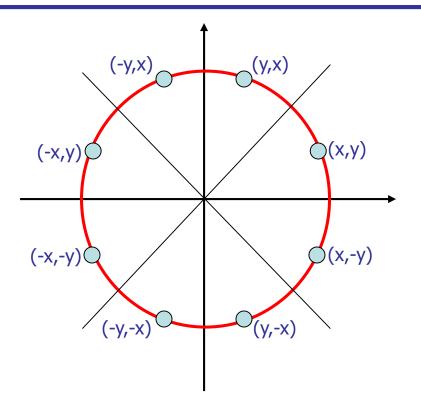
Bresenham: Computing d₀

- we are only interested in sign of d!
 → multiply everything by 2!
- multiplication without effect on the sign $\rightarrow d_0 = 2a + b$ $= 2\Delta y - \Delta x (a = \Delta y; b = -\Delta x)$ $\rightarrow \Delta d_F = 2\Delta y$

$$\rightarrow \Delta d_{NE} = 2\Delta y - 2\Delta x$$

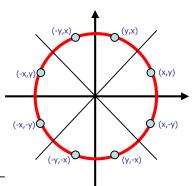
Bresenham: Extension to All Slopes

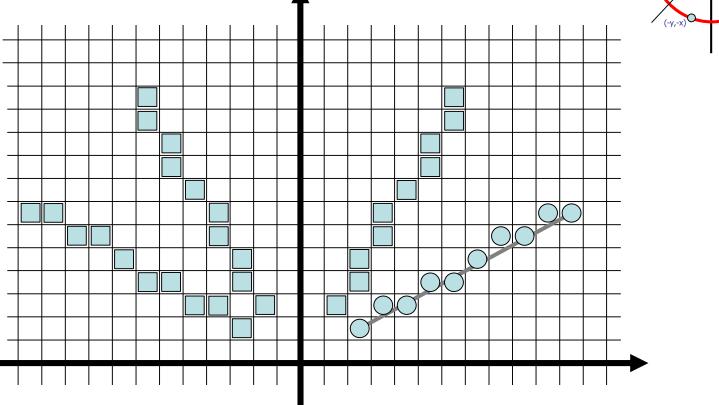
- use of symmetry:
 - compute line as before
 - changing signs of x and/or y before drawing a pixel
 - switching x and y
 - combinations of these



Bresenham: Extension to All Slopes

 examples for using symmetry to draw lines with other slopes

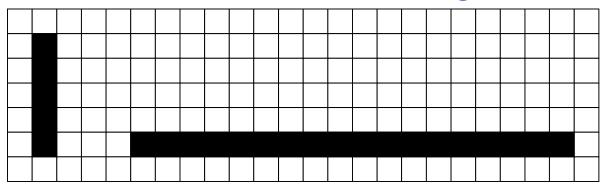




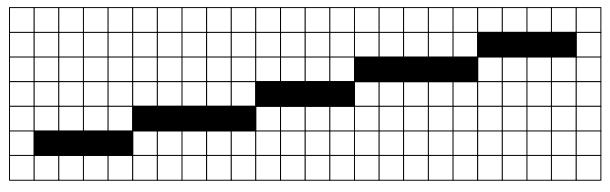
Computer Graphics

Bresenham: Possible Extensions

• special cases for lines along axes



looking for patterns in lines (when/why?)



 \rightarrow slope **m** is always a **rational number**

Computer Graphics

Tobias Isenberg

Bresenham-Lines: Summary

- incremental algorithm
- using only Integer arithmetic
- using only additions during iterations
- multiplications only for setup
- using symmetry to extend to all octants
- FAST!!!

Bresenham's Midpoint Algorithm

for Circles

Computer Graphics

Tobias Isenberg

Scan Conversion

Let's Have More Fun: Circles!

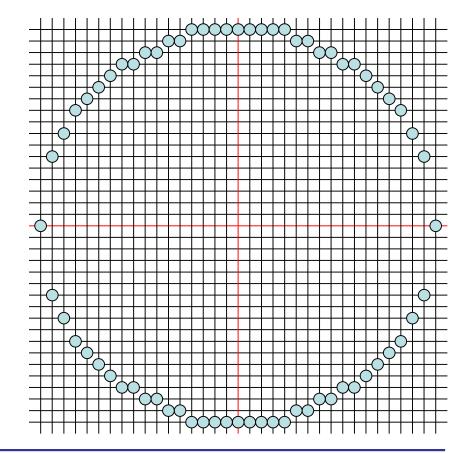
- input: center point $C(x_c, y_c)$ and radius r
- circle equation: F(x,y) = x² + y² = r²
 if C = (0, 0)
- general: $F(x,y) = (x-x_c)^2 + (y-y_c)^2 = r^2$
- naïve approach to draw circle: solve for y

$$y=\pm\sqrt{r^2-x^2}$$

and iterate over x

Problems with Naïve Algorithm

- expensive computations
 - square roots
 - powers of 2
 - inaccurate!
 - sloooow!
- incomplete pixels where |x| ≈ r
- we need something better!



Parametric Approach for Circles

- use parametric equation: $x = r \cos \varphi$ and $y = r \sin \varphi$
- iterate over ϕ
- no problems with holes at $|x| \approx r$ anymore
- but: trigonometric functions expensive to compute
- still not efficient enough!

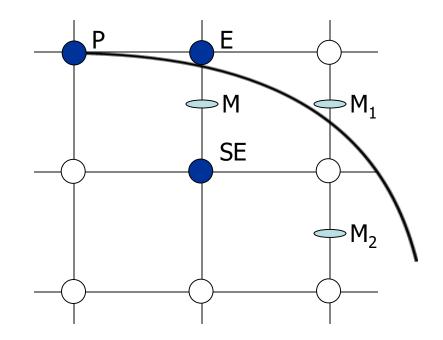
Bresenham Midpoint for Circles

- use same idea as with lines: implicit function and decision point
- F(x,y) = x² + y² r²

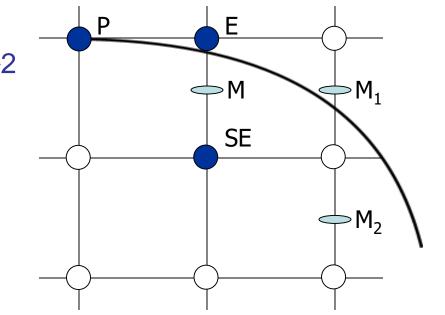
 0 for points on the circle
 0 for points within the circle
 0 for points outside of the circle
 (assuming the circle centered at 0,0)

Bresenham Midpoint for Circles

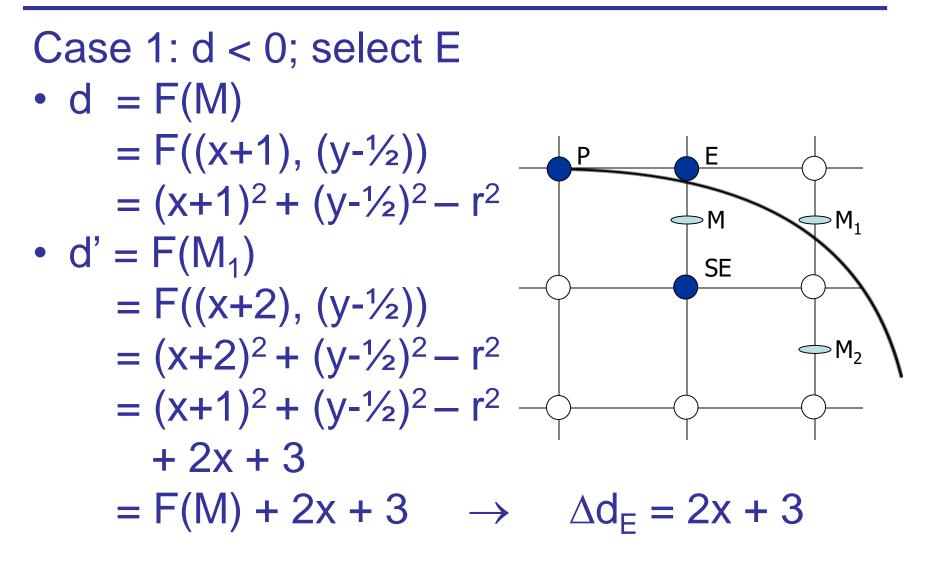
- use only one octant again
- from pixel P decide between E and SE
- based on midpoint's position to circle
- goals (again):
 - use incremental algorithm
 - avoid divisions
 and multiplications

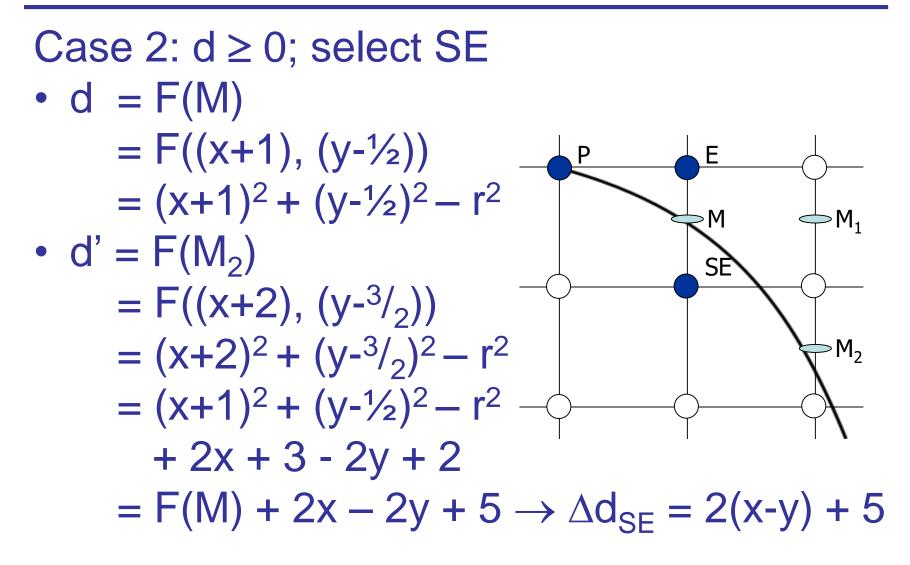


- midpoint $M(x+1,y-\frac{1}{2})$
- decision variable d = F(M) $= (x+1)^{2} + (y-\frac{1}{2})^{2} - r^{2}$
- select E if d < 0 (circle is above M)
- select SE if d ≥ 0 (circle on or below M)



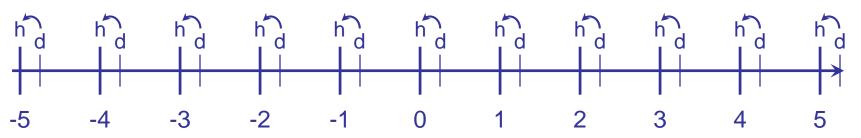
 we now need to compute the increments of d again



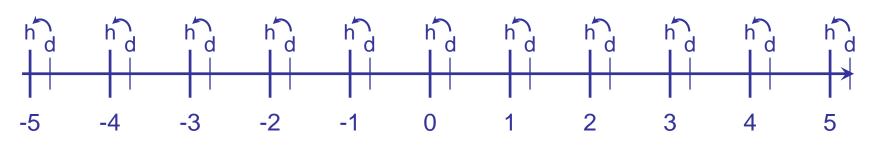


Initial value of d

- first pixel P(0, r) \rightarrow first midpoint M(1, r-1/2) d₀ = F(1, r-1/2) = 1² + (r-1/2)² - r² = 5/4 - r
- d₀ is not Integer!
- but any d is only ¼ away from an Integer
- mathematical trick: new decision variable $h ::= d \frac{1}{4}$ such that $h_0 = 1 r$



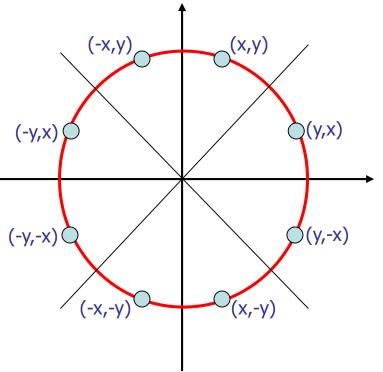
- h ::= $d \frac{1}{4}$ such that $h_0 = 1 r$
- decision d < 0 turns into $h < -1/_4$
- but: computation of h uses only Integers
 - we don't care about actual values, we only care about positive or negative
 → we can test h < 0
 - computationally equivalent!



Bresenham Circle Symmetry

- similar to line octants:

 changing signs of x and/or y before drawing pixel
 switching x and y
 - combinations of these
- set all eight pixels at the same time
- for circles not centered at (0, 0): offset pixels



Bresenham Circle Summary

- efficient algorithm
 - incremental and Integer arithmetic
 - $-1/_{8}$ of the circle only
- still multiplications needed for increments
 - $\Delta d_E = 2x + 3$ and $\Delta d_{SE} = 2(x-y) + 5$
 - line algorithm had constant increments
 - can we do this here, too?
- the fun goes on: second order differences
 - idea: compute increments of increments
 - how: consider two steps in advance

Bresenham's Midpoint Algorithm

for Circles (and other quadratic curves): Second Order Differences

Second Order Differences

Case 1: E was selected

- pixel was (x, y) and becomes (x+1, y)
- increments change as well $\begin{array}{c|c} \text{old} & \text{new} \\ \hline \Delta d_{\text{E}} = 2x + 3 & \Delta d_{\text{E}} = 2(x+1) + 3 \\ \Delta d_{\text{SE}} = 2x - 2y + 5 & \Delta d_{\text{SE}} = 2(x+1) - 2y + 5 \end{array}$
- differences of the increments $\Delta^{E}\Delta d_{E} = 2$ $\Delta^{E}\Delta d_{SE} = 2$

Second Order Differences

Case 2: SE was selected

- pixel was (x, y) and becomes (x+1, y-1)
- increments change as well $\begin{array}{c|c} old & new \\ \hline \Delta d_E &= 2x + 3 & \Delta d_E &= 2(x+1) + 3 \\ \Delta d_{SE} &= 2x - 2y + 5 \\ \Delta d_{SE} &= 2(x+1) - 2(y-1) + 5 \end{array}$
- differences of the increments $\Delta^{SE}\Delta d_E = 2$ $\Delta^{SE}\Delta d_{SE} = 4$

Application of 2nd Order Differences

slightly adjusted algorithm:

- setup $h_0 ::= d_0 \frac{1}{4} = 1 r$
- setup $\Delta d_{E_0} = 2x_0 + 3$ and $\Delta d_{SE_0} = 2(x_0 y_0) + 5$
- iterate until we reach $x = x_1$:
 - if $h \le 0$ (i.e., $h \le -1/4$ or $d \le 0$): select E as next pixel
 - update h with Δd_E
 - update Δd_E with $\Delta^E \Delta d_E$ (i.e., Δd_E += 2)
 - update Δd_{SE} with $\Delta^{E} \Delta d_{SE}$ (i.e., Δd_{SE} += 2)
 - else (h > 0; i.e., h > $-1/_4$ or d > 0): select SE as next pixel
 - update h with Δd_{SE}
 - update Δd_E with $\Delta^{SE} \Delta d_E$ (i.e., Δd_E += 2)
 - update Δd_{SE} with $\Delta^{SE} \Delta d_{SE}$ (i.e., Δd_{SE} += 4)

Bresenham's Midpoint Algorithm

for other curves

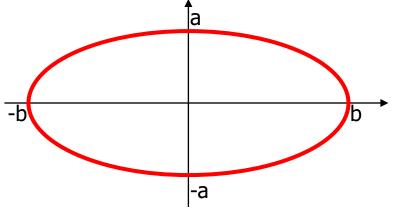
Computer Graphics

Tobias Isenberg

Scan Conversion

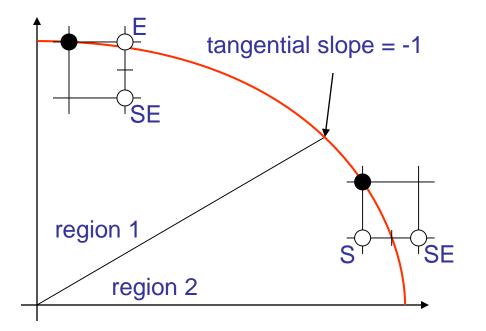
... or any other curves – the fun never stops

- similar as before: use simple case of implicit equation $F(x,y) = a^2x^2 + b^2y^2 - a^2b^2 = 0$
- only consider axis-aligned ellipses
- consider 1st quadrant (not octant this time)



Bresenham: Ellipses

- additional difficulty: 2 regions per quadrant
- change of selection mode during rastering
 - first: E or SE
 - then: S or SE
- change when slope changes from > -1 to < -1
- for first pixel where $a^2(x+1) \ge b^2(y-\frac{1}{2})$



Bresenham: Ellipses

Region 1: selection of E or SE M(x+1, $y-\frac{1}{2}$)

- $d = F(M) = a^2(x+1)^2 + b^2(y-\frac{1}{2})^2 a^2b^2$
- selecting E, new midpoint $M_1(x+2, y-\frac{1}{2})$ d' = $a^2(x+2)^2 + b^2(y-\frac{1}{2})^2 - a^2b^2$ = $a^2(x+1)^2 + b^2(y-\frac{1}{2})^2 - a^2b^2 + a^2(2x+3)$
- selecting SE, new midpoint $M_2(x+2, y-3/_2)$ d' = $a^2(x+2)^2 + b^2(y-3/_2)^2 - a^2b^2$ = $a^2(x+1)^2 + b^2(y-1/_2)^2 - a^2b^2$ + $a^2(2x + 3) + b^2(-2y + 2)$ = $d + a^2(2x + 3) + b^2(-2y + 2)$
- region 2 analogously

Bresenham: Ellipses

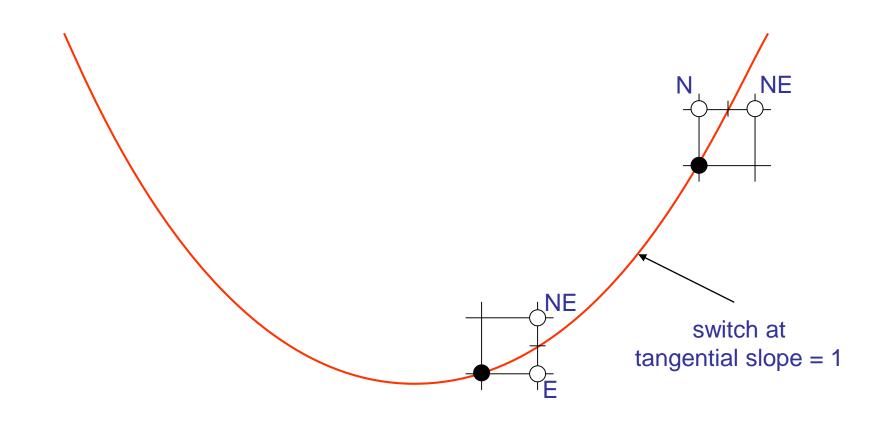
- d_0 based on 1st pixel (0,a) \rightarrow M(1, a-1/2) $d_0 = F(M) = a^2 1^2 + b^2 (a - 1/2)^2 - a^2 b^2$ $= a^2 + a^2 b^2 - ab^2 + 1/4 b^2 - a^2 b^2$ $= a^2 - b^2 (1/4 - a)$
- when changing regions compute new d₀!
- rest similar to circle
- second order differences possible
- use symmetry, draw four pixels at a time
- move ellipse by offsetting drawn pixels

Bresenham: Yet Other Curves

- similar to circle and ellipse
- e.g., parabola $y = x^2$
- derive implicit form $F(x, y) = x^2 - y = 0$
- compute d and d' and derive increments
- use nth order differences for curves of degree n
- e.g., 2^{nd} order difference for $y = x^2$

Bresenham: Regions for Parabolas

change regions if slope crosses 1 or -1



Bresenham Midpoint Algorithms

Summary

- fast and simple because
 - incremental technique using Integer arithmetic
 - avoiding multiplications/divisions
- possible extensions
 - many other curves (implicit equations needed)
 - curves not axis-aligned

Anti-Aliasing

For Lines And other Techniques

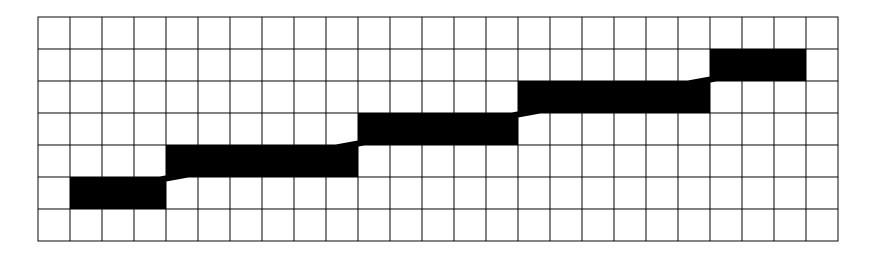
Computer Graphics

Tobias Isenberg

Scan Conversion

Anti-Aliasing for Lines

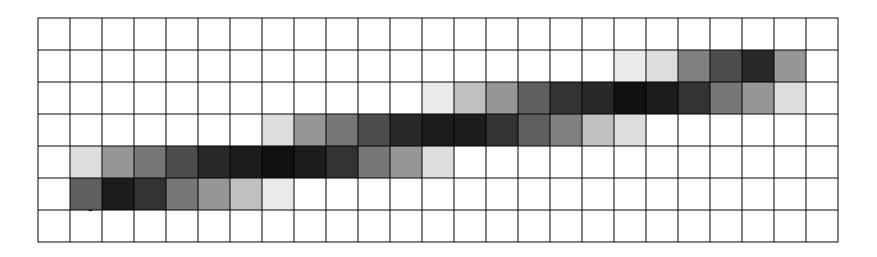
- Bresenham's midpoint algorithm:
 - jaggy shape due to discrete pixels
 - perceived width varies
 - (e.g., diagonal vs. horizontal or vertical)



Computer Graphics

Anti-Aliasing for Lines

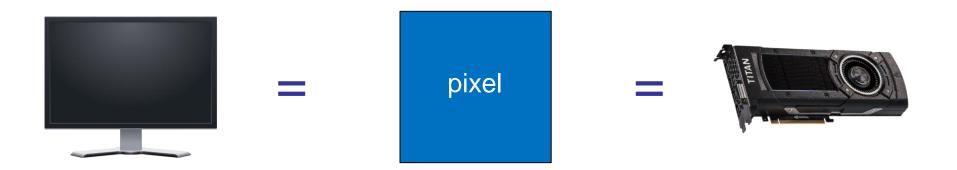
- 1 pixel wide line assumed
 - gray values from pixel coverage
 - derived from midpoint value
- OpenGL: glEnable(GL_LINE_SMOOTH) plus a glHint() call for quality control



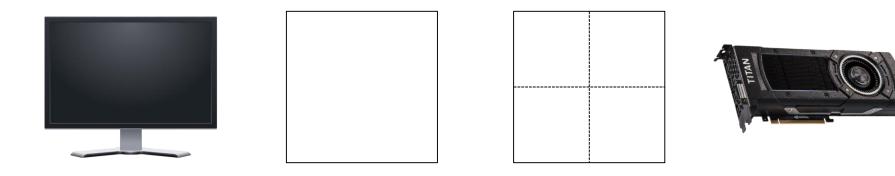
Computer Graphics

Tobias Isenberg

• on the 2D pixel image level (FSAA)

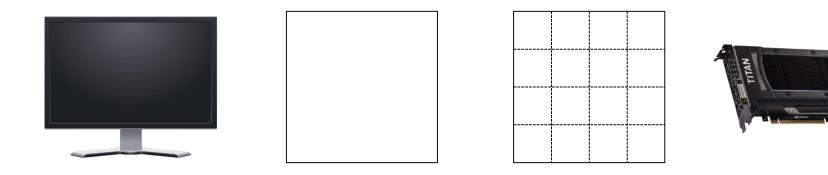


on the 2D pixel image level (FSAA)
 – super-sampling (2×2, 4×4, etc.)



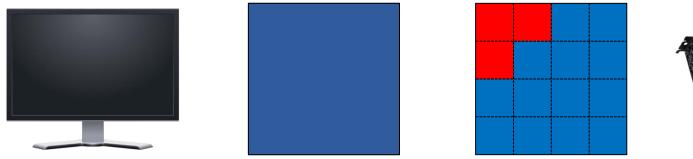
– pixel color = (Σ subpixel colors) / N
– memory & rendering time grow exponentially!

on the 2D pixel image level (FSAA)
 – super-sampling (2×2, 4×4, etc.)



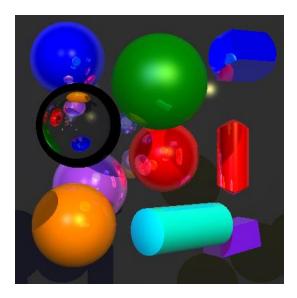
– pixel color = (Σ subpixel colors) / N
– memory & rendering time grow exponentially!

on the 2D pixel image level (FSAA)
 – super-sampling (2×2, 4×4, etc.)

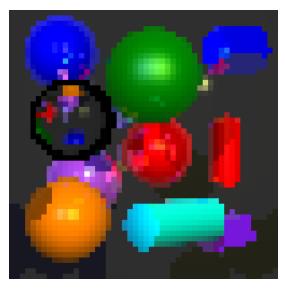


– pixel color = (Σ subpixel colors) / N – memory & rendering time grow exponentially!

- on the 2D pixel image level (FSAA)
 - example for 2×2 and 4×4:



- on the 2D pixel image level (FSAA)
 - example for 2×2 and 4×4:



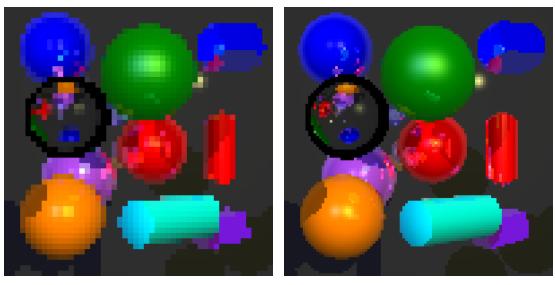
50×50 pixel grid

Computer Graphics

Tobias Isenberg

Scan Conversion

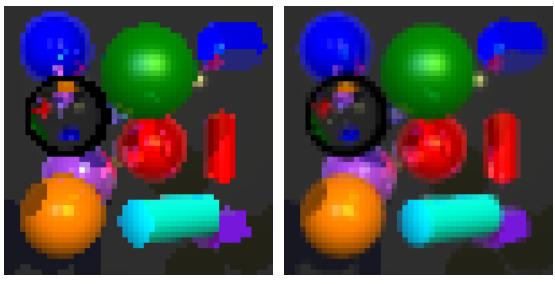
- on the 2D pixel image level (FSAA)
 - example for 2×2 and 4×4:



50×50 pixel grid

2x2 super-sampling

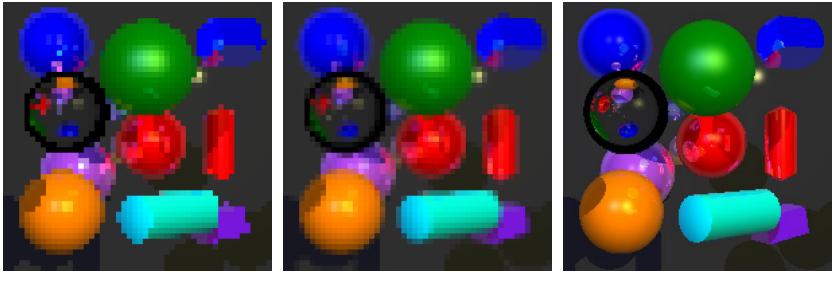
- on the 2D pixel image level (FSAA)
 - example for 2×2 and 4×4:



50×50 pixel grid

2x2 super-sampling

- on the 2D pixel image level (FSAA)
 - example for 2×2 and 4×4:

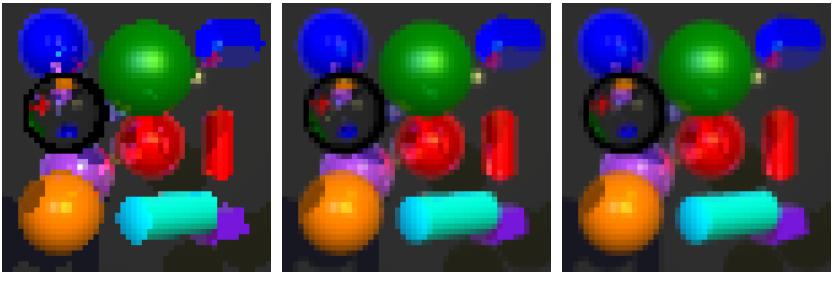


50×50 pixel grid

2x2 super-sampling

4x4 super-sampling

- on the 2D pixel image level (FSAA)
 - example for 2×2 and 4×4:



50×50 pixel grid

2x2 super-sampling

4x4 super-sampling

• example: no AA 2×2, and 4×4

Computer Graphics

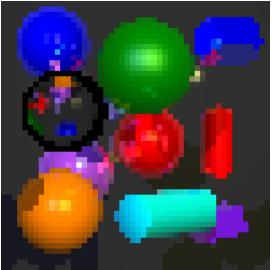
Tobias Isenberg

Scan Conversion

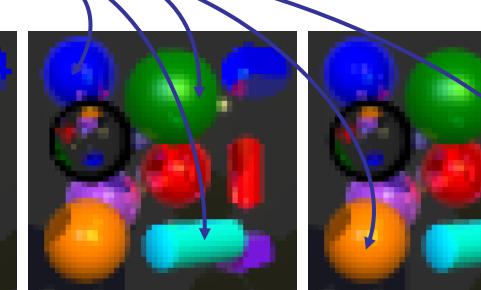
• example: no AA, 2×2, and 4×4

• example: no AA, 2×2, and 4×4

- super-sampling is very expensive
- lots of computations where more detail is not needed



50×50 pixel grid



2x2 super-sampling

4x4 super-sampling

Tobias Isenberg

- less expensive technique: multi-sampling
 - special case (optimization) of super-sampling
 - only z-value (from z-buffer) is truly super-sampled
 - HSR aliasing removed, but not other aliasing

4x4 super-sampling

4x4 multi-sampling

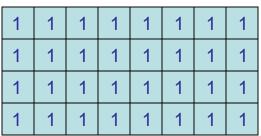
Computer Graphics

Tobias Isenberg

Scan Conversion

- Loren Carpenter (1984)
- first used in Star Trek II's Genesis effect
- goals:
 - similarly effective and simple as *z*-buffer
 - anti-aliasing of image
 - correct handling of transparency
 - only modest performance decrease
- idea:
 - subdivide each pixel using a bit mask

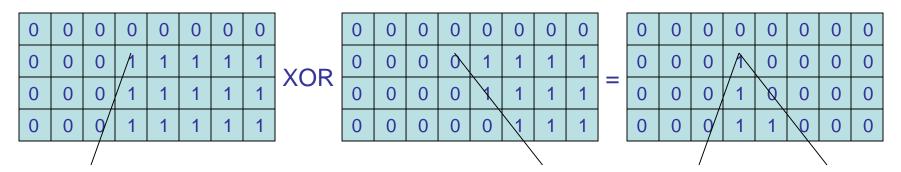
 8x4 bit mask to store sub-pixel fragments



- each regular pixel stores
 a list of fragments that it comprises
- each fragment contains its parameters (area, color, opacity, z_{min} and z_{max}) and a bit mask for its coverage
- final pixel value by considering coverage area and color/transparency values of all fragments using the bit mask

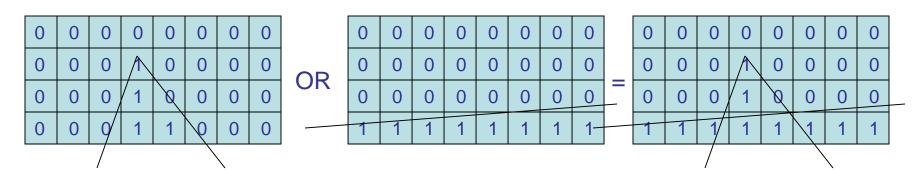
Computer Graphics

- first: computing bit mask for one fragment:
 - polygon clipped to pixel borders \rightarrow fragment
 - bits right of each fragment's edge are set to 1
 - both bit masks are XORed to obtain final bit mask of fragment:



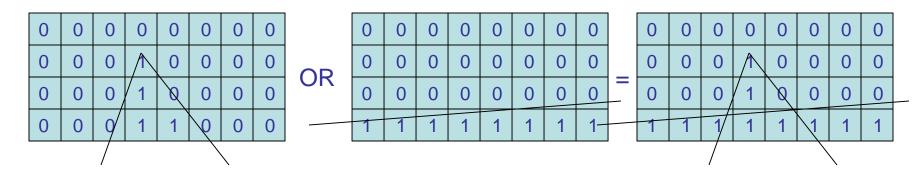
done for all polygons to obtain all fragments

- second: computing a pixel's color by traversing fragment list
 - inside and outside regions
 - processing of fragments front-to-back
 - successive computation of inside mask until pixel covered or fragment list processed
 - pixel color computed w.r.t. to covered region



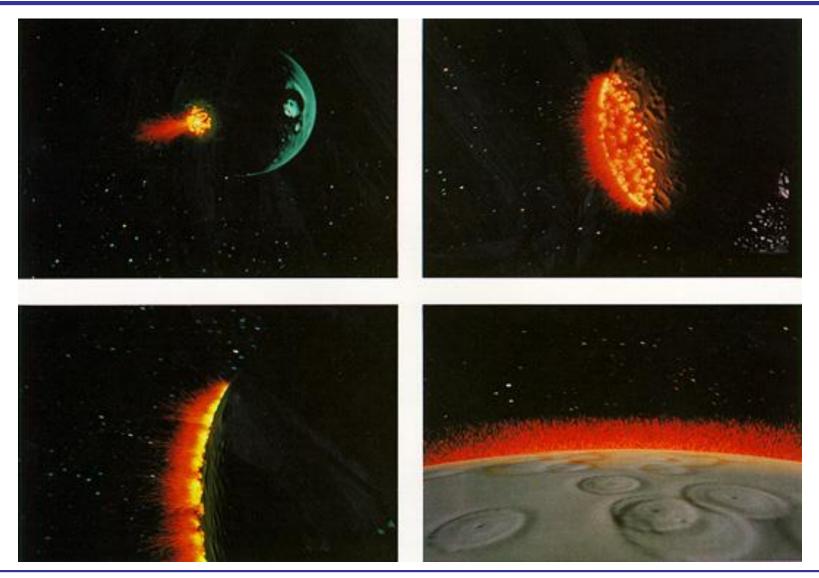
Computer Graphics

- second: computing a pixel's color by traversing fragment list
 - fragments are considered only if overlap mask
 - only contribution from the part that is different from current inside mask (AND operation of new fragment's mask with outside mask)
 - transparency: recursion with transparent part



Computer Graphics

Genesis Effect by ILM/Lucasfilm '82



Computer Graphics

Tobias Isenberg

Scan Conversion

Summary Scan Conversion

- most display are pixel-based
- need pixel representations for mathematical elements: lines, curves, ...
- need to carry out many times
- fastest-possible realization needed, even for today's fast rendering hardware
- Bresenham's midpoint algorithm for line primitives

Summary Scan Conversion

- later also other shapes: triangles, polygons, etc.
- also need to understand perception: aliasing effects and anti-aliasing methods
- dedicated anti-aliasing of lines
- general anti-aliasing through super-sampling (i.e., computation of sub-pixels)
- balance of speed and quality

Summary CG Principles

- fastest & most effective technique desired
 - avoid expensive operations
 - avoid unnecessary operations
 - avoid numerical problems
 - mathematical tricks to get needed information
- quality only to the level really wanted
 never compute more than needed
- often: we trade one thing for another
 - more complex math for fewer final operations
 - more computation for better quality

Computer Graphics

Tobias Isenberg