Computer Graphics

Scan Conversion

Computer Graphics Principles

 fastest-possible & most effective technique
desired, best use of avalilable resources
— guality only to the level really wanted
— often: we trade one thing for another

graphics
memory

[nVidia]

Computer Graphics Tobias Isenberg Scan Conversion

Scan Conversion Introduction

Basic Problem
Line Representations
Naive Algorithm

Computer Graphics Tobias Isenberg Scan Conversion

Raster Displays

Computer Screens

» pixel rasters

66642y Jasn eipadixim

ARAAAAANAAAAANAANANANANAAANANANANA
AAAAANAAAARANAAAAAANAAANAAANANAN
AARMANDAAAAAAAAAAANALAANANANAAANAANN
lalalalalalalalalalala lalalalalalalalalatalata
lalalelalalalalalala AAARAAAAAAAAN
AAAAANANNAAAN AAANANANAAANANNA
lalalalalatlalalalatlale latalalelaletlalalatalala
alalalalalalelalelalalalalalealalalalealatlalealatatle
AANRANAAANAANANAAAAAAAAAAANAAAN
AARAAANAAAARBAAAADBDAAAAAAAAAAANN

AAAANANAAADBDAANANABAAAANAANAANAAANN
AABANAANAAAAAARAAANNAAANAANAAANN

ARARAAAAARAN AAAAA AAAAA
AAAAAAAAAN AAA AAAA
AAAAAAAANN AAA AAAA
AAAAAAAARRAA AAAAA AAAAA
AAAAAAANAINAAAAAAAAAAAAAAA
AAAAAAALAAANAALAANAAANANAN
ralalialalalalalilalatlatlalalalalalalalalatlatatlatlatls

C A~
o 2

4+ c o

7)) 12 o O

— 7p) 7))
v - O X 0 Q@
MﬁlanVue QD yn O
S8 8 .= 5 <@
- (€D) e " o
500 28 Q2w
— N = O =V O O O o

| | | |

Tobias Isenberg Scan Conversion

Computer Graphics

Computer Screens: Raster Displays

* problems

— no such things such as

N 11

“lines”, “circles”, etc.

— need scan conversion

* yields pixel graphic ppnt

* non-raster display or &7

printing technologies

exist as well (plotter)

Computer Graphics Tobias Isenberg Scan Conversion

Scan Conversion

* to scan: get the right pixels, line by line
* |[Ike an iImage being scanned by a scanner

Computer Graphics Tobias Isenberg Scan Conversion

Goal: Draw Graphic Primitives

« graphic primitives: lines, circles, ellipsoids
* requirements: N N N N
o NVERNVARN VAN VAANVARNY,
— efficiency A N N N N
_ ||t NN VAN VAN VAN
quality AN AN AN 9_
» problem: how to T Y L
- — SPAANYIRSY
show lines?
] AN AN AN AN N
 task: determine Y Y Y Y Y

the pixels to draw in black
* first: how to draw straight lines

Computer Graphics Tobias Isenberg Scan Conversion

Scan Conversion: Straight Lines

Computer Graphics Tobias Isenberg Scan Conversion

Lines: Mathematical Descriptions

* Input: Py(Xy, Y1) and P,(X,, Yo)
AX = Xy — Xq. Ay = Y, =Y. M = Ay/AX

« explicit equation: f(x) = mx + n
m = Ay/AX; n: intersection with y-axis

* parametric description: using parameter t
X = X; + 1(X,-X;) = X; + tAX
y =y, +i(yz-y) =y, + Ay

* Implicit equation : F(x,y) =ax+ by +c =0
— advantage for raster conversion

Computer Graphics Tobias Isenberg Scan Conversion

Naive Algorithm

* use explicit equation f(x) = mx + n

and iterate P
* problems: <><ﬁ§><ﬁ
— accuracy
(floating point o5 T
computations) 007 /
/X?/ f‘(
— efficiency ij ’ 7
(multiplications) < /
— rounding 7
— sometimes missing pixels or not defined at al

Computer Graphics Tobias Isenberg Scan Conversion

Implicit Line Equation: Advantage

* not only defines the line but tells us
If a pixel Is on the line or not

e F(X,y)=ax+ by +c

* F(X,Yy) >0 — below the line /A/

* F(x,y) =0 — on the line O

* F(X,y) <0 — above the line

* We can determine on
which side of the (mathematical) line a
(discreet) pixel lies!

Computer Graphics Tobias Isenberg Scan Conversion

Implicit Line Equation: Getting there

* F(x,y)=ax+by+c=0
* determining a, b, (and c)
f(x) = mx + n; m = Ay/AX
y=mx+n
O=mx—-y+n
O=AyX—AXy+n
FOX, V) =AYy X—AXy+n =0
— a=Ay, b=-Ax

(c = n’ can be determined using one point
but we won't really need it)

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham’s Midpoint Algorithm

for Lines

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint Algorithm

* by Jack Bresenham (1965)
for controlling a plotter:

— Integer arithmetic (fast, precise)

— no division, as few
multiplications as possible

Computer Graphics Tobias Isenberg Scan Conversion

Pixel Graphics for Vector Plotters?

stepper
motors
essentially
driven on a
(fine) pixel
raster

mage
by Wikipedia
user Chiffre0O1

B Ve,
S &
< S SR)
v
\\‘)
i) ‘ BY SA

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint Algorithm

* constraints: N

— slope (m)
between 0 and 1
— one octant

— all pixels on
Integer raster

— this also means
rounding start
and end point AN

o |ater:
generalize to other octants

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint Algorithm

* general idea: iterative positioning of pixels
* previous pixel: P

* next pixels: NE or E 1 1 1
» decision depending on _
whether line intersection NE/

-
o/

closer to NE or E Q o
e jterate! /E
¥

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: How to Decide?

* Implicit equation revisited

e easier to determine
whether midpoint (M)

IS above or below
the line —» F(M)

current pixel: P(x, V)
midpoint M(x+1, y+%5)

F(M) = F(x+1,y+%2)

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: How to Decide?

« if F(M) <O
— midpoint above line
— E next pixel 1. 1.
O & O

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: How to Decide?

« IfF(M) <O
— midpoint above line
— E next pixel

If F(M) >0
— midpoint below line

— NE next pixel

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: How to Decide?

 IfF(M) <O
— midpoint above line
— E next pixel

If F(M) >0
— midpoint below line

— NE next pixel

e decision variable:

d = F(M) = F(x+1,y+%)

 BUT: we do not re-compute d each time
 INSTEAD: we compute how it changes!

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Iteration, Case 1

NE is next pixel and M, next midpoint

.« F(M) = Fg(x+1:;), (%/(+1/2)})
= a(x+1l) + b(y+%) + c

COE(M) = F((+2), (y+3) OO0
= F((x+1+1), (y+%2+1))
=a(x+1+1) + b(y +¥2+1) + C

- FM)-F(M)=a+Db y+1
FIM)=F(M)+a+Db

~
\S

CDMZ
« we know: a = Ay; b = -Ax By
F(M;) = F(M) + Ay — AX Y b
d=d+ Ay — AX X X+1 X+2

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Iteration, Case 2

E is next pixel and M, next midpoint

* F(M) =F((xt+1), (y+72))
= a(x+1) + b(y+¥2) + c

C F(M) = F((x2), (4H) OO0
M,
E

= F((x+1+1), (y+%2))
=a(x+1+1) + b(y+%) + C

+ F(M,) - F(M) = a y+1
F(M;) = F(M) + a

« we know: a = Ay;,
F(M,) = F(M) + Ay Y
d=d+ Ay X x+1 X+2
Adg = Ay

~
\S

N
®

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Algorithm

* algorithm overview
— first pixel = line starting point (rounded)
— compute d = F(M)
« select E or NE accordingly
e set pixel
 update d according to choice
* Increment x and iterate
— terminate when x, Is reached

* how to compute d,?

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Computing d,

* line starts at P,(X4, Y,)
— dy, = F(M,)
= F((x;+1), (y1+Y%2))
= a(xq+1) + b(y,;+¥2) + C
=axy ta+by,+%b+c
= F(Xpyq) +a+%b
* P, lies on the line —» F(x;,y,) =0
—>dy=a+%b
» problem: we want Integer values!

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Computing d,

« we are only interested In sign of d!
— multiply everything by 2!
« multiplication without effect on the sign
— d, =2a+b
= 2Ay — AX (a = Ay; b = -Ax)
— Adg = 2Ay
— Ady\g = 2Ay — 2AX

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Extension to All Slopes

* use of symmetry:
— compute line

(-YIX) (YIX)

as before (%) (%)
— changing signs

of x and/or y (%) (%)

before drawing

a pixel (-YI-X) (YI-X)

— switching x and y
— combinations of these

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Extension to All Slopes

« examples for using symmetry
to draw lines with other slopes

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Possible Extensions

» special cases for lines along axes

 looking for patterns in lines (when/why?)

— slope m is always a rational number

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham-Lines: Summary

* Incremental algorithm

 using only Integer arithmetic

 using only additions during Iiterations

* multiplications only for setup

* using symmetry to extend to all octants
« FAST!!

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham’s Midpoint Algorithm

for Circles

Computer Graphics Tobias Isenberg Scan Conversion

Let’s Have More Fun: Circles!

* Input: center point C(X., y.) and radius r
e circle equation: F(X,y) = X% + y? = r?
If C = (0, 0)
* general: F(X,y) = (X-X;)* + (y-yc)* = 1°
* naive approach to draw circle:
solve fory

y = £r% = X

and iterate over x

Computer Graphics Tobias Isenberg Scan Conversion

Problems with Naive Algorithm

e expensive computations
— square roots
— powers of 2 1165 GOt
— inaccurate! i
— slooooow! _{;; Tor
* Incomplete pixels
where [X| = r
* we need something
better! e (ﬁﬁ#§

Scan Conversion

Computer Graphics Tobias Isenberg

Parametric Approach for Circles

* Use parametric equation:
X=rcos¢ and y=rsin ¢
* |terate over ¢
* no problems with holes at |x| ~ r anymore

 put: trigonometric functions expensive to
compute

* still not efficient enough!

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint for Circles

e use same idea as with lines:
iImplicit function and decision point

* F(xy) =x2 +y*—r°

= 0 for
< Q for
> (for

noints on the circle
noints within the circle

noints outside of the circle

(assuming the circle centered at 0,0)

Computer Graphics

Tobias Isenberg Scan Conversion

Bresenham Midpoint for Circles

* use only one octant again

* from pixel P decide
netween E and SE N

* pbased on midpoint’s
nosition to circle O

* goals (again):
— use incremental
algorithm

— avoid divisions
and multiplications

N
J
—O
N
_/

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint for Circles

* midpoint M(x+1,y-%2)
 decision variable

d =F(M) N

= (x+1)? + (y-72)° —r°

 selectEiIfd<0

(circle Is above M)
 select SEIfd>0

(circle on or below M) Q Q Q
* We now need

to compute the increments of d again

N

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint for Circles

Case 1: d < 0O; select E
« d =F(M)
= F((x+1), (y-*2)) o’
= (X+1)=+ (y-Y2)>—r°
« d=FWM,)
= F((x+2), (y-%2) °
= (X+2)2+ (y-Y2)>— 1
= (L2 + (P2 =12 0
+2X + 3
=F(M)+2x+3 — Adg=2x+3

N

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint for Circles

Case 2: d = 0: select SE
« d = F(M)

= F((x+1), (y-%2)) 3\3E A

= (x+1)2+ (y-¥2)2— 12 v Lu
. d' = F(My) N

= F((x+2), (y-) 7 ¢

= (x+2)2+ (y-3/,)2— 13 M,

= (x+1)2 + (y-¥2)2— 12 —O0——0

+2X+3-2y +2
=F(M) + 2x -2y + 5 > Adge = 2(X-y) + 5

e

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint for Circles

Initial value of d

* first pixel P(O, r) — first midpoint M(1, r-%2)
d, = F(1, r-%2) = 12+ (r-%2)°—r> =>/,—r

* d, Is not Integer!

* pbut any d is only ¥4 away from an Integer

« mathematical trick: new decision variable
h:=d-%Y,suchthath,=1—r
MR
|

d d
I I
I I

h h
| |
| |
4

I
-5 -3

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint for Circles

h:=d-1,suchthathy,=1-r
 decisiond <O turnsinto h <-1/,

* but: computation of h uses only Integers

— we don’t care about actual values, we only
care about positive or negative
—>we cantesth<0

— computationally equivalent!

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Circle Symmetry

 similar to line octants:

— changing signs
of x and/ory (+9%)
before drawing pixel

— switching x and y (y,%)
— combinations of these

 set all eight pixels
at the same time

» for circles not centered at (O, 0):
offset pixels

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Circle Summary

« efficient algorithm
— Incremental and Integer arithmetic
— 1/5 of the circle only
« still multiplications needed for increments
— Adg = 2x + 3 and Adge = 2(x-y) + 5
— line algorithm had constant increments
— can we do this here, too?
 the fun goes on: second order differences
— Idea: compute increments of increments
— how: consider two steps in advance

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham’s Midpoint Algorithm

for Circles
(and other quadratic curves):
Second Order Differences

Computer Graphics Tobias Isenberg Scan Conversion

Second Order Differences

Case 1: E was selected
* pixel was (X, y) and becomes (x+1, y)

* Increments change as well
old new
Adg =2x+ 3 Ade =2(x+1) + 3
Adge = 2X — 2y + 5|Adgg = 2(X+1) -2y + 5
» differences of the increments
AEAd: =2
AEAdg = 2

Computer Graphics Tobias Isenberg Scan Conversion

Second Order Differences

Case 2: SE was selected
* pixel was (X, y) and becomes (x+1, y-1)

* Increments change as well

old new

Adg =2x+ 3 Ade =2(x+1) + 3

Adgg = 2X — 2y + 5 Adge = 2(X+1) — 2(y-1) + 5
» differences of the increments

ASEAdD: =2

ASEAdg = 4

Computer Graphics Tobias Isenberg Scan Conversion

Application of 2"d Order Differences

slightly adjusted algorithm:

e setup hy::=dy—-Y,=1-r

* setup Adg ;= 2%y + 3 and Adgg o = 2(X5 - Yg) + 5
. jterate until we reach x = X, _

e ifh<0(i.e., h<-1, 0ord<0): select E as next pixel
— update h with Adg
— update Adg with AFAdE (i.e., Adg += 2)
— update Adge with AEAdge (i.e., Adgg += 2)
e else (h>0;i.e., h>-Y,ord>0): select SE as next pixel
— update h with Adgg
— update Adg with ASEAd (i.e., Adg += 2)
— update Adgg with ASEAdgg (i.e., Adgg +=4)

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham’s Midpoint Algorithm

for other curves

Computer Graphics Tobias Isenberg Scan Conversion

What about ellipses ...?

... or any other curves — the fun never stops

* similar as before:
use simple case of implicit equation
F(X,y) = a’x? + b%y? —ab? =0

« only consider l

axis-aligned ellipses /

. consider 1st quadrant ’
(not octant this time) =

 goal: iIncremental algorithm

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Ellipses

 additional difficulty: 2 regions per quadrant
« change of selection mode during rastering

— first: E or SE
—then: S or SE

* change when slope
changes from > -1
fo<-1

* for first pixel where
a?(x+1) = b?(y-%2)

E
tangential slope = -1
SE
region 1
S SE
region 2

Computer Graphics

Tobias Isenberg

Scan Conversion

Bresenham: Ellipses

Region 1: selection of E or SE M(x+1, y-12)
* d=F(M) = a?(x+1)? + b?(y-Y2)* — a%b?
 selecting E, new midpoint M,(x+2, y-%2)
d’ = a?(x+2)? + b?(y-¥2)? — a2b?
= a%(x+1)% + b?(y-¥2)? — a%b? + a%(2x + 3)
* selecting SE, new midpoint M,(x+2, y-3/,)
d’ = a?(x+2)? + b?(y-3/,)? — a%b?
— a2(x+1)2 + b2(y_1/2)2 _ a2b2
+ a%(2x + 3) + b?(-2y + 2)
=d + a?(2x + 3) + b?(-2y + 2)
* region 2 analogously

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Ellipses

* d, based on 1%t pixel (0,a) > M(1, a-%2)
d, = F(M) = a?1? + b?(a-2)? — a’b?
= a’ + a’b? — ab? + /,b% — a?b?
= a*—b?({/, —a)
* when changing regions compute new d,
* rest similar to circle
» second order differences possible
* use symmetry, draw four pixels at a time

* move ellipse by offsetting drawn pixels

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Yet Other Curves

 similar to circle and ellipse

e e.7., parabolay = x?

 derive implicit form
F(X,y)=x4-y=0

 compute d and d" and
derive increments

e use nt" order differences

for curves of degree n
 e.g., 2" order difference for y = x2

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham: Regions for Parabolas

* change regions if slope crosses 1 or -1

NE

switch at
tangential slope = 1

Computer Graphics Tobias Isenberg Scan Conversion

Bresenham Midpoint Algorithms

Summary

 fast and simple because
— Incremental technique using Integer arithmetic
— avoiding multiplications/divisions

* possible extensions
— many other curves (implicit equations needed)
— curves not axis-aligned

Computer Graphics Tobias Isenberg Scan Conversion

Anti-Aliasing

For Lines
And other Technigues

Computer Graphics Tobias Isenberg Scan Conversion

Anti-Aliasing for Lines

* Bresenham's midpoint algorithm:
— Jaggy shape due to discrete pixels

— perceived width varies
(e.g., diagonal vs. horizontal or vertical)

Computer Graphics Tobias Isenberg Scan Conversion

Anti-Aliasing for Lines

« 1 pixel wide line assumed
— gray values from pixel coverage
— derived from midpoint value

* OpenGL: glEnable (GL LINE SMOOTH)
plus a glHint () call for quality control

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— super-sampling (2x2, 4x4, etc.)

— pixel color = (2 subpixel colors) / N
— memory & rendering time grow exponentially!

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— super-sampling (2x2, 4x4, etc.)

— pixel color = (2 subpixel colors) / N
— memory & rendering time grow exponentially!

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— super-sampling (2x2, 4x4, etc.)

— pixel color = (2 subpixel colors) / N
— memory & rendering time grow exponentially!

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid 2%x2 super-sampling

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid 2%x2 super-sampling

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid 2%2 super-sampling 4x4 super-sampling

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« on the 2D pixel image level (FSAA)
— example for 2x2 and 4x4:

50x50 pixel grid 2%2 super-sampling 4x4 super-sampling

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

» example:[no AA| 2x2, and 4x4

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

« example: no AA, 2x 2 andM

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

* super-sampling Is very expensive

* |ots of computations where more detalil Is
not needed

50x%50 pixel grid 2%2 super-sampling 4x4 super-sampling

Computer Graphics Tobias Isenberg Scan Conversion

Other Techniques for Anti-Aliasing

* |less expensive technique: multi-sampling
— special case (optimization) of super-sampling
— only z-value (from z-buffer) is truly super-sampled
— HSR aliasing removed, but not other aliasing

4x4 super-sampling 4x4 multi-sampling

Computer Graphics Tobias Isenberg Scan Conversion

A-Buffer

* Loren Carpenter (1984)
e first used in Star Trek II's Genesis effect

* goals:
— similarly effective and simple as z-buffer
— anti-aliasing of image
— correct handling of transparency
— only modest performance decrease
* |dea:
— subdivide each pixel using a bit mask

Computer Graphics Tobias Isenberg Scan Conversion

A-Buffer

* 8x4 bit mask to store
sub-pixel fragments

* each regular pixel stores

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

RlR| Rk
RlR| Rk
RlR| Rk
RlR| Rk

a list of fragments that it comprises
* each fragment contains its parameters

(area, color, opacity, z,,and z_...)
and a bit mask for its coverage

* final pixel value by considering coverage
area and color/transparency values of all

fragments using the bit mask

Computer Graphics

Tobias Isenberg

Scan Conversion

A-Buffer

* first: computing bit mask for one fragment:
— polygon clipped to pixel borders — fragment
— bits right of each fragment’'s edge are set to 1

— both bit masks are XORed to obtain
final bit mask of fragment:

olololololo]o]o olololololololo| [o|lo]lololololo]o
olofofafafa]1]2 olofofola|1][2|2| [o]olo|ANo|o]o]o
XOR -
ololof1l1|1]1]1 olojofo[]2|1]|2| |o]o|of1|w]o]o0]oO
olo|o|1]1]|a|1]2 olojofojoNe|1]|2| [o]o|d|2]1]No]o0]0
/ N / N\

 done for all polygons to obtain all fragments

Computer Graphics Tobias Isenberg Scan Conversion

A-Buffer

» second: computing a pixel's color by
traversing fragment list

— Inside and outside regions
— processing of fragments front-to-back

— successive computation of inside mask until
pixel covered or fragment list processed

— pixel color computed w.r.t. to covered region
o|lolofo|o]o]o]o o|lolofo|o|o]o]|o| [o]o|o]o]o|o]o]o0
o|olo[Ao]ofo]o o|olofofo]olofo] [o]o|o|[Alo]o]o]o
OR =
o|lojofi[x]o|o]o o|lojofojojofofol |o]|o|of1[x]olo]o]
olo|o|1]1Nofofo| —rrr(a a]a|a|a| ooy e]1N\]1]2
/ N\ / N\

Computer Graphics Tobias Isenberg Scan Conversion

A-Buffer

* second: computing a pixel's color by
traversing fragment list
— fragments are considered only if overlap mask

— only contribution from the part that is different
from current inside mask (AND operation of
new fragment’'s mask with outside mask)

— transparency: recursion with transparent part
0/j]0|0|0|0O0O|OfO]O 0/]0|0|0|0|0|O0]O 0j]0|0|0|0O|O|O]O
0 OOﬁ\OOOO 0,0/0]0|j0j0jOf0| |0 OOﬂ\OOOO

OR =
o|lojofi[x]o|o]o o|lojofojojofofol |o]|o|of1[x]olo]o]
olo|o|1]1Nofofo| —rrr(a a]a|a|a| ooy e]1N\]1]2

/ N / N

Computer Graphics Tobias Isenberg Scan Conversion

Genesis Effect by ILM/Lucasfilm ’82

Computer Graphics Tobias Isenberg Scan Conversion

Summary Scan Conversion

most display are pixel-based

need pixel representations for
mathematical elements: lines, curves, ...

need to carry out many times

fastest-possible realization needed, even
for today’s fast rendering hardware

Bresenham’s midpoint algorithm
for line primitives

Computer Graphics Tobias Isenberg Scan Conversion

Summary Scan Conversion

* |ater also other shapes:
triangles, polygons, etc.

 also need to understand perception:
aliasing effects and anti-aliasing methods

* dedicated anti-aliasing of lines

» general anti-aliasing through
super-sampling
(1.e., computation of sub-pixels)

« palance of speed and quality

Computer Graphics Tobias Isenberg Scan Conversion

Summary CG Principles

 fastest & most effective technique desired
— avoid expensive operations
— avoid unnecessary operations
— avoid numerical problems
— mathematical tricks to get needed information

 guality only to the level really wanted
— never compute more than needed

 often: we trade one thing for another
— more complex math for fewer final operations
— more computation for better quality

Computer Graphics Tobias Isenberg Scan Conversion

