
A N A B S T R A C T I O N S PA C E F O R F L U I D F L O W V I S U A L I Z AT I O N

matthew van der zwan

Master Thesis

August 2011

Supervisors:
Dr. T. Isenberg
Prof. dr. A.E.P. Veldman
Dr. H. Bekker



Matthew van der Zwan: An abstraction space for fluid flow visualization,
Master Thesis, © August 2011



A B S T R A C T

The increase in computational power available in computers over the
past decades allows researchers to run simulations with an increas-
ing amount of grid points. While this improves the accuracy of the
simulation results, it poses a challenge when visualizing these results.
Traditional flow visualization techniques such as Line Integral Con-
volution (LIC) require a lot of time to generate the corresponding
representation of the flow. Furthermore, visualizing these representa-
tions is also demanding. Therefore, other representations of fluid flow
have been proposed, such as streamlines and flow topology represen-
tations. These methods reduce the amount of data which is visualized
and thereby increase performance, but the resulting visualization
might be more difficult to understand.

In this thesis we describe an abstraction space for fluid flow visu-
alization. The goal of this abstraction space is to allow continuous
transitions between different representations of the flow, where each
representation corresponds to a level of structural abstraction. This
abstraction space enables users to understand the relation between
the different representations. Besides structural abstraction, we also
employ techniques which enhance spatial perception for the different
representations. We discuss how to enable a continuous transition
between different fluid flow representations and how this structural
transition can be combined with the techniques to enhance spatial
perception. Throughout this thesis, we present results created with
our realization of the abstraction space.

iii





C O N T E N T S

1 introduction 1

2 related work 7

2.1 Flow Simulation 7

2.2 Illustrative Rendering and Abstraction 8

2.2.1 Volume visualization 8

2.2.2 Enhancement of spatial perception 10

2.2.3 Abstraction 11

2.3 Flow Visualization 12

2.3.1 Direct flow visualization 13

2.3.2 Dense, texture-based flow visualization 14

2.3.3 Geometric flow visualization 17

2.3.4 Feature-based flow visualization 19

2.4 Summary 20

3 abstraction space 21

3.1 Structural Abstraction 21

3.2 Support of Spatial Perception 24

3.3 Extension(s) 26

3.4 Summary 27

4 realization 29

4.1 Flow representations 29

4.1.1 LIC 29

4.1.2 SeedLIC 31

4.1.3 Streamlines 33

4.1.4 Topology 34

4.2 Structural abstraction 36

4.3 Summary 37

5 results 39

5.1 Visual results 39

5.2 Performance 42

5.3 Informal feedback 43

6 discussion 45

6.1 Conclusion 45

6.2 Future work 45

bibliography 47

v



L I S T O F F I G U R E S

Figure 1 Two examples of flow experiments: (a) airflow
past an airfoil, visualized by releasing smoke,
(b) water through a water way. 1

Figure 2 Two examples of commonly employed flow vi-
sualization techniques: (a) two-dimensional Ac-
celerated Unsteady Flow Line Integral Convolu-
tion, an improvement upon LIC, from Liu and
Moorhead [2005], (b) three-dimensional stream-
lines showing the flow in the vicinity of a block,
from Mattausch et al. [2003]. 2

Figure 3 Two examples using the molecular visualization
abstraction spaces, both from van der Zwan et al.
[2011]: (a) combination of two levels of structural
abstraction, (b) focus and context by combining
different levels of structural abstraction with dif-
ferent visual styles. 3

Figure 4 Two examples using the fluid flow visualiza-
tion abstraction spaces: (a) behaviour in a region
of interest with context, (b) use of spatial per-
ception enhancement techniques to show flow
behaviour in a region of interest. 4

Figure 5 Two examples of volume visualization: (a) Iso-
surface, from Hadwiger et al. [2005]. (b) Max-
imum Intensity Projection, from Parker et al.
[1999]. 9

Figure 6 A comparison of shaded volume visualization
with and without halos, from Bruckner and Gröller
[2007]: (a) Without halos, (b) With halos. 10

Figure 7 A comparison of molecular visualization with (a)
and without (b) ambient occlusion, from Tarini
et al. [2006]. 11

Figure 8 Two forms of abstraction: (a) low-level abstrac-
tion: suggestive contours, from DeCarlo et al.
[2003], (b) high-level abstraction: volume split-
ting, from Islam et al. [2007]. 12

Figure 9 Classification of flow visualization techniques
and their relation to the input data, from Laramee
et al. [2004]. 13

vi



List of Figures vii

Figure 10 Two examples of direct flow visualization: (a)
Flow of air past the wheel housing of a car. Vol-
ume rendering on slices defined by a cubical
measurement probe, with colors indicating the
flow velocity, from Schulz et al. [1999]. (b) Glyph
visualization of a weather dataset. The arrow
in the upper-left corner indicates the studied
direction, from Boring and Pang [1996]. 14

Figure 11 Spot noise, an example of dense, texture-based
flow visualization, from van Wijk [1991]. The
colors show the value of a scalar field, while the
spot noise depicts attributes or interpretations
of the data: (a) Spot type indicates sign, (b) Vari-
ance of texture scaled by norm of the gradient,
(c) Spots stretched according to flow, (d) Spots
stretched according to velocity potential. 15

Figure 12 A visual comparison between (a): spot noise and
(b): LIC, from Laramee et al. [2004]. 16

Figure 13 Two examples of three-dimensional dense, texture-
based flow visualization techniques: (a) seedLIC,
from Helgeland and Andreassen [2004], (b) 3-D
IBFV, from Telea and van Wijk [2003]. 17

Figure 14 Two examples of geometric flow visualization
techniques: (a) Illuminated streamlines with ha-
los, from Mattausch et al. [2003], (b) Smoke sur-
face showing the flow on a block, from von
Funck et al. [2008]. 18

Figure 15 Two examples of topology based flow visual-
ization techniques: (a) Two-dimensional flow
topology where colored spots indicate critical
points and with LIC as context, from Tricoche
et al. [2001], (b) Three-dimensional flow topol-
ogy, with icons indicating critical points and sad-
dle connectors, from Theisel et al. [2003]. 19

Figure 16 Increasing levels of structural abstraction: (a)
traditional (dense) LIC showing the cylinder in
the flow as a black object, (b) seedLIC in region
of interest, (c) streamlines in region of interest,
(d) flow topology with saddle connectors. 22

Figure 17 Detailed transition from streamlines to topology:
(a) streamlines, (b) thinned out streamlines, (c)
topology connectors shown as streamlines, (d)
flow topology with topology icons and topol-
ogy connectors visualized using a dedicated
style. 24



Figure 18 Spatial perception enhancement using: (a) halos
for seedLIC, (b) halos and line attenuation for
streamlines. 25

Figure 19 Spatial perception enhancement using fog for:
(a) dense LIC volume, (b) seedLIC volume. 26

Figure 20 Example of the use of a clip plane revealing the
seedLIC volume inside the dense LIC volume
using color to represent different physical prop-
erties of the flow: (a) colored according to vor-
ticity, (b) colored according to stream magnitude
(velocity). 27

Figure 21 The difference between seedlic without (a) and
with (b) applying an isotropic filter. 32

Figure 22 The result of using different integration direc-
tions when computing the saddle connectors: (a)
Forward integration from the repelling saddle,
(b) Forward integration from the repelling sad-
dle and backward integration from the attracting
saddle. 35

Figure 23 Using color to indicate velocity of the flow in the
cylinder data set represented as: (a) dense LIC
volume, (b) streamlines. 40

Figure 24 Using color to indicate pressure in the cylinder
data set represented as: (a) dense LIC volume,
(b) streamlines. 40

Figure 25 Applying the techniques used to enhance per-
ception of spatial relations to the cylinder data
set represented as: (a) seedLIC volume, (b) flow
topology. 40

Figure 26 Example use case of using the abstraction space
for the block data set: (a) investigate flow be-
haviour around the critical points using the topol-
ogy representation, (b) reduce the level of ab-
straction to show some streamlines as context,
(c) show more streamlines and change colors
from indicating vorticity to velocity, and (d) fi-
nally, show the full seedLIC volume with a part
of the dense LIC volume as context. 41

L I S T O F TA B L E S

Table 1 Frame rates (frames per second) of the data sets
for the indicated representations of the flow. 43

viii



1
I N T R O D U C T I O N

For a long time, researchers have been interested in studying the be-
haviour of fluids around objects. For example, the flow of air around
an airfoil or water in a water way are cases which need to be un-
derstood in order to create the most efficient or sturdy solution. The
oldest way to study these phenomena is by doing experiments. For the
previous examples this can be done in a wind tunnel or using scale
models, as shown in Figure 1a and Figure 1b respectively. However,
these methods require a lot of time and are not always accurate since
some physical phenomena will not appear at the size of the model.

(a) (b)

Figure 1: Two examples of flow experiments: (a) airflow past an airfoil, visu-
alized by releasing smoke, (b) water through a water way.

An alternative approach to gain insight into flow behaviour is by
using the Navier-Stokes equations which describe the motion of fluids
[Batchelor, 1967]. However, Navier-Stokes equations can only be solved
by hand when they are simplified. Therefore, people try to solve
these equations using computers because this approach is faster than
performing experiments and more accurate than both experiments
and manually solving the simplified Navier -Stokes equations.

Solving the Navier-Stokes equations can be done using several
techniques from numerical mathematics, such as finite differences
[Chorin, 1968] or finite elements [Girault and Raviart, 1986]. For all
techniques, an increase in accuracy comes with an increase in compu-
tational complexity. To obtain sufficient resolution of the flow details,
the number of grid points on which the simulation is performed
needs to be increased. The increasing computational power available
in modern computers allows researchers to run simulations with an
increasing amount of grid points, allowing a better insight in, for
instance, turbulent flow.

1



2 introduction

(a) (b)

Figure 2: Two examples of commonly employed flow visualization tech-
niques: (a) two-dimensional Accelerated Unsteady Flow Line Inte-
gral Convolution, an improvement upon LIC, from Liu and Moor-
head [2005], (b) three-dimensional streamlines showing the flow in
the vicinity of a block, from Mattausch et al. [2003].

As a means to study the results of the flow simulations, often images
or movies are created to depict phenomena in the flow that are of
interest to the user. For example, Line Integral Convolution (LIC) by
Cabral and Leedom [1993] can be used to visualize the flow pattern
along a plane as shown in Figure 2a. This image is created using an
improved version of the technique by Liu and Moorhead [2005] where
a noise texture is smeared out according to the direction of the flow,
providing a general overview of the flow behaviour. This technique
has also been applied to three-dimensional datasets, for example, by
Helgeland and Andreassen [2004].

Other techniques that are traditionally used to visualize flow be-
haviour are stream lines [Jobard and Lefer, 1997] and stream surfaces
[Hultquist, 1992]. For these techniques, a seed point or a more complex
object in the case of flow surfaces is inserted into the flow and moved
along the flow. This results in lines or surfaces which show the pattern
of the flow as can be seen in Figure 2b. For small simulations it is also
possible to study flow behaviour by showing the flow’s vector field.

While the increasing resolution of the flow simulations provides a
higher accuracy of the results, the visualization of the data becomes
more complex. For instance, studying the vector field becomes difficult
due to occlusion effects and the vectors on the outer regions occlude
view of the vectors in the inner part of the data. Another factor that
increases when the resolution of the simulation data increases is the
computation time for techniques such as LIC, especially for three-
dimensional data sets. Several techniques have been proposed to
improve LIC, reducing both computational time and occlusion issues



introduction 3

[Helgeland and Andreassen, 2004; Liu and Moorhead, 2005; Stalling
and Hege, 1995].

Another approach to visualizing large data sets is applying ab-
straction, for instance, by only displaying regions that meet a certain
criterion and tracking these over time [Post et al., 2003]. The amount of
data that is displayed can also be reduced by determining the topologi-
cal skeleton of the data set and visualizing this [Helman and Hesselink,
1989, 1991]. Abstraction using flow topology has also been applied to
three-dimensional simulation results by Theisel et al. [2003], who also
introduce the concept of saddle connectors which are streamlines that
connect topologically interesting points in the flow.

Through abstraction, the amount of data to be displayed can be
reduced, reducing occlusion issues and increasing the speed of the
visualization [van der Zwan et al., 2011]. However, when solely using
the abstracted form of the data, the context is lost and the abstracted
form itself might be difficult to understand to inexperienced users.
This is not only the case when applying abstraction to results of a
fluid flow simulation but also for molecular data.

(a) (b)

Figure 3: Two examples using the molecular visualization abstraction spaces,
both from van der Zwan et al. [2011]: (a) combination of two
levels of structural abstraction, (b) focus and context by combining
different levels of structural abstraction with different visual styles.

Previously, we have developed a technique for the interactive control
of abstraction for protein data [van der Zwan et al., 2011]. We defined
an abstraction space which allows continuous transitions through sev-
eral stages of abstraction, going from a completely un-abstracted rep-
resentation to a fully abstracted form. Besides providing continuous
structural abstraction, the abstraction space for molecular visualization
also allows users to change the visual style of the resulting image on
a continuous scale. The visual style is controlled through two axes,
one which adds depth cueing techniques and a second axis which
controls the level of “illustrativeness”. The level of “illustrativeness”
ranges from photorealistic to black-and-white images. Applying the
levels of abstraction locally allows users to create images where focus



4 introduction

is applied to the regions that are of interest, while retaining the rest of
the molecule as context, as shown in Figure 3.

Inspired by the approach used to deal with abstraction for molecular
data, we developed an abstraction space for fluid flow data. Similar
to the abstraction space for molecular visualization, the abstraction
space for fluid flow visualization provides interactive control of the
level of abstraction applied. Besides allowing the user to select a
global level of structural abstraction, we also allow to use a less
abstracted visualization as context as shown in Figure 4a. We also
provide additional techniques to enhance the perception of spatial
relations in the resulting image as demonstrated in Figure 4b.

(a) (b)

Figure 4: Two examples using the fluid flow visualization abstraction spaces:
(a) behaviour in a region of interest with context, (b) use of spatial
perception enhancement techniques to show flow behaviour in a
region of interest.

The remainder of this thesis is structured as follows: First, we discuss
related work in Chapter 2. We start by giving an overview of important
concepts in flow simulation, followed by an overview of abstraction in
illustrative visualization and illustrative rendering techniques which
are relevant for flow visualization. These flow visualization techniques
are the topic of the last section in this chapter.

Chapter 3 describes the abstraction space for fluid visualization.
First, we discuss the benefits of different flow representations. Then,
we discuss how these representations can be combined to create a
continuous transition and how this can be combined with technique
to enhance spatial perception. Finally, we discuss two extensions to
the abstraction space.

We discuss our realization of the abstraction space in Chapter 4

starting with the realization of the different flow representations.
For each representation we discuss how to apply the appropriate
techniques to enhance spatial perception. We conclude this chapter
by describing how we realized the transitions between the different
representations and the integration of the extensions presented in the
previous chapter.



introduction 5

Visual results are presented in Chapter 5 as well as performance
measurements and informal feedback. Finally, we discuss the results
and suggest future work in Chapter 6.





2
R E L AT E D W O R K

This chapter gives an overview of work relevant for our research.
First, we give a summary of some methods from computational fluid
dynamics and flow properties that might help in understanding our
research, in Section 2.1. After that, we discuss relevant illustrative
rendering techniques and the application of abstraction in illustrative
rendering in Section 2.2. Finally, we present an overview of flow
visualization techniques in Section 2.3.

2.1 flow simulation

The Navier-Stokes equations that describe the motion of fluids can only
be solved analytically in special, simplified cases as mentioned before.
Therefore, computers are used to solve the Navier-Stokes equations.
We give a short description of two methods which can be used to solve
the Navier-Stokes equations, finite differences and finite elements.
These two techniques are somewhat different from each other but
have in common that the running time of a simulation increases when
we want to increase the accuracy of the solution.

When applying finite differences to solve a partial differential equa-
tion such as the Navier-Stokes equation, the partial derivatives in the
equation are approximated [Chorin, 1968]. There are many ways in
which theses derivatives can be approximated, with every method
having a different accuracy which increases with the complexity of the
approximation in most cases. The accuracy can also be influenced by
the number of grid cells used for the simulation. Using more grid cells
in the same domain results in smaller grid cells and a higher accuracy
of the approximations and, therefore, provides a higher accuracy of
the solution of the equation. However, increasing the number of grid
cells also increases the time required to find a solution. The simulation
results we use in our reference implementation are all calculated in
this way.

Using finite element to solve a partial differential equation requires
the domain to be divided into small parts called the finite elements on
which the equation is solved [Girault and Raviart, 1986]. These finite el-
ements can be, for example, triangles or quads in the two-dimensional
case or tetrahedra or cubes when trying to find a three-dimensional
solution. In contrast to using finite differences, the equation is first
rewritten into a problem where a function needs to be found that
solve an integral formulation called the weak formulation. Using a de-
composition of the solution into basis functions, the integral can be

7



8 related work

solved for every finite element after which the local solutions can be
combined to form the global solution of the equation. The accuracy
of this solution is influenced by the type of the used basis functions
and increases when more complex basis functions are used, but using
elements of a different size also influences the accuracy. Again, the
time required to find a solution increases with the accuracy of this
solution.

2.2 illustrative rendering and abstraction

Studying the results of a flow simulation directly is difficult for small
domains and impossible for large domains, since it is too hard to
see all the effects by studying the raw data. Therefore, the results are
often visualized using flow visualization techniques as discussed in
Section 2.3. In this section we discuss some more general visualization
techniques which are also used in flow visualization.

Illustrative rendering is a subfield of non-photorealistic rendering
(NPR) which takes inspiration from traditional illustration techniques
[Rautek et al., 2008]. Gooch and Gooch [2001] and Strothotte and
Schlechtweg [2002], for example, give an overview of NPR techniques.

Illustrative rendering covers a wide field of techniques, which can
be focused on creating artistic images [Nienhaus and Döllner, 2004]
or aid the understanding of scientific data such as geometric data
[Patel et al., 2008] or protein data [Weber, 2009; van der Zwan et al.,
2011]. In scientific visualization, illustrative rendering is often used to
enhance the visualization such as providing the users with depth cues
or indicating regions of interest.

2.2.1 Volume visualization

While volume visualization in itself is not an illustrative rendering
technique, it is often combined with these techniques to create images
which show only the important parts of the volume and, therefore,
are not photo-realistic. Traditionally, volume visualization (or volume
rendering) is used most often in medical applications to visualize the
data acquired using, for example, MRI scanners [Zhang et al., 2011].
The goal of volume visualization is to create a two-dimensional image
showing the three-dimensional input volume, or parts of this volume.
For example, Rezk-Salama et al. [1999] allow the investigation of three-
dimensional fluid volumes through the use of clip planes. Hadwiger
et al. [2005] introduced a hardware-accelerated technique to visualize
regions with the same value, called isosurfaces, in the dataset as shown
in Figure 5a.

The volume rendering techniques that are relevant to our work are
the direct volume rendering techniques. These techniques create a two-
dimensional image from three-dimensional data without computing



2.2 illustrative rendering and abstraction 9

(a) (b)

Figure 5: Two examples of volume visualization: (a) Isosurface, from Had-
wiger et al. [2005]. (b) Maximum Intensity Projection, from Parker
et al. [1999].

any intermediate representations [Kaufman and Mueller, 2005], as
opposed to, for instance, surface rendering techniques.

The first volume rendering techniques using graphics hardware
were introduced by Cullip and Neumann [1993] and Cabral et al.
[1994]. Most modern direct volume renderers are based on ray-casting
introduced by Levoy [1988]. With ray-casting, a ray is computed
through the image plane for every pixel on this image plane. If this
ray hits the volume the resulting value of the pixel on the image
plane will be a function of the values of the volume along this ray.
This ray function can be the maximum value encountered along the
ray, resulting in the maximum intensity projection Wallis et al. [1989].
However, the ray function can also simulate the behaviour of a real
light ray travelling through the volume, in which case it is called a
compositing function.

Regardless of the choice of ray function we also need a way to map
the values of the volume data (or intensity) to color and opacity in the
resulting image. The function which does this is called the transfer func-
tion. The final color of the image pixel is determined by a combination
of the ray function and the transfer function. For maximum intensity
projection, the transfer function is applied to the maximum intensity
found by the ray function, while for the compositing ray function the
values of the transfer function corresponding to intensities along the
ray are blended to create the final pixel color.

While the combination of a suitable transfer function and ray func-
tion can give a good view of the relevant data inside the volume,
the resulting images do not show the shape of the three-dimensional
objects in the volume. Therefore, global shading models are commonly
applied. Most of these global shading models work by approximating
the local gradient and use this in a traditional shading model such as



10 related work

Phong shading [Phong, 1975]. Figure 5a and Figure 6a show examples
of shaded volume rendering. For the current research, we do not use a
global shading model because they are computationally expensive and
we can apply some of the computationally less-expensive methods
presented next.

(a) (b)

Figure 6: A comparison of shaded volume visualization with and without
halos, from Bruckner and Gröller [2007]: (a) Without halos, (b) With
halos.

2.2.2 Enhancement of spatial perception

For the volume rendering techniques discussed in the previous section,
the use of global shading models might help convey the shape of
objects, but spatial relations are not always clear. Bruckner and Gröller
[2007] propose the use of flexible volumetric halos to enhance perception
of spatial relations in volume rendered images. These volumetric halos
are inspired by halos used in traditional illustration such as medical
illustration but can also be applied to technical images as shown in
Figure 6b. The halos in this example emphasize the shape and depth
relations of individual parts because the halos block the objects further
away from the viewer.

Halos are not only used for enhancing depth perception in volume
visualization. Since their introduction to computer graphics by Appel
et al. [1979], halos have been applied in different application domains.
For example, halos are used to enhance perception of spatial relations
for line drawings [Elber, 1995; Everts et al., 2009] or the spatial relations
of atoms in molecular visualization [Tarini et al., 2006; van der Zwan
et al., 2011].

Besides using halos, Tarini et al. [2006] and van der Zwan et al.
[2011] use shadows to enhance spatial perception. These shadows are
calculated using ambient occlusion, a technique used to approximate
the amount of ambient light reaching a point on the object [Kajiya,
1986]. Ambient occlusion is calculated by determining how much light



2.2 illustrative rendering and abstraction 11

(a) (b)

Figure 7: A comparison of molecular visualization with (a) and without (b)
ambient occlusion, from Tarini et al. [2006].

from the environment (ambient light) can reach each point on the
surface. This results in dark regions which are hard to reach for the
light and lighter regions, enhancing spatial perception as shown in
Figure 7. Although ambient occlusion is computationally expansive
to compute, it can be precomputed for static geometry. Since the
continuous transition between representations results in changing
geometry, we would have to compute the ambient occlusion again for
each level of structural abstraction so we chose not to use ambient
occlusion.

2.2.3 Abstraction

In their paper about illustrative visualization, Rautek et al. [2008]
distinguish two forms of abstraction: low-level and high-level abstrac-
tions. Low-level abstractions focus on how to render features of interest,
without changing geometry. For example, the suggestive contours
introduced by DeCarlo et al. [2003] which convey the shape of an
object by highlighting contours as shown in Figure 8a.

High-level abstractions deal with what to render [Rautek et al., 2008],
some parts of the data might be removed from the visualization to
reveal other, more important parts. In contrast to low-level abstractions,
high-level abstractions might visualize parts of the data in different
positions then they are originally. For example, the volume splitting
technique described by Islam et al. [2007] is able to move certain
parts of volume data to reveal important information which would
otherwise be occluded.

Van der Zwan et al. [2011] combine both low-level and high-level
abstraction in their abstraction space for molecular visualization. This
abstraction space has three axes which control how the molecule is



12 related work

(a) (b)

Figure 8: Two forms of abstraction: (a) low-level abstraction: suggestive con-
tours, from DeCarlo et al. [2003], (b) high-level abstraction: volume
splitting, from Islam et al. [2007].

visualized. The first axis controls the level of structural abstraction
and determines which atoms and bonds in the molecule are shown
and what they look like being an example of high-level abstraction.
The second axis controls the level of enhancement of structural percep-
tion: dependent on this level, ambient occlusion and halos are added,
providing depth cues to the user. Since the second axis deals mostly
with how things are drawn it is an example of low-level abstraction,
just as the third axis which allows to choose a drawing style, rang-
ing from photo-realistic to black-and-white images. This abstraction
space for molecular visualization was the inspiration for the fluid flow
abstraction space created during this research.

2.3 flow visualization

An important distinction in flow visualization methods is the time-
dependence of the input data. Methods that use time-independent
data are in general able to achieve a higher frame rate due to the fact
that less data transfer is needed, whereas time-dependent data needs
to be updated (at least partially) for each time step. Laramee et al.
[2004] refer to techniques using huge time-dependent (also referred to
as unsteady) data as one of the areas in flow visualization that need
additional work.

In their paper describing the state of the art in flow visualization,
Laramee et al. [2004] divide the field of flow visualization into four
categories, depending on the different needs of the users:

• Direct flow visualization: The visualization is based directly on the
raw flow data.



2.3 flow visualization 13

• Dense, texture-based flow visualization: A texture is computed from
the flow data, which is then used to create a dense representation
of the flow, similar to direct flow visualization.

• Geometric flow visualization: Geometric objects, for example, lines
or surfaces, are used to represent properties of the flow.

• Feature-based flow visualization: Special features are extracted from
the flow data and used to visualize the flow.

Figure 9 gives a graphical overview of this classification. In the
following sections, we will discuss each of these categories in detail as
well as give examples for all categories.

Figure 9: Classification of flow visualization techniques and their relation to
the input data, from Laramee et al. [2004].

2.3.1 Direct flow visualization

Flow visualization techniques that make direct use of the flow data
are referred to as direct flow visualization techniques. For these tech-
niques, no preprocessing is performed on the data before visualization,
where techniques from the other categories all require some form of
preprocessing.

According to Hauser et al. [2003], an intuitive and commonly used
direct flow visualization technique is color coding. Using color coding,
important flow properties such as flow direction, flow magnitude,
or pressure are mapped to colors. For two-dimensional data, this
results in an easy to understand visualization of the data. However,
when displaying all available data for three-dimensional data, the
information on the outside of the flow domain will occlude the inner
part of the domain. Schulz et al. [1999] solve this problem by allowing
the user to place a measurement probe in the region of interest. This
measurement probe can either be a slice or a cube, resulting in a
two-dimensional or three-dimensional color coded representation of
the local flow, respectively, as shown in Figure 10a.



14 related work

(a) (b)

Figure 10: Two examples of direct flow visualization: (a) Flow of air past
the wheel housing of a car. Volume rendering on slices defined
by a cubical measurement probe, with colors indicating the flow
velocity, from Schulz et al. [1999]. (b) Glyph visualization of a
weather dataset. The arrow in the upper-left corner indicates the
studied direction, from Boring and Pang [1996].

Another method to visualize vector fields is displaying the vectors
using glyphs such as arrows or spheres [Hauser et al., 2003] where
properties of the flow can be mapped to properties of the glyphs. For
example, when using arrows, these can point in the direction of the
flow and their length can be proportional to the magnitude of the flow
at that point. This technique can also be combined with color coding
of the glyphs to visualize more flow properties such as pressure or
vorticity. Similar to the color coding method, glyphs also suffer from
occlusion issues. This problem has been addressed, for example, by
Boring and Pang [1996] by highlighting vectors based on directional
information. The user selects a direction and vectors that point in a
different direction will appear dimmer, placing the focus on vectors
that point in the selected direction as shown in Figure 10b. In this
research we do not use direct flow visualization, although we use color
to show properties of the flow in combination with other visualization
techniques. The vector highlighting technique by Boring and Pang
[1996] was the inspiration to use fog as depth-cueing technique.

2.3.2 Dense, texture-based flow visualization

Dense, texture-based flow visualization techniques derive a texture
from the flow data, which is used to visualize flow behaviour. One
of the first dense, texture-based flow visualization techniques is spot
noise, introduced by van Wijk [1991]. The name of the technique
comes from the spot primitives which are at its core and the fact
that these spots are randomly distributed over the domain. Similar to
the glyphs mentioned before, properties of the spots can be derived
from properties of the flow. Depending on the choice of spot and the



2.3 flow visualization 15

mapping of flow properties to spot properties, different aspects of the
flow can be studied on a global level as shown in Figure 11.

Figure 11: Spot noise, an example of dense, texture-based flow visualization,
from van Wijk [1991]. The colors show the value of a scalar field,
while the spot noise depicts attributes or interpretations of the
data: (a) Spot type indicates sign, (b) Variance of texture scaled
by norm of the gradient, (c) Spots stretched according to flow, (d)
Spots stretched according to velocity potential.

Images similar to Figure 11c can be created using a technique devel-
oped by Cabral and Leedom [1993] called line integral convolution (LIC).
The LIC method uses a vector field and a white noise texture as input.
For every pixel, a local forward and backward streamline is derived
from the vector field. The intensity of a pixel is calculated by integrat-
ing over this streamline while using an appropriate kernel. Several
enhancements have been introduced to this basic LIC algorithm. For
example, Forssell and Cohen [1995] extend the method to curvilinear
surfaces and time-dependent flow and use texture mapping hardware
to run it in real time.

While the images created with spot noise and LIC might look
similar at first glance, there are, however, differences between the
results created with these two methods as shown in Figure 12. The
image generated with spot noise provides better understanding of the
flow magnitude because this directly affects the stretching of the spots,
resulting in high contrast between images with slow and fast flow. The
basic LIC technique, on the other hand, does not show magnitude since
only the (normalized) direction of the flow is used during computation.
However, LIC has the advantage that the direction of flow is also
visible for regions with low velocity. Since we can use different cues to
show the magnitude of the flow, for instance using color we choose to



16 related work

use the LIC technique as it is harder to encode direction information
in the spot noise representation.

(a) (b)

Figure 12: A visual comparison between (a): spot noise and (b): LIC, from
Laramee et al. [2004].

One of the major disadvantages of the original LIC method is the
computational time needed to create the resulting texture, especially
when applied to three-dimensional data sets. Therefore, Stalling and
Hege [1995] propose a different way of computing the LIC texture,
which they call fast-LIC. They report their method to be an order of
magnitude faster than previous methods [Stalling and Hege, 1995].
This reducing of the size of the visualized volume is a form of abstrac-
tion which is made necessary by the occlusion issues that occur for
non-abstracted representations.

Applying LIC to three-dimensional data sets leads to occlusion
issues when using a dense input texture. Interrante and Grosch [1998]
propose to use a sparse input texture which only has points in the
chosen region of interest (ROI). Using a sparse input texture results
in an image where we can also look inside the LIC volume, instead
of resulting in a solid LIC image where only the outer surface is
visible. They add halos to the resulting image by performing LIC
simultaneously over two input textures, using the second texture
for halo computation. Helgeland and Andreassen [2004] also use
sparse input textures but change the transfer function of the volume
visualization to generate limb-darkening halos as shown in Figure 13a.
Since changing the transfer function is less computationally expensive
then computing a second LIC volume and some of the depth cueing
techniques mentioned before such as ambient occlusion we use these
limb-darkening halos for our technique.

Another dense, texture-based flow visualization technique is Image
Based Flow Visualization (IBFV), introduced by van Wijk [2002]. This
technique has been designed to make use of graphical hardware and
works by warping the image of the previous frame according to the



2.3 flow visualization 17

flow field while blending in a new white noise image. Streamlines or
particles can be simulated using dye injection, also for time-dependent
data. While the original method uses two-dimensional data, IBFV has
been extended to two-dimensional surfaces in three-dimensional data
by van Wijk [2003] and to complete three-dimensional data sets by
Telea and van Wijk [2003]. An example of three-dimensional IBFV can
be seen in Figure 13b. We chose not to use IBFV for our abstraction
space because other techniques such as seed LIC provide a better
perception of the spatial relations when combined with depth-cueing
techniques such as the limb-darkening halos.

(a) (b)

Figure 13: Two examples of three-dimensional dense, texture-based flow visu-
alization techniques: (a) seedLIC, from Helgeland and Andreassen
[2004], (b) 3-D IBFV, from Telea and van Wijk [2003].

2.3.3 Geometric flow visualization

McLoughlin et al. [2010] give a comprehensive overview of geomet-
ric flow visualization techniques. As the name suggests, geometric
methods compute geometric objects which represent flow behaviour,
commonly as preprocessing step. These computation start from a set
of seeding points from which streamlines are computed. The com-
puted streamlines can then be visualized directly or used to create
other geometric objects such as stream surfaces, for example.

The placing of seed points in the domain is very important since
incorrectly placed seedpoints can lead to visual clutter and occlusion
problems [McLoughlin et al., 2010]. Jobard and Lefer [1997] propose
an image-based technique to solve the clutter problem for streamlines
in two-dimensional images. Their method allows the user to select an
appropriate maximum distance between streamlines which is used as
a threshold for the insertion of new streamlines. The new streamline is
only inserted if the distance to all its neighbours is above this threshold.



18 related work

Jobard and Lefer [2001] also have extended their technique to support
varying levels of line density, allowing the line density to be influenced
by flow properties such as the velocity.

Mattausch et al. [2003] have expanded the streamline placement
techniques by Jobard and Lefer [1997, 2001] to three-dimensional data
sets. Their technique also allows the interactive selection of streamline
density, either by the user or based on flow properties. They use the
illuminated streamlines technique, introduced by Zöckler et al. [1996],
to render the streamlines. This technique allows the generation of
streamlines which are drawn as lines to be shaded as if they were
tubes, aiding users in better perceiving depth relations between the
streamlines. Mattausch et al. [2003] expand the illuminated streamlines
technique with halos to further enhance depth perception, as shown
in Figure 14a. We use streamlines as one of representation of the fluid
flow in our abstraction space, but do not use the global illumination.

(a) (b)

Figure 14: Two examples of geometric flow visualization techniques: (a) Illu-
minated streamlines with halos, from Mattausch et al. [2003], (b)
Smoke surface showing the flow on a block, from von Funck et al.
[2008].

Another commonly used geometric primitive used to visualize flow
is the stream surface [Hultquist, 1992]. Stream surfaces are computed
by seeding a line into the flow and integrating this line according to the
flow. This new front line is then connected to the previous front line,
resulting in a surface showing flow behaviour after several integration
steps. During the integration, the streamlines that together form the
stream surface might converge or diverge. Hultquist [1992] proposes
a technique for dynamic removal and insertion of particles to keep
the density of triangles in the surfaces fairly constant. Von Funck et al.
[2008] propose a technique for visualizing time dependent data called
smoke surfaces which does not require point insertion and removing.
They avoid these expansive operations by using the distance to other
points to guide opacity instead of triggering an insertion or deletion
of a new point. An image created using their technique is shown in
Figure 14b. Integration of streamlines is used in the computation of



2.3 flow visualization 19

a representation used in our abstraction space and there we use the
techniques for dynamic removal and insertion of particles proposed
by Hultquist [1992].

2.3.4 Feature-based flow visualization

Similar to geometric flow visualization techniques, feature-based flow
visualization techniques apply pre-processing to the data prior to
visualization. In this pre-processing step, relevant features in the data
are extracted. Features are (physical) phenomena or structures which
are present in the data set [Post et al., 2003]. For example, these features
can be critical points [Helman and Hesselink, 1989] or vortices [Banks
and Singer, 1994] in the flow.

The features extracted from the flow data can be used as the basis for
an abstracted visualization of this data, or enhance the visualization
by making users aware of the detected features. An example of the
latter is presented by Sadarjoen and Post [1999], whose technique is
capable of detecting vortices and uses icons to indicate these vortices
during visualization.

Helman and Hesselink [1989, 1991] introduced the idea of using
vector field topology for fluid flow visualization. They presented a
technique to extract critical points and proposed icons to visualize
the different types of critical points in two-dimensional flows. Tric-
oche et al. [2001] propose a technique to simplify the topology by
removing pairs of critical points according to a user-controlled rele-
vance meausure. When combined with LIC to show the context as
in Figure 15a, this provides a visualization of the topology without
visual clutter and a better understanding of the flow then using only
LIC. The goal of our research is to provide an intuitive way to com-
bine these different representations and thereby enhance the user’s
understanding of the relation between the representations.

(a) (b)

Figure 15: Two examples of topology based flow visualization techniques:
(a) Two-dimensional flow topology where colored spots indicate
critical points and with LIC as context, from Tricoche et al. [2001],
(b) Three-dimensional flow topology, with icons indicating critical
points and saddle connectors, from Theisel et al. [2003].



20 related work

Topology detection has also been applied to three-dimensional data
sets, for example by Helman and Hesselink [1991] and Globus et al.
[1991]. While detection of the topology in three-dimensional data is
a straightforward generalization of the detection in two-dimensional
data, visualization is more complicated; only showing the icons for
the critical points does not show any context or relation between
these points. On the other hand, visualizing the surfaces that separate
the regions of uniform behaviour corresponding to the critical points
(seperation surfaces) reintroduce visual clutters, even when applying
transparency [Theisel et al., 2003].

Theisel et al. [2003] propose a technique which shows the connection
between the critical points without suffering from visual clutter or
occlusion issues. Instead of showing the full seperation surfaces, they
only show the streamlines which are the intersections of these sepera-
tion surfaces. They call these streamlines saddle connectors. We use this
technique because we think it can be very useful to researchers since
it shows the most important features of the flow and their relation.

2.4 summary

In this chapter we gave an overview of different flow visualization
techniques and tried to describe the upsides and downsides such as
visual quality, depth perception and computation time of using the
different techniques. We also described some general visualization
techniques that are also applied in flow visualization. Combining the
different flow visualization techniques presented in this chapter allows
researchers to study the flow at different levels of abstraction with
each level providing a different insight. Therefore, we describe how
these techniques can be combined in the next chapter.



3
A B S T R A C T I O N S PA C E

The goal of this research is to develop an abstraction space for fluid
flow visualization. This abstraction space for flow visualization has two
axes, the first axis controls structural abstraction and the second one
controls the level of support of spatial perception. The structural abstrac-
tion axis controls which flow visualization technique is used based on
the position along the axis. We describe how we chose the structural
representations and their order along the axis in Section 3.1. Support
of spatial perception is the topic of Section 3.2. Extensions to the global
abstraction space described in these sections are given in Section 3.3.

3.1 structural abstraction

The goal of the structural abstraction axis is to enable the user to
identify and study the important phenomena in the flow by allowing
continuous transition through different representations of the flow.
To provide information about the flow in every point of the domain
there should be at least one representation which covers the entire
domain. Therefore, one of the representation we use is the traditional
LIC visualization of the entire domain (dense LIC volume) introduced
by Cabral and Leedom [1993] as shown in Figure 16a. Combined with
clip planes, this representation can be used to study local behaviour
in detail [Rezk-Salama et al., 1999].

However, often researchers are only interested in the behaviour of
the flow in specific regions such as, for example, regions with a lot of
turbulence. Because we do not want the researchers to visually identi-
fying such regions in a representation which shows the entire domain
(such as the dense LIC volume), we wish to provide a representation
that is capable of showing the behaviour in such a region of interest.
Therefore, we include the sparse seedLIC visualization presented by
Helgeland and Andreassen [2004] on our abstraction axis and allow
users to specify a region of interest based on physical properties of the
flow. Figure 16b shows an example of a region of interest visualized
using seedLIC.

Although the seedLIC representation allows the user to focus on a
region of interest, the resulting image still contains a lot of information
in which the user should manually identify the important informa-
tion. Therefore, we want to provide a representation of the flow that
highlights the points in the flow where special behaviour occurs and
the relations between these points, so the user can understand how
the flow behaves around these points. To this end, we chose to use the

21



22 abstraction space

flow topology visualization with topology connectors introduced by
Theisel et al. [2003] as shown in Figure 16d.

To enable transitions along the axis of structural abstraction, we
need to determine in what order the representations mentioned above
should be placed on the structural abstraction axis. Increasing the
amount of structural abstraction should lead to more abstracted vi-
sualizations, allowing the user to study only the most important
parts of the flow. Therefore, we order the representations according
to increasing abstraction, i. e. first the dense LIC representation, then
seedLIC and finally topology. To enable seamless transition from the
volumetric seedLIC representation to the geometric topology repre-
sentation, we add a fourth representation: streamlines (Figure 16c).
The streamlines show the same region of interest as the seedLIC rep-
resentation because we use the streamlines which were computed
during the seedLIC computation, but they can be combined with
different depth cueing techniques as detailed below. Furthermore, the
transition from streamlines to topology is possible because both are
geometric representations and the topology connectors are a special
case of streamlines.

(a) (b)

(c) (d)

Figure 16: Increasing levels of structural abstraction: (a) traditional (dense)
LIC showing the cylinder in the flow as a black object, (b) seedLIC
in region of interest, (c) streamlines in region of interest, (d) flow
topology with saddle connectors.

We have introduced the different representations we want to use
and discussed an order along the structural abstraction axis which
allow intuitive selection of the required level of structural abstraction.
Now we can describe how the transitions between the different rep-
resentations can be made. The first transition is the transition from



3.1 structural abstraction 23

the traditional LIC representation, which covers the entire domain, to-
wards the sparse seedLIC representation. We can make this transition
by increasing the transparency of the LIC volume as we move along
the structural abstraction axis, thereby revealing the seedLIC volume
inside. This is possible because both the dense LIC volume as the
seedLIC volume are computed using the same basic principle but with
different seed points. For the dense LIC volume, the entire domain
is covered, in contrast to the seedLIC volume which covers only a
small part of the domain. However, the method used to determine the
intensity of a voxel is the same for both LIC representations, the only
difference being the amount of voxels which are covered.

The next transition, from the seedLIC volume to the streamlines
works identical to the first transition; the opacity of the seedLIC vol-
ume is decreased until we only see the streamlines inside the volume.
As mentioned when introducing the streamline representation, these
streamlines are used in the calculation of the seedLIC volume. There-
fore, the streamlines are positioned in the centers of the seedLIC
bundles. When the opacity of the seedLIC volume is reduced, the
streamlines inside the volume become visible.

The transition from streamlines to flow topology is more involved,
because we need to transition from a large collection of streamlines to
a small set of topology connectors and topology icons, using different
visual styles at both ends of the transition. Therefore, this transition
is performed in two stages. During the first stage, streamlines are
removed until only the streamlines that are part of the flow topology,
as saddle connectors, remain. Figures 17a-c provide a visual example
of this transition. The removal of streamlines is based on a measure of
importance. We chose the importance function to be the distance to the
nearest saddle connector, because we found out during testing that this
gives a transition which we experience as fluent and pleasant. When
the level of structural abstraction increases, an importance threshold
is calculated and all streamlines with an importance less than this
threshold are omitted.This importance function first removes stream-
lines which are furthest away from the saddle connectors, removing
the closer streamlines as well when structural abstraction increases.
Other importance function are possible as well, for example, we might
change our distance-based importance function to do precisely the
opposite. Then, first the streamlines close to the saddle connectors
would be removed, placing focus on these connectors, while using
the streamlines further away as context. While this might not lead to
the continuous transition we want to create, this allows researchers to
study the relation between around critical points and behavior further
away.

During the second stage of the transition from streamlines to flow
topology we change the appearance of the saddle connectors while
simultaneously introducing the icons which identify the critical points.



24 abstraction space

(a) (b)

(c) (d)

Figure 17: Detailed transition from streamlines to topology: (a) streamlines,
(b) thinned out streamlines, (c) topology connectors shown as
streamlines, (d) flow topology with topology icons and topology
connectors visualized using a dedicated style.

At the beginning of this stage, the saddle connectors still look like
streamlines (Figure 17c), but they should look like the saddle connec-
tors introduced by Theisel et al. [2003] (Figure 17d). Therefore, when
the structural abstraction increases, the saddle connectors should be-
come wider and orient themselves correctly. At the same time, the
icons used to identify the critical points are blended into the visual-
ization. This is done by adding them as small icons at the start of
this stage and gradually increasing their size such that they have the
proper size at the end of this stage. This makes sure the last transition
results in a proper visualization of the topology.

3.2 support of spatial perception

In visualizations of both volume and line data, the spatial relations
between objects are not always clear, as explained in Section 2.2.2.
Because these spatial relations are important when trying to under-
stand the behaviour of the flow, we provide the user the possibility to
enhance spatial perception. Common approaches to enhance spatial
perception for volume or line visualization are halos [Bruckner and
Gröller, 2007; Everts et al., 2009], global shading models [Tarini et al.,
2006], or object attenuation [Everts et al., 2009; van der Zwan et al.,
2011].



3.2 support of spatial perception 25

When deciding which techniques should be used to enhance spatial
perception we have to take into account that these techniques should
not cause any visual discontinuities or artefacts when moving along
the structural abstraction axis. Furthermore, we want to have well-
defined behaviour everywhere along the spatial perception axis for all
stages of structural abstraction, i. e., we should try to avoid regions on
the spatial perception axis where no enhancement of spatial perception
occurs for any stage of structural abstraction.

(a) (b)

Figure 18: Spatial perception enhancement using: (a) halos for seedLIC,
(b) halos and line attenuation for streamlines.

Halos can be applied to the objects in all stages of structural ab-
straction, except for the traditional LIC volume, since this block fills
the entire domain, the addition of halos would not add to support of
spatial enhancement in this case. Therefore, we ignore the halos for the
traditional LIC volume. This means, though, that care should be taken
to avoid visual artefacts when transitioning from the LIC volume to
seedLIC, to which halos can be applied as described by Helgeland
and Andreassen [2004] and Interrante and Grosch [1998]. Figure 18

shows the result of applying halos to the seedLIC and streamlines
representations.

The second technique we use is object attenuation, the further an
object is from the viewer, the smaller it is rendered. This techniques can
be applied for line data such as the streamlines (Figure 18b) and saddle
connectors and also for the topology icons. However, this technique
can not be applied to the tubes of the seedLIC bundles, because their
width is determined by the size of the voxels used during computation;
to change the width of the seedLIC tubes, we should recompute the
seedLIC volume with appropriate voxel sizes. Therefore, we should
recompute the seedLIC volume with different voxels sizes whenever
the distance to the viewer changes.

For the LIC volume, object attenuation is not a useful technique
either, since there is only one object. Therefore, we combine object
attenuation with an adaptation of the technique proposed by Boring
and Pang [1996] used to highlight vector glyphs. Instead of changing
the appearance based on a similarity in direction we use the distance
to the viewer as input and make objects which are further away appear
dimmer resembling fog as shown in Figure 19.



26 abstraction space

(a) (b)

Figure 19: Spatial perception enhancement using fog for: (a) dense LIC vol-
ume, (b) seedLIC volume.

We structure the spatial perception techniques along the axis by first
applying object attenuation and fog of distance, increasing the effect
as the level of spatial perception increases. Along the second part of
the axis we apply halos with increasing width. These halos are applied
last, because they occlude parts of the images which are further away,
making the effects of the other techniques redundant when applied
first. Although this means we have a region on the spatial perception
axis which does not influence the dense LIC representation, this is
not a problem because this does not give visual artefacts and only
influences the completely un-abstracted dense LIC volume. When
combined with seedLIC, we see the halos being added to the seedLIC
tubes as shown in Figure 18a.

3.3 extension(s)

The abstraction space as described above allows transitions in struc-
ture and appearance on a global scale, i. e., for the entire data set.
As an extension, we implemented (axis-aligned) clip planes for the
traditional LIC volume and let these clip planes interact with the level
of structural abstraction. Traditional clip planes allow the inspection
of information inside the LIC volume by omitting everything on one
side of the plane. Our clip plane does omit all information from the
traditional LIC volume, but shows the seedLIC structure instead. By
moving the clip plane, the user can study the behaviour in a spe-
cific region, visualized by the seedLIC structure while preserving the
traditional LIC volume as context, as shown in Figure 20.

When studying the result of flow simulation, researchers are often
interested in the magnitude of some physical properties. For example,
when designing a wing for a new airplane, the pressure on this wing is
of great importance. Therefore, we allow the visualization of physical



3.4 summary 27

(a) (b)

Figure 20: Example of the use of a clip plane revealing the seedLIC volume
inside the dense LIC volume using color to represent different
physical properties of the flow: (a) colored according to vorticity,
(b) colored according to stream magnitude (velocity).

properties in the flow using colors. The user can select between flow
magnitude, pressure, and vorticity because these properties are either
readily available in the data or can be computed from the input data in
a straight-forward manner. Vorticity can be used to determine regions
with a lot turbulence which are often of interest to researchers. Based
on the magnitude of the user-selected flow property we apply colors to
the visualization going from red in regions with minimal magnitude
to yellow in regions with maximum magnitude. Figure 20 gives an
example of the use of color to indicate physical properties of the flow.

3.4 summary

Previously, we discussed different techniques which can be used to
visualize fluid flow. In this chapter we showed how a selection of
these techniques can be used to show the behaviour of the flow at
different levels of abstraction and how the different representations
can be combined to allow continuous transitions between the differ-
ent representations. We also discussed which spatial enhancement
techniques introduced in Chapter 2 can be applied to the chosen flow
representations and how these techniques can be combined along an
independent spatial perception axis.





4
R E A L I Z AT I O N

In this chapter we discuss the important aspects of our realization of
the abstraction space for fluid flow visualization presented in Chap-
ter 3. We start with discussing the implementation of the different
flow representations in Section 4.1. After that, we describe how we
realized the transition between these different flow representations in
Section 4.2.

4.1 flow representations

The different flow representations which form the basis of our abstrac-
tion space as discussed in Chapter 3 are diverse in their computation
and visualization, but also share some features. For example, both
LIC and seedLIC result in a volumetric texture which we visualize
using the same volume visualization technique and a nearly identi-
cal transfer function. This transfer function takes the user-selected
flow property into account when determining the color of a point in
the flow volume as described in Section 3.3 and is also applied in a
modified form to the streamlines.

4.1.1 LIC

The original LIC algorithm as introduced by Cabral and Leedom [1993]
calculates how the values of a random input texture are moved along
the flow, resulting in a texture showing the global flow behaviour. For
every voxel x0 in this texture, the intensity I is given by the convolution
integral

I(x0) =

t0+L∫
t0−L

k(t− t0)T(s(t))dt

Here, s(t) is the parametrization of the streamline going through
x0 = s(t0), which is used to find the values along the streamline of
the input texture T . The function k is called the filter kernel of length
2L. The kernel can be used, for example, to reduce the influence of
points further along the streamline, focusing on local effects.

Computing the convolution integral and the needed streamlines
for every voxel in the output texture reveals the behaviour of the
flow in the entire flow domain. However, the computed streamlines
might cover multiple voxels. Therefore, we use the improved fast-LIC
algorithm introduced by Stalling and Hege [1995]. Instead of going

29



30 realization

through all voxels and computing the streamline and corresponding
convolution integral, fast-LIC updates the intensity value of all voxels
which contain part of the streamline. This reduces the amount of
streamline calculations, since it is no longer necessary to compute a
streamline for every voxel. When a voxel is covered by a sufficient
number of streamlines used in the convolution computation for other
voxels, no convolution computation is performed for this voxel, further
reducing the number of streamline computations.

Besides reducing the number of streamline computations, Stalling
and Hege [1995] observe that, for a constant kernel k, the convolution
integral of a point x1 on the streamline close to x0 differs only by two
small correction terms. If we take t1 such that s(t1) = x1 and define
∆t := t1 − t0 as the distance between t1 and t0 (as before, s(t0) = x0)
then:

I(x1) = k

t1+L∫
t1−L

T(s(t))dt

= k

t0+∆t+L∫
t0+∆t−L

T(s(t))dt

= −k

t0+∆t−L∫
t0−L

T(s(t))dt+ k

t0+L∫
t0−L

T(s(t))dt

+ k

t0+∆t+L∫
t0+L

T(s(t))dt

= I(x0) + k

t0+∆t+L∫
t0+L

T(s(t))dt−

t0+∆t−L∫
t0−L

T(s(t))dt


For every consecutive point x on the streamline, we can use this
relation to determine the intensity I(x) instead of computing the
complete convolution integral. Without affecting the visual quality,
the integrals can be approximated using Riemann sums [Stalling and
Hege, 1995], leading to the following equation for the next point along
a discrete streamline representation:

I(xm+1) = I(xm) + k [T(xm+1+L) − T(xm−L)]

where xi is the position of the i-th point along the discrete streamline
and L the length of the discrete filter kernel k. A similar relation can
be constructed for points that lie in backward direction along the
streamline from the seed point.

The resulting three-dimensional LIC volume is visualized using the
hardware-accelerated ray-casting technique mentioned in Section 2.2.1
which we implemented in shaders. Since we deal with a solid block,



4.1 flow representations 31

only the boundaries of the volume which are defined by the clip planes
are visible. While a more simple volume rendering technique would
have sufficed, we use ray-casting to allow the transition to the next
abstraction stage (sparse seedLIC) as described in Section 4.2.

For the volume visualization we use a multi-dimensional transfer
function [Kniss et al., 2001] which takes the position in the flow domain
and distance to the viewer as parameters besides the intensity of the
rendered texture. We use the HSV color space to construct the final
color from the input parameters. The intensity of the input texture
controls the value or intensity of the color, revealing the structure of
the LIC volume and, therefore, flow behaviour through differences in
intensity. The saturation of the color is used to give an extra indication
of the structure to the user and to allow for a more fluent transition
to the seedLIC volume, where the structure of the volume is less
well-defined. The parts of the volume close to the viewer are assigned
the highest saturation which decreases when this distance increases,
resulting in bright colors close to the viewer and dimmer colors when
moving further away.

To allow coloring according to a property of the flow, we store these
properties in the different channels of a three-dimensional texture.
When the user selects a property to use for coloring, this is mapped to
the corresponding channel in the texture. Based on the position in the
flow domain, the value of the selected flow property can be read from
this texture and is used to set the hue of the color, ranging from red
for low values to yellow for the highest value occuring in the flow for
the selected property.

4.1.2 SeedLIC

SeedLIC, the second stage of structural abstraction, provides a more
sparse view of the data than the LIC representation used as the un-
abstracted representation of the data. The sparsity of this representa-
tion is a result of using a sparse input texture for the LIC calculation
[Interrante and Grosch, 1998; Helgeland and Andreassen, 2004]. This
sparse input texture is created by randomly distributing points in a
user-defined region of interest based, for example, on the velocity or
vorticity magnitude of the flow.

Fast-LIC can be used to compute a sparse LIC visualization based
on a sparse input texture as proposed by Interrante and Grosch [1998].
However, Helgeland and Andreassen [2004] remark that during the
computation a lot of convolution integrals are computed unnecessarily.
Since a sparse input texture contains a lot of regions where all voxels
are zero-valued the value of the convolution integral over a streamline
in such a region is zero. Therefore, Helgeland and Andreassen [2004]
only compute the convolution integral for streamlines calculated from
the non-zero points in the input texture which are, therefore, referred



32 realization

to as seed points. The computation of the intensity uses the same
convolution integral as the fast-LIC technique, but is computed only
for the seed points and points along the streamlines through the seed
points.

(a) (b)

Figure 21: The difference between seedlic without (a) and with (b) applying
an isotropic filter.

Restricting the convolution integral computation to streamlines
through the seed points results in a sparse representation of the re-
gion of interest, which can be computed much faster than the dense
fast-LIC representation [Helgeland and Andreassen, 2004]. However,
seedLIC only updates those voxels which are covered by streamlines
originating from the seed points, in contrast to traditional LIC methods
which calculate the intensity for every voxel in the volume. Because
voxels next to a streamline are not updated when using seedLIC,
aliasing effects can occur, causing the edges of the volume to look
jagged as shown in Figure 21a. We use an isotropic filter to smear
out the intensity values in the volume and create a smooth results
as proposed by Helgeland and Andreassen [2004] and shown in Fig-
ure 21b. Smearing out the texture increases the width of the tubes in
the texture, which could lead to multiple tubes merging together to
one tube which makes it more difficult to see the behaviour of the
individual streamlines which are the basis of these tubes.

However, the visual merging of tubes can be reduced by ensuring
that there is a minimum distance between the seed points. Increasing
the distance between seed points reduces the chance of streamlines
getting too close together and, therefore, the chance that the tubes
will merge. Our seed point placement algorithm ensures that no seed
points are closer together than the minimum distance by checking if
there are points within this distance before inserting a seed point into
the input texture.

We visualize the resulting seedLIC texture using ray-casting as men-
tioned before and extend the transfer function used for the dense LIC
visualization to work for non-dense data and allow the limb darkening
halos proposed by Helgeland and Andreassen [2004]. The first exten-
sion to the transfer function is that we also include an opacity value,
which we set to zero for regions in the texture where the intensity is



4.1 flow representations 33

close to zero. When combined with a compositing ray function this
allows us to see through the empty regions in the texture and reveal
those parts of the data that the user identified as relevant. The second
modification to the transfer function is that we no longer directly use
the intensity of the texture to determine the color value, but apply limb
darkening. We do this by introducing a user-defined threshold, which
is influenced by the required level of spatial perception enhancement,
allowing us to have bigger halos for higher levels of spatial perception
enhancement. When the intensity of the texture is above the threshold,
we set the color value to one, else we interpolate linearly between
zero and one based on the texture intensity. Doing the same for the
alpha value results in the limb darkening effect and provides a better
perception of the spatial relations in the resulting image [Helgeland
and Andreassen, 2004].

4.1.3 Streamlines

The streamlines used in the streamline representation are calculated
when performing the seedLIC computation. The streamlines computa-
tion is started at the seed points and uses a fourth-order Runge-Kutta
integration scheme to compute the streamline in both forward and
backward direction as proposed by Stalling and Hege [1995] for their
fast-LIC technique. The streamline computation is stopped when the
length of the streamline has reached a user-defined value, when mov-
ing outside the flow domain, or when moving into the geometry which
might be present in the simulation data.

A last reason to abort streamline integration is when the flow ve-
locity at the current position is so small that, after several integration
steps, we will still be at almost the same position. This situation can
result in (nearly) infinite loops while waiting for the streamline to
reach the user defined length. Therefore, we keep track of the distance
between the last calculated points. When the distance covered dur-
ing the last integration step is less than a pre-defined threshold, the
integration is aborted.

As proposed by Everts et al. [2009] for their depth-dependent halos
technique, we use view-aligned triangle strips to render the stream-
lines. Rendering the streamlines as triangle strips instead of lines has
benefits besides allowing the use of depth-dependent halos. We can
realize line attenuation by changing the width of the triangle strips
based on the distance to the viewer [Everts et al., 2009], which is not
possible using line primitives.

To optimize performance, we use a geometry shader to perform
the conversion from lines to triangle strips, reducing the amount of
data that has to be send to the GPU. The geometry shader is also
responsible for calculating the correct width of the triangle strips
based on the required level of enhancement of spatial perception;



34 realization

for line attenuation the width of the strips is reduced based on the
distance to the viewer and for the addition of halos, the strips are
widened to create a region on the strips on which to draw the halos.
Furthermore, we use a modified version of the dense LIC transfer
function to determine the color of the streamlines, based only on the
position in the flow domain and distance to the viewer for depth-
cueing.

4.1.4 Topology

The basis of our topology representation are the first-order critical
points in the flow. Critical points are points p where the velocity field
~v is zero [Helman and Hesselink, 1989]. When using data resulting
from numerical simulation such as the data we use, points where the
velocity field is close to zero can also be critical points due to round
off effects. Furthermore, a critical point with non-zero Jacobian ∇~v(p)
is called a first-order critical point.

Theisel et al. [2003] describe how three-dimensional first-order crit-
ical points can be classified based on an analysis of the eigenvalues
and eigenvectors of the Jacobian ∇~v(p). We call the eigenvalues of the
Jacobian λ1, λ2, and λ3 and order them according to their real parts,
i. e. Re(λ1) 6 Re(λ2) 6 Re(λ3). Now we can distinguish the following
classes of critical points based on the real parts of the eigenvalues:

• Source: 0 < Re(λ1) 6 Re(λ2) 6 Re(λ3)

• Repelling saddle: Re(λ1) < 0 < Re(λ2) 6 Re(λ3)

• Attracting saddle: Re(λ1) 6 Re(λ2) < 0 < Re(λ3)

• Sink: Re(λ1) 6 Re(λ2) 6 Re(λ3) < 0

Depending on the presence or absence of imaginary parts in the
eigenvalues, we can distinguish two subclasses for each of these classes.
When there are no imaginary parts in the eigenvalues for a source,
we call it a repelling node while we call points for which imaginary
parts are present in the eigenvalues repelling foci. For the repelling
focus there is a plane defined by an eigenvector of the transposed
Jacobian matrix on which the point behaves as a two-dimensional
repelling focus, while the repelling node shows the same behaviour
for all planes. A similar subdivision can be made for sinks, where the
points without imaginary parts in the eigenvalues are called attracting
nodes and the subclass with imaginary parts in the eigenvalues are
called attracting foci.

A repelling saddle has a plane where repelling behaviour occurs and
a direction along which the flow moves towards the repelling saddle
point. The behaviour over the plane is determined by the imaginary
parts of the eigenvalues. When there are no imaginary parts, the flow



4.1 flow representations 35

over the plane behaves as a two-dimensional repelling node. Therefore,
these critical points are called repelling node saddle points. When there
are imaginary parts present, the flow along the plane behaves as a
two-dimensional repelling focus and the point is called a repelling focus
saddle. Again, we can apply a similar subdivision for the attracting
saddles, where we call the subclass without imaginary parts attracting
node saddles and the other subclass attracting focus saddles.

The saddle points are used to compute the saddle connectors which
are defined as the intersection of the separation surfaces of a repelling
and an attracting saddle point [Theisel et al., 2003]. Because we are
only interested in the intersection of separation surfaces, we do not
have to store the entire surface. Instead, we store the front line of
the separation surface at the current and the previous integration
step. To begin computation we insert a seeding front line around
the saddle point. Each integration step we advance the front line
by applying forth-order Runge-Kutta integration in the appropriate
direction; forward integration when the originating saddle point is a
repelling saddle, backward integration otherwise.

After we advance the front lines of the surfaces for the current time-
step, we check for intersection of the separation surfaces. Therefore,
we perform a triangulation on the front lines and check the resulting
triangles for intersections with the line segments of the other front
lines. We only check for intersections between separation surfaces
originating from opposing saddle points. For example, one originat-
ing from a repelling node saddle and the other originating from an
attracting focus saddle.

(a) (b)

Figure 22: The result of using different integration directions when com-
puting the saddle connectors: (a) Forward integration from the
repelling saddle, (b) Forward integration from the repelling saddle
and backward integration from the attracting saddle.

When an intersection between separation surfaces has been found,
we know there is a saddle connector between the corresponding
saddle points. To find this saddle connector, we have to integrate in
the correct direction from both saddle connectors for the same number
of integration steps it took to find the intersection. Therefore, we



36 realization

store a parameter for each point on the front line that allows us to
reconstruct the position from which it was seeded. This way, when we
find an intersection point, we can compute the saddle connector by
starting the computation at the corresponding seeding points.

Because of the underlying physical properties of the flow, the di-
rection in which we perform the integration of the saddle connectors
is important. Because we applied backward integration to compute
one of the separation surfaces and forward integration to compute
the other one, we cannot assume that starting from the seed point for
the attracting surface and applying backward integration will result
in a point close to the repelling surface. Figure 22 shows the result of
using different integration directions to compute the saddle connec-
tors starting in different points and already demonstrates that both
integration methods do not give us the intended results as explained
in more detail in Chapter 5.

The visualization of the topology consists of two parts, first we draw
icons to show the detected saddle points. These icons are drawn on
a plane given by the appropriate eigenvectors for the type of critical
points as described by Theisel et al. [2003]. We use a texture to show the
difference between node and focus saddle points, while we use color
to distinguish between repelling (red) and attracting (blue) saddle
points. The saddle connectors are drawn as triangle strips similar to
the streamlines, to allow both halos and line attenuation.

4.2 structural abstraction

Now we have discussed how we compute and visualize the different
flow representations, we will present how we make the transition
between them. The first transition is from traditional dense LIC to
seedLIC, which are both volumetric representations of the data. As
described above, we use ray-casting to visualize the textures created
using these techniques. Instead of using ray-casting to create an image
of the two texture and trying to blend between these images, we
modified the ray-casting algorithm to blend between the two textures
in one pass.

Our ray-casting algorithm results in the correct visualization based
on the given level of structural abstraction as well as the clip planes
described in Section 3.3. To do this, we modified the ray-casting
shader used to visualize the seedLIC texture to keep also track of
the projection of the LIC texture. We implement the clip planes by
modifying this projection of the LIC texture. Instead of using the value
on the border of the LIC volume as defined by the clip planes, we
keep moving along the ray until we hit the boundary of the flow
domain. While we do this, we blend in the values for the seedLIC
volume, revealing the seedLIC structure in the region defined by the
clip planes.



4.3 summary 37

The final projection of the two LIC textures is a linear combination
of the two projections based on the level of structural abstraction.
When no structural abstraction is applied, we use only the dense LIC
projection while we use the seedLIC projection at the other end of
this transition. When defining the transfer function for our seedLIC
visualization, we made sure the empty regions in the seedLIC texture
are transparent. The combination of that transfer function with this
linear interpolation of the different volume projections results in the
dense LIC representation fading away and revealing the seedLIC rep-
resentation inside when we increase the level of structural abstraction.

We achieve the transition from the seedLIC representation to the
streamlines by reducing the opacity of the seedLIC representation
while we are already rendering the streamlines. By choosing a line
width less then the width of the tubes in the seedLIC visualization, the
resulting transition looks like the outer parts of the tubes disappear
while the streamlines which are inside remain.

The next transition, the thinning out of the streamlines can also
be applied in a straight forward manner. The importance measure
used to determine which streamlines we render is computed in a
pre-processing step. Therefore, during this transition we only need to
determine the importance threshold based on the level of structural
abstraction and render the streamlines which have an importance
higher than the threshold.

During the last transition we introduce the topology icons and
change the appearance of the topology connectors from the style used
for the streamlines to a dedicated topology connector style. For the
icons we can simply increase the size of the planes on which we
render them, starting very small and having the correct size when we
reach full structural abstraction. The change of style for the topology
connectors is achieved by applying a linear interpolation between the
two styles.

4.3 summary

In this chapter we have discussed our realization of the different flow
representations used for our abstraction space as described in Chap-
ter 3. We gave details regarding the computation and visualization
of all realizations. Besides describing the realization of the individual
parts, we also presented how we realized the transitions between the
different representations.





5
R E S U LT S

In this chapter we will present results created with our realization
of the abstraction space for fluid flow visualization. First, we present
example images in Section 5.1, followed by a short discussion on the
performance of the program in Section 5.2. Finally, we report informal
feedback on our technique in Section 5.3.

We have used two different data sets to create images and measure
performance. The first data set show the flow around a cylinder and
is computed on a grid with dimensions 100× 60× 20. The streamline
representation for this data set consists of 953 streamlines and the
topology representation contains 75 critical points and 11 connectors.
The second data set depicts flow around a block and has dimensions
80 × 40 × 40. For this data set there are 1271 streamlines, 30 criti-
cal points and 17 saddle connectors. We created the dense LIC and
seedLIC texture at 4 times the dimension of the input data, applying
tri-linear interpolation to determine the relevant flow properties on
this finer grid to generate images with more detail.

5.1 visual results

The images in Chapter 3 which show the transitions along the differ-
ent axes of the abstraction space are all created with our reference
implementation. In these images we show the cylinder data set and
use color to indicate the amount of vorticity as described in Section 3.3.
The user can also choose to use the color to indicate the velocity as
shown in Figure 23 or use color to indicate the pressure as demon-
strated in Figure 24. While the pressure coloring does not add much
information for the used data set because it is only different where
the flow hits the cylinder. However, the velocity coloring adds extra
information for both the dense LIC volume as well as the streamlines.
Without coloring, these representations only show the direction of
movement but with the addition of colors indicating velocity we can
also see the magnitude of this movement.

Figures 23 and 24 also show the use of the techniques used to en-
hance spatial perception for both the dense LIC and the streamline
representation. In these images we can see the effect of the halos and
attenuation for the streamlines and, to a lesser extent, the effect of
fog for both representation. Figure 25 shows the use of the techniques
to enhance spatial perception for both the seedLIC and the topology
representation of the cylinder data set. The effect of the limb darkening
halos for the seedLIC volume shown in Figure 25a is very different

39



40 results

(a) (b)

Figure 23: Using color to indicate velocity of the flow in the cylinder data set
represented as: (a) dense LIC volume, (b) streamlines.

(a) (b)

Figure 24: Using color to indicate pressure in the cylinder data set repre-
sented as: (a) dense LIC volume, (b) streamlines.

from the effect of applying the depth-dependent halos as shown in, for
example, Figure 24b. The limb darkening halos emphasize single tubes
in the seedLIC volume, while the depth-dependent halos show which
streamlines are close together besides emphasizing the streamlines
closer to the viewer. This shows that the use of streamlines as repre-
sentation on our structural abstraction axis is not only appropriate to
make the transition from seedLIC to the topology but can enable the
user to discover other aspects of the flow through the use of different
techniques to enhance spatial perception.

(a) (b)

Figure 25: Applying the techniques used to enhance perception of spatial re-
lations to the cylinder data set represented as: (a) seedLIC volume,
(b) flow topology.



5.1 visual results 41

The different representations of the flow are placed along the struc-
tural abstraction axis in the natural order of increasing level of struc-
tural abstraction, with the most detailed representation at the begin-
ning and the most abstract representation at the end. However, for
researchers studying a data set the critical points are points where the
flow shows special behaviour and identify regions that might need fur-
ther study. Therefore, a researcher using the abstraction space might
start with the topology representation to identify these interesting
regions, in this case the flow in the environment of the block (Fig-
ure 26a). Then, the level of abstraction can be decreased a bit adding
more streamlines which show the behaviour in this region as in Fig-
ure 26b. Now it might be interesting to see how the flow behaviour
in this small region around the block influences the behaviour of the
flow further away from the block, so the level of structural abstraction
is decreased further to show more streamlines. At the same time, the
coloring is changed to show the velocity and see if this is influenced
by the behaviour of the flow around the block (Figure 26c). Finally,
the user switches to using seedLIC to show more information of the
flow around the block, while at the same time using the clip planes to
show the seedLIC volume close to the border of the domain as shown
in Figure 26d. The seedLIC volume can now be used, for example, to
study if the velocity at this edge of the domain is influenced by the
behaviour of the flow around the block.

(a) (b)

(c) (d)

Figure 26: Example use case of using the abstraction space for the block data
set: (a) investigate flow behaviour around the critical points using
the topology representation, (b) reduce the level of abstraction
to show some streamlines as context, (c) show more streamlines
and change colors from indicating vorticity to velocity, and (d)
finally, show the full seedLIC volume with a part of the dense LIC
volume as context.



42 results

In the previous example, the last image (Figure 26d) shows an im-
portant aspect of flow visualization in general. The seedLIC algorithm
also generated tubes near the edge of the domain when using vor-
ticity to determine the region of interest. The vorticity in this region
is high due to the choice of boundary conditions for the simulation
and would be different for another choice of boundary conditions.
Using this simulation data for further computation while assuming
the vorticity is only high for the flow around the block could result
in strange results which might be unexplainable until the first data
set is studied in detail. This example shows that flow visualization
should not only be applied to visualize the result but also to verify
the outcome of the simulation, preferably during an early stage of the
simulation so errors can be corrected without having wasted valuable
computation time.

As already indicated in Section 4.1.4, the computation of the saddle
connectors in our realization of the topology representation does not
give the intended results as presented by Theisel et al. [2003]. One
of the problems is indicated in Figure 25b where we can see that the
connectors start at a critical point, but then move to regions where
no critical points are present. The saddle connectors in Figure 26a
are computed using the second method proposed in Section 4.1.4,
but this results in two smooth parts of a connector starting at the
respective critical points being connected by a straight line. However,
for the definition and effectiveness of the abstraction space this does
not matter because the incorrect connectors can still be used as basis
for the thinning. Since the creation of this abstraction space is the
focus of this research and a continuous transition from streamlines
to topology is possible using these incorrect saddle connectors, the
correction of the computation is left for further research. This research
should preferably be conducted in cooperation with numerical math-
ematicians since the incorrect connectors is probably caused by the
used numerical integration methods and the way these methods are
applied.

5.2 performance

We tested the performance of our realization by creating a test program
which rotates the data around and changes the level of enhancement
of spatial perception. Table 1 gives the frame rates achieved for the
different representations. When moving between representations, the
frame rate did not drop further than the minimum frame rate of
the corresponding representations. Therefore, all representations and
combinations along the structural abstraction axis can be rendered
interactively also when combined with the techniques for the enhance-
ment of spatial perception.



5.3 informal feedback 43

dense lic seedlic streamlines topology

Cylinder 8 – 13 6 – 9 17 – 20 180 – 260

Block 9 – 15 8 – 11 42 – 46 205 – 290

Table 1: Frame rates (frames per second) of the data sets for the indicated
representations of the flow.

The performance measurements are performed on a 2.4 GHz Intel
Core 2 Duo with 2 GB memory and an NVIDIA GeForce 320M with
256 MB video memory running on Mac OS X 10.6.8. The window size
was approximately 1000× 750 pixels of which approximately 75% was
covered for the dense LIC visualization.

In Table 1 we can clearly see the benefits of applying abstraction
with respect to performance since the frame rates increase with the
level of structural abstraction, except for the seedLIC volume. Since
we render the full dense LIC volume without using clip planes for the
performance measurement of the dense LIC rendering we only need
to determine the visualization of the boundary of the dense LIC. How-
ever, for the seedLIC representation the algorithm needs to perform
more computations since there is no clear surface resulting in a lower
frame rate for seedLIC compared to the dense LIC representation.

5.3 informal feedback

During the development of the abstraction space we collaborated with
researchers from the Computational Mechanics and Numerical Mathe-
matics group of the University of Groningen. They provided us with
the data sets used to test our realization and gave feedback on both
the design of the abstraction space and the realization. The use of
colors to show physical properties was a suggestion from one of the
mathematicians during an early demonstration.

During an early meeting one of the researchers commented that he
liked the topology representation because it showed him everything
that was happening in the flow, but that this way of showing the
flow is difficult to understand for people unfamiliar with the depicted
situation. He continued to suggest that it might be easier for people
to understand the abstract topology visualization when they would
be able to transition between this representation and a less abstracted
representation of the flow. In our opinion this shows that the continu-
ous structural transition is an intuitive way of combining the different
representations.





6
D I S C U S S I O N

6.1 conclusion

There exist many different techniques to visualize fluid flow and
only a small collection of these methods is covered in Section 2.3.
However, the discussed methods already show different levels of
abstraction, such as dense, texture-based flow visualization methods
which show flow behaviour in the entire domain. Most feature-based
flow visualization techniques, however, apply a form of abstraction
based on those features of the flow the user is interested in. While the
more abstracted visualization techniques improve performance and
understanding of the behaviour inside interesting regions, information
about the flow in other regions is often lost.

In this thesis we presented a continuous abstraction space for fluid flow
visualization which can be used to continuously transition between
different representations of the flow. Through the continuous change
of the level of abstraction and the corresponding continuous transition
between representations the user can develop an understanding of the
relation between the representations. We showed how the transition
between the different representations can be realized and how we can
extend the abstraction space to interact with clip planes. In Chapter 5

we gave an example of how the continuous structural abstraction can
aid researchers in studying the results of a flow simulation. Further-
more, we discussed different techniques to enhance spatial perception
and showed how these techniques interact with the structural abstrac-
tion.

6.2 future work

Our current realization is capable of achieving interactive frame rates
at all levels of structural abstraction regardless of the level of enhance-
ment of spatial perception. However, the rendering performance for
the volume based representations is significantly lower than the per-
formance for the geometry based representations as shown in Table 1.
Therefore, the overall frame rate might be improved when the vol-
ume renderer algorithm is improved, for instance by subdividing the
seedLIC volume and only rendering non-empty regions.

A downside of the current realization is the amount of pre-processing
time required to compute all different representations of the flow. Re-
ducing the time it takes to compute the representations will allow for
easier fine-tuning of the parameters of the different representations.

45



46 discussion

For example, when we change the region of interest of the seedLIC
representation for our example data set, it takes from five minutes
to half an hour to compute the new representation, depending on
the size of the region of interest and the required resolution of the
result. Computing the topology connectors and the dense LIC block
also takes a long time which might be reduced, for example, by us-
ing the computing power of the graphics hardware to compute these
representations or parts of them.

There are also possible enhancements that can be made to our
developed abstraction space. We selected the various used flow visu-
alization techniques because, together, they allow for the continuous
selection of the level of abstraction, but different flow representations
such as stream surfaces might work just as well or perhaps even better.
Stream surfaces cannot be integrated in the current abstraction space
in a straight-forward way but a solution is to allow the user to select
a structural abstraction path. One path would be our current struc-
tural abstraction axis while the second path also starts at the dense
LIC representations but includes stream surfaces and perhaps other
representations related to stream surfaces.

Furthermore, our current abstraction space only considers time-
independent data while researchers are also interested in time-depen-
dent data. The extension of the current abstraction space might help
studying time-dependent data. However, this is not a straight-forward
extension because the user should be able to distinguish which ani-
mation comes from the time-dependence and which animation is part
of a transition in representation. Besides the challenges of visualizing
the three-dimensional data, this is another example of the importance
of optimizing the calculation of the separated representations.



B I B L I O G R A P H Y

Arthur Appel, F. James Rohlf, and Arthur J. Stein. The haloed line
effect for hidden line elimination. In SIGGRAPH ’79: Proceedings of
the 6th annual conference on Computer graphics and interactive techniques,
pages 151–157, New York, NY, USA, 1979. ACM.

David C. Banks and Bart A. Singer. Vortex tubes in turbulent flows:
identification, representation, reconstruction. In Proceedings of the
conference on Visualization ’94, VIS ’94, pages 132–139, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

G.K. Batchelor. An introduction to fluid dynamics. Cambridge University
Press, 1967.

Ed Boring and Alex Pang. Directional flow visualization of vector
fields. In Proceedings of the 7th conference on Visualization ’96, VIS
’96, pages 389–392, Los Alamitos, CA, USA, 1996. IEEE Computer
Society Press.

Stefan Bruckner and Eduard Gröller. Enhancing depth-perception
with flexible volumetric halos. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1344–1351, 2007.

B. Cabral and L.C. Leedom. Imaging vector fields using line integral
convolution. Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 263–270, 1993.

Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume render-
ing and tomographic reconstruction using texture mapping hard-
ware. In Proceedings of the 1994 symposium on Volume visualization,
VVS ’94, pages 91–98, New York, NY, USA, 1994. ACM.

A. Chorin. Numerical Solution of the Navier-Stokes Equations. Mathe-
matics of Computation, 22:745–762, 1968.

T. J. Cullip and U. Neumann. Accelerating volume reconstruction
with 3d texture hardware. Tech. Rep. TR93-027, 1993.

Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony
Santella. Suggestive contours for conveying shape. ACM Trans.
Graph., 22(3):848–855, 2003.

G. Elber. Line illustrations ∈ computer graphics. The Visual Computer,
11(6):290–296, 1995.

Maarten H. Everts, Henk Bekker, Jos B.T.M. Roerdink, and Tobias
Isenberg. Depth-dependent halos: Illustrative rendering of dense

47



48 bibliography

line data. IEEE Transactions on Visualization and Computer Graphics,
15(6):1299–1306, 2009.

L.K. Forssell and S.D. Cohen. Using line integral convolution for flow
visualization: Curvilinear grids, variable-speed animation, and un-
steady flows. Visualization and Computer Graphics, IEEE Transactions
on, 1(2):133–141, 1995.

V. Girault and P. Raviart. Finite element methods for Navier-Stokes equa-
tions: Theory and algorithms, volume 5. 1986.

A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology
of three-dimensional vector fields. In Visualization, 1991. Visualization
’91, Proceedings., IEEE Conference on, pages 33–40, 408, oct 1991.

Bruce Gooch and Amy Gooch. Non-photorealistic rendering. AK Peters,
Ltd., 2001.

Markus Hadwiger, Christian Sigg, Henning Scharsach, Khatja Bühler,
and Markus Gross. Real-time ray-casting and advanced shading of
discrete isosurfaces. Computer Graphics Forum, 24(3):303–312, 2005.

Helwig Hauser, Robert S. Laramee, Helmut Doleisch, Frits H. Post,
and Benjamin Vrolijk. The state of the art in flow visualization, part
1: Direct, texture-based, and geometric techniques. Technical report,
2003.

A. Helgeland and O. Andreassen. Visualization of vector fields using
seed lic and volume rendering. IEEE Transactions on Visualization
and Computer Graphics, 10(6):673–682, 2004.

James L. Helman and Lambertus Hesselink. Representation and
display of vector field topology in fluid flow data sets. Computer, 22:
27–36, August 1989.

J.L. Helman and L. Hesselink. Visualizing vector field topology in
fluid flows. IEEE Computer Graphics and Applications, pages 36–46,
1991.

J.P.M. Hultquist. Constructing stream surfaces in steady 3D vector
fields. Proceedings of the 3rd conference on Visualization’92, pages
171–178, 1992.

V. Interrante and C. Grosch. Visualizing 3d flow. Computer Graphics
and Applications, IEEE, 18(4):49 –53, jul/aug 1998.

S. Islam, D. Silver, and Min Chen. Volume splitting and its applications.
Visualization and Computer Graphics, IEEE Transactions on, 13(2):193–
203, march-april 2007.

B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary
density. Visualization in Scientific Computing, 97:43–56, 1997.



bibliography 49

B. Jobard and W. Lefer. Multiresolution flow visualization. WSCG’01,
Plzen, Czech Republic, 2001.

James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150, 1986.

Arie Kaufman and Klaus Mueller. Overview of Volume Rendering,
chapter 7, pages 127–174. Academic Press, first edition, 2005.

Joe Kniss, Gordon Kindlmann, and Charles Hansen. Interactive vol-
ume rendering using multi-dimensional transfer functions and di-
rect manipulation widgets. In Proceedings of the conference on Visu-
alization ’01, VIS ’01, pages 255–262, Washington, DC, USA, 2001.
IEEE Computer Society.

Robert S. Laramee, Helwig Hauser, Helmut Doleisch, Benjamin Vrolijk,
Frits H. Post, and Daniel Weiskopf. The state of the art in flow visu-
alization: Dense and texture-based techniques. Computer Graphics
Forum, 23(2):203–221, 2004.

M. Levoy. Display of surfaces from volume data. Computer Graphics
and Applications, IEEE, 8(3):29 –37, may 1988.

Zhanping Liu and Robert J. Moorhead. Accelerated unsteady flow line
integral convolution. IEEE Transactions on Visualization and Computer
Graphics, 11:113–125, March 2005.

O. Mattausch, T. Theußl, H. Hauser, and E. Gröller. Strategies for
interactive exploration of 3d flow using evenly-spaced illuminated
streamlines. Proceedings of the 19th spring conference on Computer
graphics, pages 213–222, 2003.

Tony McLoughlin, Robert S. Laramee, Ronald Peikert, Frits H. Post,
and Min Chen. Over two decades of integration-based, geometric
flow visualization. Computer Graphics Forum, 29(6):1807–1829, 2010.

Marc Nienhaus and Jürgen Döllner. Sketchy drawings. In AFRIGRAPH
’04: Proceedings of the 3rd international conference on Computer graphics,
virtual reality, visualisation and interaction in Africa, pages 73–81, New
York, NY, USA, 2004. ACM.

S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley.
Interactive ray tracing for volume visualization. Visualization and
Computer Graphics, IEEE Transactions on, 5(3):238 –250, jul-sep 1999.

D. Patel, C. Giertsen, J. Thurmond, J. Gjelberg, and E. Gröller. The
seismic analyzer: Interpreting and illustrating 2d seismic data. Vi-
sualization and Computer Graphics, IEEE Transactions on, 14(6):1571

–1578, nov.-dec. 2008.

Bui Tuong Phong. Illumination for computer generated pictures.
Commun. ACM, 18:311–317, June 1975.



50 bibliography

Frits H. Post, Benjamin Vrolijk, Helwig Hauser, Robert S. Laramee,
and Helmut Doleisch. The state of the art in flow visualisation:
Feature extraction and tracking. Computer Graphics Forum, 22(4):
775–792, 2003.

Peter Rautek, Stefan Bruckner, Eduard Gröller, and Ivan Viola. Illustra-
tive visualization: new technology or useless tautology? SIGGRAPH
Comput. Graph., 42:4:1–4:8, August 2008.

C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. Interactive ex-
ploration of volume line integral convolution based on 3d-texture
mapping. In Proceedings of the conference on Visualization ’99: celebrat-
ing ten years, VIS ’99, pages 233–240, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

I.A. Sadarjoen and F.H. Post. Geometric methods for vortex detection.
In Data Visualization ’99. Proc. Vis-Sym’99, pages 53–62, 1999.

Martin Schulz, Frank Reck, Wolf Bartelheimer, and Thomas Ertl. Inter-
active visualization of fluid dynamics simulations in locally refined
cartesian grids (case study). In Proceedings of the conference on Visual-
ization ’99: celebrating ten years, VIS ’99, pages 413–416, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

Detlev Stalling and Hans-Christian Hege. Fast and resolution inde-
pendent line integral convolution. In Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, SIGGRAPH
’95, pages 249–256, New York, NY, USA, 1995. ACM.

Thomas Strothotte and Stefan Schlechtweg. Non-photorealistic computer
graphics: modeling, rendering, and animation. Morgan Kaufmann, 2002.

Marco Tarini, Paolo Cignoni, and Claudio Montani. Ambient occlusion
and edge cueing for enhancing real time molecular visualization.
IEEE Transactions on Visualization and Computer Graphics, 12(5):1237–
1244, 2006.

A. Telea and JJ van Wijk. 3D IBFV: hardware-accelerated 3D flow
visualization. Visualization, 2003. VIS 2003. IEEE, pages 233–240,
2003.

H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel. Saddle connectors-
an approach to visualizing the topological skeleton of complex 3D
vector fields. Visualization, 2003. VIS 2003. IEEE, pages 225–232,
2003.

Xavier Tricoche, Gerik Scheuermann, and Hans Hagen. Continuous
topology simplification of planar vector fields. In Proceedings of the
conference on Visualization ’01, VIS ’01, pages 159–166, Washington,
DC, USA, 2001. IEEE Computer Society.



bibliography 51

Matthew van der Zwan, Wouter Lueks, Henk Bekker, and Tobias
Isenberg. Illustrative molecular visualization with continuous ab-
straction. Computer Graphics Forum, 30(3):683–690, 2011.

Jarke J. van Wijk. Spot noise texture synthesis for data visualization.
In Proceedings of the 18th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’91, pages 309–318, New York, NY,
USA, 1991. ACM.

J.J. van Wijk. Image based flow visualization. ACM Transactions on
Graphics (TOG), 21(3):745–754, 2002.

J.J. van Wijk. Image Based Flow Visualization for Curved Sur-
faces. IEEE Visualization: Proceedings of the 14 th IEEE Visualization
2003(VIS’03), 2003.

W. von Funck, T. Weinkauf, H. Theisel, and H.P. Seidel. Smoke surfaces:
An interactive flow visualization technique inspired by real-world
flow experiments. | IEEE Transactions on Visualization and Computer
Graphics, pages 1396–1403, 2008.

J.W. Wallis, T.R. Miller, C.A. Lerner, and E.C. Kleerup. Three-
dimensional display in nuclear medicine. Medical Imaging, IEEE
Transactions on, 8(4):297–230, dec 1989.

Joseph R. Weber. ProteinShader: Illustrative Rendering of Macro-
molecules. BMC Structural Biology 2009, 9(19):1–19, May 2009.

Qi Zhang, Roy Eagleson, and Terry Peters. Volume visualization: A
technical overview with a focus on medical applications. Journal of
Digital Imaging, 24:640–664, 2011. 10.1007/s10278-010-9321-6.

Malte Zöckler, Detlev Stalling, and Hans-Christian Hege. Interactive
visualization of 3d-vector fields using illuminated stream lines. In
Proceedings of the 7th conference on Visualization ’96, VIS ’96, pages
107–ff., Los Alamitos, CA, USA, 1996. IEEE Computer Society Press.


	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related work
	2.1 Flow Simulation
	2.2 Illustrative Rendering and Abstraction
	2.2.1 Volume visualization
	2.2.2 Enhancement of spatial perception
	2.2.3 Abstraction

	2.3 Flow Visualization
	2.3.1 Direct flow visualization
	2.3.2 Dense, texture-based flow visualization
	2.3.3 Geometric flow visualization
	2.3.4 Feature-based flow visualization

	2.4 Summary

	3 Abstraction Space
	3.1 Structural Abstraction
	3.2 Support of Spatial Perception
	3.3 Extension(s)
	3.4 Summary

	4 Realization
	4.1 Flow representations
	4.1.1 LIC
	4.1.2 SeedLIC
	4.1.3 Streamlines
	4.1.4 Topology

	4.2 Structural abstraction
	4.3 Summary

	5 Results
	5.1 Visual results
	5.2 Performance
	5.3 Informal feedback

	6 Discussion
	6.1 Conclusion
	6.2 Future work

	Bibliography

