
Master thesis
Illustrative Rendering and Multi-Touch
Exploration of DTI data and Its Context

Pjotr Svetachov

University of Groningen

March 2010

Abstract

I present an interactive illustrative visualization method that is inspired by traditional
pen-and-ink illustrations styles as can be found in medical textbooks. The main goal of
this technique is to render DTI fiber tracts and the context around them. The context
can consist of the brain surface, the skull, or object such as tumors. These surfaces
are extracted from segmentation data or are generated with a fast iso-surface extraction
method. Fiber tracts are rendered using the depth-dependent halos method while the
context is rendered with a hatching style which is visually similar to that of the fibers.
The hatching uses a real-time slice-based rendering method which is guided by ambient
occlusion. I also provide a way to explore the context around the fiber tracts through a
set of cutting planes where gray matter is indicated using stippling. All these methods
are implemented using GPU techniques and, thus, work in real-time. However, care
was taken to also be able to produce high quality images for print reproduction. I also
investigate the possibilities of multi-touch interaction to explore the fiber tracts and the
context. Using a intuitive frame-based interaction technique, the screen is stripped of
clutter (such as control widgets and toolbars). An informal evaluation with domain
experts assert the success of the methods developed.

Parts of this thesis have been published or are under review as follows:

• Pjotr Svetachov, Maarten H. Everts, and Tobias Isenberg (2010) DTI in Context:
Illustrating Brain Fiber Tracts In Situ. Computer Graphics Forum, 29(3), June
2010.

• Lingyun Yu, Pjotr Svetachov, Petra Isenberg, Maarten H. Everts, Tobias Isen-
berg (2010) FI3D: Direct-Touch Interaction for the Exploration of 3D Scien-
tific Visualization Spaces. IEEE Transactions on Visualization and Computer
Graphics, 16(6), November/December 2010. (to appear)

i

Acknowledgments

I woud like to thank my supervisors Tobias Isenberg and Maarten Everts for guiding
me through my thesis. The way they guided me really motivated me to try out
new things and because of this I have learned a lot and I also have a feel that I
accomplished a lot with this thesis.

Pjotr Svetachov
Groningen

November 22, 2010

iii

Contents

Acknowledgements i

1 Introduction 1
1.1 Illustrative rendering . 1
1.2 Multi-touch interaction . 2
1.3 Organization . 3

2 Related work 5
2.1 Rendering techniques . 5

2.1.1 Fiber rendering . 5
2.1.2 Stipple rendering . 7
2.1.3 Ambient occlusion . 8
2.1.4 Hatching and halos . 9

2.2 Multi-touch exploration . 10

3 Rendering context 13
3.1 Surface extraction from volume data 13
3.2 Zoom independent slice-based hatching on the GPU 14
3.3 Screen space ambient occlusion . 18
3.4 Slices and zoom-independent stippling 21
3.5 Summary . 23

4 Exploration of DTI data 25
4.1 The frame border . 25
4.2 Translation and zooming . 26
4.3 Rotation . 27

v

4.4 Managing cutting planes . 28
4.5 Fiber selection . 29
4.6 Summary . 30

5 Implementation 31
5.1 Box filtering . 31
5.2 Combining the different methods . 31
5.3 Optimization and efficiency . 33

5.3.1 Memory management . 34
5.4 Interaction . 35
5.5 Summary . 36

6 Results 37
6.1 Results . 37
6.2 Evaluation . 39

6.2.1 Rendering evaluation . 41
6.2.2 Interaction evaluation . 41

7 Conclusion 43
7.1 Conclusion . 43
7.2 Future work . 43

Bibliography 45

Chapter 1

Introduction

FOR a long time, people used illustrations in books to create scientific visual-
izations. Examples of these illustrations can be found in medical books or
scientific papers (e.g., Dauber 2005, Catani and Thiebaut de Schotten 2008,
Schmahmann et al. 2007, House and Pansky 1960). Traditionally, these

illustrations are hand-drawn. Researchers have been trying to bridge the gap be-
tween hand drawn illustrations and computer-aided scientific visualization (Viola
et al. 2005, Ebert and Sousa 2006) and illustration (Winkenbach and Salesin 1994,
Ostromoukhov 1999). The reason for wanting to bridge this gap is that with hand-
drawn illustrations authors can easily show important aspects of the data, usually
done through abstraction and emphasis. An example of this type of rendering is
shown in Figure 1.2. The authors were able to show parts of the brain’s anatomy by
using black and white colors only. The authors where also able to do this in a very
clear way. I take those illustration as an inspiration for my rendering technique.

1.1 Illustrative rendering

Let us first analyze the images in Figure 1.2. The authors used different techniques
to achieve their goal. One of the techniques is the use of hatching. Hatching plays
an important role not just in these but in many illustrative renderings. By using
different hatching patterns, an artist can make an distinction of the different objects.
For instance, in the left picture one can clearly see a specific hatching pattern that
is used for the outside of the brain, while in the right picture the artists use cross
hatching to show the structure of the brain. Also, more occluded areas tend to have
thicker strokes and also have more layers of hatching. This kind of effect is similar
to ambient occlusion as used in rendering, so this technique could be used to guide
the hatching.

Another important technique is stippling. The authors take a slice out of the data
to show the inside of the brain, here they use stippling to show the gray matter re-
gions. Because the drawing style of stippling is distinctive from hatching the viewer
can easily see where the outer brain will end and the inner slice will begin.

2 1. Introduction

The middle picture also shows fibers that connect different parts of the brain.
These fibers are drawn as thin lines and have (where needed) a halo around them.
The use of the halos is to emphasize the lines and to not let them melt together
with the background. The goal of my research is to try to, similar to (Tietjen et al.
2005), combine different techniques to achieve the same rendering style as in the
figure above. The rendering must also happen on interactive frame rates. I also
try to produce only black and white images of high resolution as they are a better
candidate to be used in print because this lets the printer control the half-toning
(Hodges 2003). Results can as seen in Figure 1.1.

(a) (b)

Figure 1.1: Results of my method.

1.2 Multi-touch interaction

Another important aspect of my research is exploration of DTI data using multi-
touch interfaces. For this I use a SMART Board multi-touch display that supports
two touches. It is important to be able to do most aspects of DTI exploration on a
touch screen. These aspects do not only include translation, scaling and rotation but
also exploring into the data by slicing and selecting different fibers. The interaction
must be as intuitive as possible and the interface must not contain much clutter. To
accomplish all this I as inspiration the drawing canvas (Nijboer et al. 2010) as seen
in Figure 1.3. In this Figure the user can manipulate the canvas by clicking and
dragging on the frame borders around the canvas.

1.3. Organization 3

(a) (b)

(c) (d)

Figure 1.2: Examples of hand-drawn pen-and-ink illustrations of the brain’s anatomy, from
(House and Pansky 1960).

1.3 Organization

In Chapter 2 I discuss the related work on both illustrative rendering and multi-
touch interaction. Based on the observation from Figure 1.2, several techniques are
presented that are used in the Figure. These techniques include rendering of fiber
tracts, stippling, ambient occlusion, hatching and the use of halos.

Chapter 3 explains my rendering method, first I describe how I extract surface
information from MRI data. Then, I show how the techniques that are described in
Chapter 2 are used in my program.

Chapter 4 describes my decisions for multi-touch exploration of the data. In-
spired by the canvas from Nijboer et al., I also use a frame border. I explain how

4 1. Introduction

Figure 1.3: Taken from (Nijboer et al. 2010): manipulating the canvas using a frame. The
arrows show the different click and drag motions, A for is translation, B is for for scaling and
C for rotation.

I map the different aspects of DTI exploration to click and drag gestures using this
border.

Chapter 5 includes implementation details. In this Chapter I explain on how all
the techniques described earlier are put together. I will also describe some pitfalls,
like memory management, that can occur when implementing the algorithms.

Chapter 6 has the results together with performance measurements. I show how
my algorithms scale with different drawing styles and resolution.

Finally, Chapter 7 includes the conclusion. Also some suggestions for future
work are also provided in this Chapter.

Chapter 2

Related work

IN the previous Chapter I made the observation that the use of hatching, an
effect similar to ambient occlusion, and stippling are often used in in medical
illustration. Figure 1.2, for instance, shows the use of all these techniques
in the same image. In this Chapter I will review these NPR techniques in

Section 2.1. I also stated in the previous Chapter that I will make use of a multi-touch
screen to support the intuitive exploration of DRI data. Multi-touch exploration is
not a new concept and in the last few years a lot of research have been done on this
concept. I will cover multi-touch exploration in Section 2.2.

2.1 Rendering techniques

For my research I try to combine many rendering techniques to produce certain style
pen-and-ink illustrations. In this Section I will explain the techniques and provide
examples of previous work.

2.1.1 Fiber rendering

Fibers tacks are bundles of lines extracted from DTI data (e.g., Mori and van Zijl
2002, Wakana et al. 2004). These give an indication of neural pathways in the brain.
Rendering bundles of lines is a well researched area and there exists a number of
different techniques. For example, tubes are often used, here color plays an impor-
tant part to indicate certain properties like direction or magnitude (Post et al. 2002),
an example is shown in Figure 2.1. I use Depth-Dependent Halos (Everts et al. 2009)
for rendering the fibers. As seen in Figure 2.2 this method produces good looking
and sharp visuals are inspired by the visuals in Figure 1.2. This method also uses
halos to show depth relations. This method can also put emphasis on bundles of
lines and can be used for on-screen rendering of rendering high resolution images
for print. Apart from this, the method is also flexible, the width of the lines and the
halos can be adjusted in real-time. Also filtering can be used to show only important
lines.

6 2. Related work

Figure 2.1: From (Post et al. 2002). Example of using steamtubes. The radius of the tubes is
inversely proportional to the square root of the local velocity magnitude, and the color of the
tubes corresponds to the pressure.

Figure 2.2: From (Everts et al. 2009). Example of using depth dependent halos.

2.1. Rendering techniques 7

Figure 2.3: From (Kim et al. 2009). Example of using stipples.

2.1.2 Stipple rendering

Most work that has been done on stipple rendering has been mainly in generating
stipple renderings from gray scale drawings (Kim et al. 2009, Kopf et al. 2006) as
seen in Figure 2.4. Some have also tried to use stippling for volume visualization
(Lu et al. 2003). There are also ways to stipple 3D objects (Meruvia Pastor et al. 2003)
but this solution requires preprocessing the object, this gives a problem when ob-
ject in real-time from data. A difficulty in rendering stipples is that the stipples
need to be distributed evenly for the final rendering to be appealing to the user. To
achieve a good distribution the object can be is tessellated (Lu et al. 2003), some
statistical error measure are used (Kim et al. 2009), a dart throwing with gradually
decreasing dart radius (Kopf et al. 2006) or Voronoi diagrams are used (Deussen
et al. 2000). Most methods require computational time and are not suited for inter-
active applications thus for real-time stippling the stipples are often precomputed
(Secord et al. 2002, Kopf et al. 2006). The method of Kopf et al. (2006) can convert
gray drawings to stipple renderings, most of the computation time of this method
is in its preprocessing step. This method can be adapted to 3D by parameterizing
the mesh, in case of cutting planes parameterizing is very easy which makes this
method a suitable for rendering stipples on planes.

8 2. Related work

Figure 2.4: From (Secord et al. 2002). Example of using stipples.

2.1.3 Ambient occlusion

Ambient occlusion (AO) is a shading method that takes into account the amount
of occlusion of a rendered pixel when performing lighting calculations, occluded
areas are colored black like seen in Figure 2.5. One of the first implementations
of ambient occlusion is by Miller (Miller 1994) where he calculated how well an
area could be reached by spheres and how well spheres could be fitted locally.
This information was then used to shade the scene. Over the years, ambient oc-
clusion got a status as an easy and a cheap way to simulate global illumination
(Zhukov et al. 1998, Evans 2006). While global illumination has some other ad-
vantages like color bleeding, ambient occlusion can be easier implemented and is
faster. The easiest way to calculate AO is to cast rays in random directions from a
point and calculate how far the rays will travel before hitting an object in the scene,
the more rays used the better the end results are. In the last couple of years, a
new method called SSAO (screen space ambient occlusion) has been heavily used in
games (Shanmugam and Arikan 2007, Landis 2002). The basic idea behind SSAO is

2.1. Rendering techniques 9

Figure 2.5: A monkey head rendered in Blender using only ambient occlusion.

the same as behind AO but SSAO is done screen space, SSAO is actually an approx-
imation to AO. First, for each pixel sample the neighborhood pixels in the depth
buffer then use this information to approximate the occlusion of the given pixel.
The occlusion can be calculated in different ways but it is usually inspired by the
normal AO where rays are cast. While this method is an approximation to AO, a lot
of research has been put into developing algorithms to make SSAO indistinguish-
able from ray traced AO (Bavoil et al. 2008, Bavoil and Sainz 2009, McGuire 2010)
at the cost of performance, one of the main drawbacks of SSAO is that object that
are drawn in front of other objects will get an outline, even if the objects are far
apart from each other and do not necessary occlude each other. To overcome this
drawback, multi-layered depth buffers can be used. Because my data usually has
only one object or in case of more objects like tumors, the objects are relatively close
together, ordinary SSAO gives me good enough results.

2.1.4 Hatching and halos

Hatching is a well research topic and there exists a lot of different 2D (Winkenbach
and Salesin 1994, Ostromoukhov 1999, Hertzmann and Zorin 2000) and 3D (Deussen
et al. 1999, Praun et al. 2001, Zander et al. 2004, Ritter et al. 2006) techniques. For
example, Praun et al. and Ritter et al. both presented a very good real-time tech-
nique that makes use of textures (see Figure 2.6), by blending them over each other
one can generate different hatching densities. Deussen et al. presented a technique
that is not real-time but has a very good line control, each line is treated separately.
For my research I looked for a method that is both scale-dependent (Freudenberg
et al. 2001, Salisbury et al. 1996), real-time and has a good line control so I can adapt

10 2. Related work

Figure 2.6: From (Praun et al. 2001): Real-time hatchnig using textures.

the rendering style to that of the drawn fibers if necessary.
I found the method by Deussen et al. to produce hatching that is similar to that of

Figure 1.2. It also has very good line control because each line is treated separately.
The method can also be adapted to make use of the GPU to become real-time.

Like hatching, halos are also a well researched topic (Appel et al. 1979, Elber
1995). Usually, halos are used to enhance depth perception or to set focus on special
objects (Tarini et al. 2006, Bruckner and Gröller 2007) or to separate objects (Everts
et al. 2009). A new method called depth-aware halos or depth-dependent halos
has become a success; the properties of the halos change depending of depth to the
objects behind them (see Figure2.2). Everts et al. use depth aware halos to separate
halos by changing the side of the halos according to depth. Tarini et al. use halos to
separate molecules by changing the color according to depth.

2.2 Multi-touch exploration

Multi-touch surfaces are a good way to interact with virtual 2D objects. Touch in-
teraction, however, consist of a 2 degree of freedom (DOF) input. Interaction as-
pects as translation, rotation, and scaling in 2D also have 2 DOF. The combination
of these interaction aspects will add extra DOF to the input. To bypass the limiting
2 DOF touch interaction gives researches use time-dependent techniques like ges-
tures (Hancock et al. 2006, Kruger et al. 2005), for example Kruger et al. presented a
method called rotation-and-translation where the rotation of an object is calculated
based on movement over time. Widgets on objects are often used. The idea is that

2.2. Multi-touch exploration 11

Figure 2.7: From (Wilson et al. 2008): Throwing a ball from one hand and catching it with the
palm of the other hand.

little widget are drawn over objects, touching them will initiate an action. For ex-
ample, small widgets can be drawn at the corners of an object, touching them will
initiate a rotation. An example of a physics-based system would be where the user
can throw a ball from one side of the screen to the other as seen in Figure 2.7 (Wilson
et al. 2008).

Using multi-touch, more DOF can be acquired in the input. With two touches
you can have 4 DOF. By using the techniques mentioned before with multi-touch,
even more DOF can be acquired. For example, with the RTS (Hancock et al. 2007)
method one can rotate, translate, and scale at the same time using two fingers.

A new technique, frame border interaction, has been used in the last year (Yu
and Isenberg 2009, Nijboer et al. 2010). This technique adds more DOF by placing
an interactive frame border around the scene as seen in Figure 1.3. The user can now
choose to start his touch at the border, doing so opens new functionality. The idea
is that it does not matter where on the border the user starts and the border is large
enough so the user does not need to focus much on touching the border. This way
the user will not get distracted by the border. In combination with intuitive gestures
this technique can be very powerful. This is why I will investigate the possibilities
of frame border interaction with exploration of DTI data and context.

Chapter 3

Rendering context

IN the previous Chapter I made a review of techniques used in illustrative visu-
alization. In this Chapter I explain how I adapt these techniques to achieve my
goal. For example, I need to be able to extract iso-surfaces from volume data
in real-time based on a given threshold, this is explained in Section 3.1. Then

I need an zoom independent hatching method that is both flexible (e.g., I need to
be able to control line width and density), works in real-time, and I must be able to
apply this method do that iso-surfaces I just extracted without any preprocessing,
this method is covered in Section 3.2. I also observed before that the hatching in
some illustrative visualizations is guided by ambient occlusion. For this I explain in
Section 3.3 how to calculate the ambient occlusion term that is used to modify the
hatching style. Finally, I also observed how stippling is used to indicate gray mat-
ter. For this I need a stippling method that works in real time and can be applied to
cutting planes. Section 3.4 explains how the stippling algorithm works.

3.1 Surface extraction from volume data

The first step in rendering context is to extract a surface from a given volume data.
The easiest way of doing this is with the marching cubes algorithm (Wyvill et al.
1986, Lorensen and Cline 1987). The algorithm works by laying a grid over the
volume. For each point on this grid, one takes the neighborhood 8 points which
form a (imaginary) cube. Now, for each vertex, by looking if it is inside or outside of
the iso-surface one can determine the polygons needed to represent the surface that
passes through the cube. Lorensen and Cline already showed than only 15 different
configurations are needed. These can be stored in an lookup table and because there
are only 8 points the table has 256 entries.

I use the GPU to accelerate the algorithm (Johansson and Carr 2006, Tatarchuk
et al. 2007). One can use geometry shaders to port marching cubes to the GPU. This
is because each point of the grid can be evaluated independent from other points.
The algorithm starts with a grid of points and these points are passed to the GPU.
In the geometry shader, each point is evaluated: a imaginary cube is calculated and

14 3. Rendering context

Figure 3.1: Example rendering of only the surface.

the polygons that represent the surface that passes through the cube is calculated by
looking at each vertex of the cube and computing if this vertex is inside or outside
the iso-surface. The maximum number of points needed for each cube is 16 so the
whole lookup table can be saved in a 256 by 16 texture and passed to the geometry
shader. The disadvantage of this method is that the output consist of a lot of trian-
gles and connectivity information is lost. So lighting calculations that rely on vertex
normals cannot be done without first connecting the polygons. For the remainder
part of the algorithm, however, connectivity information is not needed so this will
not be a problem.

After implementing this algorithm, I achieved frame rates of 5–6 fps on a Geforce
8800 GTX when recalculating the iso-surface each frame. I found that these were too
low for any good interaction so I implemented a caching mechanism in my program.
OpenGL has a special mode called transform feedback, in this mode you can fetch
the output from a shader. I cache the output in a separate buffer and only change
the buffer when the user changes the iso-value. I assume the user does not change
the iso-value after choosing a correct one. Figure 3.1 has an example of a rendering
of an iso-surface.

3.2 Zoom independent slice-based hatching on the GPU

I use a modified version of the hatching method by Deussen et al. (1999) to ren-
der the context. The algorithm works by slicing a model with a certain number of

3.2. Zoom independent slice-based hatching on the GPU 15

Figure 3.2: Taken from (Deussen et al. 1999). OpenGL-based generation of intersecting lines:
(a) The whole model rendered to a stencil buffer. (b) Clipped image rendered to a stencil
buffer (c) Curve extracted by comparing the two stencil buffers. (d) The whole set of intersec-
tion curves.

planes. The place where the planes intersect the model is painted black, giving an
idea of a stroke. The planes are positioned on a curve that follows the skeletal axis
of the model, this gives the end result a less artificial appearance.

To get the intersection between the model and the planes, Deussen et al. take
advantage of graphics hardware. First, the model is drawn to a stencil buffer (see
Figure (a) of 3.2), then the model is drawn again to a second stencil buffer and,
this time, one of the planes is used as a clipping plane (see Figure (b)). From both
buffers the pixels along the boundaries are calculated. These two boundaries, when
subtracted from each other (Figure (c)), form a curve that indicates where a stroke
needs to be placed. This process is repeated for all the planes (Figure (d)).

This method produces hatching strokes that can mimic those seen in Figure 1.2 if
stroke shading is applied correctly. However, there are two disadvantages to using
this method directly in my program. First, drawing the model for every stroke is ex-
pensive and thus the method does not work in real time. Second, the method relies
of knowing the skeletal axis of a model which is found using an edge collapse algo-
rithm on the original model. The iso-surfaces extracted from the volume using the
algorithm from Section 3.1 do not have any connectivity information and extracting
the skeletal axis would require some computational time.

Therefore, I modified the algorithm to remove these two disadvantages. The new
algorithm uses deferred shading (Deering et al. 1988, Hargreaves and Harris 2004)
to remove the need to re-render the scene and bend planes to remove the artificial
look. I will first explain how the algorithm works when using regular planes and,

16 3. Rendering context

then, I will show how to modify the algorithm to take into account the bending of
planes.

Imaging a model that is sliced using a set of planes. These planes are all parallel
to each other (thus have the same normal N) and two neighboring planes have the
same distance d to each other. Now, I want to know if a certain fragment Fi at
position Pi belongs to the intersection of the planes with the model. To check this,
first the plane that should cut the fragment is found and then one looks if one of
the fragments in the neighborhood of Fi is on the other side of this plane. Thus in
the case we have an intersection. To check for these intersections, we perform the
following. We calculate the distance dp = Pi ·N of Fi to the defining plane located
at (0, 0, 0). Then, we calculate the distance dl from Fi to the closest plane below the
fragment as dl = dp mod d. Now, we can compute the distance of this plane to the
defining plane as dc = dp − dl. We check in the 8-neighborhood of Fi to see if one
of the fragments is below that plane. If this is the case then the fragment is part
of a stroke. This process is shown in Figure 3.3, here the black box represends the
fragment tested, the circles represent the 8 neighborhood. Circles above the plane
are colored black and circles below are colored white. More layers of hatching lines
can be added by added more sets of planes that point into other directions. This will
simulate cross-hatching.

As said before I use deferred shading. First the scene is rendered to a G-buffer
(Saito and Takahashi 1990), the result can be seen in Figure 3.4. Then, this buffer
is bound as a texture and mapped on a screen-filling quad. Then, a pixel shader is
used to draw the lines. The positions are stored as 32 bit floats, experiments show
that storing the positions with less precision will produce jagged lines due to round
off errors.

To remove the artificial look, bend planes are used instead of normal ones. To
enable the use of bend planes, a modification to the distance function is needed.
I tried several different functions and the results are displayed in Figure 3.5. The
fact that the brain itself has a lot of bends also helps removing the artificial look.
Experiments show that the function to use depends on the dataset and it is up to the
user to decide which one is the best looking. When designing a distance function,
there is a point where care must be taken. The distance formula usually has one
fluctuating variable, in my case this is Fi. The formula must be remain ”steady”
when this variable changes. What I mean with steady in this case is that when the
distance increases the formula must also increase and do not make sudden jumps.
Also, the increase must be near linear, otherwise the distance between lines will
fluctuate and this will show in the result as one part of the surface will have more
lines than another as seen in the last example of Figure 3.5.

Using this approach, all the lines will have the same thickness regardless of the

3.2. Zoom independent slice-based hatching on the GPU 17

Figure 3.3: The process of determining which fragments to color.

angle of the surface with respect to the planes which would be the case if textures
were used or if only the distance of Fi to the closest cutting plane was used without
taking into account the neighbor fragments (Leister 1994), this is good because I
have complete control of the thickness in this way. This thickness is controlled by
the size of the neighborhood in which we sample the 8 neighbor fragments. When
expanding the neighbor size, we can still use only 8 neighbor fragments, thereby
not effecting the performance. Theoretically, we can get artifacts because of our low
sampling rate but these are often not visible or distracting. One could even argue
that they make the images less artificially looking.

When zooming in and out, there are two options. The first is changing the size
of the lines, this gives the idea of actually zooming in and out. Another possibility
is to change the distance between the lines, this preserves the drawing style of the
image at different scales (Freudenberg et al. 2001, Salisbury et al. 1996). After ex-
perimenting with both approaches I found that adding more lines produced better
results. The way I implemented this is by setting d as linear function of the zoom
level. Theoretically, this will produce swimming lines and a better solution would
be to blend in new lines as zooming takes place. After experimenting, however,

18 3. Rendering context

Figure 3.4: Using a G-Buffer to store the position of the samples.

I found that swimming of the lines is not noticeable under normal circumstances.
Only when dealing with thick lines that are far apart one can notice the effect of the
swimming lines. Figure 3.6 has examples of different zoom levels.

The above method has some limitations with respect to the algorithm of Deussen
et al. First, the planes are aligned in the same direction. Second, some suitable
distance functions need to be made. But the advantage of the method are that it is
very flexible. Lines can be made of any width and the width can be controlled for
every fragment. All this control is done in real-time as there are no texture used
of any kind and no pre-calculation is done. Also there are no requirements for the
objects themselves. There is no need to parametrize a surface or to calculate any
skeleton or curvature information. The algorithm works on a set of triangles without
any connectivity information (polygon soup), the speed of the algorithm also does
not depend on the object itself but on the screen resolution.

3.3 Screen space ambient occlusion

As explained in Section 2.1.3, Ambient Occlusion (AO) is a shading model that takes
into account how much a point is occluded. AO can be used to approximate global
illumination. AO is used as the only lighting model in my program. After studying

3.3. Screen space ambient occlusion 19

(a) dp = N · FP (b) dp = acos(|FP − 0.5| ·N)

(c) dp = acos(cos(|FP |) ∗ (|FP − 0.5| ·N)) (d) dp = w1(N · FP) + w2(sin(FP .x) +

w3(FP .y) + w4(FP .z) where w1, . . . w4 are
weights that sum up to 1

Figure 3.5: Examples of distance functions. Here Fp is a vector showing the position which is
normalized between 0 and 1 for x, y, z. I substract 0.5 from these components to bend planes
around the center of the volume.

several versions of SSAO, an approximation to AO, I choose the go with the fast
implementation in favor of a slower more accurate one. The reason for this is that

20 3. Rendering context

Figure 3.6: Example of different zoom levels.

ambient occlusion is used for guiding my hatching algorithm. Hatching itself will
not benefit from the small details better SSAO implementation will give. The main
idea for using AO was to achieve the same look as in the right image of Figure 1.2,
in this image cross hatching is used on the brain to indicate where the sulci are. To
achieve the same effect a simple SSAO method will suffice.

3.4. Slices and zoom-independent stippling 21

My method is based on the basic principles of SSAO that are described in Section
2.1.3. I use a G-Buffer to store the depth and normal of each pixel. The algorithm
works with one pass over this buffer using a fragment shader. This shader samples
16 random nearby fragments and uses the differences in the depth Dd and the angle
of the normal Da (the difference of the normals is calculated using the dot product)
compared to the original fragment to calculate an AO term. The theory is that the
greater the difference the more the point must be occluded. Only using the depth
will produce an effect that can be best described as ghosting. It will look like the
same image is duplicated and offset a few times and blended over each other. Also,
taking into account the normal removes this effect. The formula in my implementa-
tion is:

AOterm =
∑
i∈LT

(1−Da(i)) ∗Dd(i),

where LT is a lookup table with 16 random offset vectors.
Most SSAO implementations use a Gaussian blur in a second pass to remove

any artifacts and to produce a smoother image. I found out that this pass is not
necessary, hatching will not benefit from this extra pass.

Like explained earlier, AO is used to guide the hathing. In practice, more layers
of hatching directions are added in dark areas. The line thickness also changes de-
pending on the AO term; darker areas are drawn with thick lines while less darker
with thin lines.Figure 3.7 shows examples results for this process.

3.4 Slices and zoom-independent stippling

In Figure 1.2 stippling is used to indicate gray matter. In the figure the stipples are
all of the same size and have the same distance with respect to each other. I try to
achieve the same effect.

Slices are used to explore the inner parts of the brain. The slices are drawn as
quads. When drawing the slices a fragment shader uses the volume texture to see
if a given fragment is inside or outside the iso-surface. Fragments on the inside are
colored white and outside are discarded. Fragments on the boundary are colored
black to simulate gray matter. This method is only used when no information about
gray matter is available.

I also have access to segmented data showing gray matter. To render gray matter,
I take my inspiration from Figure 1.2 and use stippling. Stippling is distinguishable
from the hatching drawing style and, therefore, very suitable for showing areas of
interest. Just as for the hatching my goal for the stippling was to have a method that
is flexible, fast, and zoom-independent.

22 3. Rendering context

Ambient occlusion. Using AO to guide hatching.

Figure 3.7: Example of using AO to guide hatching.

For the stippling I make use of the method by Kopf et al. (2006). The algorithm
by Kopf et al. uses of recursive Wang tiles. Wang tiles are a special set of tiles that
can tile a plane in a non-periodic way. Kopf et al. use a recursive set of tiles which
makes infinite zoom possible. Each tile has (apart from a number of subtiles) a set
of points associated with it. The distribution of the points is chosen in a special way.
Points from all the possible neighbor, parent, and child tiles were considered when
distributing the points. This is so the points will look uniformly distributed and
no gaps are seen when adding two or more tiles together. Each point in a tile has
a rank. When rendering, the Wang tile hierarchy is is walked from top to bottom
and, depending on the zoom level, the walking stops at a certain level. To assert
if a point of a Wang tile should be drawn or not, the zoomlevel, point rank, and
intensity of the image at the spot of the point are taken into account. Because all
points in a tile have a different rank the points are added one by one when zooming
in. The generation a tile dataset itself takes some amount of time and Kopf provides
a dataset on his website that I used for my program.

To render the points, I first render the slices only to a texture (see (a) in Figure
3.8. On this texture the areas where the gray matter is shown are colored gray, the
gray matter belonging to different slices has a different intensity of gray, this way I
can store all the slices in one image. For each slice I map a set of Wang tiles to the
plane of that slice. The CPU is used to walk along the Wang hierarchy and compare
the Wang tiles against the view frustum. The stipples are drawn as OpenGL point

3.5. Summary 23

(a) Slice texture. (b) End result.

Figure 3.8: Example of stippling. First a slice texture is generated, this texture is then used to
apply the stippling.

sprites and a fragment shader uses the texture to determine if a point is inside the
gray matter area of the appropriate slice. If it is then the stipple is drawn. The
stipples are always turned toward the camera and remain round at any angle, just
like in Figure 1.2. The end result can be seen in Figure 3.8 and the effect of zooming
in Figure 3.9.

3.5 Summary

In this Chapter I explained the three different techniques, hatching, stippling and
AO, I use for visualizing context for DTI fiber tracts. The important goals for my
method is that it is applicable to extracted polygon meshes from volume data, have
a style that is similar to that seen in illustrative textbooks and on top of that the
method needs to be real-time. The techniques discussed in this chapter perform in
real-time, it is also possible to apply the techniques to iso-surfaces extracted from
volume data. It is therefore now possible to extract a mesh from MRI data and draw
it using hatching lines. It is also possible to cut the mesh using slices that show
gray matter areas using stippling. The next step is to combine these techniques. My
method uses AO to guide the hatching process and everything is implemented as a
shader that works in screen space on the G-Buffer. How I do this will be discussed
in Chapter 5.

24 3. Rendering context

Figure 3.9: Example of zooming and stippling.

Chapter 4

Exploration of DTI data

IN Chapter 1 I explained the need to be able to explore that data using multi-
touch displays then in Chapter 2 I looked at the current research in multi-touch
exploration. One method that looked promising was the use of a frame border.
By using a frame border it is possible to add extra DOF to the application thus

removing the need to extra widgets like toolbars. In Section 4.1 I explain what a
frame border is and show an example.

After this I will show how to map common interaction aspects like translation,
scaling and rotation in Sections 4.2 and 4.3. For this I will take inspiration of how
Nijboer et al. (2009) have used a frame border in their application seen in Figure
1.3. There are some interaction aspects that are very specific to my application. One
of these is managing cutting planes. How I map this aspect to the frame border is
discussed in Section 4.4. Another aspect that is specific to this application is fiber
selection, the user needs to be able to only select a few fibers. How I map this is
explained in Section 4.5.

4.1 The frame border

In my program I use a frame border to implement interaction. A frame border was
inspired by the method of (Nijboer et al. 2010, Yu and Isenberg 2009). The concept
of a frame border is to have an additional border around the scene that is used
to initiate gestures from. The idea is that the use of this border reduces interface
elements like widgets. It must be noted that a border does not act like a toolbar
and does not consist of a collection of buttons. With a toolbar the user needs to
concentrate and move the attention to the bar itself when selection an option. The
frame border acts like a big button and it does not matter where the user touches
the frame border. The idea is that once the border is touched, the user can make
a gesture that will indicate what he/she wants to do. The border in my program
consist of 8 areas only. The four corners and the four planes of the screen, Figure 4.1
shows and example.

26 4. Exploration of DTI data

Figure 4.1: Example of an interface with a frame border.

4.2 Translation and zooming

Translation is initiated at the frame border. The user has to touch one of the four
borders and then move his/hers finger perpendicular to the frame border to initiate
the translation. Once initiated, the user can continue to translate the scene as long
as he/she still touches the wall display with only one touch. The amount of x-/y-
translation is calculated by taking the x and y distance from the point at which the
hand is at to the point the translation is initiated at. We use all the four borders be-
cause, when initiating a translation at the frame border, there is only room to move
your hand into 3 different directions as the screen border blocks the last direction.

Zooming is initiated at the corners of the frame. The user touches one of the
corners of the frame and starts moving his/hers hand. Using the two bottom corners

4.3. Rotation 27

Figure 4.2: From (Hultquist 1990). An illustration of the workings of a trackball.

and moving the hand to the center of the screen will zoom out while the top corners
zoom into the scene. This is because like with the translation the physical screen
border will allow our hand to only be moved to the center of the screen. At any
time the hand is still touching the screen the amount of zooming to be carried out is
calculated by taking the Manhattan distance from the starting position of the touch
to the position the hand is at at the time of the calculation. This is important because
using the Euclidean distance will present different results under different angles
between the starting position and the position of the hand.

4.3 Rotation

I use two types of rotation. The first is trackball rotation (Hultquist 1990) and second
is z-rotation. The concept of a virtual trackball is that there is an invisible sphere that
encapsulates the scene. When the user touches the scene the point P0 on the sphere
that the user touches is calculated. Then when moving his or hers finger, the point
below his finger P1 is also calculated, then the two angles at which to rotate the
sphere so P0 moves to P1 are also calculated (see Figure 4.2). These are the angles
the whole scene is then rotated by. To initiate the trackball, the user has to touch
somewhere inside the frame border.

The initiation of z-rotation is performed the same way as that of the x-/y-translation
except that the user now needs to move his hand parallel to the frame border in-

28 4. Exploration of DTI data

Figure 4.3: An icon indicating to the user of how to move his hand to initiate x-/y-translation
or z-rotation.

stead of orthogonal. To help the user out a little icon is displayed as soon as the user
touches the border as seen in Figure 4.3.

4.4 Managing cutting planes

Meyer and Globus presented a method (Meyer and Globus 1993) to manipulate cut-
ting planes with single touch using widgets assigned to the cutting planes. With
this method, cutting planes could be positioned, rotated, and scaled at the cost of
adding widgets to the screen. For our purpose, the cutting planes only need to be
dragged in three different directions and I have multi-touch capabilities. I also try to
avoid clutter on the screen. My method, therefore, is gesture-based. The user starts
with the first touch at the frame border, then the user makes a second touch inside
the frame. Now, the gesture for moving the cutting planes is initiated. The second
task the user needs to do is to select which plane to move. This is done by dragging
the second finger in the direction of the plane the user wants to move. These direc-
tions are view dependent. To assist the user, three lines are drawn on the place of
the second touch to indicate to the user in which directions the user needs to move
his or her finger to select a plane (see Figure 4.4). When a plane is selected, it can
be controlled by further motion of the finger in the same direction as was used to
select the plane. Sometimes it can happen that the view is aligned in such a way
that one of the planes is almost parallel to the view (that plane is almost parallel to

4.5. Fiber selection 29

Figure 4.4: An example of managing slices.

the near or far cutting plane of the camera). In this case, slightly rotating the camera
can make a huge difference on the direction of that plane and it also becomes hard
for the user to guess which direction the plane is pointed to. Because of this I dis-
able the manipulation of that particular plane in this view and draw only two lines
corresponding to the other two planes. It can also happen that two planes point in
almost the same direction on the screen in this case the manipulation of the plane
that, of those two planes, is most parallel to the our view, is disabled.

4.5 Fiber selection

By double tapping the screen the user can enter a mode where fiber selection can be
done. All the other gestures still work in this mode but this mode has several extra
functions. Here, the user is presented with two boxes and only the fibers that go
through both of these boxes are shown. By touching a box, the side of the box that
is touched will light up and the box can be moved in the direction of the side that is
touched, this enables the user to move the boxes in any direction and independent
of the current view point. While this approach works and is highly accurate it takes
too long to position both boxes with this approach. Therefore, I introduce another
approach to quickly position the boxes. In this approach a gesture is initiated by
touching the screen at two different places (see Figure 4.5). When this happens, a
ray is cast for both touches and intersection points are calculated for those rays with

30 4. Exploration of DTI data

Figure 4.5: An example of box selection.

the cutting planes. For each ray the closest intersection point is picked and the boxes
are positioned to those intersection points. The idea behind this second approach is
that the user can roughly position the boxes by pointing out two points of interest
on the cutting planes and then use the first approach to position the boxes more
accurately.

4.6 Summary

In this Chapter I explained how a multi-touch screen can be used to explore DTI
data. By using a frame border is it possible to map the important aspects like trans-
lation, rotation, scaling, managing cutting planes and filtering of fiber tracts to a
multi-touch screen that supports two touches. To see if this frame border is effective
in practice a small evaluation is done with an expert in neural tractography. The
findings of this evaluation are presented in Chapter 6.

Chapter 5

Implementation

IN this chapter I talk about the technical aspects of the program. First, I explain
how the box filtering is implemented in Section 5.1. Then Section 5.2 explains
how to put everything together and how to (de-)emphasize context. Then,
Section 5.3 includes the subtle optimizations like memory management and

the structure of the shader code. Finally, Section 5.4 explains the important aspects
on programming for the multi-touch interface and the problems I came across and
the solutions to these problems.

5.1 Box filtering

As explained before I use boxes to select certain fibers. For this I have implemented
the method by Blass et al. (2005). This method uses a special version of an octree
to quickly search the list of fibers that pass though a box. I have implemented this
method straight without any modifications to it. The result is a method that can
filter 11000 lines in real-time.

5.2 Combining the different methods

In Chapter 3 I described different stages of the rendering pipeline. How all these
stages can be put together can be seen in Figure 5.1. I use separate shaders to con-
struct the isosurface, the different G-buffers, the stipple mask, and the fiber ren-
dering. Then, I use one fragment shader that combines all the buffers into a final
rendering. I do not have a separate buffer for the hatching pass because of perfor-
mance considerations outlined in Section 5.3. Also this allows me to use the position
of the fibers to add extra elements to the final composition that will (de-)emphasize
context. To support anti-aliasing, all buffers are rendered two times as large as the
screen resolution and are sampled down when the final image is rendered.

When combining the fibers with the context, a halo is drawn around the fibers.
For each pixel that is part of the context, the halo is calculated by taking a 5×5 uni-
formly sampled grid around the pixels neighborhood and counting how many sam-

32 5. Implementation

Figure 5.1: This diagram shows how the different stages of the process relate to each other.

(a) Halos and line thinning. (b) Making the conext gray.

Figure 5.2: Different ways to emphasize fibers and context.

ples are part of the fibers. The typical use of halos is to have a white or black outline
around the object. Instead, I use the halos to modify the width of the hatching lines
that pass though the halo. The further the line is inside the halo the thinner it be-
comes till the line is not visible at all. This gives a very good-looking effect because
instead of just turning gray and then while the lines actually become dashed and
then disappear. This effect is demonstrated in Figure 5.2(a). Another way to empha-
size the lines to color the context gray, this is demonstrated in Figure 5.2(b).

5.3. Optimization and efficiency 33

Figure 5.3: An example of anaglyph rendering.

Following the example by Everts et al. (2009), I also added anaglyph rendering
to my program. Anaglyph rendering does not preserve color very well. However,
because all the renderings are in black and white my illustrations work nicely with
anaglyph rendering. I implemented anaglyph rendering by taking two snapshots of
the scene, one for each eye and blend them together in a fragment shader. Figure 5.3
shows an example of anaglyph rendering.

5.3 Optimization and efficiency

The method presented in this thesis heavily relies on the GPU and under large res-
olutions, can show fill rate problems. Because of this I optimized the shader code
to take as little instructions per fragment as needed and exit the shader as soon as
possible.

34 5. Implementation

Most of the process happens in the final shader where everything is put together.
This shader uses a lot of instructions because both fibers, iso-surface and slices are
combined, halos are added and hatching lines are drawn. Both the halos and hatch-
ing lines take up a lot of GPU processing power; it is therefore important to calculate
things in a certain order. First, I look if a pixel belongs to the fibers, iso-surface or
slices. If not, I exit the shader immediately. If the pixel belongs to the fibers I draw
the fibers and exit the shader. If the pixel belongs to the slice I calculate the halo
term for the pixel and draw the slice texture for that fragment. Finally if, the pixel
belongs to the iso-surface I calculate the halo and the hatching. Doing it this way
makes sure no extra calculations are done (e.g. calculating halo terms for pixels that
do not need halos).

5.3.1 Memory management

Memory management is a very important aspect. While new graphics cards have
1GB of ram there are some pitfalls that will lead to using up all of that memory. In
this section I outline possible pitfalls and solutions.

In earlier versions of my program a lot of memory was used for the buffers that
are created for the iso-surface. The buffers need to be made before the transform
feedback operation is carried out. It is very easy to assign too much memory to
the buffers. The marching cubes algorithm uses a grid of points and for every point
polygons belonging to the iso-surface are outputted. The maximum number of poly-
gons per point on a grid is 16. Allocating the space for all the polygons can cost a lot
of memory. For instance, in a grid of size 128 one would expect that the maximum
number points one can get back is 1283 ∗ 16. Every point consist of four (x, y, z and
w) 32 bit values so the total memory need is 1283 ∗ 16 ∗ 4 ∗ 4 = 536, 870, 912 bytes.
Having two iso-surfaces (like a brain and a skull) will already not fit into the mem-
ory of most graphics cards. I found out that with all datasets I could safely assign
4 times less memory because most of the imaginary cubes lie completely inside or
outside the iso-surface, thus producing no output.

Textures also tend to take up a lot of memory. As an example, having anti-
aliasing enabled on a display with a resolution of 1920×1080 will have a view-
port with a resolution of 1755×1068 and will require textures with a resolution of
3510×2136. A texture can have four channels each holding a 32 bit value. Storing
such a texture requires 3510 ∗ 2136 ∗ 4 ∗ 4 = 120 megabytes of RAM. So one should
take care when assigning textures. I did some experimenting with texture sizes and
the result can be seen in Table 5.1. Notice that, to render the scene with z-buffering
enabled, OpenGL requires a special texture format for the depth buffer and I was not
able to read this texture inside a shader so I had to store my own depth in a separate

5.4. Interaction 35

Table 5.1: Memory used by different buffers. The resolution of the non anti-aliasing buffers
is 1755 by 1068 pixels.

Bytes per pixel Memory used in bytes
Isosurface G-Buffer
Position buffer 12 112460400
Normal + depth buffer 8 74973600
Depth buffer 4 37486800
Slice G-Buffer
Color+ depth 4 37486800
AO buffer
Color 1 9371700
Line renderer G-Buffer
Color 8 74973600
Depth buffer 4 37486800
Final result
Color 3 28115100

Total 412 megabytes

channel to use later. These memory values are for both the anti-aliasing and non
anti-aliasing buffers added together. This scenario is for the full-screen resolution of
the wall display.

5.4 Interaction

The touch screen used is a SMART Board overlay on top of a large flatscreen LC
display. The touch screen senses touch with four cameras in the corners. It can
sense up to 2 touches simultaneously and calculate the size of the touches, it can
also sense whether a finger is actually touching the display or hovering just a few
millimeters above it. The hovering detection is not very stable so I did not use it. The
touch screen has the advantage that is is very fast and that the LCD screen behind
it can be any display. The disadvantage is that the use of four cameras have some
limitation on the functionality. First the size of the touch is not calculated correctly
but approximated, this is because calculating this is based on the presumed convex
polygon that is seen by the four cameras. The calculated size can change for the
same hand position where it is in the center of the screen or at the border. Because
of this I did not use the size of the touches in my interface. I also encountered a bug
where the positions of the touch were not calculated correctly. It was assured to me

36 5. Implementation

that this bug would be eliminated in the next firmware release.
One issue noticed directly when experimenting with the touch screen is that

some heuristics are needed to produce a robust interface. For instance, it is common
to accentually release the screen for a split second. The interaction system needs to
take this into account.

The design of the system consist of a state machine. The states of a machine
can be one of the final states like z-rotation or moving the x-cutting plane. A state
can also be an intermediary state like a state where the user has to choose where
to do x-/y-translation, x-rotation or cutting plane manipulation (called Strc from
now on). As an example the user begins in a state where nothing has happened.
When the user touches a frame with the first hand, the state changes to the Strc. If
the user makes a second touch on the center then then the state changes to the state
where the user selects which cutting plane to manipulate. The system also has an
invalid state (for instance when touching two frame boards at once). The user can
not only progress forward but also backwards, for instance if the user is selecting
which cutting plane to manipulate and suddenly releases the hand that is in center
of the screen, then the system checks if the other touch is still on the frame board,
if it is the system goes back to Strc It is also possible to return from an invalid state
to another state. Using this approach, the user does not need to start over when
he/she does something wrong.

5.5 Summary

In the previous Chapters I described different methods I am using in my program.
Combining these methods and adjusting them to each other required carefull con-
sideration of sequence, interaction, and performance aspects of these individual
techniques. In this Chapter I have provided with a description on how to com-
bine the different methods. I also described the different pitfalls one can have when
combining the methods. Also some solutions were given to these pitfalls.

Chapter 6

Results

IN this Chapter I will show the results of my method. Section 6.1 contains ex-
amples of renderings that my method can produce and it also looks at the per-
formance of my application at different resolutions and at different settings.
Finally, Section 6.2 shows the results of an informal evaluation with users who

are experienced in the field of neural tractography.

6.1 Results

This section contains renderings that show the different parameters settings of the
program together with performance data. All renderings are made on a window
with a resolution of 880 × 720 on a machine with 2 GB of ram, an AMD Athlon 64
X2 Dual Core 5200+ processor running at 2.61 GHz and a Geforce 8800 GTX card.
Figure 6.1 shows the effect of different line widths al lthe configurations give me
a stable frame rate of 24. Notice how very thin lines become dashed. Figure 6.2
shows stipples at different density and sizes, notice again how the frame rate stays
constant at 28–29 frames per second. Figure 6.3 shows the effect of halos to bring out
the content, it also shows the effect of anaglyph rendering. Notice how the frame
rate it cut in half by anaglypth rendering, this is because the scene is rendered twice
now, one for each eye.

From these results it is clearly visible that the performance is not effected by
any of the setting too much. Only Figure 6.1 has a lower frame rate, this is due to
the algorithm performing a halo check for all the pixels not part of the fibers and
because no fibers are visible a check will have to be performed for all of them. In
fact, the performance is only effected by the size of the render buffer. In Table 6.1
frame rates for different resolutions are shown for examples in Figure 6.2, every
time I tried to fill the whole screen with the model. Because of this users can choose
any configuration of lines and stipples possible withouth effecting performance too
much. The configuration to choose depends on the flavor of the user but normally
thinner lines and stipples tend to look better on screen and also make the fiber tracts
come out.

38 6. Results

(a) (b)

(c) (d)

Figure 6.1: Examples of renderings with different line width. For all the pictures the frame
rate was stable at 24 fps.

It is also possible to display datasets with presegmented objects like a skull or a
tumor in them. It is also possible to add different hatching styles to these objects.
For this I use masks just like with the stippling to tag the pixels belonging to the
presegmented objects. Some examples of these are seen in Figure 6.5

6.2. Evaluation 39

(a) 29 fps. (b) 29 fps.

(c) 29 fps. (d) 28 fps.

Figure 6.2: Examples of renderings with different stipple width and density. Also giving the
frame rates when rendered to a 880×720 buffer.

6.2 Evaluation

Two informal evaluations were carried out. One for the illustrative rendering method
and one for the frame interaction method. Both evaluations provided a lot of valu-
able feedback that will be discussed next.

40 6. Results

28 fps 14 fps

Figure 6.3: Example of transparency and halos and anaglyph rendering

Figure 6.4: Effect of extracting surface at different iso-values. When altering iso-values the
performance of the program stays at 5-6 fps.

Table 6.1: Frame rates at different resolutions.

Resolution Avarage frame rate
880× 720 29
935× 888 20
1280× 920 15

6.2. Evaluation 41

A dataset with a presegmented tumor. A datset with a presegmented skull

Figure 6.5: Rendering data with different presegmented object, each with it’s own style.

6.2.1 Rendering evaluation

We held an informal evaluation with two neuroscientists. We invited them to our lab
and showed them our software on an 52” screen. We also showed them examples
of printed images to show them how this method looks on paper.

They were impressed with the images and saying that they looked like draw-
ings from Leonardo da Vinci. The scientist also mentioned that this technique can
be used in several cases. One is printed material, the scientist said that to have color
pages in publications increases the publication costs by a lot. But they also said
that this software can be used in lectures. They also liked the anaglyphic rendering
because this made it easier to set apart the fibers from the context. They also men-
tioned that there is no other software that will produce these kind of pictures and
that adding this method to already existing packages like FSL or SPM (Friston 2003)
would benefit the medical community a lot.

6.2.2 Interaction evaluation

An informal evaluation of the interaction part was carried out. The main goal was
to evaluate the frame interaction method compared to software packages that are
normally used for brain and fiber exploration (e.g., TrackVis). For this I invited a
neuroscientist who already had experience working with those packages to our lab.
I first explained to him how the frame interaction method works and then I let the
scientist try the software out for himself. While he was working with the software I

42 6. Results

asked for comments on the interaction and I also observed how fast he was able to
learn to use the software.

After the explanation of the mappings, the scientist noticed immediately that
the two-point RST interaction was missing and asked why. This was accompanied
by a two hand gesture towards the screen as if trying to rotate or to zoom in. This
indicates the kind of interaction people expect from and multi-touch interface. After
explaining to him that he could not use RST and only the mappings we presented
to him he started trying out the software. The scientist was able to figure out how to
use the frame border immediately. He commented that he liked the idea and that it
was very easy to use. He especially liked how the manipulation of the cutting planes
was implemented and compared it to TrackVis saying that TrackVis has 3 little view
ports with extra sliders to control the slices and that he liked that this method is free
of those extra windows.

What he did not like was the way the box selection was implemented. He liked
being able to point with two fingers to position the boxes but he did not like the
way you could move the boxes by touching the sides of them. He compared this to
the software packages he is used to. These packages often have spheres that can be
dragged parallel to the view plane and that is easier and more intuitive to use than
dragging the boxes one axis at a time.

Chapter 7

Conclusion

7.1 Conclusion

In this thesis I presented a method to create illustrative visualization of fiber tracks
and context. The presented method combines a number of previously developed
techniques and makes them available for interactive illustrative visualization of DTI
data of the brain. The main contributions of this thesis lies in adapting the tech-
niques to the GPU to achieve real-time rendering and in combing the techniques
to produce an images and illustrative style that stays consistent. The illustration
style is inspired by illustrations in old medical books as shown in Figure 1.2 and by
images in scientific papers. One of the additional goals of this method was also to
produce clear high-resolution illustrations that could be used in print.

Another contribution of this thesis is to demonstrate the use of how the frame
border interaction technique to explore DTI datasets. Using the frame border, I pre-
sented a number of simple gestures that can be used to do rotation, translation and
scaling of the data. It is also possible to look inside object by slicing them open and
to select fibers using boxes.

From evaluation with experts in tractography it also became clear that this soft-
ware can be used in teaching. The software could also be used for making pictures
for papers or illustrations for biology books. The multi-touch aspect can also be used
in, for instance, collaboration; having a big screen is more accessible to a crowd of
scientists than one computer.

7.2 Future work

From the two informal evaluations held a number of ideas came up for using this
technique. From the illustration point of view, the scientist provided me with more
examples of illustrations in medical papers. An interesting one was about animal
(Mesulam and Mufson 1982) tractography where only the end points of the fibers
where drawn on the brain surface (see Figure 7.1). Those endpoints where repre-
sented as dots. Another point was integrating this method in already existing soft-

44 7. Conclusion

Figure 7.1: From (Mesulam and Mufson 1982): Animal tractography.

ware packages. FSL and PSM were mentioned as examples. PSM is a collection of
scrips for matlab and has the ability to be expanded by the user so this is a likely
candidate for integrating this method. Another possible extension of my work is to
be able to select only part of fibers, right now if a part of a fiber is inside a selection
box the whole fiber is shown. The existing method can be adapted to do this but the
filter algorithm is not designed to take parts of fibers into account and this can lead
to unforeseen performance issues.

From an interactive point of view, one scientist mentioned that this software can
be used to let scientist collaborate. Collaboration is very common in tractography
and a big touch screen makes it easy for more that one person to provide input into
a program.

Bibliography

Appel, A., Rohlf, F. J. and Stein, A. J.: 1979, The Haloed Line Effect for Hidden Line Elimina-
tion, ACM SIGGRAPH Computer Graphics 13(3), 151–157.

Bavoil, L. and Sainz, M.: 2009, Multi-layer dual-resolution screen-space Ambient Occlusion,
SIGGRAPH ’09: SIGGRAPH 2009: Talks, ACM, New York, NY, USA.

Bavoil, L., Sainz, M. and Dimitrov, R.: 2008, Image-space horizon-based Ambient Occlusion,
SIGGRAPH ’08: ACM SIGGRAPH 2008 talks, ACM, New York, NY, USA.

Bruckner, S. and Gröller, E.: 2007, Enhancing Depth-Perception with Flexible Volumetric Ha-
los, IEEE Transactions on Visualization and Computer Graphics 13(6), 1344–1351.

Catani, M. and Thiebaut de Schotten, M.: 2008, A Diffusion Tensor Imaging Tractography
Atlas for Virtual in Vivo Dissections, Cortex 44(8), 1105–1132.

Dauber, W.: 2005, Feneis’ Bild-Lexikon der Anatomie, 9th edn, Georg Thieme Verlag, Stuttgart.

Deering, M., Winner, S., Schediwy, B., Duffy, C. and Hunt, N.: 1988, The Triangle Proces-
sor and Normal Vector Shader: A VLSI System for High Performance Graphics, ACM
SIGGRAPH Computer Graphics 22(4), 21–30.

Deussen, O., Hamel, J., Raab, A., Schlechtweg, S. and Strothotte, T.: 1999, An Illustration Tech-
nique Using Intersections and Skeletons, Proc. Graphics Interface, Morgan Kaufmann, San
Francisco, pp. 175–182.

Deussen, O., Hiller, S., van Overveld, C. and Strothotte, T.: 2000, Floating points: A method
for computing stipple drawings, Computer Graphics Forum 19, 40–51.

Ebert, D. S. and Sousa, M. C.: 2006, Illustrative Visualization for Medicine and Science, ACM
SIGGRAPH 2006 Courses.

Elber, G.: 1995, Line Illustrations ∈ Computer Graphics, The Visual Computer 11(6), 290–296.

Evans, A.: 2006, Fast Approximations for Global Illumination on Dynamic Scenes, SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Courses, ACM, New York, NY, USA, pp. 153–171.

Everts, M. H., Bekker, H., Roerdink, J. B. and Isenberg, T.: 2009, Depth-Dependent Halos: Il-
lustrative Rendering of Dense Line Data, IEEE Transactions on Visualization and Computer
Graphics 15(6), 1299–1306.

46 BIBLIOGRAPHY

Freudenberg, B., Masuch, M. and Strothotte, T.: 2001, Walk-Through Illustrations: Frame-
Coherent Pen-and-Ink Style in a Game Engine, Computer Graphics Forum 20(3), 184–191.

Friston, K.: 2003, Introduction: Experimental design and statistical parametric mapping, in
R. Frackowiak, K. Friston, C. Frith, R. Dolan, K. Friston, C. Price, S. Zeki, J. Ashburner
and W. Penny (eds), Human Brain Function, 2nd edn, Academic Press.

Hancock, M., Carpendale, S. and Cockburn, A.: 2007, Shallow-Depth 3D Interaction: Design
and Evaluation of One-, Two- and Three-Touch Techniques, Proc. CHI, ACM, New York,
pp. 1147–1156.

Hancock, M. S., Carpendale, S., Vernier, F. D., Wigdor, D. and Shen, C.: 2006, Rotation and
Translation Mechanisms for Tabletop Interaction, Proc. Tabletop, IEEE Computer Society,
Los Alamitos, pp. 79–88.

Hargreaves, S. and Harris, M.: 2004, Deferred Shading, Whitepaper and presentation, NVIDIA.

Hertzmann, A. and Zorin, D.: 2000, Illustrating Smooth Surfaces, Proc. SIGGRAPH, ACM,
New York, pp. 517–526.

Hodges, E. R. S. (ed.): 2003, The Guild Handbook of Scientific Illustration, 2nd edn, John Wiley &
Sons, Hoboken, NJ.

House, E. L. and Pansky, B.: 1960, A Functional Approach to Neuroanatomy, McGraw-Hill Book
Company, New York.

Hultquist, J.: 1990, A Virtual Trackball, Graphics gems, Academic Press Professional, Inc., San
Diego, CA, USA, pp. 462–463.

Johansson, G. and Carr, H.: 2006, Accelerating Marching Cubes with graphics hardware,
CASCON ’06: Proceedings of the 2006 conference of the Center for Advanced Studies on Col-
laborative research, ACM, New York, NY, USA, p. 39.

Kim, S., Maciejewski, R., Isenberg, T., Andrews, W. M., Chen, W., Sousa, M. C. and Ebert,
D. S.: 2009, Stippling By Example, Proc. NPAR, ACM, New York, pp. 41–50.

Kopf, J., Cohen-Or, D., Deussen, O. and Lischinski, D.: 2006, Recursive Wang Tiles for Real-
Time Blue Noise, ACM Transactions on Graphics 25(3), 509–518.

Kruger, R., Carpendale, S., Scott, S. D. and Tang, A.: 2005, Fluid Integration of Rotation and
Translation, CHI ’05: Proceedings of the SIGCHI conference on Human factors in computing
systems, ACM, New York, NY, USA, pp. 601–610.

Landis, H.: 2002, Production-Ready Global Illumination, Course Notes of SIGGRAPH 2002,
number 16, ACM, New York, chapter 5, pp. 331–338.

Leister, W.: 1994, Computer Generated Copper Plates, Computer Graphics Forum 13(1), 69–77.

Lorensen, W. E. and Cline, H. E.: 1987, Marching Cubes: A high resolution 3d surface con-
struction algorithm, SIGGRAPH Comput. Graph. 21(4), 163–169.

Lu, A., Morris, C. J., Taylor, J., Ebert, D. S., Hansen, C., Rheingans, P. and Hartner, M.: 2003,
Illustrative Interactive Stipple Rendering, IEEE Transactions on Visualization and Computer
Graphics 9(2), 127–138.

McGuire, M.: 2010, Ambient Occlusion Volumes, I3D ’10: Proceedings of the 2010 ACM SIG-
GRAPH symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA.

BIBLIOGRAPHY 47

Meruvia Pastor, O., Freudenberg, B. and Strothotte, T.: 2003, Real-Time, Animated Stippling,
IEEE Computer Graphics and Applications 23(4), 62–68.

Mesulam and Mufson, E. J.: 1982, Insula of the old world monkey. iii: Efferent cortical output
and comments on function., Vol. 212, pp. 38–52.

Meyer, T. and Globus, A.: 1993, Direct Manipulation of Isosurfaces and Cutting Planes in Vir-
tual Environments, Technical Report CS-93-54, Brown University, Providence, RI, USA.

Miller, G.: 1994, Efficient Algorithms for Local and Global Accessibility Shading, SIGGRAPH
’94: Proceedings of the 21st annual conference on Computer graphics and interactive techniques,
ACM, New York, NY, USA, pp. 319–326.

Mori, S. and van Zijl, P. C.: 2002, Fiber Tracking: Principles and Strategies – A Technical
Review., NMR Biomed 15(7–8), 468–480.

Nijboer, M., Gerl, M. and Isenberg, T.: 2010, Exploring Frame Gestures for Fluid freehand
Sketching, Proceedings of the Sketch Based Interfaces and Modeling Symposium.

Ostromoukhov, V.: 1999, Digital Facial Engraving, Proc. SIGGRAPH, ACM, New York,
pp. 417–424.

Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S. and Doleisch, H.: 2002, Feature Extraction
and Visualisation of flow fields.

Praun, E., Hoppe, H., Webb, M. and Finkelstein, A.: 2001, Real-Time Hatching, Proc. SIG-
GRAPH, ACM, New York, pp. 581–586.

Ritter, F., Hansen, C., Dicken, V., Konrad, O., Preim, B. and Peitgen, H.-O.: 2006, Real-Time Il-
lustration of Vascular Structures, IEEE Transactions on Visualization and Computer Graphics
12(5), 877–884.

Saito, T. and Takahashi, T.: 1990, Comprehensible Rendering of 3-D Shapes, ACM SIGGRAPH
Computer Graphics 24(3), 197–206.

Salisbury, M. P., Anderson, C., Lischinski, D. and Salesin, D. H.: 1996, Scale-Dependent Re-
production of Pen-and-Ink Illustration, Proc. SIGGRAPH, ACM, New York, pp. 461–468.

Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., de Crespigny, A. J.
and Wedeen, V. J.: 2007, Association Fibre Pathways of the Brain: Parallel Observations
from Diffusion Spectrum Imaging and Autoradiography, Brain 130(3), 630–653.

Secord, A., Heidrich, W. and Streit, L.: 2002, Fast primitive distribution for illustration.

Shanmugam, P. and Arikan, O.: 2007, Hardware Accelerated Ambient Occlusion Techniques
on GPUs, Proc. I3D, ACM, New York, pp. 73–80.

Tarini, M., Cignoni, P. and Montani, C.: 2006, Ambient Occlusion and Edge Cueing for En-
hancing Real Time Molecular Visualization, IEEE Transactions on Visualization and Com-
puter Graphics 12(5), 1237–1244.

Tatarchuk, N., Shopf, J. and DeCoro, C.: 2007, Real-Time Isosurface Extraction Using the GPU
Programmable Geometry Pipeline, ACM SIGGRAPH 2007 Courses, number 28, ACM,
New York, chapter 9, pp. 122–137.

48 BIBLIOGRAPHY

Tietjen, C., Isenberg, T. and Preim, B.: 2005, Combining Silhouettes, Shading, and Volume
Rendering for Surgery Education and Planning, Proc. EuroVis, Eurographics Association,
Aire-la-Ville, Switzerland, pp. 303–310.

Viola, I., Gröller, M. E., Hadwiger, M., Buhler, K., Preim, B., Costa Sousa, M., Ebert, D. and
Stredney, D.: 2005, Illustrative Visualization, Course Notes of IEEE VIS 2005, IEEE Com-
puter Society, Los Alamitos.

Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C. M. and Mori, S.: 2004, Fiber
Tract-based Atlas of Human White Matter Anatomy, Radiology 230(1), 77–87.

Wilson, A. D., Izadi, S., Hilliges, O., Garcia-Mendoza, A. and Kirk, D.: 2008, Bringing Physics
to the Surface, Proc. UIST, ACM, pp. 67–76.

Winkenbach, G. A. and Salesin, D. H.: 1994, Computer-Generated Pen-and-Ink Illustration,
Proc. SIGGRAPH, ACM, New York, pp. 91–100.

Wyvill, G., McPheeters, C. and Wyvill, B.: 1986, Data Structure For Soft Objects.

Yu, L. and Isenberg, T.: 2009, Exploring One- and Two-Touch Interaction for 3D Scientific Vi-
sualization Spaces, in M. Ashdown and M. Hancock (eds), Posters of Interactive Tabletops
and Surfaces (ITS 2009, November 2325, 2009, Banff, Alberta, Canada). Extended abstract
and poster, to appear.

Zander, J., Isenberg, T., Schlechtweg, S. and Strothotte, T.: 2004, High Quality Hatching, Com-
puter Graphics Forum 23(3), 421–430.

Zhukov, S., Inoes, A. and Kronin, G.: 1998, An Ambient Light Illumination Model, Rendering
Techniques, Springer-Verlag, Wien, New York, pp. 45–56.

	Acknowledgements
	Introduction
	Illustrative rendering
	Multi-touch interaction
	Organization

	Related work
	Rendering techniques
	Fiber rendering
	Stipple rendering
	Ambient occlusion
	Hatching and halos

	Multi-touch exploration

	Rendering context
	Surface extraction from volume data
	Zoom independent slice-based hatching on the GPU
	Screen space ambient occlusion
	Slices and zoom-independent stippling
	Summary

	Exploration of DTI data
	The frame border
	Translation and zooming
	Rotation
	Managing cutting planes
	Fiber selection
	Summary

	Implementation
	Box filtering
	Combining the different methods
	Optimization and efficiency
	Memory management

	Interaction
	Summary

	Results
	Results
	Evaluation
	Rendering evaluation
	Interaction evaluation

	Conclusion
	Conclusion
	Future work

	Bibliography

