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A B S T R A C T

Technological improvements the last decade have made digital drawing
a very effective method for artistic expression. Thanks to more widely
available and affordable peripheral devices such as pen tablets, an in-
creasing number of artists are creating digital works. However, many
fundamental interactions of modern day drawing systems have seen
little change in over twenty years. Therefore, it is time to investigate
what kind of innovation can be brought to these interactions with the
computational power of today’s desktop computers.

This thesis shows the development, implementation and evaluation
of novel canvas and stroke interactions. A novel way to orientate the
canvas through gestures is presented. This is a modeless, effective way
for artists to use the canvas which takes little time to become proficient
in. A new interaction tool gives the artist intuitive control over stroke
shapes by utilizing the brush stroke paradigm which artists are very
familiar with. The tool can be used to freely shape lines with very few
restrictions.

Methods to create scalable line art from freehand drawing input are
discussed. A technique to improve the visual quality of lines is also
presented. A global theme of the thesis is the creation of a visually ap-
pealing interface which is minimal, yet effective. Finally, these concepts
are evaluated through a case study and an informal user study. Results
show that the key concepts presented here can be useful additions to
the workflow of an artist.
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1I N T R O D U C T I O N

Improvements in computational power and peripheral devices during
the last decade have made digital drawing not only a possibility, but
a very effective method for artistic expression. Unburdened by the
constraints imposed on physical media, such as the high penalty of
mistakes and the room needed to store an artists easel, digital painting
and drawing are an excellent option for both starting and professional
artists alike. Currently, with the wide availability of pen tablets and
drawing software, more and more artists are turning to the computer
to create their works.

1.1 motivation

With this increasing popularity of digital drawing it is time to take a
fresh look at some of the interactions which have seen very little inno-
vation since the very first drawing programs. This lack of improvement
has lead to current programs using methods that were designed for
very limited hardware and input devices that are now considered ar-
chaic. The question is, therefore, whether we can, with todays powerful
computers, improve upon this.

(a) (b)

Figure 1: (a) A Wacom pen tablet [Wacom]. (b) Adobe Photoshop [Adobe, 1990]
used to perform digital painting.

In particular, the interfaces of modern drawing applications are very
complex. This can lead to a steep initial learning curve. Another prob-
lem is the high cost of switching tools, as this typically requires a mode
change. These interface issues can be troublesome and disheartening to
the artist using the tool. Another point of interest is the lack of control
over strokes once they have been deposited on the canvas, or the very
unintuitive fashion in which this control can be exercised. Often the
only options available in modern systems are the eraser or cumbersome
curve shaping controls.

Furthermore, many drawing systems expose a great deal of technical
details to the user. For beginners and artists that want to get into digital
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2 introduction

art, but have little experience with computers, this can create a high
reluctance in learning the ins and outs of a certain drawing application.
Such aspects of a drawing system should be transparent to the user.

1.2 contribution

This thesis addresses a small set of important drawing interactions and
explores novel ways in which to perform or extend them. The goal is to
develop interesting alternatives to the established methods.

To accomplish this goal, several new interactions and interface me-
chanics were developed. The first of these is a gesture based way to
control the placement and orientation of the canvas. This approach is
easy to understand, and requires only minimal instruction for a user
to become proficient. The interactions also require no mode changes.
New possibilities for stroke editing have also been researched. This has
led to a brush based edit tool which can redefine the local shape of a
stroke. The tool is an intuitive and responsive way in which to manip-
ulate lines. Furthermore, a new gesture based approach to selection
transformations was created. This allows all standard transformation
operations to be available in one selection frame without the need for
mode changes.

A way to create scalable artwork from freehand drawing input was re-
searched. Scalability without loss of quality has several benefits. Artists
can reuse small thumbnail sketches as a basis for final works, and are
no longer restricted to image resolutions. This alleviates some of the
troubles of sharing and printing line art.

(a) (b)

Figure 2: (a) A user working with the implementation. (b) The implementation,
used to work on a magnified part of a sketch.

An evaluation conducted towards the end of the project showed that
many of the novel interactions were well received. Especially the simple,
gesture-based controls were unanimously perceived as useful. Inter-
actions such as the ability to alter the stroke shape were found to
be interesting, especially as a method for experimentation. Overall,
many of the concepts presented in this thesis are interesting for future
research.
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1.3 limitations

The methods and concepts presented in this thesis focus on freehand
sketching. As such, stroke placement precision was not an important
factor. This makes the implementation unsuitable for any kind of tech-
nical drawing. There are no tools to draw precise lines or to simulate a
specific scale. Also, the lines themselves are approximations of the user
input. If absolute accuracy is a requirement, other techniques might be
more suitable. Furthermore, the concepts have been designed specif-
ically for pen tablets. While other input devices might perform well,
these have not been tested or evaluated.

1.4 organization

The thesis has been structured in the following manner:

Chapter 2 puts the thesis within the context of the research domains by
giving an overview of related work. It introduces many of the concepts
and technologies which will be used in the remaining chapters. Topics
include aspects from both Non-Photorealistic Rendering (NPR) and user
interaction.

Chapter 3 presents the concepts and methods designed to solve the
core problems discussed in the thesis. The chapter begins with a brief
description of the design philosophies upheld during the project. It
continues by introducing the user interface and user interactions. The
most important concepts are the novel way in which the canvas can be
manipulated, new stroke interactions and scalable line art.

Chapter 4 gives detailed explanations of the concepts proposed in
the preceding chapter. This chapter forms the technical basis of the
implementation and contains the data structures and algorithms used
to realize the system.

Chapter 5 contains a case study that illustrates the use of the concepts
present in the implementation. The chapter also reports on an informal
user study and the results obtained from this study. The chapter ends
with a critical discussion of the implementation.

Chapter 6 Summarizes the thesis as a whole and touches upon possible
research directions for future work.





2F O U N D AT I O N

In order to relate this thesis to the research domains of human-computer
interaction and NPR, this chapter presents an overview of earlier work.
It contains the foundations and concepts needed to understand the
terms, definitions and ideas presented in the following chapters.

2.1 non-photorealistic rendering

NPR is a very broad field where much of the research is focused on
enabling a wide variety of expressive styles for digital art and illus-
trations. In contrast to traditional computer graphics which is focused
on photorealism, NPR is inspired by artistic styles such as Chinese ink,
hatching, oil painting and water colour. Areas within the field of NPR

that are closely related to this thesis are digital drawing systems, brush
stroke models and automatic line drawing generation.

2.1.1 Interactive Drawing Systems

The popularity of digital painting has increased greatly in the last
decade or two. A large factor behind this might be the increased avail-
ability and quality of drawing tablets (Figure 1a). Previously, most
were limited to using a mouse which is far from the ideal painting
implement. In contrast, tablets bare a certain resemblance to traditional
drawing tools in form and usage. This, combined with the benefits of
digital painting have caused a shift in the illustration community from
traditional to digital artwork.

There exists a wide variety of digital drawing programs, from painting
simulators such as Corel Painter [Corel, 2007] to illustrative tools such
as Adobe Illustrator [Adobe, 1988]. Within this variety we do not only
find great differences in functionality and complexity, but also very
different ways for users to interact with these programs. In some it is
possible to change each line (Adobe Illustrator), in others the whole
work is affected (Corel Painter), as strokes are merged into one layer.
Despite their fairly recent popularity, painting systems have attracted
the interest of researchers for a long time.

Early work was done by Smith who developed Paint [2001], one of the
first interactive painting programs. In Paint, brushes are 2D shapes
and users can pick colours or mix new ones. It is considered a pio-
neering effort in the field of digital painting. As an attempt at making
the painting experience more intuitive, Smith later developed Table

Paint which used a stylus in combination with a tablet. This gave
users the ability to change shape, size and orientation of the brush.
This type of interface is still the standard and is used in our system also.

In Haeberli’s seminal Paint by Numbers [1990], the colours of brush
strokes painted by the user are sampled from a source image. Users
can create brush strokes by clicking and dragging the mouse (Figure 3).
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6 foundation

The size of strokes can be controlled through the keyboard or the move-
ment speed of the mouse. The orientation of the brush strokes can be
controlled in several ways, such as orienting the brush at the direction
the user is moving the mouse in. The system supports different stroke
shapes which lead to many different styles, such as pointillism, mosaic
and painterly rendering.

Another influential effort by Haeberli is DynaDraw [1989], which took
a new way of looking at digital brushes. In DynaDraw, the brush con-
trolled by the user is modeled as a physical entity with mass. This brush
is subject to acceleration and friction as the mouse exerts a pulling force
on the brush with a simulated rubber band. By changing parameters
such as the amount of friction or mass, different kinds of strokes can be
generated. This method to vary a brush parameter with drawing speed
was utilized in our system as well.

Figure 3: From left-to-right: different stages of a painting in Paint By Numbers

[Haeberli, 1990]. Additional strokes reveal more of the source image,
giving the user great creative control.

An ubiquitous application in the world of digital drawing is Adobe
Photoshop [Adobe, 1990]. While designed for a very specific purpose,
it is considered an all-round digital painting and photo manipulation
system. Partly due to its heritage, Photoshop uses a raster array of pix-
els to store colours. Another popular pixel-based application is Corel
Painter [Corel, 2007]. Painter was designed explicitly with digital paint-
ing in mind. It can simulate many types of traditional media such as
oil paint, gouache and charcoal. A relatively new system which also
tries to simulate traditional methods is ArtRage [AmbientDesign, 2004].
These systems dictate what is expected from a modern drawing system
and were studied to develop the concepts for this thesis.

A different class of digital drawing solutions are vector-based appli-
cations. The most well-known of these are Adobe Illustrator [Adobe,
1988], Corel Draw [Corel, 2007] and Xara X [Xara]. These use geometri-
cal primitives such as lines and polygons to represent images. These
primitives are based on mathematical definitions. Because such primi-
tives are scalable without any loss in quality (in contrast to pixel-based
images), vector-based approaches are popular in the publishing com-
munity. One of the most important guidelines in designing our stroke
model concept was that this type of lossless scaling would be possible.
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What the professional systems have in common are large feature lists
and complicated user interfaces, resulting from decades of develop-
ment. While very powerful, learning to use such programs poses a
daunting task for new users. The systems are also very specialized:
for instance, systems designed for painting use a raster image format
while systems designed for publishing use a vector approach. These
approaches result in different styles. There does not seem to be a true
compromise between both approaches. Aside from these commercial
programs, many digital drawing systems were developed as research
projects.

CavePainting [Keefe et al., 2001] takes a very different approach to
digital painting. Here the user is inside a Cave Automatic Virtual
Environment (CAVE) and uses physical props and gestures to paint.
Props such as brushes and paint buckets (Figure 4a) are tracked in
3D space and can be used to create or modify objects in virtual space,
giving the user a very immersive painting experience.

CoolPaint [Lang et al., 2003] resembles CavePainting in the sense
that both utilize physical props for painting. The painting experience
is recreated by having a physical brush controlling its digital coun-
terpart. Artists can use these brushes to paint on a tabletop display
which removes the spatial indirection caused by a mouse or tablet (Fig-
ure 4b). To make the experience close to real painting the brushes have
six degrees-of-freedom and colour mixing is emulated with a virtual
palette. The concept of using different brushes for different functions
could be applied to a pen tablet input device as well.

(a) (b)

Figure 4: (a) In CavePaint [Keefe et al., 2001] the paintbucket prop creates
splatter patterns. (b) The CoolPaint [Lang et al., 2003] tabletop
interface in use.

Recently, Vandoren et al. [2008] created a novel painting interface called
IntuPaint which uses electronic brushes with a tuft of bristles made
from transparent nylon fibers. The fibers conduct infrared light through
total internal reflection and cause a footprint on the canvas, which is
translated into a canvas interaction. The system uses both physically
based and empirical algorithms to simulate water color, gouache and
impasto. The combination of the input devices with the paint simu-
lation leads to a very traditional painting experience. The electronic
brush might be an interesting research direction for new pen tablets.
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ILoveSketch, created by Bae et al. [2008], tries to seamlessly integrate
sketching with 3D curve creation. The system uses gestures to navigate
the 3D space. A multi-stroke approach to NURBS curve generation is
taken: the resulting curve is the average of the strokes put down by the
user. Through similar means curves can also be connected. The system
tries to emulate a sketchbook; by grabbing the corners and dragging
them across the screen the user can clear the screen or save the 3D
model. Results indicate that the system can be an effective tool for
introducing traditional artists to 3D modeling. Some of these concepts
were used as inspiration for this thesis.

The previous systems have all been designed for start-from-scratch
painting. A very different category of systems are those that use an ex-
isting source as starting point. Paint By Numbers which was mentioned
earlier, might also be considered an early example of this. However,
Paint By Numbers only sampled the colour of the strokes from the
source, and does not use the source in any other way.

Durand et al. [2001] investigated semi-automatic tonal modeling. Given
a reference photo, the user can determine the placement of strokes,
their tone and precision. Precision defines the amount of spatial detail
of strokes, so more precision will reveal more detail from the source.
The system performs in realtime so the user can see changes in the
final image as they occur. Strokes are rendered using threshold textures,
which allow for a wide range of media simulation, e. g. pencil drawing,
charcoal sketching and copperplate engraving (Figure 5a). Strokes are
rendered as Bézier curves. The visualization of the strokes and the final
result are done in separate windows. This might make it more difficult
to locate certain strokes as the user has to correlate between the two
images. A very interesting aspect of this approach is the thresholding,
which extends into a possible way in which to implement scalable
stroke textures.

(a) (b)

Figure 5: Semi automatic painting using a 2D and 3D source, respectively
[Durand et al., 2001; Kalnins et al., 2002].

The system of Kalnins et al. [2002] gives users the freedom to draw
strokes directly onto 3D models. The model is not so much a guide
for the artistic expression; but more a foundation which the artist can
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change to resemble his own vision. The user has complete control over
the appearance of the strokes. They provide three main categories of
strokes: silhouettes and creases, decal strokes (which suggest surface
features) and hatching strokes. The artist uses a pressure sensitive tablet
to apply strokes to the base model. The pressure can be used to vary
parameters such as width and tone. Users can save the combination
of parameters that lead to a certain style for later use. Examples of
different styles for the same object can be seen in Figure 5b.

A similar program which has been used in a production environment
is Disney’s Deep Canvas [Daniels, 1999]. This tool gives animators
the ability to paint on the geometry of an animated 3D scene. The
system stores the colour and placement of the strokes. By adding the
hand-drawn animations as an overlay, the final scene can be constructed
iteratively: the artists can keep adding paint to the scene, slowly filling
in the gaps. This seamless combination of 2D and 3D could be of inter-
est to other, 2D, drawing systems as well.

In both the commercial as academic sectors many different drawing
systems can be found. The commercial systems, while powerful, suffer
from great complexity. The academic systems on the other hand, ex-
change functionality for ease of use. They both have in common the
use of Brush Stroke Models (BSM) to represent strokes.

2.1.2 Brush Stroke Models

In early systems, brush strokes were limited to simple lines with a
static width. This limits the artist in his choice of style and artistic
expression. Today, there are many different BSM. These stroke represen-
tations can vary widely, depending on the system and its requirements.
In previously mentioned systems such as Photoshop [Adobe, 1990],
strokes are modeled as colour values in a pixel raster. This, however,
provides few possibilities to change strokes after their initial creation.
In NPR systems, strokes are usually 2D geometry on top of a virtual can-
vas. These strokes are often designed to simulate a certain painting or
drawing medium, e. g. pencil lines, charcoal, watercolour or ink. Some
representations are meant as general frameworks which are flexible
enough to emulate different styles.

A very influential stroke model was proposed by Hsu and Lee [1994] in
their seminal paper. They present the skeletal stroke as a replacement
of the constant thickness stroke. The skeletal stroke is built from an
idealized 2D deformation model defined by an arbitrary path. The de-
formation can be applied to any image, allowing for an almost endless
range of different stroke styles. The deformation is based on a localized
parametric coordinate system along the stroke path, while the stroke
itself is defined by a backbone and thickness. Skeletal strokes can be
evaluated in realtime, and so are suitable for interactive painting sys-
tems. Examples of skeletal strokes can be seen in Figure 6. A variation
of the skeletal stroke would be to map the image to a polygon with
texture coordinates, instead of directly deforming the image. This is an
approach used often in drawing systems. The way in which strokes are
rendered in our system is loosely based on the skeletal concept as well.
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Figure 6: Skeletal strokes with different textures and properties. Anything from
wood-cut to an ordinary flat-nib pen can be recreated [Hsu and Lee,
1994].

Seah et al. [2005] represent strokes as mathematical curves. In their
approach, the center line of a stroke is encoded as a disk B-spline. The
control points of this spline can be given attributes such as a radius
(hence the disk) or colour. Strokes can be easily manipulated by moving
control points as the 2D stroke area between them is implicit from
the spline definition. The result is a very storage-efficient, flexible way
to represent brush strokes which is suitable for a range of different
styles, for example calligraphy. However, they do not handle the issue
of processing the user input to extract a sparse representation of the
stroke. The internal representation of strokes in our systems was di-
rectly inspired by this approach.

In an earlier work by Su et al. [2002] a similar method is used, also
with B-spline curves. They focus more on the aesthetic aspects of the
stroke however. By evaluating certain functions along the lengths be-
tween control points, a wide range of visual styles can be achieved. To
illustrate the method, they create a close analogue of Chinese ink by
varying ink density along the line. This approach to calculating the
appearance makes it very suitable in situations where the artwork must
be available at large scales, as it does not lose quality.

Originating from a very different direction are curve analogies, pro-
posed by Hertzmann et al. [2002] The method is inspired by algorithms
from image texture synthesis: given an example curve, artists can draw
other lines in the same style; the example is mapped to the new curve
to make them look alike. This gives artists a very intuitive way to
define a style and easily maintain it consistently throughout an illus-
tration. The process involves sampling from the example curve so the
neighbourhood around each point in the new curve resembles some
neighbourhood from the example. This concept could be an interesting
extension for a drawing system.

Murakami et al. [2005] present an algorithm that creates realistic pastel
and charcoal strokes. They represent strokes with Catmull-Rom splines
and use the calculated maximum pressure and height fields to calculate
the pigment deposition on the canvas. The height fields are generated
from twelve real paper textures, lit at different angles. The strokes are
rendered as triangle strips. The results are very convincing, as can be
seen in Figure 7. The difference in regard to the other stroke models is
how they use the path of the stroke to calculate where the maximum
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Figure 7: A computer generated pastel drawing of two mammals [Murakami
et al., 2005].

pressure applied by the pencil would be.

While stroke models vary widely in appearance and complexity, the
underlying representation is often very similar. Most, including our
own, use the fundamentals proposed by Hsu and Lee [1994] in some
way. Splines are a very effective way to interpolate segments of a
stroke, and play an important role in many models. One particular area
where a stroke model is often used are systems that perform automatic
generation of line drawings.

2.1.3 (Semi) Automatic Generation of Line Drawings

While direct user input is one way to determine the placement of
strokes, another is to automate this process. A popular approach to
this is Stroke Based Rendering (SBR): a, possibly automatic, approach to
creating non-photorealistic images by placing discrete elements such
as paint strokes. One way to determine how the strokes are positioned
and what their parameters are is to use a 2D or 3D source. This does
not mean the user cannot influence the stroke placement in some way.
Rather, most SBR systems depend on user interaction to produce a visu-
ally pleasing result. Many different styles have been implemented as
automatic systems, simulating pencil strokes, pen-and-ink, watercolour,
oil paint and mosaic. The rendering of line drawings has seen signifi-
cant attention. Another popular topic is creating a stylized rendition to
better convey relevant surface information of 3D objects. A brush stroke
model is often an integral part of these systems. While SBR might be a
popular way to automatically generate line drawing imagery, it is not
the only one. Another well known approach is to directly extract the
lines (with image or object space techniques) and render these, possibly
after some modification.

Hertzmann [1998] describes a framework for painterly rendering. Brush
strokes are modeled as splines whose colour is picked from a source im-
age. The result is built from multiple layers of splines, each successive
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layer having a smaller brush size. A number of styles can be achieved,
e. g. impressionism and expressionism. Here, the brush strokes are
B-splines, a representation commonly used in drawing systems, whose
direction and placement is calculated from the gradient of the image.
A drawback of this approach is that the user has very limited control
over the flow of the strokes, aside from a few global parameters he can
define. Also, each stroke can only have a constant colour.

In an early attempt to better convey information about an object, Dooley
and Cohen [1999] use information from the hidden surface removal
process to determine line style, width and transparency. The lines can
be solid or dashed in appearance. Determination of these parameters
is done from user specifications and inferences drawn from artistic
knowledge and illustration principles.

In a similar endeavor, Elber [1995] uses the wireframes (polygon edges)
of 3D objects to convey simple information about their shape. With
varying line width for depth cueing and by trimming hidden edges at
intersection points, a clear and convincing representation of the object
is created.

Kowalski et al. [1999] present an algorithm for drawing stylized, proce-
dural fur and grass strokes on 3D images. By dividing the screen into
patches called graftals and assigning different textures to these graftals
based on the underlying geometry, the complexity of the strokes can be
represented implicitly in the geometry. Using this method, they recre-
ate the distinct illustrative styles of Theodore Geisel (Dr. Seuss) and
Geoffrey Hayes (Figure 8). Defining strokes through textured patches is
an approach which was also considered for our system.

(a) (b)

Figure 8: A typical situation in SBR: (a) shows the source, in this case a 3D
model of a landscape. (b) Shows the resulting strokes generating
using the source as a guide [Kowalski et al., 1999].

Lee et al. [2007] created an GPU-based algorithm for rendering 3D
models as line drawings. They see a line drawing as an abstraction of a
shaded image. Such an image is used as a basis and lines are drawn
along tone boundaries or thin dark areas. Highlights are also drawn
along thin light areas. This creates a mix of feature lines and suggestive
contours, which convey the essential features of the shading. Their
results can be convincing and, thus, an effective way to render sketchy
lines. The stroke model here is similar to that used by raster based
systems: they are drawn together on a single layer, in this case a texture.
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The strokes cannot be altered dynamically as the stroke parameters
cannot be retrieved from the layer. DeCarlo and Rusinkiewicz [2007]
present a similar method. They put more focus on sparse white high-
light lines (Figure 9a). They provide an object-space method to extract
these lines. They also look at several stylization options in rendering
these lines. Some of these stylizations were considered for our system.

(a) (b)

Figure 9: Automated sketching. (a) An automatically generated sketch of David
with white highlights [DeCarlo and Rusinkiewicz, 2007]. (b) Loose,
sketchy rendering of contours [Lewis et al., 2005].

In a slightly different direction, Barla et al. [2005] present an approach
to simplify line drawings. From the original set of lines a smaller set is
created which represents the geometry of the original. Their approach
has two phases: identification of line clusters which can be merged
within a certain error and processing these clusters to create new lines
from them. The behavior of the second phase depends on the type
of application. The technique is effective at reducing visual clutter,
reducing line drawings to their essential lines. In a drawing system
this might be an effective way to keep the number of redundant lines
to a minimum. The artist would add to existing lines to increase their
weight instead of drawing additional lines along the same path. How-
ever, Barla et al. simplify finished drawings with the method, not work
that is still being drawn. It is uncertain if the approach would work
under such conditions.

Lewis et al. [2005] address the problem that rendering contours as
a single, continuous stroke is not a very realistic portrait of a sketch
drawn by an artist. They seek to emulate the character of a sketching
stroke by approximating contours with several shorter strokes. They
treat the stroke segmentation as an instance of a clustering problem.
The proximity and orientation of curve samples are compared and
similar samples are grouped into strokes. The result is recognizable
as the type of short, quick lines most people produce when sketching
(Figure 9b). The stroke model used is very simple; splines modeled as
lines with a constant thickness and adjustable opacity. This shows that
convincing results can be achieved with a simple model.
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Grabli et al. [2004] present a method which gives the user greater con-
trol over the style of the final result. Their model represents drawing as
a sequential process; decomposing a drawing into individual operators
for the selection, chaining, splitting and ordering of lines. These atomic
operations can be defined and ordered by the user using the Python
programming language. The visual result can vary greatly depending
on which operations are used, and in which order. The stroke model
used is a variant of the skeletal stroke [Hsu and Lee, 1994]. While the
idea of using a sequential system is not entirely new (3D rendering
systems use similar systems to define materials), its application to line
drawing is. Although interactive development without recompilation
is possible, programming a style is not the most intuitive way to de-
fine one. This was taken into account while designing the concepts
presented in this thesis.

Given a source and some guidance from the user, semi automatic
systems can generate interesting imagery. Many different artistic styles
have been automated with these systems. While the emphasis is placed
on automatic image creation, the way the user can interact with these
systems is still very important.

2.2 user interaction

In the early days of computer science, handling user interaction was
often regarded as an afterthought. However, a program that cannot be
used is as good as no program at all. User Interface (UI) design is a
very active research area and User-Centered Design (UCD) has become
a popular design philosophy. For drawing systems, the interface and
functionality are very strongly intertwined; the system must respond
appropriately to the movements of the artist. The type of interaction can
greatly affect the artist’s ability to be productive and accurate. There are
many ways for users to interact with such systems, as will be illustrated.

2.2.1 Interaction With Large Displays

Large displays hold many attractions and possibilities. Their size makes
them a good option for sharing information between users who are
co-located. The greatest advantages of a large display in digital painting
are its ability to show fine detail such as lines and the large work area
they provide. Interesting is the many ways in which users can interact
with the screen; an area in which much research has been done. There
are a few types of interaction that are particularly popular.

Interaction By Touch

One of the most natural and effective ways to interact is through di-
rect touch. Usually this is done through a pen or using the fingers
to touch the screen directly. By themselves these are limited in how
they allow users to interact. Often they are combined with gestures or
postures to make them more powerful tools. Both Wu and Balakrishnan
[2003] and Grubert et al. [2008] present whole hand postures which
extend the number of possible interactions by giving each gesture its
own meaning. Postures used by Grubert et al. included one finger,
two fingers, flat hand and fist (Figure 10). Wu and Balakrishnan used
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vertical and horizontal hand postures. These postures are essentially
used to create a different cursor which can be moved over the screen.
Different from whole hand postures are the time dependent gestures.
Wu and Balakrishnan explored a number of these, e. g. tap, double tap,
flick and catch. These gestures are reported to be easy to grasp and
use, regardless of type. While the gestures add an intuitive, modeless
method to interact with a system, the whole hand gestures give an
interesting way to change the type of interaction the user is performing
without pushing any buttons. Many of the interface concepts presented
in this thesis were inspired by this gesture-based approach.

Figure 10: Different types of whole hand gestures used by Grubert et al. [2008].
The gesture determines what kind of action the user is performing.

Another way to increase the functionality of touch displays in a natural
feeling way is to add more elaborate command gestures. Drawing these
gestures on screen calls a certain action. Command gestures can be
arbitrary shapes, such as circles and squares, or mnemonic, so that
the shape corresponds to the action performed after drawing it. For
example, drawing a ‘c’ will invoke a copy command. An early attempt
at using such gestures was done by Rubine, who describes Grandma

[1991], a system that helps users specify custom gestures. Bau and
Mackay present OctoPocus [2008], which helps users learn and exe-
cute gesture commands. The system attempts this by using dynamic
guides. An example of such a guide is the prefix, which shows the
part of the gesture that still needs to be drawn and so directs the user.
This could be generalized into a method that helps a user learn the
controls of a system, while not being interruptive. In a drawing system
it might even be used to suggest shapes the user can ‘trace over’. This
would help the user draw difficult shapes such as perfect circles, while
retaining the users own drawing style.

A possible issue that can arise with direct-touch interaction is the
accuracy. The fingertip of an average adult will obscure the exact
location of the cursor. Also, because of the surface area that is touching
the display, the cursor might not be where the user expects it. This
problem, sometimes referred to as the ‘fat finger problem’, might not
make direct-touch interaction suitable for precise drawing.

Bimanual Input

The way in which we use our two hands can be split into two categories.
The first is unimanual, such as writing or stirring a spoon. The second
is bimanual, which includes actions like tying shoe-laces and weight
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lifting a barbell. Tying shoe-laces is considered an asymmetric bimanual
task while weightlifting a barbell is a symmetric task. Research into
bimanual input has been carried out for some time, but has recently
gained in popularity. Bimanual input decreases the disruptiveness of
using the interface while painting. One of the earliest publications was
by Buxton and Myers [1986], who found benefits over one-handed
methods in using the non-dominant hand for tasks like scrolling, while
using the dominant hand for precise selection. Bimanual interaction
could prove to be useful in digital drawing.

Balakrishnan and Hinckley [2000] focused on symmetric bimanual
interaction in particular. They found that a lack of visual integration be-
tween the task and the hands resulted in greatly increased asymmetry
between the movement of both hands. Task difficulty and attentional
demands did not affect the level of symmetry. They conclude that
bimanual interaction is very suitable for navigational tasks. Also, in
symmetric tasks, the human motor system does not seem to devote
more resources to the dominant hand when attention is divided.

Forlines et al. [2007] investigate the differences between using direct-
touch and mouse input for both unimanual and bimanual interaction on
tabletop displays. Their research indicates that direct-touch is favorable
over two mice regarding bimanual input. In unimanual situations, the
mouse performed much better in terms of speed and accuracy. When
external factors such as fatigue and spatial memory are included, direct
touch might also be considered for such tasks.

2.2.2 Peripheral Devices for Drawing

The most direct and important type of user interaction is the input
device. Without the mouse and keyboard there would be no interaction
with modern computers. While these two are by far the most promi-
nent and ubiquitous, they are not the most suitable for digital painting.
Over the years, many attempts have been made to create a better input
devices for such tasks. Other devices, while at first glance meant for a
different task, might also be suitable for painting.

The most well-known and successful digital painting input device is
the Wacom tablet series [Wacom]. The Wacom tablets use stylus pens
that are both cordless and without battery (Figure 1a). Communication
between the stylus and the tablet is done using a patented electromag-
netic resonance technology. While not an accurate simulation of the
actual pen and paper dynamics, becoming articulate with the tablet
takes only little practice. Thanks to the ease of use and their wide avail-
ability, Wacom tablets have been the graphics industry standard for
well over a decade. Similar technology is also used in modern digital
white boards, which function along the same lines. These pen and tablet
systems should be well supported by any drawing system, as they are
the corner stone in digital painting interaction.

A recent addition to the group of widely available input devices is
the Wiimote [Nintendo, 2007] (Figure 11a). While originally meant as
the control device for the Wii gaming console, its novel interactive
properties have caused it to find its way into academic research as well.



2.3 summary 17

Schlömer et al. [2008] use the Wiimote’s acceleration sensor for gesture
recognition, while Gallo et al. [2008] use the device to interact with
volumetric medical data. The Wiimote could possibly have some merit
as a remote painting device. Its rotation and angular sensitivity might
be usable as brush parameters. The greatest concern is how accurate
the user can be with the wiimote. Still, it could prove very effective at
painting in certain styles where sweeping motions work well.

(a) (b)

Figure 11: (a) The Wii controller, commonly called the Wiimote [Nintendo,
2007]. (b) Using a tape based input device to manipulate a 3D surface
[Grossman et al., 2003].

Another well known remote input device is the dataglove. When worn,
the glove allows the user to manipulate an environment, which is usu-
ally in 3D. Wan et al. [2004] present an approach for the virtual grasping
of 3D objects using a dataglove. The method is used in conjunction with
a virtual hand model to increase realism. The CavePainting system
[Keefe et al., 2001] discussed earlier also uses such a glove. CavePaint-
ing shows that the dataglove is a viable input device for painting, even
though free-handed interaction implicates a certain inaccuracy.

A very unique input device was used in the work of Grossman et al.
[2003]. The device is essentially a line of tape (Figure 11b). It can be
bent into many shapes by the user. The tape contains fiber optic sensors
which provide twist and bend information. This information can be
used to virtually reconstruct its shape. The tape can be used to create
and manipulate 2D and 3D curves. Possible applications include 2D
drawing and specifying surfaces in 3D. Its application in a sketching
system are debatable; the sweeping pencil movement is very important
for sketching, but is something the tape cannot reproduce.

There are many interesting ways to interact with drawing systems.
Touch-based interaction, both unimanual and bimanual, is a very attrac-
tive possibility for large displays. There are also a number of peripheral
devices which could be interesting for painting applications.

2.3 summary

Painting systems are commonplace. Most of these systems have an
over-abundance of functionality. They often suffer from complex in-
terfaces that require significant effort to master. They also tend to be
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highly specialized for a certain task. On the other side of the spectrum
are the programs that focus on an intuitive, immersive user interaction
experience, usually at the cost of functionality.

Painting systems often use models to describe the appearance of strokes.
Many different brush stroke models have been presented over the years.
A popular approach is to use curves to interpolate between known
points of the stroke. Independent from which method is used to gener-
ate the stroke, often the final output is a variation of the skeletal stroke
concept: a base path with a variable thickness, rendered as a triangle
strip, usually with some type of texture applied to it.

These stroke models are used in many different types of drawing sys-
tems. Where start-from-scratch systems are meant to give the user full
control, automatic systems do the opposite: given a source image or
scene as a guide, the system automatically renders a NPR image. Often
the user is given a fair amount of freedom in specifying the style of the
output. For semi automatic systems user input is very important. The
system helps the user produce a certain result, but does not take control.

The way these systems are presented to the user is important. Large
displays are an interesting option for digital painting. Sizes are similar
to an average painting canvas and the high resolutions allow for fine
detail to be painted. There are many distinct ways to interact with
large displays, for example touch-based interaction. Some are more
suitable for painting than others. In a more general sense, there exist
many interesting input devices to paint with. While some are very
specific in their application, others open up a wide range of interaction
possibilities.

What this thesis will address is a specific type of drawing that no cur-
rent system was specifically designed for: sketching. Current systems
are missing a flexible, intuitive way to manipulate lines, while at the
same time keeping a natural feeling sketching interaction. The inter-
faces of most systems impede the drawing process. They are overly
complex and use many mode changes to switch functionality. With
sketching, we want to focus on the work itself. The interface should
be simple, effective, intuitive and unobtrusive. Sketching differs from
painting in that it is a different phase in the creative process. Sketches
are an artist’s tool to help form ideas or try out different concepts. A
sketching system should reflect this and give the user a robust, intuitive
way to sketch and change sketches.

The following chapter will explain the core concepts and design philoso-
phies of the thesis.
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This chapter addresses the problems outlined in the previous chapters.
Brief, conceptual explanations are given that show which methods are
present in the implementation and what their benefits are. The design
of the interface is also discussed in this chapter. Most of these concepts
and methods have resulted from an informal observational study and
informal communication with artists.

3.1 design philosophy

First we discuss the concepts that remained a constant factor in the de-
velopment of all the functionality present in the system. These concepts
form an integral part of the philosophy behind the project. It must
be noted that the project was designed with a pen tablet in mind as
primary input device.

3.1.1 Aesthetics

An often neglected aspect of research systems is the visual design.
While it has no direct influence on the functionality of the program, it
does affect the user. A better interface can improve the performance
of users and their acceptance of a new program [Chatty et al., 2004].
For this reason the system was designed with a pleasing and consistent
look and feel. The goal was an interface which does not distract, but
still invites the artist to use the system. Furthermore, we wanted to
set the system apart from other drawing systems. Inspiration for the
interface design was drawn from ArtRage [AmbientDesign, 2004] and
ILoveSketch [Bae et al., 2008]. Care was taken to make sure the quality
of graphical elements is constant regardless of screen size. To that end
the native size of the buttons, for instance, is quite large. The interface
can be seen in Figure 12.

3.1.2 An Effective Minimal Interface

Keeping the interface bare and simple results in the artist spending
less time navigating the interface and more time drawing. Finding a
specific action in the vast menus and option lists most drawing systems
use is distracting. We wanted an interface that was still effective but
used simpler and more intuitive controls. Also, it was important not
to sacrifice existing functionality for the sake of a simpler interface,
so great care was taken in choosing interface methods that suited the
system. Still, the system had to be recognizable for people who have had
experience with menu-driven products, such as Corel Painter [Corel,
2007]. We tried to incorporate established interface techniques which
have proven very effective.

19
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Figure 12: The GUI used in the sketching system.

3.1.3 Limiting Mode Changes

Mode changes are interface interactions whose sole purpose is to put
the system into a certain operating mode. Such interactions can be
anything from pushing a menu button to using a keyboard shortcut.
Simple examples of operating modes would be drawing, erasing and
selecting. Forcing the artist to click menu buttons to activate these
modes is cumbersome and distracting. Therefore, an important design
philosophy was to limit the number of mode changes in the system
as much as possible, and use other means to change the operation the
artist can perform.

3.2 using the canvas as a tool

The feature which most drawing systems lack is the usage of the canvas
itself. The canvas is a great tool which can assist the artist in different
ways: the orientation of the canvas can make certain lines easier to draw,
while the canvas bounds give a general sense of direction and helps
establish the frame in which the artist is working. Being able to zoom in
makes it easier to draw details, while zooming out helps the artist get a
sense of the composition, much like a painter who takes a few steps
back to observe his work. We attempt to recreate this functionality by
presenting a minimalistic interface for intuitive canvas manipulation.

3.2.1 Manipulating the Canvas through Gestures

In drawing systems, methods by which the canvas can be manipulated
are often complicated or non-existent. To access these interactions, the
artist must use specific hotkey combinations or navigate menus. Once
accessed, the interaction still needs to be performed, usually in a way
similar to selection transformations. In some systems, such as Adobe
Photoshop [Adobe, 1990], the selection transformation is the only way
in which drawings can be oriented. Translating the canvas is usually
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done through scroll bars, which are slow, as the arrow buttons only
translate by a small amount on each click. Also, finding and dragging
the scroll indicator is distracting. We attempt to solve these problems
with a novel approach to canvas interaction.

Some attempts to get more use out of the canvas have been made in
the past. Most notably, Fitzmaurice et al. [1999] proposed a way to
rotate the canvas. More recently, the ILoveSketch system [Bae et al.,
2008] implements several gestures with which the artist can change the
canvas view without using any mode changes or extra buttons outside
those of the pen tablet. Because of their modeless nature, low learning
curve [Rubine, 1991; Bau and Mackay, 2008] and intuitive feel, a gesture
based approach was selected for this system also.

Gestures form a very important part of the system. The system uses
simple, straight line gestures. While drawing straight lines might not
conform to the traditional idea of (complex) gestures, we use the term
to avoid confusion, as ‘drawing lines’ is used to describe a drawing
interaction as well. In the context of this thesis a gesture is simply
an interface interaction which is both modeless and location sensitive.
Many of the interactions can be done exclusively through gestures. The
most prominent part of the system that is affected by gestures is the
canvas. The edges of the screen, which are covered with a blue coloured
frame, are sensitive to gestures which manipulate the positioning of the
canvas. These frame gestures give the artist control over three canvas
interactions: translation, rotation and magnification.

+A

C

B

B-

Figure 13: Canvas manipulation. The arrows depict the click and drag mo-
tions for the different frame gestures, where A is translation, B is
magnification and C is rotation.

Translation, or moving, uses a straight line gesture. It can be done by
starting an interaction on the frame and dragging towards the screen
center. When the gesture line is long enough, it is recognized as a
translation interaction. The artist can now freely move the canvas in
the dragging direction, giving the artist a feeling that he is grabbing
and pulling the canvas. The gesture is quite forgiving, so the motion
does not need to be exactly towards the center. Once the translation
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interaction has been established, the artist can move the canvas towards
any location. Rotation can be activated by dragging the cursor parallel
to the frame edge. Again, once the interaction has been established
after drawing a line which is long enough, the artist is not limited to
the frame to perform it. Finally, magnification can be performed from
the frame corners. These corners are divided in two: dragging from
one half toward the screen center zooms in, while dragging from the
other zooms out: one is the inverse of the other. All four screen corners
can be used in this way. While theoretically one zone would have been
sufficient, e. g. zooming in by dragging away from the center, the screen
edge limits the freedom for zooming in quickly. Thus, zooming was
split into two interactions which both have the same amount of freedom.
The gestures have been depicted as red arrows in Figure 13.

The frame gestures provide a modeless way to interact with the canvas.
It tries not to take the canvas metaphor too far, such as having to per-
form the actions on the canvas itself. Because the frame is always visible,
the gestures are always available. The screen edges were chosen for
this type of interaction because they are easy to reach, even with little
accuracy [Appert et al., 2008]. While using screen edges for interaction
is not new, it is rarely seen in practice. Although, consequently, in the
current interface the frame does take up a fair amount of space, this is
outweighed by the benefits the artist receives in terms of interaction.
The frame gestures are one of the features that sets the system apart
from others. As mentioned, interaction with the canvas is usually cum-
bersome and detracts from the drawing itself, as it requires interaction
with menus or scrollbars. These require fairly precise navigation from
the artist to operate. The frame gestures, in contrast, can be used eas-
ily and quickly. No precise navigation to a certain button or slider is
needed, the artist must only move the pen to the border. The areas on
which a certain gesture can be used are large and, therefore, hard to
miss.

3.2.2 A Sketchbook Analogy for Saving

Saving and loading drawings is a somewhat technical process. The
artist needs knowledge of the file system and file formats. This is an
assumption that should not be made, as many (older) artists who are
now turning to digital art have little experience with computers. Also,
the acts of loading and saving themselves require a fair amount of
interface navigation and, thus, are time consuming.

We preferred an approach to saving and loading that was both quick
and transparent. It should not expose any unnecessary technical details
to the artist. The chosen approach was inspired by Bae et al. [2008],
who uses a very elegant method which closely resembles a real-world
sketchbook. The idea used in the system is to have two page marks on
the bottom of the canvas, shown in Figure 14. Pressing the left page
mark will load the previous sketch and pressing the right page mark
will load the next sketch, or create a new sketch if there is no next one.
The current sketch is saved when the artist changes sketches. This way
the artist maintains a real sketchbook, with pages he or she can flip
through. One obvious downside to the approach is that the artist has no
control over the location the sketches are saved at. A possible solution
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would be to allow the artist to choose such a location, or add a regular
save method for those who prefer that.

Previous Sketch Next Sketch

Figure 14: Sketchbook analogy. The saving ‘widgets’ have been made part of
the canvas.

3.3 remaining interface aspects

Aside from the canvas, there are several other important interface parts.

3.3.1 Menu System and Interaction Modes

Many drawing systems use extensive arrays of button and drop-down
menu’s to provide access to each interaction. This can be overwhelming
for first-time users and forms a steep initial learning-curve. By follow-
ing the design guidelines we have attempted to reduce this complexity
in our system.

Like the rest of the interface, the main design focus of the menu sys-
tem was minimalism. It needed to be simple and small. The menu
is made up of a round status display around which the buttons are
placed. While the bigger buttons are permanently visible, the smaller
buttons change depending on the current interaction mode. The middle
circle contains information concerning the parameter currently being
manipulated by the artist. This can be anything from brush size to
canvas magnification. The circular design was chosen because it bears a
fleeting resemblance to the pallet used by a painter. Also, it keeps all the
interface buttons in a compact shape. Most drawing systems use long,
square menus that are difficult to place due to their size. Furthermore,
it is an aesthetically pleasing way to display a menu.

The large buttons provide a basic interface with the system. The default
mode of the system is the drawing mode. In this mode the artist can
draw strokes on the canvas with the pen-tip and erase them with the
eraser-tip of the tablet pen. Other functionality which is available in
this mode include stroke selection and of course frame gestures. The
edit mode gives the artist a very different set of controls. In this mode,
the pen tip controls the move brush, while the eraser-tip activates the
move stroke. Both of these interaction types will be explained later.
The different menu modes can be seen in Figure 15. The remaining
two large buttons affect the canvas: the clear button simply clears the
canvas, erasing all the strokes. The view-reset puts the canvas view
back into its default orientation and magnification. It can be considered
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Figure 15: The menu system. (a) shows the menu displayed when in drawing
mode. The buttons are: 1. Draw mode 2. Edit mode 3. Clear canvas 4.
Reset canvas view 5. Brush size 6. Smoothness 7. Pressure variable
8. Speed variable. (b) shows the edit menu. Here 1 is the brush size
and 2 is the brush softness

as a short-cut for a series of frame gestures. There are two types of
property buttons for the draw and edit modes: regular press buttons
and drag buttons. The drag buttons increase or decrease the value of
their respective parameter by pressing the button and then dragging it
towards the direction indicated by the button. This eliminates the need
for value drag bars, and thus keeps the interface smaller.

3.3.2 Tap Interaction

To further reduce the number of interface buttons (and mode changes),
the system also makes use of tap gestures. The tap, or click, is one of the
oldest gestures found in user interfaces. The double-click, for instance,
has been an integral part of many operating systems for decades. The
system uses the tap gesture in several ways: tapping the canvas in close
proximity to a line will select that line, while tapping an empty part of
the canvas will create a tap marker. Tapping can be done with both the
pen and eraser, and the tap fades out over time as shown in Figure 16.

Figure 16: A fading tapmarker.

The tap marker is used for two canvas interactions: multi-select and
erase-line. The tap marker fades out over time and is only active for a
short time. This prevents the marker from interfering with the drawing
process too much. A multi-select can be performed by clicking the tap
marker with the pen and dragging. This creates a rectangular border,
much like the multi-select in most applications. Completing the drag
will select all the strokes that intersect the rectangle. Erase-line is done
by dragging the eraser tip from the marker. This produces a single
line which runs from the marker to the pen cursor. All the strokes that
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are intersected by this line will be erased when the drag is completed.
These two interactions are shown in Figure 17.

(a) (b)

Figure 17: The tap interactions. (a) shows the multi-select while (b) shows the
erase-line.

A pen tablet has a very limited amount of differentiable inputs. Using
tap interaction in this novel way is a solution for dealing with these
limited input options. The system does not use the keyboard for any of
the interactions, so the artist does not need to go back to a keyboard,
thus maintaining the ‘one input’ metaphor. The tap marker creates a
new context in which these inputs can be used, in this case selection
and erasing.

3.4 interacting with strokes

Creating and changing strokes is one of the central themes of the
project. We desired an approach that would remain faithful to free hand
sketching but would still be able to incorporate the new interactions
and scalability.

Stroke Transformation

In modern drawing systems, (stroke) selections can often only perform
one or two types of transformations at the same time with a selec-
tion frame. In some cases, additional transformations can be accessed
through very precise positioning or hotkeys. Often, however, the artist
will need to change the selection mode through interface interaction
to use other transformations. Our goal was to provide easy and quick
access to all major transformation types through one selection frame,
without any type of mode changing.

When one or more strokes have been selected, by clicking them or
using the multi select, a frame will appear around them. The frame has
blue edges and circular borders. One corner will have three buttons to
either cancel, erase or define the selection as a move stroke. All of the
standard transformations can be performed on the selection: translation,
rotation and scaling. The gestures to control these operations are very
similar to those used with the screen frame. Translation is performed by
pressing down on a selection edge and dragging it outwards. Scaling is
done by dragging the corners of the selection from or to the selection
center. For rotation the artist has two choices: dragging parallel to a
selection edge or towards the center and dragging the selection corners
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in a direction perpendicular to the scaling movement. These gestures
are marked in Figure 18.

A C

B

C

Figure 18: Stroke transformation. Again, the arrows depict the click and drag
motions for the different frame gestures, where A is translation, B is
scaling and C is rotation.

The transformation concept is very well suited for gesture-based in-
teraction. The choice to use interactions very similar to the canvas
interactions was made to keep the interface as uniform as possible.
Once the artist learns one set of controls, he or she can apply this to
different parts of the system. It is important to make the user aware
of the places where a certain control set is valid. In this case, a visual
clue is given: both the screen frame and the selection border are blue
and have circular corners. Still, in many regards the selection border
is similar to those used in most drawing systems. This was done in-
tentionally; those selection mechanisms have been tested for decades
and have proven very effective. What most systems do not do, however,
is combine three operations into one border where all three can be
used without changing modes. This is what makes the gesture-based
interaction so effective.

3.4.1 Drawing Strokes

Drawing digitally is something which can already be done very well. A
pressure sensitive pen tablet combined with the brush model from any
recent drawing system can produce very convincing results, regardless
of the style and medium the artist wishes to reproduce. We do not
see any reason to change this already very effective and established
interaction. Therefore, putting down strokes on the canvas is done in
the same way as any other system: simply touch the tablet with the
pen and strokes will be drawn. We propose to use both pressure and
drawing speed to determine the appearance of the stroke. These can
be used to vary the size or opacity of a stroke. This gives the artist
some flexibility in choosing a style and to work with a brush that feels
comfortable.
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3.4.2 Intuitive Editing of Strokes

One of the focus points of this thesis and one of the most important
stroke interactions is stroke shape editing. In drawing systems, methods
for editing the shape of strokes are cumbersome or limited. In vector
drawing systems, for instance, it requires the artist to manipulate a
spline curve, which is not a very intuitive process. In raster programs
it can not be done at all as strokes are ‘baked into’ the same layer. We
hope to improve on this with several novel approaches to stroke editing.

Move Brush

The simplest way to edit strokes is through the usage of a move brush.
The move brush is available through the pen tip of the stylus while in
edit mode. Generally, a move brush works much like a regular brush. It
is a radial brush that can be dragged over the canvas to apply it (Fig-
ure 19a). In function, the move brush is very different; when dragged
over a stroke it displaces the stroke interval it is in contact with in the
direction the brush is moving. This results in a very easy to use, natural
feeling way to alter the local shape of a stroke. The brush will move all
the strokes it comes in contact with. This is a necessity because, while
sketching, an artist will often trace the same line several times. Reasons
for this can be adding more value to a line or to better approximate the
curve the artist wanted to draw.
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Figure 19: The move brush. (a) shows how the movebrush can change the stroke
shape with one action. In (b) the effect of the ‘warp’ tool included in
some vector programs is shown, after several uses.

The move brush can be used in several ways. The most obvious one is
to adjust lines to better conform with the intent of the artist. Instead
of having to erase the line and redraw it, the artist can adjust the line
where it deviates. This can be desirable when erasing and redrawing
incurs a high cost for the artist. A situation where this might hold true
is when the error in the stroke is small: most of the stroke has been
drawn accurately and redrawing it might give a inferior overall result.

Another use for the move brush is more creative. Because the displace-
ment does not preserve the original stroke length, the move brush can
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be used to change simple strokes into more complex ones. The process
is more or less the reverse of sculpting: instead of taking away, one
keeps adding to the shape. Other drawing systems, Illustrator [Adobe,
1988] in particular, also have tools to ‘warp’ the shape of a line or stroke
(Figure 19b). However, these tools are less general (only one type of
brush) and try to preserve the line length, which limits the amount of
editing which can be done. This causes such tools to feel less responsive.

Move Stroke

Move strokes can be seen as a generalization of the move brush.
Whereas the move brush is a simple radial brush, the move stroke
can take on the shape of any stroke defined by the artist. A move stroke
is created by selecting an existing stroke and pressing the ‘set as brush’
button. The move stroke can be dragged across the canvas by using the
eraser tip of the stylus while in edit mode. The move strokes behaves like
the move brush, but with one notable difference: the move stroke has
no softness. The stroke segment that is being interacted with is always
displaced with the full amount of the brush movement. As the stroke
interval is displaced, it will start to take on the form of the move stroke,
as shown in Figure 20.

(a) (b)

Figure 20: Move strokes. (a) shows the move stroke in red. The blue arrow
depicts the direction the stroke is moved in. (b) shows the effect of
pushing the move stroke against the black line.

The move stroke can be seen as a sort of stamp tool. The stroke can
define a pattern which the artist can then repeatedly apply to another
line. This can take away some of the tediousness of certain actions,
and create consistent, repeatable results. It can also be used as a more
flexible version of the move brush since the artist can define much
bigger brushes. However, there is more overhead as artists have to
create the brush themselves. Still, this novel type of interaction can lead
to interesting experimentation with line art.

Erasing

Erasing remains faithful to the traditional approaches. Simply dragging
the eraser tip of the pen over a stroke will remove that part of the
stroke. We saw no reason to change stroke erasing, apart from adding
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an extra option in the form of a tap interaction. The traditional method
has endured for decades and is very effective.

3.5 scalability of line drawings

Artists often start with small thumbnail sketches before moving to the
true sketch. In most drawing systems these thumbnails go to waste as
they are too small to scale up without a major loss in quality. To solve
this problem, as well as the issue of canvas resolutions, we aim to make
the strokes scalable without a loss in visual quality. Lines should be
sharp whether the drawing has been magnified five times, or zoomed
out to the size of a post stamp.

While this kind of line quality is inherent in vector drawing systems,
such systems are limited to relatively simple shapes such as circles and
Beziér curves. Vector systems are not designed for freehand, pressure-
sensitive input. We suggest an approach that represents strokes as
triangle geometry. In order to ensure that the quality of a stroke is
preserved when magnified, the refinement of the stroke geometry must
be varied according to the magnification level. This also ensures that at
a lower magnification, no redundant geometry is rendered.

3.6 summary

In this chapter a number of methods for stroke interaction and con-
cepts for interface design were introduced. We discussed the design
philosophy to which the system would adhere. This meant giving the
interface appearance due attention while keeping interface itself clean
and simple. Another important requirement was to have as few mode
changes as possible. The artist should not be interrupted by the GUI.

We proposed ways in which the digital canvas can become a useful
tool to the artist. The first of these is the manipulation of the canvas
orientation, position and magnification through gestures. Being able to
orient the canvas in a comfortable position can benefit the artist in a
number of ways. Important here is the ease with which gestures allow
such interactions. We also mention the integration of the load and save
functions with the canvas. This provides an easy way to switch sketches
without getting caught up in the interface.

Two important interface elements were introduced next. First, the menu.
A circular design which resembles an abstract painters pallet was used.
The menu was kept simple with two modes: draw and edit. These
modes determine what kind of canvas interaction the pen performs.
The menu also contains two features that manage the canvas: clear
and view reset. The second element is the tap and tap marker. The tap
gesture can be used to either select a stroke or create a tap marker. The
tap marker fades away within a short time after it has been created.
Dragging from the marker can create a multi-select or erase-line, de-
pending on whether the pen or eraser end was used.

The interaction with strokes forms one of the main contributions of
this thesis. The move brush concept gives artists the ability to alter
the shape of strokes in a natural, familiar way. The brush has several



30 new ideas for freehand sketching

uses. It can correct existing strokes and as such avoids the need to erase
the stroke. It can also be used as a drawing tool. A similar approach
to stroke editing is proposed in the form of draw strokes. The artist
can define any stroke as a draw stroke. The draw stroke can then be
used like the draw brush, thus giving the artist a way to define custom
move shapes. The most obvious function for draw strokes is to repeat
a certain pattern along a stroke. In this sense it works much like a stamp.

Next we show a new approach to the classical selection border. While
having the same functionality, we propose to use the gestures discussed
earlier to manipulate the border. This gives the artist easy, intuitive
access to all the border interactions without any mode changes. We end
the chapter with a brief section on the scalability of strokes. We argue
that scalability without loss of quality can have a positive contribution
to the artistic process.
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The previous chapter supplied the general description of functionality
present in the system. In this chapter we discuss the interesting parts
of the implementation. Algorithms, data structures and technology
used in the proof of concept will be explained to make the proposed
techniques more concrete.

4.1 technology of the system

The goal was to make a proof-of-concept which included all the dis-
cussed functionality. To this end, it was important that no time would
be wasted on the low-level aspects of building an application, such as
getting data from user input devices. Therefore, the system was built
on top of the buffer framework developed by Isenberg et al. [2006]. The
framework has been written in C++ and uses the OpenGL Application
Programming Interface (API), a combination which is excellent for high-
speed graphics performance. The framework gives easy access to the
canvas, various buffers and the implementation of GUI elements through
so-called strategies. It also contains tools for mundane tasks such as
texture loading. The framework itself uses the Qt GUI cross-platform ap-
plication framework [QtSoftware, 1995], which handles the acquisition
of user input data. This includes pen tablet data, which is non-trivial to
obtain as different tablets manufacturers use different driver interfaces.
Where possible, data structures and algorithms from the Standard Tem-
plate Library (STL) were used. These are widely available and more
robust than anything written during the project could be.

4.2 interaction with the canvas

To translate input from the artist into a valid interaction, some process-
ing might be required. This is obvious for interactions such as gestures,
but even drawing a simple line requires some evaluation of the input
data. The data received from the pen tablet proved to be more noisy
than anticipated. Some measures had to be taken to ensure smooth
interaction with the proof-of-concept. Often, pressing or releasing the
pen from the tablet would be registered several times. Extra input veri-
fications were added to filter out these ‘ghosts’.

Frame gestures are recognized from their orientation. The artist drags
out a line from a gesture-sensitive area. When the line is long enough,
its direction in regards to the frame is calculated to determine what
kind of gesture is being performed. The reason the line has to become
a certain length is to avoid misclassification of the gesture. A minimum
line length lmin = 5.0 was found to work well, with lmin measured in
screen pixels. Frame gestures and selection gestures are handled in the
same manner.

Because translation and rotation are both performed on the same area,
thresholds are used to distinguish those interactions. If the angle be-
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Figure 21: Canvas interaction gestures. An example of gestures performed on
the ‘top’ frame border. Both ||~g0|| > lmin and ||~g1|| > lmin, with
lmin = 5. In the case of ~g0, the angle is smaller than 70◦ and the
gesture will be classified as translation. With g1, the angle is larger
than 70◦ as the gesture runs parallel to the frame. This gesture will
be classified as rotation.

tween the vector ~g of the gesture line and the edge normal ~N is less
than 70◦, the translation interaction is activated. If the angle is greater,
rotation is performed instead. This means that there is a ‘hard change’
from one interaction to the other, with no dead-zone in between. The
70◦ threshold was determined through trial and error and works well
in practice. For the frame gestures, ~N is pointing towards the center of
the screen, while the ~N of the selection frame edges point outwards.
Examples of the gesture recognition are shown in Figure 21.

4.3 stroke drawing

Stroke drawing is the most basic, and vital, canvas interaction. Great
care was taken in selecting the way strokes are visualized and repre-
sented internally. Efficiency is the main motivations behind the follow-
ing structures and algorithms.

4.3.1 Brush Model

The brush model determines what the appearance of the stroke will
be, based on the input from the artist. Given that the artist is using
a modern graphics tablet, there are three1 input parameters that can
influence the appearance of a stroke: pressure, draw-speed and location.
Location is used to determine where on the canvas the stroke is drawn,
leaving us with two variables to determine the line width and opacity
parameters.

1 A small portion of the commercially available tablets has a fourth variable in the form of
pen-tilt. However, given the more limited availability of such tablets, this parameter is
not used in the system.
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The artist is given free choice in determining which variable varies
which parameter. In each iteration of the render loop, the brush is
sampled. While a separate thread to sample input might work better
on slower computers, in practice sampling each rendered frame is
sufficient. The sample is then used to create a new stroke point with the
appropriate values. Determining the effect of pressure on the value of a
parameter is straightforward: given pressure value Fp ∈ [0, 1] and the
maximum parameter value pmax, the sampled input value at a given
time is

psample = Fp pmax

Effectively using speed is more complex. The concept used in the system
is an interpretation of DynaDraw [Haeberli, 1989]. The brush is seen
as a physical entity which has mass and velocity. The displacement of
the brush as the artist moves it over the canvas is used to calculate the
brush velocity. This is then used to determine how much of the ‘paint’
is deposited on the canvas. In other words, what the stroke width will
be for that particular sample.

4.4 brush stroke model

Perhaps the most fundamental and important part of the system is
the Brush Stroke Model (BSM). The BSM determines how strokes are
represented internally and how they are rendered. The BSM used in
the system needs to be flexible and robust enough to be manipulated
into any shape. Furthermore, rendering a stroke should be efficient: it
should contain the minimal amount of geometry while maintaining an
acceptable visual quality. Efficiently resampling the geometry so quality
remains consistent regardless of magnification is also an important
requirement.

4.4.1 Stroke Representation

The stroke is stored in two distinct components: its set of control points
and the segments in between. The shape of a stroke is implied by the
control points, which are taken as basis of a uniform cubic B-spline
[Chou and Piegl, 1992]. These control points do not only store the
placement coordinates, but also additional parameters such as size and
opacity. The size parameter can be seen as the radius of the disc of
which the control point coordinate is the center. This information is
used to calculate the ribs of the stroke, which are transformed into
triangle geometry. This concept can be seen in Figure 22. Several types
of splines were considered to render strokes from. Most notable is
the Catmull-Rom spline. Unlike the B-spline, the Catmull-Rom spline
passes through the control points. While this interpolation is in theory
desirable over the approximating nature of the B-spline, the difference
in the number of control points needed to obtain similar visual results
is not large. Also, the B-spline is C2 (second derivative) continuous,
while Catmull-Rom is only C1 (first derivative) continuous. This makes
B-spline curves flow more naturally in some circumstances. The most
obvious limitation to the stroke model is that it does not allow any cus-
tomization of the stroke appearance. This could be solved by extending
the model with textures, or by using a procedural method to generate
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the geometry along the base line of the stroke.

(a) (b)

Figure 22: Stroke representation. (a) displays the control points that define
the stroke b-spline. (b) shows the (approximating) stroke that was
constructed using the control points.

Encoding a stroke shape in this manner was inspired by [Seah et al.,
2005; Su et al., 2002], who used a similar approach to draw digital cal-
ligraphy and Chinese ink. Given these control points, values in between
can be calculated using the matrix form of the B-spline:

Si(t) =
[

t3 t2 t 1
] 1

6


−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0




pi−1

pi

pi+1

pi+2

 , t ∈ [0, 1]

where Si(t) is the point pi where the spline passes through at time t.
The matrix can be worked out into the following equation:

Si(t) =
1
6
(c0t3 + c1t2 + c2t + c3)

with

c0 = −pi−1 + 3pi − 3pi+1 + pi+2

c1 = 3pi−1 − 6pi + 3pi+1

c2 = −3pi−1 + 3pi+1

c3 = pi−1 + 4pi + pi+1

Using Horner’s rule [Dorn, 1961] we can rewrite the formula for Si(t)
to be computed more efficiently:

Si(t) =
1
6
(((c0t + c1)t + c2)t + c3)

which saves six multiplications per calculated spline point, as the calcu-
lation has to be done for both x and y coordinate components.
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4.4.2 Refining Stroke Geometry

Stroke refinement helps preserving the visual quality of a sketch when
it is enlarged. As such, it is a very important aspect in creating scal-
able artwork. Figure 23 shows what kind of impact stroke refinement
can have. While vector-based system have, by nature, scalable artwork,
they lack accuracy or an intuitive interface when it comes to freehand
sketching. The stroke model in our system solves both problems by
combining accurate stroke representations and an established drawing
interface.

A

B

Figure 23: Stroke refinement. A is an magnified version of the sketch. B is a
magnified version with stroke refinement.

The refinement of the stroke geometry can be efficiently recomputed
from the stroke segments. Segments store ribs of the stroke at a cer-
tain interval and are pre-computed from the control points using an
adaptive subdivision scheme. This is a popular method to compute
splines [Rappoport, 1991]. The initial borders of the subdivision are
two neighbouring control points. At each step of the subdivision, the
distance between the center of the straight line defined by the borders of
the subdivision region and the center of the b-spline segment through
this region are compared. If the distance is greater than some constant
σ, the difference between the subdivision and the true B-spline is still
too great and the subdivision continues by subdividing at the middle.
This process is visualized in Figure 24. A smaller value for σ leads to a
closer approximation, but also more ribs and, thus, more geometry.

The choice of σ depends on the scale at which the stroke must have
an acceptable visual quality. The formula σ = ε

z is used, where z is the
scale and ε is some constant. Finding a suitable value for ε is mostly
an exercise in trial-and-error. A value of ε = 0.7 was found to work well.

A stroke segment is comprised of a merge tree that stores the ribs in its
nodes. Merge trees have been successfully used in Level of Detail (LOD)
methods. In particular, El-Sana et al. [1999] use merge trees to expand
and collapse vertices of triangle strips. A merge tree has the left-most rib
r0.0, which corresponds to t = 0, as its root. The root is then given the
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Figure 24: Adaptive subdivision. (a) shows the initial situation with boundaries
bl and br. The length of bcsc is compared against σ to see if recursion
should continue. In (b) the recursion has gotten one step further. The
original bounds have been split at bm.

rib r1.0 as its first child. The ribs produced by the subdivision are added
to the tree one-by-one. A suitable place in the tree is found through
recursion: a rib rt is compared against the children of the current node
nc, which initially is the root. Two situations can occur: if the t value
of rt is greater than that of the child it is being compared against (rt is
to the right of the child), this child becomes the new current node mc.
Now, rt is compared against the children of mc, repeating the process.
If mc has no children, rt becomes the first child of mc. In the second
situation, rt was smaller than the current child. Now rt is compared
against the next child of nc, and the process is repeated. If there are
no more children left, rt becomes the latest child of nc. An example of
a possible mergetree and the corresponding line segment is shown in
Figure 25.

0.0

0.0 1.0

0.0

0.0 0.3

0.5

0.5 0.8

0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.9

(a)

0.5

0.4

0.3

0.1

0.0

0.6

0.8

0.9

1.0

0.10.3 0.40.5 0.60.8 0.91.00.0

(b)

Figure 25: Merge trees for stroke representation. (a) shows an example of a
possible merge tree, while (b) shows the corresponding line segment.
(b) also shows a different visualization of the parent-child relation
between the nodes. While (a) might give a different impression,
nodes are not actually stored more than once.

To retrieve an ordered set of ribs from the merge tree it must be tra-
versed in a depth-first manner, as shown in Figure 26. To vary the set
of ribs used to display the segment, an extra variable is added to each
node: the error ξ of the spline approximation corresponding to the rib
stored in the node. ξ is used in the subdivision step and is the distance
from the approximation to the real curve. During the depth-first traver-
sal ξ is compared against the current scaling factor (or zoom level) of
the canvas. If ξ is not too small for the current zoom level, that is to say
the rib has a noticeable impact on the visual quality, it is added to the
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displayed geometry. Because the node insertion order is the same as
the subdivision order, ribs with a smaller error are propagated further
down the tree. This means that if the ξ of a child will be smaller than
that of its parent.
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0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.9

Figure 26: Merge tree traversal. A possible depth-first traversal of the merge
tree. In this case the error value of nodes 0.8 and 0.9 are too small.

4.4.3 Sampling Strokes

There are a number of situations where it is desirable to reduce or
increase the number of control points in a stroke. These downsampling
and upsampling methods are an important step in many of the systems
functions, such as rendering and editing strokes.

Downsampling

User input is sampled each frame. This produces an over abundance of
information. For instance, when the artist draws a stroke many of the
sampled stroke points have a contribution to the stroke which has no
visual impact. To efficiently process and render strokes it is important
that these points are removed from the stroke. To that end we perform
a downsampling operation.

Given that a stroke is simply a sequence of control points, strokes can be
resampled in the same manner one would resample a set of points. In
particular, the approach chosen for the system was based on a sampling
technique used in point set surfaces discussed by Alexa et al. [2008]. In
short: given a set of points P, we compare the curve implicitly formed
by the sequence of points in P against the curve of P− pi with pi ∈ P.
If the difference is small, pi can be discarded. A simple example of
downsampling is shown in Figure 27.

Completely comparing both lines against each other is is inefficient and
not necessary. Each pi is compared against the local neighbourhood
without pi. A local neighbourhood can be used because a B-Spline is
only influenced by local control points. The spline S formed by pi−2
pi−1, pi+1 and pi+2 is computed and the minimal distance between S
and pi is calculated. This distance is the approximate difference be-
tween P and P− pi.

If the distance is smaller than some threshold value ξ, pi is discarded.
Choosing a large ξ leads to an interesting side-effect: it smooths the
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Figure 27: Downsampling strokes. In (a) the yellow points have a low impact
on the spline shape and are discarded. (b) shows the local neighbour-
hood around pi. The dashed red line P is the original stroke shape
with pi included. S is what the shape will look like without pi. The
length of pisi is compared against ξ.

user input. This could be useful for artists who do not have a steady
hand, yet want to draw long, smooth curves. For that reason the value
of ξ can be defined by the user through the menu, where it is referred
to as the stroke smoothness value.

Upsampling

Normally, the set of control points of a stroke will be as sparse as
possible. However, for some stroke interactions such as displacing a
stroke with a move brush or zooming in beyond the already available
amount of detail, the set of points must be upsampled to approximately
1 point per screen pixel to get an accurate result, as shown in Figure 28b.

(a) (b)

Figure 28: Upsampling strokes. In (a) the yellow points have been generated to
get a denser point approximation to the spline curve. (b) shows a grid
which represents a small portion of screen pixels. Approximately
one spline point per pixel is generated.

In the case of splines, upsampling is a relatively easy procedure: we
compute more points on the spline, using the existing control points as
input for the spline equation. While the matrix form of the spline for-
mula could be used, it is not the most efficient method in this case. The
spline points to be computed are equally and closely spaced. In such a
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situation the forward differencing technique [Bruijns, 1998] can be used.

Forward differencing is an efficient way for evaluating a polynomial
at a high number of uniform steps. For example, to evaluate a cubic
polynomial p(t) at uniform steps, one derives a difference function that
expresses the difference between p(t) and p(t + τ) where τ is the step
size. In the case of a cubic polynomial, the difference is a quadratic
polynomial. More formally, the forward difference is a finite difference
defined by

∆ an ≡ an+1 − an

This finite difference operator can be applied repeatedly to obtain
higher order finite differences

∆2 an = ∆k−1 an−1 − ∆k−1 an

For the second forward difference this works out to

∆2 an = ∆2
n = ∆(∆n) = ∆(an+1− an) = ∆n+1−∆n = an+2− 2an+1 + an

A quadratic polynomial can be evaluated more efficiently than a cubic
polynomial. However, this technique can be applied to a quadratic
function as well. The result is a linear function. Applying the technique
one last time on the linear function produces a constant. Given these for-
ward differences, a polynomial can be evaluated by repeatedly adding
up the differences. Applying forward differencing to a B-spline results
in the following forward differences:

p =
1
6

c3

F1 =
1
6
(c0τ3 + c1τ2 + c2τ)

F2 =
1
6
(6c0τ3 + 2c1τ2)

F3 =
1
6
(6c0τ3)

where ci, ∀i in [0, 3] are the B-spline coefficients and p is the current
point along the spline. After initializing the differences, each new point
can be generated by calculating

p = p + F1

F1 = F1 + F2

F2 = F2 + F3

each iteration of a loop.

4.4.4 Stroke Appearance

One of the inherent problems of a geometric stroke representation is
that the stroke can fold in on itself, which leads to visual artifacts such
as those shown in Figure 29. The system performs an (optional) pass
over the stroke geometry that eliminates many of the folds. The pass is
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(a) (b)

Figure 29: Shown in (a) are two examples of folding errors which can become
noticeable with the use of big brushes and variable opacity. In (b) a
simplified version of the underlying geometry of the folds in (a) is
shown.

left optional so less powerful computers can still run the system.

The idea is to iterate over all the stroke ribs until a rib ri is found that
has an endpoint which is located ’behind’ the previous rib ri−1. The rib
ri−1 can be identified as rib A, the last rib before the stroke starts to
fold in on itself. To find out if endpoint v0 or v1 of ri is on the wrong
side of ri−1, we compare vi with the halfplane that passes through ri−1:

Hi−1 : {x ∈ R2 | ~nx− di−1 = 0}

where x is the point being compared, ~n is the normal of vi−1
0 vi−1

1
and di−1 = vi−1

0 ~n. In the case of the system, ri is on the wrong side
if ~nvi

j − di−1 < 0, j ∈ [0, 1]. A visualization of this can be seen in
Figure 30b.
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Figure 30: Fold detection. (a) depicts a possible fold occurrence. Orange ribs
have a vertex on the wrong side of halfplane A, while blue ribs are
on the wrong side of B. If the vertices fall outside the dashed red
circle, they are not considered on the wrong side. This is a safeguard
for situations where large parts of a stroke overlap. (b) shows an
example of halfplane Hi−1 defined by vertices v0 and v1.

Once A has been found, the algorithm iterates over the ribs until a rib
rb is found that no longer has an endpoint on the wrong side of A, or
is too far away from A. The rib rb defines halfplane B. Up to this point,
around half of the offending ribs will have been found. The previous
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operation is now mirrored with halfplane B to find the remaining half,
starting from the rib before A and working backwards. The resulting
situation is shown in Figure 30a

When all the ribs have been found, the offending endpoints are reposi-
tioned to a common point w. The way in which w is calculated depends
on the situation: if the angle between rA and rB is big, the intersection
point between perpendicular lines of both ribs is calculated and used as
w, as shown in Figure 31. If, however, the angle is small, the intersection
point will be located far from the actual fold and give a poor solution. In
such cases an endpoint of rB is used as w, which will give a reasonable
result.

A

B
w

(a)

w

(b)

Figure 31: Fold repairing. In (a) the perpendicular lines of A and B which result
in intersection point w can be seen. (b) shows the rebuilt geometry,
where w was used as common vertex.

While suitable for common small folds, there are situations where the
method behaves poorly. These situations, such as very sharp bends that
cause large portions of the stroke to overlap, are best left untreated.
Therefore, the method cannot get rid of all the artifacts. However, the
situations where it fails are very difficult to resolve as the artist might
have intended a certain amount of overlap in the stroke.

4.5 stroke shape editing

Stroke shape editing is a fairly complex interaction. First the strokes
affected by the operation have to be found in an efficient manner, as
brute force methods become slower as the number of lines in a sketch
grow. Next the sparse stroke data has to be upsampled to obtain an
accurate interaction result. The operation is then performed on the
data and, finally, the stroke is downsampled again. We start with the
interactions and how they change the stroke shape.

4.5.1 Editing Strokes with a Move Brush

To move strokes, or parts thereof, with a brush posed an interesting
problem. A ‘move brush’ representation needed to be developed that
is both robust and flexible. To this end, the move brush was given
properties that determine the strength and reach of its area of effect.
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This gives the artist control over how much a stroke is moved in regard
to its distance to the brush. This can be seen in Figure 32a.
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Figure 32: Move brush parameters. (a) shows the effect softness has on the
move brush, while (b) illustrates the radial falloff formula.

These properties can be defined with two parameters which can be
changed with the menu: brush size and brush softness. The purpose
of the brush size parameter is quite straightforward. Brush softness
affects the way the stroke is moved as it comes in contact with the move
brush. The move brush uses a motion transference value α to determine
how much of the brush motion is applied to the stroke. Softness de-
termines the radial falloff of α. The value of α lies in the range [0, 1].
Given the brush movement vector ~vm, move brush M and stroke S, the
displacement ~ω of a point pS ∈ S can be calculated as

~ω = ~vmαps

where αps is the transference value of the move brush at the position of
pS. Maximal softness will result in a brush that has a linear falloff for α
from 1→ 0 as the distance from the radial center crad goes towards the
brush radius rrad. Minimal softness results in a brush with no falloff
and α = 1 for the whole brush area.

Calculating αp can be done with the following formula

αp = α0 − (α0
d

rrad
), with α0 =

rrad
so f tness

, d = ||crad − pS||

The value of αp is clamped to the [0, 1] interval. Figure 32b shows an
example of how this formula behaves. While the brush can contain
multiple radials, resulting in a variety of move shapes, the brush in the
implementation only contains one radial to create a close analogue to
the drawing brush.

4.5.2 Editing Strokes with a Move Stroke

The move stroke, while very similar in function to the move brush,
has a different implementation. Approximating a move stroke with
the radials used with move brushes would create an inaccurate result,
as radials cannot approximate a locally smooth surface well. A more
general approach was needed: to calculate the displacement, the triangle
strip geometry of the original stroke is used. The principle to move
points is inspired by the move brush. Given a stroke S, the point pS ∈ S
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is moved with the full displacement ~vm of the move stroke M if pS is
inside any triangle abci ∈ M. Barycentric coordinates [Bottema, 1982]
are used to determine if a point lies inside a triangle: given triangle
abc, the barycentric coordinates of point p with regard to abc can be
calculated as

λ0 = (bx − ax)(cy − ay)− (cx − ax)(by − ay)

λ1 =
(bx − px)(cy − py)− (cx − px)(by − py)

λ0

λ2 =
(cx − px)(ay − py)− (ax − px)(cy − py)

λ0

λ3 =
(ax − px)(by − py)− (bx − px)(ay − py)

λ0

Notable properties of barycentric coordinates are that p = λ1a + λ2b +
λ3c and λ1 + λ2 + λ3 = 1. If 0 ≤ λi ≤ 1, ∀ i in [1, 2, 3], point p is inside
the triangle, or on one of the triangle edges. If we find one triangle in
the triangle strip for which this condition holds, p is considered inside
M.
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Figure 33: (a) Barycentric coordinates. Shown are two ways in which barycentric
coordinates can be interpreted. (b) Move stroke geometry: yellow
points are classified as inside the stroke (and should be moved),
while green points are outside the stroke.

The move stroke comes with one noticeable downside. Because collision
between a stroke interval and the brush depends on the overlap between
the volume of the move stroke and the stroke interval, a thin move
stroke might produce unpredictable results. When the brush is moved
quickly, collisions might not be detected as parts of the brush have
moved through the stroke interval completely without overlapping it at
some point. A possible way to solve this would be to use a more robust
collision detection scheme, such as those used with rigid body physics
[Hadap et al., 2004].

4.6 spatial partitioning of strokes

Many of the functions in the system try to find the stroke closest to a
specific point or strokes within a certain spacial range. A naïve, brute
force approach would be to compare against all the strokes on the
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canvas. For a sketch of reasonable complexity this would be too slow.
A family of algorithms designed to speed up range finding or nearest
neighbour queries are the space-partitioning algorithms.

4.6.1 Choosing a Spatial Partitioning

There exist a great variety in space-partitioning, ranging from simple
grids to more complex algorithms such as a Binary Space Partioning
(BSP). Two well-known and relatively simple partitioning schemes were
examined: quadtrees and KD-trees. Each partitioning has situations
where it performs well and situations where it performs poorly, so care
had to be taken to choose a scheme that is best suited for line drawing
data. Creating an optimal KD-tree can be very complex, and may lead
to the algorithm not being very suitable for dynamic data [Wald et al.,
2006], while quadtrees perform badly when the data is very evenly
distributed [Jain and Shneiderman, 1994]. However, evenly distributed
data is unlikely to be the case in a sketch. Therefore, a simple quadtree
was chosen.

4.6.2 Application of a Quadtree for Line Data

First, we establish what a quadtree is: a quadtree is a 2D version of
the more general octree. Each node, or square, in a quadtree can be
subdivided into 4 smaller squares. Each of these children covers 1

4 of
the area covered by its parent. Regions are subdivided recursively when
the need arises, such as when the bucket of a square is full. While often
called squares, regions may be rectangular, or any shape for that matter.

A regular quadtree usually stores points. This would naturally lead
to the idea of storing the control points of a stroke inside the tree.
However, this is not sufficient. The space between control points can be
arbitrarily large; a stroke could intersect a query range without having
a control point within the range. A way to solve this is to store linear
line segments instead. These segments approximate the shape of the
stroke between control points. A segment is stored as two end-points
and a pointer to the stroke it approximates. Figure 34 shows an example
of this.

To store line segments we start at the root of the tree. Recursively, the
child is chosen that covers the line completely, until the smallest such
square has been found. The segment is stored in that square. A special
case arises when storing lines in a quadtree: the smallest square might
not be a leaf node. That is to say, a line segment might be stored in a
node somewhere in the middle instead of at the bottom level of the
tree. Such a segment intersects two squares. In practice such segments
seldom appear at early levels of the quadtree because the strokes are
approximated by a large set of segments.

4.6.3 Range Queries

Range queries are used to find strokes that intersect a certain area. Such
a range is defined by an axis-aligned bounding box. Starting at the
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Figure 34: Quadtree details. In (a) the strokes of a simple drawing have been
added to a quadtree. (b) A closeup of part of the quadtree with the
segments that approximate the black stroke. Segments that are more
red have been stored deeper in the tree, while blue segments are
stored at earlier levels, because they overlap several squares. The
numbers also indicate depth of the corresponding segments.

root, the range is compared against each of the four children. If a child
(partially) overlaps the range, its children are tested against the range
as well. This recursion continues until there are no new children to
compare against the range. The line segments in the buckets of chil-
dren that overlapped the range are added to the list of results. Because
partial overlaps are also included, all resulting segments are compared
against the bounding box to confirm that they are inside the range.
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Figure 35: Intersections. (a) depicts a typical overlapping bounding boxes situa-
tion between boxes a and b. In (b) the box-line overlap test can be
seen: the line is clipped to each of the four slabs. In this case there is
still a line left after the procedure, so it overlaps the bounding box.

Checking if the bounds bR of range R overlaps the bounds bS of square
S is quite straightforward: because the bounds are axis-aligned the
minimal and maximal coordinates of the bounds can be compared, so
if the condition

(bmax
R ≥ bmin

S ) ∧ (bmin
R ≤ bmax

S )

holds, the boxes overlap. An example of this is shown in Figure 35a
Checking whether a segment overlaps a box is a more complicated
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process. The line is clipped along each of the infinite lines that run
parallel to the edges of the box, often called slabs. If there is still a line
segment left after it has been clipped, the line overlaps the box. This
process can be seen in Figure 35b.

4.7 summary

In this chapter the various algorithms and data structures used in the
concepts discussed in Chapter 3 were presented. Starting with a de-
scription of the BSM, it was shown how this model is used to create
scalable strokes. Here, an emphasis was put on efficiency. We continued
on by presenting methods for upsampling and downsampling strokes,
an operation which is used with many of the stroke interactions. Before
moving on the stroke interactions, a novel method to remove folds from
the stroke geometry was given.

Next the stroke interactions were discussed. The move brush and the
principles regarding point displacement were presented. We showed
how the amount of displacement can be varied through user-definable
brush parameters. Finally, the implementation of the move stroke was
given, and it was shown how it differs from the move brush because it
uses stroke geometry to define a brush.

We ended the chapter with a discussion of the spatial partitioning used
to quickly find strokes. The choice of the quadtree was reviewed and a
brief overview was given on storing line segments and querying the
tree.
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The discussion forms an important part of this thesis, as the merit
of the presented concepts and methods can only be determined by
the people who use them. We examine the practical benefits of the
implementation in several ways. First, we perform a case study. This
study will illustrate the use of the developed tools in a real life situation.
Second, we analyze an informal user study which was performed. The
implementation was evaluated with two groups; artists and people with
no artistic background. Third, we analyze how the implementation was
used to create certain sketches. Finally, we show some of the works that
have been created with the implementation.

5.1 case study

In order to illustrate the concepts presented in this thesis, we examine,
step by step, how a simple sketch was made using the implementation
and its features.

5.1.1 Sketching a Creature

The sketch was recorded with movie capture software. The images here
represent a time lapse of that movie, highlighting the methods used to
accomplish important steps in the sketch. For illustrative purposes, the
sketch was kept simple. The process can be seen in Figure 36 through
Figure 42.

(a) (b)

Figure 36: (a) The starting point. This is the view presented to the artist when
the implementation is started. (b) The first lines. The artist uses a
static brush size and varies opacity with pressure, the settings he
or she is most comfortable with. The artist starts small, because the
shape is easier to draw that way.

47
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(a) (b)

Figure 37: (a) The shape does not resemble the artist’s intent. In this instance he
uses the move brush to change the shape he is currently drawing. The
tool is used as both a correctional technique and drawing technique
simultaneously. (b) The shape is finished, but very small and at the
wrong place. To apply a transformation to the lines, they are selected
with the tap-based multi-select.

(a) (b)

Figure 38: (a) The result of the transformation. The shape has been translated
and scaled, without losing any line quality. (b) The artist rotates the
canvas with the frame gestures so he can more comfortably draw
the lines. The drawing motion he is comfortable with now lines up
better with the line he wants to sketch.

(a) (b)

Figure 39: (a) Some more lines have been drawn to flesh out the character.
After drawing the nose, the artist uses the eraser side of the stylus
to to erase parts of the line that intersect the nose of the character.
(b) Again, the canvas is rotated so certain lines can be drawn more
easily. This time a complete stroke is removed with the line-erase
tap interaction.
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(a) (b)

Figure 40: (a) To use a move stroke, the artist first draws the shape he wants to
move things with. The stroke is then selected and the ‘make move
stroke’ button along the selection border is pressed. (b) By using the
eraser tip of the styles while in edit mode, the artist uses the move
stroke to redefine strokes with a more complex shape.

(a) (b)

Figure 41: (a) Here a stroke has been tapped to select it. The selection border
is then used to translate the stroke. (b) The canvas has been rotated
again to ease the drawing of certain lines.

(a) (b)

Figure 42: (a) Some more corrections to the hat are done using the move brush.
(b) An overview of the final image.
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5.2 informal user study

An informal user study was conducted to receive feedback regarding
the concepts and techniques discussed in this thesis.

5.2.1 Participants

The study was conducted with two distinct groups of participants. The
first group consisted of artists, while the second group contained peo-
ple with little to no drawing experience. A wide range of backgrounds
was found in both groups. The ‘artist group’ included an experienced
oil painter with no prior digital drawing experience, an artist who
draws digitally almost exclusively, a professional industrial designer, a
professional animator and two art students. The ‘non-artist’ group con-
tained a human-machine interaction specialist and several people with
some prior drawing experience, but who have never drawn digitally.
Ages within the the artist group varied between 22 and 55 (M : 32.5,
Mdn : 29.5 and SD : 12.06), while the ages of the non-artist group
were between 24 and 53 (M : 31.5, Mdn : 24.5 and SD : 14.34).

5.2.2 Setup

The evaluations were conducted in the following manner: the partic-
ipant was placed behind a laptop with an A6 Wacom tablet, which
had the implementation running (Figure 43). The participant is then
told to experiment with the program, while voicing his or her thoughts.
During this phase, the participant has had no explanation regarding
the interface. After being sufficiently observed during this phase, the
interactions and tools are explained. The participant is encouraged to
use the tools to create a sketch, and is often engaged in a dialog with the
evaluator regarding the functionality and possible improvements. After-
wards, the participant is asked to fill in an evaluation form which rates
each functionality. During the whole process, the evaluator is making
notes regarding the behavior and suggestions of the participant.

5.2.3 User Observation and Impressions

While the basic drawing mechanics were quickly discovered by the
participants, the advanced tools and the use of gestures needed to be
explained, as there is no indication to such operations. After receiv-
ing the explanation, participants started performing the gestures, and
quickly gained adequate skill in using them. For some, there was an
initial confusion between using the frame borders to translate or rotate,
but this resolved itself quickly. Without exception, the participants saw
the frame gestures as a useful interaction which they missed in other
systems. Especially the rotation of the canvas was liked. Participants
were quick to adapt the gestures into their work flow.

A common theme during the evaluations was the participants’ attempt
to use interactions and techniques from other drawing system to in-
teract with the implementation. This was especially true for the artist
group, as they have spent a great deal of time using and mastering
these systems. With a lack of additional info, they tried to map their
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existing knowledge to the new situation. A striking example of this
was participants trying to undo strokes with the standard undo hot-key
combination. This knowledge extrapolation indicates that, for users to
quickly learn a new system, a great degree of familiarity and conformity
might help. These ‘tried and true’ models could be used to ease the
user into the new concepts.

The implementation proved to be more suitable for some sketching
styles than others. Participants who sketched using a fast succession
of short strokes sometimes inadvertently created a tap marker. While
participants who had this problem were able to adapt, it did affect their
work flow. Apart from this issue, all participants were able to create
sketches in their own style. They were not limited by the implementa-
tion in that regard.

(a) (b)

Figure 43: Participants who are exploring the interface.

The vectorized approach to strokes was generally well received. Some
participants found that the vectorization sometimes resulted in a dif-
ferent line than they intended. However, this was accepted as a minor
inconvenience. The quality of the scalable strokes was found to be good
by most participants, but some missed the option to give a stroke a
texture.

The tap marker was the most difficult interaction for the participants to
become proficient in. Partially due to the way in which a pen tablet func-
tions [Apitz and Guimbretière, 2005], sometimes an interaction with
the tablet surface which was intended as a tap would result in a drag
instead. No tap marker would be created in such cases, which confused
participants. Some participants were better at performing the tablet tap
than others. The amount of experience with a tablet did not seem to be a
factor, as the problem arose with artist and non-artist participants alike.
Participants did seem to improve at this interaction as they used it more.

Reactions regarding the page-flip saving method were very diverse.
While some regarded it as an interesting solution, others disliked hav-
ing to move the canvas in order to save. One participant found that this
functionality was too close to the drawing area and might cause him to
change sketches accidentally. Given such extremely varying responses,
it is difficult to give a final verdict on this concept. Regarding the menu
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system, some participants had trouble understanding the meaning of
certain icons. Overall, the icons were found to be recognizable once
their purpose was made clear.

Interesting was the difference between both participant groups. While
the non-artist group approached the implementation more as a toy,
the artist group saw it more as a possible replacement for a system
in their current work-flow. This resulted in a different mindset when
evaluating the concepts. Non-artist participants were more interested in
the ‘fun’ factor of the interactions, where intuitiveness was an important
quality. The artists were more concerned about the effectiveness of the
tools. They also looked more for conformity, as they compared the
interactions to those in systems which they were already using.

5.2.4 Suggested Improvements

Many of the participants gave useful suggestions during the evalu-
ation process. Two suggestions were very common; an undo button
and menu tooltips. The absence of these was felt by most participants.
The use of tooltips has often been proven and their inclusion would
make the interface a great deal easier to navigate without any prior
knowledge. The undo key was found to be an important part in the
work-flow of some participants, and could not be replaced by the novel
stroke editing options.

While one of the ideas of this thesis is to use only the pen tablet for
interaction, participants from the artist group did miss the inclusion
of hotkeys. They felt hotkeys were integral to their workflow and an
ideal way to use their offhand. A few of the artists also brought up
the matter of layers. They argued that having multiple drawing layers
would make it easier to use construction lines in the sketching process.
One artists mentioned a ‘wand’ selection tool in order to make more
detailed selections. Also, instead of moving the menu with the tap
marker, some participants suggested being able to drag the menu using
the center circle.

5.3 implementation evaluation

While observations are an important tool in understanding the results,
it is difficult to measure them. Therefore, we will now discuss more
quantifiable results obtained from the evaluation process.

5.3.1 Functionality Evaluation

Aside from the interaction with the evaluators, participants of the in-
formal user evaluation were also asked to fill in an evaluation form.
On the form, participants could rate each of the features present in the
implementation according to their overall opinion. The results can be
seen in Table 1.

What is immediately apparent from the evaluation is that the results
from the non-artist group and the artist group are very close to each
other. The artist group graded slightly lower in certain areas, but the
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How much do you like... – – – –/+ + ++ 4 �

Overall Appearance 4 � 3.4 4.6

Rotating Canvas using the Frame © 5 4.6

Moving Canvas using the Frame 4� 4.4 4.6

Zooming using the Frame Corners 4� 4.2 4.6

Saving by using Canvas Page Corners 4 � 3 3.8

Using the Move Brush © 4.4 3.8

Creating a Move Stroke from a Selection 4 � 3.4 3.6

Using a Move Stroke © 3.2 3.4

Transforming a Selection © 4 3.8

Selecting Lines through Tapping 4 � 3.4 4

Using the Tap Marker to Select © 3.8 4.4

Using the Tap Marker to Erase © 3.8 4.4

Move the Menu with the Tap Marker 4 � 2.2 3.4

Using the Menu © 3.8 3.8

Resetting the Canvas View © 4.6 4.6

Table 1: Results of the informal user evaluation: strongly dislike (– –), dislike (–),
neutral (+/–), like (+) and really like (+ +). The artist group is denoted
with a 4 and the non-artist group with a � . If both groups have the
same result this is indicated with a© . Results are the average of the
evaluation forms turned in by the participants. The last two columns
show the exact grade of the artists and non-artists, respectively.

only large disparity is found in the “Overall Appearance” mark. This is
at least partially because many participants from the artist group found
the blue screen border too large.

As mentioned before, the frame gestures themselves were very popular
with all the participants. This is likely the reason why the ability to
reset the canvas view scored high as well; it complements the gestures.
Other concepts that were liked by both groups are move brush tool,
multi-select and erase-line. The final tap marker interaction, moving
the menu, was one of the least liked features. This is likely the result of
the interaction sometimes happening when the participant intended to
do something else.

Another feature which was not well-received is the move stroke. The
biggest issue was the effort it takes to create the move stroke. Some
participants would rather use the move brush as it can perform similar
operations, but can be accessed more easily. Other participants found
the move stroke slightly cumbersome in usage.

Overall, many of the concepts were liked by the participants. Many of
the functionalities which received a low rating could be substantially
improved with the feedback from the participants and further design
iterations, in particular the tap marker and the menu. For some of the
concepts, such as the move stroke and the canvas page corners, it is
questionable whether further research would be a wise investment.
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5.3.2 Workflow Analysis

To analyze how the different interactions were used during the sketch-
ing process, the implementation records each execution of an interaction
as they are performed by the artist. Examples of command execution
plots can be seen in Figure 44 and Figure 45. While the plots are from
different artists, with different styles, they are remarkably similar. From
these plots we learn that certain interactions, namely drawing and
manipulating the canvas, are used throughout the sketching process.
The fact that canvas interactions are used so frequently indicate that
they integrate well with the workflow of the artist.

Time in Seconds

Border interaction

Draw brush

Move brush

Move stroke

Transformation selection

Selection scale

Selection translation
Selection rotation

Tap marker

Erase-line

Multi-select

Move menu

Canvas rotation

Canvas translation

Canvas zooming

Figure 44: The command execution log of the case study sketch.

Time in Seconds

Border interaction

Draw brush

Move brush

Move stroke

Transformation selection

Selection scale

Selection translation
Selection rotation

Tap marker

Erase-line

Multi-select

Move menu

Canvas rotation

Canvas translation

Canvas zooming

Figure 45: The command execution log of a participant during the evaluation.

The usage of the other interactions is far more situational. The move
brush and move stroke are occasionally used to correct mistakes or
change existing lines. The tap marker is used more frequently as it ties
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in to three distinct interactions, although the option to move the menu
with the marker is hardly used at all. This verifies the low popularity
of that particular interaction. There is some indication that the frame
gestures take a while to fully adapt to. The artist responsible for the
log of Figure 44 had worked with the implementation significantly
longer than the artist responsible for Figure 45. This artist, who had
more experience working with the software, uses the gestures far more
frequently than the artist who had only just started experimenting.
Still, despite being new to the system, the artist was already using the
frame gestures often, indicating that the cost of learning and using the
gestures is low.

5.4 results

As this thesis is ultimately about being able to create art, it would not
be complete without some examples of the artwork created through
the research which has been presented. Here are some of the images
that were made using the implementation (Figure 46 to Figure 52).

Figure 46: Image courtesy of Avik Kumar Maitra.
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Figure 47

Figure 48: Image courtesy of Sahal Merchant.
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Figure 49

Figure 50
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Figure 51: Image courtesy of Sahal Merchant.

Figure 52
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5.5 summary

Through the case study we have shown how the interactions presented
in this thesis can be used. The case study itself was a time lapse of a
sketch, highlighting the use of each interaction. The resulting sketch
showed that the implementation can be used to create art.

The informal user evaluation gave a lot of insight into the way people
react to the implementation. The participants were divided into two
groups: artists and non-artists. Opinions and suggestions from both
groups were remarkably similar. Overall, the artist group rated the
implementation slightly lower than the non-artists. The most successful
interaction was by far the frame gestures. Participants found them a
useful addition to a drawing system. The move brush was also well
liked. Participants were less pleased with the move stroke, page corner
saving and method by which the menu was moved. The most common
suggestions by participants were the inclusion of an undo button and
tooltips for the menu.

To see how the interactions were used during the sketching process we
analyzed several command execution logs. These showed that drawing
and frame gestures were used frequently and consistently throughout
the sketching process. Most of the other interactions were more situa-
tional, their usage depending on what the artist wanted to draw.

We ended the chapter with examples of sketches that were made by
participants, using the implementation. These sketches also show that
the implementation can accommodate a wide range of styles, despite
being more suitable to some styles than others.
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The goal of this thesis was to explore new ways in which artists can
sketch digitally and interact with strokes. To accomplish this, a new
look was taken at some of the basic drawing interactions which artists
frequently use. Also, new types of interactions were researched. An
important factor in achieving this goal was to find ways to perform
interactions that did not disturb the workflow of the artist.

The work was motivated by the growing popularity of digital art cre-
ation. Hardware such as pen tablets are becoming more accessible to
artists and digital work comes with certain advantages. Storing digital
paintings requires no physical space and artists need not concern them-
selves with, e. g. paint mixing and turpentine fumes. However, many
popular drawing systems have seen little innovation over the last few
decades concerning the way artists can interact with their digital work.
With the advancements in ergonomics and computing power since then,
it is a good time to re-evaluate these interactions, and possibly design
improved ways in which to perform them.

To reach the goal set in this thesis, several interaction concepts were
researched. The concepts broadly fall into two categories: canvas in-
teractions and stroke interactions. Canvas interactions are meant to
allow the artist to use the canvas as a tool. Giving free control over the
canvas allows the artist to orient it in a way which allows him to draw
in the most comfortable way. As such, the canvas assists the artist in the
drawing process. Stroke interactions were developed to give the artist
more control over lines after they have been drawn, in an intuitive way.
In order to interrupt the workflow of the artist as little as possible, we
focused on modeless ways in which these interactions could be done.
It was also a priority to keep the interface clean, simple and visually
pleasing.

The canvas interactions were implemented as a set of location sensitive
gestures. This allows the artist to orient the canvas through simple mo-
tions: translation, scaling and rotation are all supported. This method of
interaction is also modeless, as no buttons or key combinations need to
be pressed to be able to use the interactions. A similar scheme was used
to control the stroke selection border. To extend the set of commonly
used stroke interactions, the move brush was developed. This brush
gives the artist an intuitive tool to manipulate the shape of strokes, in a
familiar feeling way. In an attempt to generalize the move brush, the
move stroke was presented. The move stroke works like the move brush,
only now the artist can define his or her own brush from any stroke
on the canvas. Finally, the tap marker was introduced. This allowed
for several interactions to be performed using the tap gesture. The tap
marker was used to perform the multi-select and erase-line interactions,
as well as opening up the possibility to move the menu.

61
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The evaluation showed that the frame gestures were very popular with
all participants. Most found it a valuable addition to the interactions
commonly available in digital drawing systems. The move brush was
found by many to be an interesting tool to experiment with. Less liked
by the participants were the way in which the menu could be moved,
the page flipping concept and the execution of the move stroke. Some
suggestions were given to improve the implementation. The most com-
mon suggestions were an undo button and tooltips for the menu. An
analysis of several command execution logs showed that the frame ges-
tures are used frequently and consistently. They seem to integrate well
with the workflow of different artists. The usage of many interactions
depend on what the artist is drawing and what his particular style is.
This shows that the use of the move brush and transformation selection
are much more situational.

The concepts presented in this thesis opens up several interesting
research directions. The frame gestures give artists a new way to ma-
nipulate the canvas. Perhaps there are other interesting ways in which
gestures can be used to help the artist accomplish certain tasks. Also,
no formal study was done on the effect frame gestures have on the
artists workflow and efficiency. In order to truly understand what merit
these gestures have, such a study would have to be undertaken.

The move brush, while effective, is just a basic implementation of what
the concept could be. Possible extensions could be a more flexible brush
model or a way to texture the brush. The move stroke concept also war-
rants a second look. While not very successful in its current incarnation,
the idea of defining your own brushes in such a simple and intuitive
manner is a very powerful concept.

An important feature the current stroke model lacks, is a way to define
the texture or style of strokes. Extending the model to accommodate
stroke textures or to simulate different media could prove a worthwhile
endeavor. While the current stroke model is fairly robust, there are still
cases where it is not accurate enough. Continued development would
have to be performed in order to make it as reliable as the strokes of
pixel based systems. Also, efficiency was not a high priority for this
thesis, so there are still many areas of the model which would benefit
from optimization.

Regarding the interface, while the absence of modes appealed to all who
used the implementation, many argued that restricting the interface to
only a pen tablet hampered their workflow. It would be interesting to
research the exact dynamics of user input devices for digital painting,
in order to find the optimal combination.

An area that can use significant improvements is the tap interaction.
In order to make the multi-selection and erase-line interactions more
useful and streamlined, they could use the stroke paradigm: the artist
draws an (arbitrary) stroke from the tap marker which intersects several
sketched lines. When the artist is finished with the interaction, these
lines are selected (and possibly erased). This eliminates the conceptual
differences between both interactions and possibly makes them more
flexible at the same time. This approach is inspired by CrossY [Apitz
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and Guimbretière, 2005]. The tap could be improved by changing the
time needed for the stylus to touch the tablet in order to make the tap
marker appear. Currently, this contact time is very short. Making this
time relatively long might work better with some drawing styles, while
not having an adverse effect on other styles.

Yet another interesting direction to explore is to make the interface work
with (bimanual) touch interaction. The current system was designed
with large displays in mind, and the interactions can be extended to
work with this type of interaction. Bimanual interaction has become a
popular topic in recent years, and researching effective ways in which
it could be used to draw could prove valuable.

As both an artist and a computer science student, this thesis was a
wonderful opportunity to combine two of my greatest interests. Doing
the research has made me look more critical at my own artistic process,
in both drawing and programming. That, combined with the inspiration
I have found through working with all the wonderful people, who in
some way contributed to this thesis, have motivated me to become a
better artist, and through that a better computer scientist.





B I B L I O G R A P H Y

Adobe. Illustrator, 1988. http://www.adobe.com/products/

illustrator/. (Cited on pages 5, 6, and 28.)

Adobe. PhotoShop, 1990. http://www.adobe.com/products/

photoshop/family/. (Cited on pages 1, 6, 9, and 20.)

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David
Levin, and Claudio T. Silva. Point set surfaces. In VIS ’01: Proceedings
of the conference on Visualization ’01, pages 21–28. IEEE Computer
Society, 2008. (Cited on page 37.)

AmbientDesign. ArtRage, 2004. http://artrage.com/. (Cited on
pages 6 and 19.)

Georg Apitz and François Guimbretière. CrossY: a crossing-based
drawing application. In SIGGRAPH ’05: SIGGRAPH 2005 Papers,
pages 930–930. ACM, 2005. (Cited on pages 51 and 62.)

Caroline Appert, Olivier Chapuis, and Michel Beaudouin-Lafon. Evalu-
ation of pointing performance on screen edges. In AVI ’08: Proceedings
of the working conference on Advanced visual interface, pages 119–126.
ACM, 2008. (Cited on page 22.)

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. ILoveSketch:
as-natural-as-possible sketching system for creating 3d curve models.
In SIGGRAPH ’06: SIGGRAPH 2006 Papers, pages 151–160. ACM,
2008. (Cited on pages 8, 19, 21, and 22.)

Ravin Balakrishnan and Ken Hinckley. Symmetric bimanual interaction.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 33–40. ACM Press, 2000. (Cited on page 16.)

Pascal Barla, Joëlle Thollot, and Frano̧is X. Sillion. Geometric clustering
for line drawing simplification, 2005. (Cited on page 13.)

Olivier Bau and Wendy E. Mackay. OctoPocus: a dynamic guide for
learning gesture-based command sets. In Proceedings of the 21st annual
ACM symposium on User interface software and technology, pages 37–46.
ACM Press, 2008. (Cited on pages 15 and 21.)

O. Bottema. On the area of a triangle in barycentric coordinates. Crux
Mathematicorum, 8:228–231, 1982. (Cited on page 43.)

J. Bruijns. Quadratic bezier triangles as drawing primitives. In HWWS
’98: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware, pages 15–25. ACM, 1998. (Cited on page 39.)

William Buxton and Brad A. Myers. A study in two-handed input.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 321–326. ACM Press, 1986. (Cited on page 16.)

Stéphane Chatty, Stéphane Sire, Jean-Luc Vinot, Patrick Lecoanet,
Alexandre Lemort, and Christophe Mertz. Revisiting visual interface
programming: creating gui tools for designers and programmers.

65

http://www.adobe.com/products/illustrator/
http://www.adobe.com/products/illustrator/
http://www.adobe.com/products/photoshop/family/
http://www.adobe.com/products/photoshop/family/
http://artrage.com/


66 bibliography

In UIST ’04: Proceedings of the 17th annual ACM symposium on User
interface software and technology, pages 267–276. ACM, 2004. (Cited on
page 19.)

Jin J. Chou and Les A. Piegl. Data reduction using cubic rational b-
splines. IEEE Computer Graphics and Applications, 12(3):60–68, 1992.
(Cited on page 33.)

Corel. Corel Painter, 2007. http://www.corel.com/. (Cited on pages 5,
6, and 19.)

Eric Daniels. Deep canvas in Disney’s Tarzan. In International Conference
on Computer Graphics and Interactive Techniques ACM SIGGRAPH 99
Conference abstracts and applications, page 200, New York, NY, USA,
1999. ACM Press. (Cited on page 9.)

Doug DeCarlo and Szymon Rusinkiewicz. Highlight lines for con-
veying shape. In Proceedings of the 5th international symposium on
Non-photorealistic animation and rendering, pages 63–70. ACM Press,
2007. (Cited on page 13.)

Debra Dooley and Michael F. Cohen. Art-based rendering of fur, grass,
and trees. In Proceedings of the 1990 symposium on Interactive 3D
graphics, pages 77–82. ACM Press, 1999. (Cited on page 12.)

W. S. Dorn. A generalization of horner’s rule for polynomial evaluation.
In Proceedings of the 1961 16th ACM national meeting, pages 501–502.
ACM, 1961. (Cited on page 34.)

Frédo Durand, Victor Ostromoukhov, Mathieu Miller, François Duran-
leau, and Julie Dorsey. Decoupling strokes and high-level attributes
for interactive traditional drawing. In Proceedings of the 12th Eurograph-
ics Workshop on Rendering Techniques, pages 71–82. Springer-Verlag,
2001. (Cited on page 8.)

Jihad El-Sana, Elvir Azanli, and Amitabh Varshney. Skip strips: main-
taining triangle strips for view-dependent rendering. In Proceedings
of the conference on Visualization ’99: celebrating ten years, pages 131–138.
IEEE Computer Society Press, 1999. (Cited on page 35.)

Gershon Elber. Line illustrations in computer graphics. The Visual
Computer, 11(6):290–296, August 1995. (Cited on page 12.)

George W. Fitzmaurice, Ravin Balakrishnan, Gordon Kurtenbach, and
Bill Buxton. An exploration into supporting artwork orientation in
the user interface. In CHI ’99: Proceedings of the SIGCHI conference on
Human factors in computing systems: the CHI is the limit, pages 167–174.
ACM, 1999. (Cited on page 21.)

Clifton Forlines, Daniel Wigdor, Chia Shen, and Ravin Balakrishnan.
Direct-touch vs. mouse input for tabletop displays. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
647–656. ACM Press, 2007. (Cited on page 16.)

Luigi Gallo, Giuseppe De Pietro, and Ivana Marra. 3D interaction with
volumetric medical data: experiencing the Wiimote. In Proceedings
of the 1st international conference on Ambient media and systems. ICST,
2008. (Cited on page 17.)

http://www.corel.com/


bibliography 67

Stéphane Grabli, Emmanuel Turquin, Frédo Durand, and François
Sillion. Programmable style for NPR line drawing. In Rendering
Techniques 2004 (Eurographics Symposium on Rendering. ACM Press,
2004. (Cited on page 13.)

Tovi Grossman, Ravin Balakrishnan, and Karan Singh. An interface for
creating and manipulating curves using a high degree-of-freedom
curve input device. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 185–192. ACM Press, 2003. (Cited
on page 17.)

Jens Grubert, Sheelagh Carpendale, and Tobias Isenberg. Interactive
stroke-based NPR using hand postures on large displays. In Short
Papers at Eurographics 2008, pages 279–282. Eurographics Association,
2008. (Cited on pages 14 and 15.)

Sunil Hadap, Dave Eberle, Pascal Volino, Ming C. Lin, Stephane Redon,
and Christer Ericson. Collision detection and proximity queries. In
SIGGRAPH ’04: SIGGRAPH 2004 Course Notes. ACM, 2004. (Cited on
page 43.)

Paul Haeberli. DynaDraw. http://www.graficaobscura.com/dyna/

index.html, 1989. (Cited on pages 6 and 33.)

Paul Haeberli. Paint by numbers: abstract image representations. Com-
munications of the ACM, 24(4):207–214, August 1990. (Cited on pages 5

and 6.)

Aaron Hertzmann. Painterly rendering with curved brush strokes of
multiple sizes. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 453–460. ACM Press, 1998.
(Cited on page 11.)

Aaron Hertzmann, Nuria Oliver, Brian Curless, and Steven M. Seitz.
Curve analogies. In Proceedings of the 13th Eurographics workshop on
Rendering, pages 233–246. Eurographics Association, 2002. (Cited on
page 10.)

Siu Chi Hsu and Irene H. H. Lee. Drawing and animation using skeletal
strokes. In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, pages 109–118, New York, NY, USA, 1994.
ACM Press. (Cited on pages 9, 10, 11, and 14.)

Tobias Isenberg, André Miede, and Sheelagh Carpendale. A buffer
framework for supporting responsive interaction in information visu-
alization interfaces. In Proceedings of the Fourth International Conference
on Creating, Connecting and Collaborating through Computing, pages
262–269. IEEE Computer Society, 2006. (Cited on page 31.)

Vinit Jain and Ben Shneiderman. Data structures for dynamic queries:
an analytical and experimental evaluation. In AVI ’94: Proceedings
of the workshop on Advanced visual interfaces, pages 1–11. ACM, 1994.
(Cited on page 44.)

Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A. Kowal-
ski, Joseph C. Lee, Philip L. Davidson, Matthew Webb, John F.
Hughes, and Adam Finkelstein. WYSIWYG NPR: drawing strokes
directly on 3D models. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, pages 755–762. ACM
Press, 2002. (Cited on page 8.)

http://www.graficaobscura.com/dyna/index.html
http://www.graficaobscura.com/dyna/index.html


68 bibliography

Daniel F. Keefe, Daniel Acevedo Feliz, Tomer Moscovich, David H.
Laidlaw, and Jr. Joseph J. LaViola. CavePainting: a fully immersive
3D artistic medium and interactive experience. In Proceedings of the
2001 symposium on Interactive 3D graphics, pages 85–93, New York, NY,
USA, 2001. ACM Press. (Cited on pages 7 and 17.)

Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bourdev,
Ronen Barze, Loring S. Holden, and John F. Hughes. Automatic
illustration of 3D geometric models: lines. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, pages
433–438. ACM Press, 1999. (Cited on page 12.)

Dustin Lang, Leah Findlater, and Michael Shaver. CoolPaint: direct
interaction painting, 2003. (Cited on page 7.)

Yunjin Lee, Lee Markosian, Seungyong Lee, and John F. Hughes. Line
drawings via abstracted shading, 2007. (Cited on page 12.)

J. P. Lewis, Nickson Fong, Xie XueXiang, Seah Hock Soon, and Tian
Feng. More optimal strokes for NPR sketching. In Proceedings of
the 3rd international conference on Computer graphics and interactive
techniques in Australasia and South East Asia, pages 47–50. ACM Press,
2005. (Cited on page 13.)

Kyoko Murakami, Reiji Tsuruno, and Etsuo Genda. Multiple illu-
minated paper textures for drawing strokes. In Proceedings of the
Computer Graphics International 2005, pages 156–161. IEEE Computer
Society, 2005. (Cited on pages 10 and 11.)

Nintendo. Wiimote, 2007. http://wii.nintendo.com/. (Cited on
pages 16 and 17.)

QtSoftware. Qt, 1995. http://www.qtsoftware.com/. (Cited on
page 31.)

Ari Rappoport. Rendering curves and surfaces with hybrid subdivision
and forward differencing. Transactions on Graphics (TOG), 10(4):323–
341, 1991. (Cited on page 35.)

Dean Rubine. Specifying gestures by example. In Proceedings of the 18th
annual conference on Computer graphics and interactive techniques, pages
329–337. ACM Press, 1991. (Cited on pages 15 and 21.)

Thomas Schlömer, Benjamin Poppinga, Niels Henze, and Susanne Boll.
Gesture recognition with a Wii controller. In Proceedings of the 2nd
international conference on Tangible and embedded interaction, pages 11–
14. ACM Press, 2008. (Cited on page 17.)

Hock Soon Seah, Zhongke Wu, Feng Tian, Xian Xiao, and Boya Xie.
Artistic brushstroke representation and animation with disk b-spline
curve. In Proceedings of the 2005 ACM SIGCHI International Conference
on Advances in computer entertainment technology, pages 88–93, New
York, NY, USA, 2005. ACM Press. (Cited on pages 9 and 34.)

A.R. Smith. Digital paint systems: an anecdotal and historical overview.
IEEE Annals of the History of Computing, 23(2):4–30, August 2001.
(Cited on page 5.)

http://wii.nintendo.com/
http://www.qtsoftware.com/


bibliography 69

Sara L. Su, Ying-Qing Xu, Heung-Yeung Shum, and Falai Chen. Simu-
lating artistic brushstrokes using interval splines. In Proceedings of the
5th International Conference on Computer Graphics and Imaging, pages
85–90, August 2002. (Cited on pages 10 and 34.)

Peter Vandoren, Tom Van Laerhoven, Luc Claesen, Johannes Taelman,
Chris Raymaekers, and Frank Van Reeth. IntuPaint: Bridging the
gap between physical and digital painting. In Proceedings of the
Third Annual IEEE International Workshop on Horizontal Interactive
Human-Computer Interaction, pages 71–78. IEEE Computer Society,
2008. (Cited on page 7.)

Wacom. http://www.wacom.com/. (Cited on pages 1 and 16.)

Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G.
Parker. Ray tracing animated scenes using coherent grid traversal. In
SIGGRAPH ’06: SIGGRAPH 2006 Papers, pages 485–493. ACM, 2006.
(Cited on page 44.)

Huagen Wan, Yang Luo, Shuming Gao, and Qunsheng Peng. Realistic
virtual hand modeling with applications for virtual grasping. In
Proceedings of the 2004 ACM SIGGRAPH international conference on
Virtual Reality continuum and its applications in industry, pages 81–87.
ACM Press, 2004. (Cited on page 17.)

Mike Wu and Ravin Balakrishnan. Multi-finger and whole hand ges-
tural interaction techniques for multi-user tabletop displays. In
Proceedings of the 16th annual ACM symposium on User interface software
and technology, pages 193–202. ACM Press, 2003. (Cited on pages 14

and 15.)

Xara. Xara X. http://www.xara.com/. (Cited on page 6.)

http://www.wacom.com/
http://www.xara.com/




D E C L A R AT I O N

I declare that this thesis has been composed by myself, that the work
contained herein is my own except where explicitly stated otherwise
in the text, and that this work has not been submitted for any other
degree or professional qualification except as specified. Furthermore,
I declare that this thesis may be used for publication in collaboration
with my supervisors, Dr. Tobias Isenberg and Moritz Gerl.

Groningen, February 2009

Menno Nijboer


	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Limitations
	1.4 Organization

	2 Foundation
	2.1 Non-Photorealistic Rendering
	2.1.1 Interactive Drawing Systems
	2.1.2 Brush Stroke Models
	2.1.3 (Semi) Automatic Generation of Line Drawings

	2.2 User Interaction
	2.2.1 Interaction With Large Displays
	2.2.2 Peripheral Devices for Drawing

	2.3 Summary

	3 New Ideas for Freehand Sketching
	3.1 Design Philosophy
	3.1.1 Aesthetics
	3.1.2 An Effective Minimal Interface
	3.1.3 Limiting Mode Changes

	3.2 Using the Canvas as a Tool
	3.2.1 Manipulating the Canvas through Gestures
	3.2.2 A Sketchbook Analogy for Saving

	3.3 Remaining Interface Aspects
	3.3.1 Menu System and Interaction Modes
	3.3.2 Tap Interaction

	3.4 Interacting With Strokes
	3.4.1 Drawing Strokes
	3.4.2 Intuitive Editing of Strokes

	3.5 Scalability of Line Drawings
	3.6 Summary

	4 The Proof of Concept
	4.1 Technology of the System
	4.2 Interaction With the Canvas
	4.3 Stroke Drawing
	4.3.1 Brush Model

	4.4 Brush Stroke Model
	4.4.1 Stroke Representation
	4.4.2 Refining Stroke Geometry
	4.4.3 Sampling Strokes
	4.4.4 Stroke Appearance

	4.5 Stroke Shape Editing
	4.5.1 Editing Strokes with a Move Brush
	4.5.2 Editing Strokes with a Move Stroke

	4.6 Spatial Partitioning of Strokes
	4.6.1 Choosing a Spatial Partitioning
	4.6.2 Application of a Quadtree for Line Data
	4.6.3 Range Queries

	4.7 Summary

	5 Discussion: Creating Sketches
	5.1 Case Study
	5.1.1 Sketching a Creature

	5.2 Informal User Study
	5.2.1 Participants
	5.2.2 Setup
	5.2.3 User Observation and Impressions
	5.2.4 Suggested Improvements

	5.3 Implementation Evaluation
	5.3.1 Functionality Evaluation
	5.3.2 Workflow Analysis

	5.4 Results
	5.5 Summary

	6 Conclusion and Future Work
	Bibliography
	Declaration

