ScaleFree: Dynamic KDE for Multiscale Point Cloud Exploration in VR

Lixiang Zhao' Fuqi Xie'

1 Xi'an Jiaotong-Liverpool University, Suzhou, China

Tobias Isenberg?

Hai-Ning Liang? Lingyun Yu'*

2 Université Paris-Saclay, CNRS, Inria, LISN, France

3 Hong Kong University of Science and Technology (Guangzhou), China

Fig. 1: ScaleFree dynamically recomputes density fields on the GPU, enabling on-the-fly density estimation of regions of interest
(ROI) at any scale and position within massive multiscale point clouds in VR.

ABSTRACT

We present ScaleFree, a GPU-accelerated adaptive Kernel Density
Estimation (KDE) algorithm for scalable, interactive multiscale
point cloud exploration. With this technique, we cater to the mas-
sive datasets and complex multiscale structures in advanced scien-
tific computing, such as cosmological simulations with billions of
particles. Effective exploration of such data requires a full 3D un-
derstanding of spatial structures, a capability for which immersive
environments such as VR are particularly well suited. However, si-
multaneously supporting global multiscale context and fine-grained
local detail remains a significant challenge. A key difficulty lies in
dynamically generating continuous density fields from point clouds
to facilitate the seamless scale transitions: while KDE is widely used,
precomputed fields restrict the accuracy of interaction and omit fine-
scale structures, while dynamic computation is often too costly for
real-time VR interaction. We address this challenge by leveraging
GPU acceleration with k-d-tree-based spatial queries and parallel
reduction within a thread group for on-the-fly density estimation.
With this approach, we can recalculate scalar fields dynamically as
users shift their focus across scales. We demonstrate the benefits
of adaptive density estimation through two data exploration tasks:
adaptive selection and progressive navigation. Through performance
experiments, we demonstrate that ScaleFree with GPU-parallel im-
plementation achieves orders-of-magnitude speedups over sequential
and multi-core CPU baselines. In a controlled experiment, we fur-
ther confirm that our adaptive selection technique improves accuracy
and efficiency in multiscale selection tasks.

Index Terms: Multiscale visualization, kernel density estimation,
interactive data selection, interactive data navigation, VR/AR/MR.

1 INTRODUCTION

Advances in scientific computing have produced datasets that are not
only larger in size but also richer in multiscale structural complexity.
For example, modern cosmological simulations produce billions of
particles, with details that span several orders of magnitude, to cap-
ture the formation and evolution of cosmic structures [54,55]. The
fact that meaningful features often emerge at different scales requires
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analysts to fluidly transition between global and local perspectives—
for instance, from cosmic filaments and clusters to fine-grained
substructures in astronomical point clouds [28,55]. To understand
the dynamics of structure formation, scientists need to visualize
and explore the three-dimensional spatial patterns across multiple
scales. Immersive environments delivered through virtual, aug-
mented, and mixed reality head-mounted displays (HMDs) have
emerged as superior tools for interpreting complex spatial relation-
ships. Prior research has shown that immersive visualizations can
enhance users’ understanding of complex spatial structures, includ-
ing volume data [38], astronomical data [74], and node-link dia-
grams [27,60]. These benefits are particularly evident in naviga-
tion [53] and 3D manipulation tasks [8], where frequent viewpoint
changes are required to inspect spatial structures. The immersive
environment not only provide stereoscopic perception of 3D struc-
tures but also support seamless transitions between global overviews
and localized detail exploration. For instance, a user may zoom in
to inspect a galaxy cluster and then zoom out to contextualize its
dynamics within the surrounding large-scale structures. This process
requires not only an immersive environment, such as VR, but also
high-performance scientific computing and visualization systems
capable of supporting free navigation across space, time, and scale.

Achieving smooth transitions and effective exploration across
multiple scales remains challenging, however, in particular when
data must be transformed into an alternative representation to sup-
port further analysis. For example, KDE [19] has been widely used
in point cloud visualization to uncover clusters and structural pat-
terns in large multiscale datasets by converting discrete points into a
continuous scalar density field. Such density fields are fundamental
to spatial interaction, as they provide a robust basis for feature detec-
tion [12,15,45,50] and for constructing selection volumes [68,69,75],
thereby enabling users to identify, isolate, and manipulate regions
of interest. Nonetheless, computing scalar density fields on the fly
is computationally expensive and often fails to guarantee real-time
interaction. Prior density-based selection techniques for point cloud
exploration [68, 69, 75] have typically focused on selection inter-
action itself and relied on precomputed, single-scale density fields,
rather than targeting dynamic multiscale recomputation during in-
teraction. Such precomputation, however, implies that the density
fields are static during exploration, constraining selection accuracy
to the resolution defined a priori and leaving finer-scale structures
unrepresented. This limitation becomes particularly pronounced
in VR. Unlike desktop systems, VR presents users with a single,
continuous egocentric view of the data space, where navigation,
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selection, and scale transitions are tightly coupled with head and
body movement. Users frequently shift their focus between global
overviews and localized regions, creating a strong demand for den-
sity fields that adapt immediately to scale and perspective changes.
At the same time, VR imposes strict real-time constraints due to
high-frequency stereoscopic rendering and low-latency interaction
requirements. These challenges motivate us to explore density es-
timation techniques that can be dynamically computed at varying
scales during real-time immersive exploration.

We thus introduce ScaleFree, a fast, adaptive, and scalable KDE
algorithm specifically optimized for interactive point cloud data anal-
ysis. Our method leverages GPU acceleration to perform on-the-fly
density estimation, enabling scalar fields to be recomputed dynami-
cally as users shift their focus across scales. By maintaining density
fields that adapt repeatedly rather than relying on precomputed repre-
sentations, ScaleFree facilitates more precise and responsive support
for core exploration tasks such as spatial selection, feature local-
ization, and multiscale navigation in large point cloud datasets. To
evaluate the role of adaptive KDE in interactive VR exploration, we
adopt a multi-layered evaluation strategy. We first compare our GPU-
based implementation against CPU baselines to establish real-time
feasibility, and then evaluate how integrating adaptive KDE affects
selection effectiveness through technique demonstrations and a con-
trolled user study, measuring accuracy, efficiency, and workload
against state-of-the-art VR selection techniques. Specifically, we
conducted a user study with 24 participants comparing three selec-
tion techniques that employ different density estimation approaches,
including precomputed single-resolution density fields (PS), pre-
computed multi-resolution mipmap density fields (PM), and our dy-
namic ScaleFree approach. Results show that selections made with
ScaleFree were faster and more accurate than those using precom-
puted density fields. Participants also reported lower workload and
expressed a stronger preference for ScaleFree when conducting mul-
tiscale exploration tasks in VR. In summary, our GPU-accelerated
adaptive KDE makes the following main contributions to large-scale
spatial data exploration in immersive environments:

» Adaptive and smooth scale transitions: enabling continuous
transitions across scales without disruptive visual artefacts or
noticeable delay (demonstrated in both selection Sec. 4.1 and
navigation Sec. 4.2 scenarios).

* Stable viewpoint-driven exploration: supporting smooth,
orientation-preserving transitions between overview and local-
ized perspectives across scales during exploration of complex
datasets (demonstrated in the navigation scenario, Sec. 4.2).

* Fast and responsive computation: improving selection accu-
racy and efficiency under varying scales, thereby supporting
precise spatial interaction in immersive analytics (shown in the
user study results, Sec. 5).

2 RELATED WORK

Our work builds on prior research in multiscale immersive explo-
ration and density estimation methods that support such exploration.

2.1 Multiscale Exploration in Immersive Environment

Multiscale exploration requires users to operate across different
levels of scale, ideally without relying on explicit mode switches
or commands. Prior studies have demonstrated the advantages of
immersive environments in diverse scientific domains such as astron-
omy [25,52], geography [17], biology [37], and architecture [1,40].
A widely adopted technique for multiscale navigation in immersive
environments relies on a World-in-Miniature (WIM) [56], which
presents both the life-size virtual environment and a hand-held,
scaled-down replica that functions as an additional viewport. This
dual representation enables users to interact with the environment at
multiple scales: they can directly manipulate objects via the minia-
ture, specify regions of interest for navigation, and then seamlessly

“jump” to the corresponding areas in the full-scale world. Subse-
quent variations of WIM, such as Scalable WIM [46] and Scaled and
Scrolling WIM [63], extended the metaphor by introducing panning
and rescaling of the miniature, facilitating navigation across broader
spatial ranges and more precise exploration of fine-grained struc-
tures, overcoming the scale and resolution constraints of the original
WIM. Similarly, target-based and steering-based approaches, such
as the magnifying glass metaphor by Kopper et al. [36], enable
navigation through predefined discrete scale levels. Although these
methods provide overview-detail support, however, they often fail to
preserve users’ sense of scale when “jumping” across scale levels.
To address this issue, Zhao et al. [74] linked multiple WIMs
into a hierarchical structure, allowing users to seamlessly “jump”
between different scales. Similarly, Bacim et al. [2] incorporated
a hierarchical map to aid travel and wayfinding in anatomy appli-
cations. Moving beyond hierarchical structures, label-based ap-
proaches employ meaningful anchors that reflect data organization,
as in Koufil et al.’s [37] approach, who used active labels to browse
hierarchical molecular visualizations. Nevertheless, these methods
all depend on well-defined targets and hierarchical algorithms to
compute and represent scale levels, with transitions typically oc-
curring in either an end-to-end or step-by-step manner. Similar
transition approaches are found in molecular visualization [29,30],
where hierarchical molecular structures provide clearly defined scale
levels. By contrast, we focus on unstructured and massive scientific
datasets, such as astronomical point clouds, where predefined or
meaningful hierarchies are often absent. In such scenarios, “jump-
ing” approaches are less straightforward—we need more flexible
techniques that support navigation and interaction at arbitrary scales.

2.2 Key Aspects in Multiscale Immersive Exploration

Building on prior work in multiscale immersive exploration, we
next synthesize key design aspects and limitations identified across
existing systems. In particular, we focus on challenges related to
fast and scalable computation, which motivate the need for adaptive
density estimation techniques reviewed in the following subsection.

Scalable and flexible exploration. Effective multiscale explo-
ration should enable users to select or navigate any arbitrary re-
gion within an object or space, as features may appear at any scale.
When hierarchical information is not explicitly available, such as
in astronomical point cloud data [28,55] or additive manufacturing
objects [16, 35] with dense, homogeneous internal structures, lo-
calization and navigation become particularly challenging. In such
cases, continuous zooming enables more flexible and fluid multiscale
exploration. To address this issue, Pavanatto et al. [43] proposed a
progressive refinement approach, facilitating, step-by-step, focused
inspections via a selection box. Our work shares this motivation but
takes a different path: rather than refining predefined regions, we
enable users to focus on relatively dense areas across diverse scales.
This approach, in turn, requires a dynamic computation of density
fields to adaptively support the exploration.

Adaptive and smooth transition. In free exploration, adaptive
transitions are essential to reduce disorientation and preserve a nat-
ural sense of immersion in multiscale environments. To ensure
continuity, techniques should dynamically adjust factors such as
computational scale, navigation speed [1,58], and the visualization’s
and users’ relative scale [1,59]. Traversing multiscale data, for in-
stance, often requires adaptive “flying” speeds to balance comfort
and continuity. Ware and Fleet [58] addressed this point by intro-
ducing continuous depth sampling to modulate the navigation speed,
while Argelaguet et al. [1] extended the concept with an adaptive nav-
igation technique that facilitates direct camera control, while it also
automatically adjusts speed and environmental scale based on object
distance and optical flow. More recently, Weissker et al. [59] pro-
posed teleportation-based multiscale travel methods that integrate
scale adjustments directly into the teleportation process. All this



work highlights the need for approaches that enable users to transi-
tion smoothly through unstructured multiscale data, with navigation,
visualization, and interaction parameters continuously adapted to
the new scale, all of which we also strive for in our work.

Fast and responsive computation. Finally, achieving these inter-
action designs in practice requires scalable computational support:
Techniques must remain efficient and responsive when applied to
large, complex datasets, ensuring real-time performance. One com-
mon approach is to introduce hierarchies of reduced objects or reso-
lutions to balance rendering and interaction costs. Gansner et al. [26],
for example, precomputed a hierarchy of coarsened graphs that could
be combined on-the-fly for visualization. For massive unstructured
datasets such as point clouds, density estimation methods like KDE
form the foundation for feature detection, region-of-interest selec-
tion, and navigation across scales. The key challenge, however,
is ensuring that KDE can be computed on-the-fly to support such
flexible and adaptive interactions across scales—on which we focus
in our work and for which we review past work next.

2.3 Kernel density estimation (KDE)

KDE [9,19] is a widely used method for computing data point distri-
butions, which has been applied in diverse domains such as materials
science [48], astronomy [70,71], geoscience [44], ecology [24], and
traffic accident studies [65]. Its core idea is that each data point
is represented by a probability distribution (kernel; usually Gaus-
sian [49] or Epanechnikov [22] ones) centered at its position, with
the bandwidth controlling its spatial influence. Summing all kernels
yields a continuous density field.

A key computational challenge in KDE lies in selecting the band-
width, which controls the level of smoothing. The bandwidth can be
specified as a constant (fixed KDE) or adapted to local point densi-
ties (adaptive KDE). Fixed KDE [7,22] applies uniform smoothing
across the dataset. While it is computationally less expensive, it
often oversmooths dense regions and undersmooths sparse ones,
limiting its accuracy in heterogeneous datasets. In contrast, adap-
tive KDE mitigates this issue by varying the bandwidth according
to local density [7,51]: points in sparse areas are assigned larger
bandwidths, while those in dense regions receive smaller ones. This
adaptive strategy yields more meaningful estimates in many applica-
tions, but comes at a high computational cost. For example, Bruns-
don [7] proposed a cross-validation-based method for determining
spatially adaptive bandwidths, but its two-dimensional parameter
search makes it inefficient for large datasets. For high-dimensional
data, researchers proposed hashing-based estimators [3] to achieve
sublinear query time and linear space and preprocessing time.

KDE has been widely used in data visualization, with prior work
exploring the algorithmic and system-level optimizations. Examples
include GPU-accelerated KDE [39] for interactive streaming visual-
ization, efficient kernel density techniques [13] for large-scale 2D
hotspot visualization, adaptive GPU-based KDE methods [73] that
combine algorithmic optimizations with parallel computation, and
more recently, prefix-based spatiotemporal KDE frameworks [14]
for large-scale, high-resolution density visualization. While these
advanced KDE techniques offer improved theoretical efficiency and
scalability and are tailored to different problem settings, our work
focuses on immersive interaction integration and GPU-parallel im-
plementation to support real-time, interactive multiscale exploration.

KDE has also been leveraged to support in the context of immer-
sive analytics. Prouzeau et al. [47] introduced a VR-based technique
that uses haptic feedback to convey KDE-derived density informa-
tion, helping users identify occluded features in dense point cloud
data. Zhao et al. [75] employed KDE in immersive spatial selec-
tion techniques, enabling users to define selection regions based on
density variations rather than individual points. These approaches,
however, rely on precomputed single-scale density fields, limiting
their ability to capture fine substructures across multiple levels of

detail. These efficiency limitations have motivated the exploration
of high-performance computing strategies. An effective interac-
tion with large-scale datasets, however, especially in immersive
environments, requires not only scalability but also real-time, on-
the-fly computation, which was not explicitly addressed in prior
research. To this end, we formulate a GPU-parallel algorithm based
on a modified Breiman kernel density estimation method with a
finite-support, adaptive Epanechnikov kernel, and further propose
a parallel optimization method to accelerate adaptive bandwidth
calculation, together improving the efficiency of the entire KDE
pipeline. To validate our approach, we demonstrate its use in two
scientific data exploration scenarios and evaluate its effectiveness
through both performance experiments and empirical user studies.

3 ScALEFREE: A bYNAMIC KDE TECHNIQUE

We begin our discussion with an overview of the KDE algorithm
used in this work (Sec. 3.1), then present ScaleFree, our GPU-
accelerated KDE for multiscale analysis (Sec. 3.2), and finally report
on experiments that evaluate its performance (Sec. 3.3).

3.1 Kernel density estimation

KDE methods produce a smooth, continuous density field by dis-
tributing the contribution of each particle over a larger volume us-
ing a smoothing kernel function. This kernel function describes
the spatial influence of each particle, assigning higher weights to
locations closer to the particle center and lower weights to more
distant locations. To estimate the scalar density field, similar to past
works [68, 69, 75], we apply the modified Breiman kernel density
estimation method (MBE) with a finite-support adaptive Epanech-
nikov kernel [23, 61] as follows: The whole dataset or region of
interest is enclosed within a bounding box B and discretized into a
uniform grid of resolution res (e. g., 1283), with grid nodes located
at positions r(") | where n denotes the node index. For each spatial
axis k € {x,y,z}, we calculate the smoothing length ¢ as

80 20
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Here, N is the number of particles in the box B, and P,fq) represents
the g™ percentile of the coordinates along axis k. For the grid node
at position r), we calculate the pilot density ppik,l(r(”>) as:
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where rl/) is the the j™ particle’s position and E () is the Epanech-
nikov kernel:

E(x):{ 1-x%, x| <1, )

The function E(x) implies that a particle contributes to pilot density
ppﬂot(r(”>) only if the particle r'/) lies within the ellipsoid centered at
the node position r(”>, with semi-axes £y, £y, and £,. This ellipsoidal
restriction effectively limits the kernel bandwidth, ensuring that the
resulting density estimate captures the local particle distribution.
Then, we compute the pilot density ppilm(r(f ) at the position of
the j™ particle using multi-linear interpolation with respect to the
densities on nearby nodes. Next, we compute the mean pilot density
aveDen of all particles:

aveDen =Y pitor (r'/)) 6)
J



Algorithm 1: Fast and Scalable GPU-accelerated KDE

Algorithm 2: Pilot Density Estimation

1 function FSKDE (kdT'ree, particles,nodes,res,l,s,density):

Input: kdTree—k-d tree spatial indexing structure

Input: particles—array of positions of all particles

Input: nodes—array of positions of all grid-nodes

Input: res—resolution of the grid (e.g. 64 x 64 x 64 )

Input: [—array of smoothing length for every particle

Input: s—node spacing along X, y, z axis

Output: density—array of pilot density at grid-nodes

2 | Dispatch (PDE (kdTree, particles, nodes, res,l,density), ppp—, Pll;:‘n , P'I;;:u );
particles.count 1 1)

3 | Dispatch ( ASL (particles,l,s,density), 25 ™

4 | Dispatch (FDE (particles,nodes,res,l,density), FL?EA s F'SJE‘” s TS )

We then update the j-th particle’s smoothing length by

1
i Den \ 3
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where /¢, is the initial smoothing length along axis k, s; denotes
the distance between adjacent nodes along the k-axis. To prevent
the kernel from becoming excessively large—which could increase
computational cost and overly smooth the density—we apply an
upper bound of 5 -s;. Then, we re-evaluate the density on all the
nodes based on the updated smoothing length. For the grid node at
position r®), we calculate the final density p(r(”)) as:
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Finally, we calculate the density p(r) at any position r via trilinear
interpolation of the surrounding grid nodes.

3.2 ScaleFree: Fast and scalable KDE on GPU

To enable on-the-fly density evaluation, we implement the KDE
pipeline on the GPU with key optimizations (Fig. 11 in Suppl. A).
Our GPU parallel implementation follows HLSL conventions, with
background on the GPU programming model provided in Suppl. D.
Prior to GPU execution, we perform essential preprocessing on
the CPU: we determine the smoothing length (Eq. 1) and create
a k-d tree spatial index for the point cloud dataset to accelerate
future neighborhood queries. We then upload the input data (k-d
tree, smoothing length, particle positions, grid node positions, grid
resolution, and node spacing) to GPU global memory. In the GPU
computation pipeline, as illustrated in HLSL-style pseudo-code in
Alg. 1, we dispatch three compute kernels, each handling a distinct
density estimation stage:
* In pilot density estimation (Alg. 2, Sec. 3.2.1) we compute a
pilot density field at grid nodes by a uniform smoothing length.
* In adaptive smoothing length (Alg. 3, Sec. 3.2.2) we update
per-particle smoothing lengths based on average pilot density.
* In final density estimation (Alg. 4, Sec. 3.2.3) we recompute
the density field using the adaptive smoothing lengths.

3.2.1 Pilot density estimation (PDE)

To start, we compute the pilot density at each grid node by accu-
mulating the contributions from neighboring particles. We adopt
the gather approach [32], where each thread processes a grid node
and collects contributions from neighboring particles, rather than
a scatter approach, where each thread processes a particle and dis-
tributes its contribution to surrounding nodes. This way we avoid
costly atomic operations and improve the performance and scalabil-
ity for our large-scale particle datasets.

1 numthreads(PDE;,, PDE,,, PDE;)

2 function PDE (kdT'ree, particles,nodes,res,l,density):
Input: kdTree, particles,nodes, res,|

Output: density

uint3 DTid : SV DispatchThreadID;

uint idx = DTid, + DTid, - resy + DTid, - res, - resy;

if idx > nodes.count then

L return;

o B W

;N

float3 query = nodes|idx];

8 | float range = max(1[0],,1[0],,1[0].);

9 | uint retNbrs; // the number of returned neighbor particles
10 | float retDists[]; // the array of neighbor—query distances
11 | KDTreeSearch(kdTree, query, range, retNbrs, retDists);

12 | float sum = 0;
13 | foriin0: retNbrs—1 do

retDists|ilx  retDistslily  retDists|i]z
14 float3 r = floar3 (™5, o], L ,[‘(j]“ );
15 sum~+ =max (0,1 — ||r[|?)
16 i++;

15-sum
8-particles.count 1[0]-1[0]y - 1m0, *

17 | densitylidx] =

We dispatch the PDE kernel (Alg. 2) with = X ppr= X ppg-
thread groups, each consisting of PDE;, x PDE,} X PDE,7 threads,
to cover the entire grid domain. For each thread with global index
idx, we evaluate the pilot density ppijor (T plidx )) at node position p(idx)
using Eq. 2. Since only particles within the kernel support contribute
to the density (Eq. 4), we first identify candidate particles through a
spherical range query on the k-d tree, centered at (%) with radius
max({y,ly, L), i. e., the largest of the three kernel semi-axes £y, £y,
and /;. This query allows us to discard of particles outside the
Epanechnikov kernel. In this way, for M nodes and N particles, we
reduce the complexity of the original KDE algorithm from O(MN)
to O(M+/N) (where k-d tree searching has complexity O(+v/N +K),
with K the number of neighbors returned [34]). Finally, we compute
the pilot density ppﬂm(r("‘b‘)) at node position r') using Eq. 2 and
store it in the idx-th position of density buffer.

3.2.2 Adaptive smoothing length (ASL)

Next, we update the smoothing length of each particle based on
the result of pilot density estimation. The goal is to assign larger
smoothing lengths in sparse regions and smaller ones in dense re-
gions, thereby yielding a smoothly density field in the subsequent
stage. Since the update is particle-based, we assign one thread per
particle to compute its adaptive smoothing length, which provides a
natural and efficient mapping for parallel execution

We dispatch the ASL kernel (Alg. 3) with ASL x 1 x 1 thread
groups, each containing ASL;x x 1 x 1 threads, to cover the entire
grid domain. For the thread with global index idx, we compute the
adaptive smoothing length of the idx™ particle as follows.

First, we compute the pilot density ppijor(r () of the idx™ par-
ticle using trilinear interpolation and stores the result as pDen =
TrilinearInterp(particles[idx], density).

Second, we calculate the arithmetic mean aveDen of the pilot den-
sities across every particle in box B, using Eq. 5 for efficient aggrega-
tion. To accelerate this step, we design a hierarchical computational
method (HCM) that employs parallel reduction with shared mem-
ory, thereby reducing costly global memory accesses. Specifically,
within each thread group, we first allocate a shared memory array
sharedDen, where each thread stores its locally computed pilot
density. We then perform a parallel reduction within the group to
compute its average density, which is written to a global memory ar-
ray groupAveDen with N/ASL;, entries. Then, we obtain the overall
mean pilot density by averaging all values in groupAveDen. Specit-
ically, for thread with global index idx, along with other threads in
the same thread group (group index GID), we proceed as follows:



Algorithm 3: Adaptive Smooth Length

Algorithm 4: Final Density Estimation

1 numthreads(ASLyy,1,1)

2 function ASL (particles,l,s,density):
Input: particles,l,s,density

Output: /

uint GI : SV_Grouplndex;

uint3 GID : SV _GrouplD;

uint3 DTid : SV DispatchThreadID;
uint idx = DTid,;

float groupAveDen]| PAtCex-count ”"%‘Z: ount |
groupshared float sharedDen[ASL;,];
if idx > particles.count then

10 L return;

5

e ® N AW

11 | float pDen = TrilinearInterp(particles|idx],density);
12 | sharedDen|[GI] = pDen;

13 | GroupMemoryBarrierWithGroupSync();

/I parallel reduction

14 | foriinASL,/2:0do

15 if GI < i then

16 sharedDen|[GI)+ = sharedDen|GI + i];
17 GroupMemoryBarrier();

18 i>>=1;

19 | if GI==0 then
20 L groupAveDen|GID,] = sharedDen|0] /ASL,;

21 | WaitForAllT hreads();
22 | float aveDen = groupAveDen.Average

)s

—~

1
aveDen |3 &
pDen | 55

5

23 | llidx], = min (1 lidx] -

1
aveDen |3 3
pDen | 5.8y

5

24 | [[idx], = min (l [idx]y -

1
aveDen | 3
pDen

5

BRER”

N~~~

25 | l[idx]. = min (l lidx]; -

1. Thread idx stores its pilot density pDen into the shared memory
array sharedDen at its local index GI (idx™ thread’s index
within it’s thread group), i. e., sharedDen[GI] = pDen.

2. All threads in group GID wait until every thread in the same
group has updated sharedDen with its calculated pilot density,
i.e., GroupMemoryBarrierWithGroupSync().

3. All threads in group GID perform a parallel reduction on
sharedDen to accumulate all density values. After execution,
the total value is located at 0™ position in sharedDen array.

4. The 0™ thread in group GID computes the average value of
sharedDen and then writes it to the global memory array
groupAveDen at index GID, i.e., groupAveDen[GID_x] =
sharedDen[0] /ASLx.

5. All threads wait until every group’s O™ thread has written its
result to groupAveDen, i.e., WaitForAllThreads().

6. Thread idx computes the global average pilot density aveDen
as the mean of all elements in groupAveDen, i.e¢., aveDen =
groupAveDen.Average().

Third, thread idx computes the smoothing length of the idx™
particle using Eq. 6 and stores it in the smoothing length buffer.

3.2.3 Final density estimation (FDE)

Finally, we recompute the density at each node using the adaptive
smoothing length of its contributing particles. We dispatch the FDE
kernel (Alg. 4), where each thread computes the final density at a sin-

. . res, res, res;
gle grid node. To cover the grid, we launch 5 E;. X FDE, ¥ FDE;

thread groups, each containing FDE;, X FDE;, X FDE,, threads.
The thread with global index of idx evaluates the final density
p (r(id")) at node (i) using Eq. 7 and stores the result to the density
buffer at position idx. After all threads have completed, we transfer
the density buffer from GPU to CPU memory.

1 numthreads(FDE,,FDE,,, FDE,.)

2 function FDE (particles,nodes,res,l,density):
Input: particles,nodes, res,l

Output: density

uint3 DTid : SV DispatchThreadID;

uint idx = DTid, + DTid, - resy + DTid, - res, - resy;
if idx > nodes.count then

L return;

o B W

;N

float sum = 0;
8 | foriinO: particles.count—1 do
9 float3 r;
_ nodeslidx)x — particles|ilx .
10 e
__ nodeslidx]y —particles|ily |
Y ily ’

nodes|idx|; —particles]i]; .
—

11

o= [
_ max(0,1—[|r|?) .
13 sum-+ = Ty 1z
14 i+
15-sum

15 | densitylidx] =

" 8m-particles.count *

3.3 Performance analysis

Before we report our empirical results, we briefly analyze the algo-
rithmic complexity of ScaleFree to highlight its fundamental sources
of speedup. These optimizations target the density field computa-
tion, which requires recomputation whenever the view changes (e. g.,
transitioning to a new scale). For pilot density computation, we use a
k-d tree to reduce neighborhood search complexity from O(MN) for
M grid nodes and N particles to O(M+/N). To achieve an adaptive
smoothing length, we employ a hierarchical method that utilizes
thread-group shared memory and parallel reduction, thereby lower-
ing the aggregation complexity from O(N) to O(logN) within each
group of size N. Combined with GPU parallelism, these optimiza-
tions enable ScaleFree to scale efficiently to hundreds of thousands
of particles and deliver low-latency density field recomputation.
To demonstrate this performance in practice, next we evaluate our
approach on astronomical point cloud data.

Design. To assess the efficiency of ScaleFree, following prior
work [73], we implemented three density estimation strategies: a
sequential version on a single CPU core (SC) as baseline, a parallel
version on a multi-core CPU (MC), and the GPU-parallel version
(ScaleFree) as described in Sec. 3.2. These CPU-based baselines
provide a controlled reference that allows us to establish real-time
feasibility and to attribute performance differences specifically to
GPU parallelization and dynamic recomputation, rather than to al-
gorithmic variation. We compared execution time across the three
strategies using the acceleration factor (AF) [72] as a performance
metric, defined as AF = Tpugerine/ Tiarger- We report the average exe-
cution time over 10 runs for all three strategies, with GPU-parallel
ScaleFree results excluding CPU-GPU data transfer.

Environment and implementation. We conducted the experi-
ment on a workstation running Windows 11 on Intel’s 13™ genera-
tion Core™ 19-13900KF processor (3.0 GHz, 64 GB RAM) and an
NVIDIA GeForce RTX 4090 GPU (24 GB of memory) for accelera-
tion. We implemented ScaleFree in Unity3D, with GPU computa-
tions realized through compute shaders. We set the resolution res of
box B to 643 (262k nodes) and the configuration of the thread group
dimensions (i. e., PDE;y, PDE,,, PDE,;, F DE,,,FDE,,, FDE;) as 8
and ASL;, as 1024. In addition, we implemented the sequential CPU
strategy (SC) using C# and the multi-core CPU strategy (MC) using
C#’s Task Parallel Library (TPL).

Datasets. We used three cosmological point cloud datasets:
Nbody 1 (76k points, Fig. 2(a)), Nbody 2 (164k points, Fig. 2(b)),
and Filament (442k points, Fig. 2(c)). The two N-body datasets fea-
ture a dense central cluster surrounded by smaller ones [54], while
the filament dataset depicts a cosmic web with thin filaments [55].



Fig. 2: Experiment datasets: (a) Nbody 1 (76k points), (b) Nbody 2
(164k points), and (c) Filament (442k points).

Table 1: Execution time (seconds) and acceleration factor of SC,
MC (32 cores), and ScaleFree on a 64° grid (262k nodes).

Nbodyl (76k) Nbody2 (164k) filament (442k)

metric algorithm  mean gtd. dev. mean std. dev. mean std. dev.
execution SC 7.689 0.161 58.373 6.643 395.675 12.458
time (s) MC 1.542  0.041 7.244 0264 48514 1.567
ScaleFree 0.042  0.002 0.119 0.003 0.309 0.011
acceleration ~ SC/ScaleFree 183.1 - 409.5 - 1280.5 -
factor MC/ScaleFree 36.7 - 60.8 - 157.0 -

Efficiency. Our results (Tab. 1) show that ScaleFree ran substan-
tially faster than SC and MC, with standard deviation consistently
within 5% of the mean, indicating stable performance. As dataset
size increases, ScaleFree becomes increasingly more efficient rel-
ative to CPU implementations, with the acceleration factor rising
accordingly. For the 76K-point dataset discretized on a 643 grid,
ScaleFree achieved an execution time of 0.042 s, corresponding to a
sustained rate of about 20 FPS if executed continuously. Although
the computation time does not meet the standard 60 FPS, density re-
computation only needs to be triggered occasionally, when the view
changes substantially. Moreover, the execution times of ScaleFree
were generally in the order of 0.3-0.1s or substantially lower, so
that the “illusion of animation” remains unaffected [11]. The overall
runtime and system fluidity thus remain unaffected.

4 MULTISCALE EXPLORATION WITH SCALEFREE

We now discuss how our dynamic KDE approach contributes to
improving large-scale scientific data exploration in VR.

4.1 Scalable selection technique

Selection is a fundamental operation for many subsequent data anal-
yses [5,62]. Maintaining both efficiency and accuracy, however, is
particularly challenging in multiscale point cloud datasets due to
their inherent features: highly complex structures, multiple levels of
scale, occlusion, and unclear or overlapping boundaries. Designing
selection techniques for multiscale point cloud data requires an un-
derstanding of user interaction. Users navigate across scales to find a
suitable view that allows them to see targets clearly. For ease of use,
however, they may also select point clouds even when not at the ideal
scale. Selection must thus be supported anywhere and at any scale.
As users move across scales, furthermore, they may not want to man-
ually adjust selection parameters—they expect these adjustments
to happen automatically. In sum, a selection technique should be
dynamic, adaptive, accurate, and efficient, which is exactly what we
can realize by fitting our dynamic KDE into the selection workflow.
Workflow visualization available in supplementary materials.

At the start of an interactive session, the global view is initialized.
As users navigate to a new scale, we recompute the density field on
the GPU using our KDE (Sec. 3.2) and then transfer it back to the
CPU for subsequent operations. Although we update the density
field whenever the scale changes, the GPU pipeline enables rapid
recomputation, ensuring smooth navigation.

When users initiate a selection, we invoke a GPU kernel to com-
pute the selection volume. Specifically, once a selection is initialized,
we determine a density threshold for the interacting area and transfer
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Fig. 3: Our progressive navigation technique.

it to the GPU. A kernel then executes the Marching Cubes algo-
rithm [41,64] to extract the selection volume as an iso-surface based
on this threshold. We then select points within the extracted vol-
ume. Thanks to our optimized computation, the selection volume is
generated rapidly. Even with the MeTAPoint technique [75], which
detects density thresholds on-the-fly at the user’s interaction point,
users can immediately observe updates to the selection volume and
assess whether the result aligns with their intent.

Overall, our framework supports adaptive and smooth scale tran-
sitions during selection by recomputing density fields on the fly
to match users’ interactive focus. This enables users to navigate
and zoom across scales without noticeable delay. Since the density
field is recomputed with our optimized KDE approach once after
a view change and remains available for subsequent selections, the
technique supports fluid interaction at any scale.

4.2 Progressive navigation technique

Beyond being a selection technique, in fact, ScaleFree also integrates
navigation and zooming into a unified workflow. Navigation is a
fundamental exploration task that relocates the viewpoint toward a
region of interest while preserving spatial context. It has been widely
studied in visualization research across different scenarios, such as
gaining insights from volumetric [33] and abstract data [67]. Naviga-
tion techniques consist of several components, including wayfinding,
travel, and context switching. In large multiscale point clouds, navi-
gation becomes particularly challenging because salient structures
are distributed across multiple scales, and dense spatial distribution
introduces severe occlusion and clutter. These issues complicate
wayfinding and travel, increase the number of travel steps that of-
ten occur across scales, and intensify context switching, making it
easy for users to lose orientation and spatial context when moving
across scales. Navigating such data in immersive environments is
even more demanding, as the strong sense of presence can amplify
both perceptual challenges and spatial disorientation. To address
these challenges, we propose a scale-aware progressive navigation
technique that enables users to explore multiscale point cloud data
across scales. By defining a region of interest (ROI)—essentially
a selection interaction that we have just described—our technique
guides users through successive scales (i. €., a combined navigation
and zooming interaction) to reach the most suitable viewpoint for
observation. Next, we demonstrate how our dynamic KDE can fit
into the navigation/zooming workflow to support this process. A
workflow visualization is provided in Suppl. A.

An interactive session starts from a global view of the dataset.
As before, we recompute the density field on the GPU using our
KDE (Sec. 3.2) whenever the view changes substantially. To navi-
gate/zoom to a specific area, users define an ROI with our scalable
selection technique (Fig. 3(a), Sec. 4.1). Because we compute the
density field at the current scale, the ROI is immediately identified



and we can smoothly transition the viewpoint to the ROI’s center
(from Fig. 3(b) to (c)). We adjust the size of the new viewport to ade-
quately cover the ROI (e. g., the identified selection volume), guiding
users to an appropriate scale for observation. Together, this process
supports stable viewpoint-driven exploration by preserving spatial
orientation and contextual continuity across scale changes. While
the current implementation focuses on the orientation consistency, a
promising extension could also be to combine our scale-aware navi-
gation with feature-aware techniques (e. g., [10,66]) to automatically
compute an optimal view orientation, enabling users to travel across
scales and arrive at the most informative perspective.

After each viewpoint update, we recompute the density field
for the new scale, allowing users to effectively perform further
ROI selections that guide subsequent navigation steps (as shown
in Fig. 3(d)). This progressive “targeting-travel-context switching”
workflow ensures smooth viewpoint transitions and multiscale navi-
gation without the need for manual wayfinding. In addition, these
travel steps can be recorded to enhance spatial awareness during pro-
gressive navigation. Overall, our dynamic KDE enables seamless,
scale-aware navigation by continuously updating density fields to
support progressive ROI selection and smooth view transitions.

5 USER STUDY

To evaluate whether our scalable selection method meets the goals
of being dynamic, adaptive, accurate, and efficient, we conducted
a within-subjects controlled user study comparing it against two
density-based strategies: one using a precomputed single resolu-
tion and the other using precomputed multiple resolutions. We
focus on the selection interaction, as it serves as the foundation
for both pure data selection (Sec. 4.1) and selection-based progres-
sive data navigation/zooming (Sec. 4.2). We pre-registered our
study (osf.io/hfu6e) and received IRB approval for the protocol
(XJTLU University Research Ethics Review Panel, Ne ER-LRR-
0010000120520250813002121).

5.1 Study Design

Participants. We recruited 24 unpaid participants (11 male, 13
female) from the local university, aged 19-30 years (M=23.25,
SD=3.22). Among them, 21 were right-handed, two were left-
handed, and one was ambidextrous. Twelve participants reported
using VR at least once per week, 11 at least once per year, and one
had no prior experience with VR devices. Furthermore, 16 partici-
pants had obtained a Bachelor’s degree or higher. All participants
had normal (n = 16) or corrected-to-normal (n = 8) vision and could
clearly distinguish the colors we used in our study.

Apparatus. We used the Vive Pro 2 [6], a PC-based VR head-
mounted display (HMD; 2448 x 2448 resolution per eye, 116° field
of view, 120 Hz refresh rate). The study was carried out on a PC
(Intel 13th Gen Core™ i9-13900KF processor, 3.0 GHz, 64 GB
RAM and an NVIDIA GeForce RTX 4090 GPU, 24 GB of memory).

Datasets. We extracted five timesteps from a cosmological N-
body simulation [54] and used them as our datasets. These datasets
feature stellar clusters distributed across multiple scales, where
zoomed-in views reveal progressively detailed substructures. Each
dataset contained eight to ten target structures highlighted in ,
distributed across different scales. Tasks began at varying scales,
with all targets becoming visible as participants zoomed in. We show
an example dataset with its target structures in Fig. 4, and other four
datasets in the Suppl. C.

Task and Procedure. We instructed participants to select the

particles while avoiding the blue ones. Prior to the main
experiment and after we had obtained their informed consent, we
trained them on the MeTAPoint selection technique [75] using prac-
tice datasets. Unlike what Zhao et al. [75] did in their MeTAPoint
study, we allowed participants to freely adjust scales (via zooming)
and to perform selections at different levels. We also provided undo,

Fig. 4: One of the datasets we used in our study.

redo, and reset functions to restore the initial state if needed. In the
main experiment, we asked participants to complete the selections
as quickly and accurately as possible. We did not, however, provide
suggestions on whether or when the selection was complete. After
each condition, we asked participants to report their workload and
fatigue using NASA’s Task Load Index (TLX) [31]. At the end of
all trials, we asked them to indicate their preferred technique and
explain their choice, focusing on perceived fluency in multiscale
selections. The interview questions are provided in Suppl. E. All
participant responses are shared on OSE. A whole session lasted
approx. 45 minutes.

Density Field Conditions. We asked our participants to perform
all selections using the same density-based MeTAPoint method [75]:
they initiated a selection by pointing at or near a target cluster and
then dragged along its boundary while holding the VR controller
trigger. The underlying density field computation, however, differed
across approaches, resulting in three experimental conditions:
Precomputed Single-resolution (PS): The density field is precom-

puted once at a fixed resolution (64%) before the task. During
the task, participants interact with this static field, which re-
mains unchanged across all scale levels.

Precomputed Multi-resolution (PM): The density field is pre-
computed at two resolutions (643 and 1283). Users interact
with the precomputed field interpolated by fields according to
their scale level. We use two reference scales, Sy;qx and Sy,
which are predefined—at S,,,;,, the highest-resolution field is
used, whereas at S, the lowest-resolution field is employed.
For the current scale S, during exploration we determine the
corresponding mipmap level ml € [0, 1] by

ml = M 9)

Smax — Smin
and use ml to obtain the immediate density field via linear
interpolation between the two fields with different resolutions.

Dynamic Resolution (DR): We compute the density field in real
time via ScaleFree (Sec. 4.1). We set the field resolution to 643
and configure the thread group dimensions as PDE;y, PDE;y,
PDE,,, FDE,\, FDE,,, FDE,; = 8, and ASL;, = 1024.

While PS represents the conventional approach of using a fixed-
resolution density field for density-based selection [68,69,75], PM
further optimizes this strategy by adopting a mipmap-inspired hier-
archy from computer graphics, enabling multiscale access through
precomputed density levels without real-time recomputation. By
comparing DR against these two representative paradigms, we assess
the performance of dynamic KDE in selection tasks.

Design. We counterbalanced the three density field conditions
using full permutation (in total six possible orders). We assigned
the first six participants one order each based on P;p mod 6, and
repeated the scheme for every subsequent group of six. In total, 24
participants x 3 methods x 5 datasets yielded 360 trials.

Measures and Analysis. We recorded accuracy, completion time,
as well as the transition times in the study. Given the criticism
of NHST in the analysis of experimental data [4, 18,20, 21], and
APA’s advice to seek other methods [57], we present our findings
using estimation techniques that report effect sizes and confidence
intervals instead of relying on p-value statistics.

Accuracy: Similar to Yu et al. [68,69,75], we evaluated the accu-
racy using two metrics: F1 and MCC (Matthews correlation
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. 5: The mean of (a) F1, (b) MCC, and (c) time, with 95% ClIs.

coefficient). To calculate these, we identified true positives
(TP; correctly selected particles), false positives (FP; incor-
rectly selected particles), false negatives (FN; target particles
that were not selected), and true negatives (TN; correctly unse-
lected particles). We defined precision as P =TP/(TP+ FP)
and recall as R = TP/(TP+ FN), and calculated F1 as
F1=2-(P-R)/(P+R). While F1 reflects the harmonic mean
of precision and recall, it does not account for TN. Thus, we
also computed MCC, defined as:

TP-TN—-FP-FN
V/(TP+FP)(TP+FN)(TN +FP)(TN+FN)
We normalized all accuracy scores, and computed means and
95% bootstrap confidence intervals (Cls; n = 24).
Completion Time: We analyzed completion times using exact Cls

on log-transformed data (n = 24). We report results as geomet-
ric means and demonstrate means comparisons as ratios.

MCC =

5.2 Hypotheses

We formulated the following hypotheses based on the underlying
principles of each density field condition:

H1: DR yields higher accuracy than PM and PS.

H2: PM yields higher accuracy than PS.

H3: DR requires less completion time than PM and PS.

H4: PM requires less completion time than PS.

HS: DR has a lower cognitive load than PM and PS.

H6: DR has a higher preference than PM and PS.

The rationale behind H1 is that density fields in DR are dynami-
cally adjusted to the current scale during navigation and zooming.
At any scale, the density field is recomputed with a resolution 64°,
ensuring consistent accuracy. By contrast, PS and PM rely on pre-
computed density fields: when zoomed in, they use coarser grids
that reduce precision. Nevertheless, PM integrates density fields at
two scales rather than just one as in PS. Therefore, selections made
with PM should be more accurate than those with PS, as stated in
H2. The rationale behind H3 is that DR provides the most accurate
results, making selections easier for users to accept and thereby
reducing completion time. Although the density fields in PS and PM
are pre-computed and do not require on-the-fly computation, users
may spend additional time refining their selections to achieve greater
precision. A similar reasoning applies to H4: because PM yields
more accurate results than PS, users are more likely to accept the
selection outcomes with less refinement, resulting in shorter com-
pletion times. In addition, DR enables users to select target points
accurately at any scale without the need to find an optimal view or
repeatedly refine their selections, which reduces both effort and men-
tal demand—thereby lowering cognitive load (HS). Consequently,
users are more likely to prefer DR over PS and PM (H6).

5.3 Results

In Fig. 5 we show the mean completion times and two accuracy
metrics (F1 and MCC) with 95% confidence intervals across density
field conditions (Precomputed Single-resolution (PS), Precomputed
Multi-resolution (PM) and Dynamic Resolution (DR)). We further
provide the pairwise ratio with 95% confidence intervals in Fig. 6.
The numerical values of average task completion times, two accuracy
scores for each dataset and technique, and the numerical values of
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Fig. 6: Pairwise ratio of (a) F1, (b) MCC, and (c) time, 95% Cls.

pairwise ratio are provided in Suppl. B. We now report statistical
results in relation to our hypotheses.

Accuracy. For F1, a score of 1 indicates perfect performance and
0 the worst. For MCC, a score of 1 indicates perfect performance,
while —1 represents the worst performance. As shown by the mean
F1 scores (Fig. 5(a)) and MCC scores (Fig. 5(b)), DR outperformed
both PM and PS in accuracy. The pairwise comparisons reveals that
DR achieved 1.21-1.44x higher F1 score and 1.22-1.49x higher
MCC than PM, and 1.58-1.92x higher F1 and 1.67-2.18x higher
MCQC than PS. H1 is supported. In addition, PM outperformed PS
in both mean F1 and MCC. The pairwise comparisons show that PM
achieved 1.21-1.53x higher F1 and 1.26-1.75x higher MCC than
PS. Thus, H2 is also supported.

Completion Time. Fig. 5(c) shows that selections with DR required
less completion time than PM and PS. The pairwise comparisons
indicate that DR took 0.70-1.08x as long as PM and 0.66—1.08% as
long as PS, suggesting that most of participants completed the tasks
more quickly with DR. In a few cases, ratios were only marginally
above 1.0, reflecting participants who finished marginally faster
with PM or PS. We made related observations during the study:
4 participants ended the tasks early once they realized that they
could not achieve satisfactory outcomes with PS or PM. These
behaviors, however, do not affect the overall result. We confirm that
H3 is supported. Our results also showed that PM had a slightly
shorter mean completion time than PS. The pairwise comparisons
indicate that PS took 0.87—-1.40x longer than PM, suggesting that
the advantage of PM over PS was modest rather than substantial.
Thus, H4 is not fully supported.

Workload and Preference. As shown in Fig. 7, participants re-
ported greater efficiency, lower frustration and time pressure, and
reduced mental and physical effort with DR compared to PM and PS.
Moreover, they ranked the conditions consistently (DR > PM > PS)
across speed, accuracy, overall preference, and fluency (Fig. 8).
Thus, H5 and H6 are supported.

Interview. In follow-up interviews, we asked participants whether
they perceived delays during scale changes (where recomputation
happens at the end of scale change) and selections across the three
techniques. Most participants (n = 20) reported no noticeable re-
computation delay with DR, while four noted slight delays only
when the number of points in view was very large. These delays,
however, did not affect their navigation experience. In contrast, a
majority of participants (n = 18) identified PM as producing the
most prominent lag: when using MeTAPoint to select large regions
and generate extensive selection volumes, they observed noticeable
drops frame rate. This performance degradation stems from the
underlying characteristics of PM: higher-resolution grids increase
the number of triangles needed to construct the selection volume
and impose heavier computational demands when determining selec-
tion thresholds. These findings highlight scenarios where dynamic
density fields offer substantial advantages over precomputed higher-
resolution fields, particularly for sparse or large-scale datasets. In
such cases, precomputed fields must rely on densely sampled grids
to capture comparable detail, whereas dynamic estimation adapts
density computation on demand, enabling the capture of fine-grained
structures while maintaining smooth frame rates.

Summary. Improvements in F1 and MCC (H1) and reduced comple-
tion time (H3) show that our dynamic KDE improves both selection
accuracy and efficiency over precomputed methods. By maintain-
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Fig. 8: Participant rankings on task performance and preference.

ing scale-accurate density fields, it enables high-fidelity selection
with less effort and lower mental demand (HS), and was therefore
preferred by participants (H6). These results highlight that on-
demand recomputation is essential for precise immersive interaction,
as precomputed methods often miss fine-scale details and require
additional adjustments.

6 DiscussION

In this section, we discuss how ScaleFree extends to support broader
tasks, analyze the trade-offs between dynamic and precomputed
density fields, and limitations and future directions.

6.1 Extending ScaleFree

Point cloud data often lacks a natural scale. Such datasets consist
of unstructured points scattered unevenly across scales, sometimes
with vast empty ranges, as in astronomical simulations. As a result,
interaction and visualization approaches must help users orient them-
selves within scales and navigate across them. Such tasks require
effective methods to compute key features, such as density, as the
data changes—forming the starting point of our work. Multiscale
data often contains fine details embedded within broader structures,
creating large gaps between scales. A key feature of our dynamic
KDE is that it allows users to explore subtle or complex structures
on demand, with control remaining in the users’ hands. For example,
by dynamically adjusting resolution based on the interaction history
and on the local data distribution, the navigation approach can guide
users toward scale levels where meaningful features emerge. A fu-
ture direction of research, however, is to determine how our KDE
method can be adapted to better handle challenging cases such as if
the data distribution dynamically changes across scales.

6.2 Trade-offs

We conducted performance experiments to evaluate ScaleFree, com-
paring its execution time against density estimation on single-core
and multi-core CPUs. We also compared selection techniques using
ScaleFree with those based on precomputed density fields in terms of
accuracy and efficiency. These experiments highlight the trade-offs
between dynamic and precomputed approaches, offering guidance
for future researchers in selecting suitable solutions.

When designing an appropriate strategy, factors such as data scale,
hardware capacity, and algorithmic complexity must be considered.
Our results show that dynamic KDE consistently delivered higher
accuracy and faster computation than precomputed density fields.
We also found that multi-resolution density fields achieved better
accuracy than single-resolution ones, though with only marginal
gains in speed. This suggests that for datasets of moderate scale, pre-
computing a few density fields may be sufficient—especially when
there is only limited memory available—since users can quickly

access and switch values without recomputation. For datasets span-
ning multiple scales, however, dynamic KDE offers clear advantages
by computing density fields on demand and supporting seamless
multiscale exploration—yet these advantages come with a higher de-
mand for GPU support and GPU/CPU memory and a more complex
implementation. Still, an effective strategy is needed to determine
when recomputation should occur, as users may notice delays during
density field updates. To address this point, we trigger recomputa-
tion after users transition to a new scale. While users take time to
observe the data at this scale, the system prepares the density field
on the GPU, ensuring readiness for subsequent operations.

6.3 Limitations and Future Work

Several limitations remain that open avenues for future work.

First, although DR dynamically recomputes the density field at a
fixed resolution of 643, fine details may still be missed. Although
progressive navigation can reveal these features step by step at finer
levels, it remains ineffective. Future work could adopt feature-aware
resolution schemes that adapt to the underlying distribution, ensuring
salient structures in the region of interest are faithfully represented.

Second, our dynamic KDE can be further optimized. Currently,
recomputation is triggered even for minor scale changes, leading
to unnecessary overhead during frequent zooming. To address this
issue, we can introduce a threshold for scale changes, ensuring that
recomputation occurs only when the change exceeds a meaningful
level. This improvement would reduce redundant updates while
maintaining responsiveness. Similarly, we could only compute the
KDE for subsets of the dataset at any given zoom level (as opposed
to the whole data space), such as the size of the viewport plus some
margin around it. Then the recomputation for other regions of the
data would be triggered when the user in their interactive navigation
gets close to the boundary of the currently computed density field.

Third, the main time cost of the current recomputation delay in
our selection technique lies in transferring the computed density
field from the GPU back to the CPU. Future implementations could
eliminate this bottleneck by migrating the selection algorithm, or any
other interaction entirely onto the GPU, thereby avoiding density
transfer from GPU to CPU.

Finally, this work is driven by the demands of immersive multi-
scale point cloud exploration and therefore focuses on GPU-parallel
implementation and system-level optimization of adaptive KDE,
rather than proposing new density estimation formulations. While
recent KDE methods [14,42] offer improved theoretical efficiency
and memory usage, their integration into a real-time interactive VR
pipeline remains an important direction for future work.

7 CONCLUSION

In this work, we present a GPU-accelerated adaptive KDE technique
that dynamically recomputes density fields for interactive multiscale
exploration. Through two use cases—navigation and selection—we
demonstrate that, as an independent module, our ScaleFree can be
directly integrated into diverse pipelines requiring high-performance
density estimation in large-scale scientific simulations.

Beyond its technical optimization, our ScaleFree allows us to
explore and pursue a novel interaction paradigm for immersive data
exploration. Rather than requiring users to learn dedicated 3D navi-
gation techniques—a long-standing challenge due to the complexity
and inherent imprecision of 3D interaction—users essentially simply
issue commands akin to “show me that in more detail.” The structure-
and context-aware selection paradigm that we paired with the rapid
KDE enabled through our ScaleFree approach allows users to simply
indicate desired regions of interest to steer their exploration. They
can then zoom in to reveal fine-scale detail or adjust their target to
focus on another part of the data—ultimately fluidly crossing the
scales to find the most informative perspective.
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ScaleFree: Dynamic KDE for Multiscale Point Cloud Exploration in VR

Supplementary Materials

We provide additional tables and charts beyond the material that we include in the main paper. For access to the source code, datasets, and
analysis scripts used in this work, please refer to osf.io/hfu6e. and to github repository github.com/LixiangZhao98/ScaleFree.
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Fig. 9: Workflow of adaptive selection method.

A WORKFLOW ILLUSTRATIONS

Fig. 11 shows the flow chart of our GPU-accelerated KDE algorithm
described in Sec. 3.2. Fig. 9 shows the flow chart of our scalable
selection technique described in Sec. 4.1, while Fig. 10 shows the
flow chart of our progressive navigation technique described in

Sec. 4.2.

B ADDITIONAL RESULTS FROM THE STUDY

Tab. 2 reports the mean completion times and accuracy scores,
whereas Tab. 3 presents the pairwise ratios, as detailed in Sec. 5.3.

C DATASET USED IN USER STU

DY

We extracted five timesteps from a cosmological N-body simula-
tion [54] and used them as our datasets. Tasks began at varying
scales, with all targets becoming visible as participants zoomed in.
Fig. 12 shows the five datasets that were used in the user study

described in Sec. 5.

Table 2: The mean task completion times, accuracy scores, and their
corresponding 95% confidence intervals.

Technique | Time Cl | H Cl | MCC CI
PS 136s  [113,161] | 50 [44,55] | 46  [41.52]
PM 131s  [113,151] | .64 [.59,69] | .63  [.58,.68]
DR 100s  [90,112] | 85 [.79.88] | .83  [.78,.87]
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Fig. 11: Workflow of the GPU-accelerated KDE algorithm.

D PARALLEL PROGRAMMING FRAMEWORK ON THE GPU

For the GPU parallel programming of our algorithm we follow
the HLSL convention. In this model, parallel computation is
performed by invoking (programming) kernels, each of which

Table 3: The pairwise ratio of task completion times, accuracy
scores, and their corresponding 95% confidence intervals.

Technique | Time CI |

FI cl | McC I

DR/PS | 0.86 [0.66,1.08]

DR/PM | 0.89 [0.70,1.08]
PM/PS | 1.12  [0.87,1.41]

174 [1.58,1.92] | 1.90 [1.67,2.18]

133 [121,144] | 135 [1.22,1.49]
136 [1.21,1.53] | 148  [1.26,1.74]



https://osf.io/hfu6e
https://github.com/LixiangZhao98/ScaleFree

is executed concurrently by multiple GPU threads. A thread is
the basic unit of execution, running the same kernel function in-
dependently. We can organize threads into groups defined by
numthreads (tx, ty, tz) before launching a kernel, which spec-
ifies the dimension of threads in the group along the x-, y-, and
z-dimensions. Threads within a group share fast group memory
and can synchronize their data exchange with group memory via
the function GroupMemoryBarrierWithGroupSync(). Groups re-
main independent, thus, threads in different groups cannot access
each other’s group memory. All GPU threads have access to global
memory, which serves as the primary space for data exchange during
computation. Before launching kernels, we need to transfer the input
data from the CPU to global GPU memory. When launching a com-
pute kernel, Dispatch(kernel, groupCountX, groupCountyY,
groupCountZ) specifies the number of thread groups along the
x-, y-, and z-dimensions, thereby defining the overall dispatch lay-
out. The total number of threads executed equals the product of
threads per group and the number of groups. During kernel ex-
ecution, each thread identifies its local (within its group), group,
and global (among all threads) indices through semantics such as
SV_GroupIndex, SV_GroupID, and SV_DispatchThreadID. Once
the kernel completes execution, results are written to GPU buffers
and can be returned to the CPU for further processing.

E INTERVIEW QUESTIONS

During the interview phase of our user study, we asked our partici-
pants the following questions:

Q1. Perceived delay during interaction. Did you perceive any
noticeable delays, lags, or interruptions during scale changes or
while making selections when using each technique (PS, PM, and
DR)? If yes, please describe when the delay occurred (e.g., during
scale transitions, selection, or navigation) and how noticeable it was.
Q2. Impact of delay on interaction experience. If you noticed any
delays or performance slowdowns, did they affect your ability to
navigate or select regions effectively? Please explain your reasoning.
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