
Technical Report No. 12/2004

Department of Simulation and Graphics

Otto-von-Guericke University of Magdeburg, Germany

Creating High Quality
Hatching Illustrations

Johannes Zander Tobias Isenberg Stefan Schlechtweg Thomas Strothotte

jzander@cs.uni-magdeburg.de, {isenberg|stefans|tstr}@isg.cs.uni-magdeburg.de

Abstract
Hatching lines are often used in line illustrations to convey tone and texture of a surface. In this

report an approach for rendering hatched line drawings for polygonal meshes is presented.The

proposed method allows the generation of hatching lines for interactive on-screen display as

well as for vector-based printer output.We use local curvature information to compute stream-

lines on the surface of the model. A new algorithm ensures here an even distribution of the

streamlines such that the visual quality of the final rendition is enhanced.These streamlines form

the basis for the calculation of hatching lines. Line shading methods in general are presented that

adapt the drawing to lighting conditions. To achieve interactive frame-rates the shading of the

hatching lines is calculated at run-time using a virtual machine. For printer output a vector ori-

ented format is generated.

2

Table of Contents
1. Introduction .4
2. Illustration Techniques .6
3. Related Work .8
4. Direction Vector Fields .10

4.1 Curvature Analysis .10
4.2 Optimization .12
4.3 Tensions Between Neighbors .12
4.4 Tensions in Local Neighborhoods .13
4.5 Minimization .13

5. Streamlines .15
5.1 Integration .15
5.2 Termination Criteria .16
5.3 Distance Between Streamlines .17
5.4 Implementation Details .19

6. Visualization .20
6.1 Hidden Line Removal .20
6.2 Line Shading .20
6.3 Virtual Machine .22

7. Vector Output of Lines .23
7.1 OpenGL .23
7.2 Quadrangles .23
7.3 Miter Limit .24
7.4 Rounded Lines .24
7.5 Implementation Details .24
7.6 Negative Line Widths .26
7.7 Line Stippling .26
7.8 Point Distances .26
7.9 Minimum Dot Distances .27
7.10 Line Output .28

8. OpenNPAR .30
9. Examples .32

10. Conclusion .34
Literature .36
Image References .38
WWW References and Links .38

3

1. Introduction
For a long time, illustrations have been an

essential part of various types of text. In the

early days of printing, illustrations were typical-

ly created using the techniques of woodcuts

and engraving yielding so-called hatched

images.The reason for this is that the printing

process is limited to either put ink of a certain

color on a specific point of the paper or leav-

ing it empty. The printing process nowadays

still has the same limitation. However, halfton-

ing techniques have been developed that

allow to simulate shades of a color.Therefore,

hatched images are not as widely used any-

more. On the other hand, hatched images

have one very important advantage over

halftoned: hatching lines can be used not only

to convey tone but also to depict the texture

of a surface.

In recent years, a variety of techniques have

been developed to digitally create hatched

images from 3D models. However, most of

these methods were either not interactive or

did not pay special attention to the quality

issues that are important in the context of

reproduction in print. In this report we pres-

ent a number of methods that allow to gener-

ate hatching lines from polygonal meshes and

to render them in high quality. We provide

4

means that allow either interactive rates for

on-screen display or high quality vector output

for the reproduction in print. Our approach is

based on approximated local curvature infor-

mation that is integrated to form streamlines

on the surface of the mesh. Here, we use a

new algorithm that provides an even distribu-

tion of these lines. A special processing of

these streamlines ensures high quality line ren-

dering for both intended output media later

on. While the streamlines are generated in a

preprocessing stage, the hatching lines are ren-

dered either for vector-based printer output

or on-screen display, the latter allowing for

interaction in terms of changing the view

parameters or manipulating the entire line

shading model at run-time using a virtual

machine.This allows a much better control for

the designer over the resulting illustration.We

also show how to combine several layers of

hatching to create cross-hatched images that

even can be colorized.

The remainder of the report is organized as

follows. To understand the principles used in

traditional hatching we examine hand-made

hatched illustrations created by artists in

Section 2.We extract properties and require-

ments that will later be used in the design of

our algorithms. In Section 3 we review previ-

ous work that deals with the rendering of

hatched images.Then, Section 4 discusses how

to obtain a direction field on the surface of the

3D model and how to optimize it to remove

certain artifacts. This direction field is used in

Section 5 to derive the streamlines that will

later become hatching lines. For this stage we

give details for both conceptual and imple-

mentation issues.This is followed by a discus-

sion of visualization issues of the streamlines in

terms of occlusion and shading in Section 6.

Section 7 presents methods for rendering high

quality vector lines which is necessary, in par-

ticular, for the reproduction in print. We dis-

cuss the representation of the line shape

including turns, the control of line width and

the reproduction of line density using line stip-

pling. Also, we present the two different out-

put modules and illustrate the two techniques

using a number of examples. Section 8 then

addresses implementation issues in the con-

text of the used framework – OpenNPAR.

Section 9 shows more examples created with

our system and discusses, in particular, the

shading at run-time using an example session

with the program. Finally, we conclude our dis-

cussion in Section 10 and name a few direc-

tions for further research.

The techniques presented in this work were

also presented at Eurographics 2004 and pub-

lished in (Zander et al., 2004).

5

2. Illustration
Techniques

In order to emulate the process of creating

illustrations with the computer it is essential to

first study real hand-made illustrations. In par-

ticular, technical and stylistic features should be

analysed in this step. In the following we will

look at three different visualizations of the

human inner ear (see Figures 2.1, 2.2, and 2.3)

as well as a schematic illustration of the

cerebellum (see Figure 2.4) to show

the differences of depiction of one and

the same object.

Figure 2.1 is a very detailed pen-and-

ink drawing. The silhouette is empha-

sized in order to visualize the main

form of the object. However, with

growing distance from the viewer the

lines become thinner and even start to

show line haloes to clearly distinguish

between separate structures. For bet-

ter visualizing plasticity and form the

artist used a uniform hatching for most

of the surface. As described in Hodges

(1998), the lines are drawn along ellipses that

follow the object's structure. However, the

lines do not continue across sharp bends of

the surface but end there.This way the discon-

tinuity of the surface is emphasized. Shadows

are depicted by varying the line thickness. In

very bright areas lines are completely omitted

which is visible, in particular, at highlights.

The drawing shown in Figure 2.2 was created

by the same author as the one in Figure 2.1.

Therefore, there are quite some similarities

between the two images. However, in the sec-

ond drawing more attention was paid to for-

merly hidden structures. These are now

shown by employing transparency and cut-

away views (for techniques to create those

types of images automatically see, for exam-

ple, Diepstraten et al. (2003)). In

addition, internal processes were

visualized using arrows. For exam-

ple, black and white arrows run

along the sections of the cochlea.

Other parts that are not essential

for the communicative goals were

omitted, for example, the onsets of

the nerves.

6

Figure 2.2:
Drawing of the inner ear. From Tortora
(1997), page 275, Figure 12.10,
Details of the Inner Ear.

Figure 2.1:
Drawing of the inner ear.
From Wood (1994), page 41,
Figure 4.31.

The artwork shown in Figure 2.3 differs signif-

icantly from the previous two in that consider-

ably less emphasis was placed on the depic-

tion of details. Instead, the artist used special

care to visualize the overall form of the object.

Lines are only used to represent the silhouette

and have a constant line width. In some posi-

tions they are replaced by sets of

dots, in particular, in places where

silhouette lines vanish or to indi-

cate bending surfaces. A second

important difference is the type of

shading that was employed. In this

example, shading is achieved only

by using dots.

The drawing in Figure 2.4 shows the schemat-

ic view of a human cerebellum. Similarly to the

illustration in Figure 2.3 shading is

not achieved by varying the line

width. Instead, lines stop at some

point and are replaced by a series

of variably spaced dots in order to

vary the perceived darkness of the

lines. This occurs, in particular, at

lines that represent strong bends

of the surface which leads to a

characteristic texturing. On the

other hand, this technique is also

used to simulate shading of the

surface in general. Specifically, one

can observe that the dots of the

stippling only follow almost parallel

lines and are not distributed in all

directions.

7

Figure 2.3:
The right inner ear
(hand-made reconstruction). From
Rodgers (1992), page 58, Figure 4.15.

Figure 2.4:
The cerebellum. From Rodgers
(1992), page 324, Figure 21.9b.

3. Related
Work

The domain of non-photorealistic rendering

has been developing over the period of

approximately the last 20 years. Therefore,

there is a number of publications that are sim-

ilar in their goals and methods to this report.

They will be reviewed in the following.

Salisbury et al. (1994)

Salisbury et al. (1994) describe the cre-

ation of stroke textures that store indi-

vidual strokes in order to achieve a

specific structure. In addition, it is pos-

sible to assign priorities to strokes so

that they can be grouped such that

each group represents a given tone.This way

strokes with higher priority are favored over

those with lower priority. For rendering scenes

the user selects a specific stroke texture and

then starts drawing on the canvas. During this

drawing process the system selects strokes

from the stroke texture until the user-specified

gray value has been reached.

Winkenbach and Salesin (1994)

The technique from Salisbury et al. (1994) can

also be used to visualize 3D objects with

stroke textures. In addition to the tone value,

in this approach it is also possible to control

the level of detail shown for certain parts of

the scene by user-placed detail segments.This

allows to easily simulate the omission of detail

in some regions of illustrations as used by real

artists as well. The major advantage of using

stroke textures in 3D rendering is that the

density of strokes automat-

ically adapts to the desired

output resolution while

maintaining the desired

perceived local tone.

Winkenbach and Salesin (1996)

Instead of using polygonal models, the render-

ing system from Winkenbach and Salesin

(1994) was extended to work with paramet-

ric surfaces as well.The surface parameteriza-

tion may now be used to specify the orienta-

tion of strokes. In order to achieve an even

distribution of strokes, the authors describe a

metric that allows to measure the distance of

the projected strokes in

image-space.This is used, in

turn, to adapt the line

thickness and, thus, to con-

trol the perceived bright-

ness of the texture.

Pnueli and Bruckstein (1994)

In their system DigiDürer, a grayscale image is

segmented into level curves using potential

fields so that the curves are equivalent to a

rasterization of the image and also follow the

image's content. At the

same time, it is also possible

to convert the curves into

dot sequences to simulate

techniques used by artists

to create half-toned images.

8

Ostromoukhov (1999)

Regions from a grayscale

image are manually seg-

mented and covered with

Bézier patches with their

parametrization directions

following the image's main

features. Specific dither

screens are assigned to

each patch and warped according to the form

of the patch. Finally, all dither screens are com-

bined using several combination rules to form

a dither screen for the whole image. Applied

to the image this allows to generate a black-

and-white version of it that simulates the tech-

nique of wood-cuts.

Leister (1994)

This approach is based on

modifying a raytracer. In

particular, the color com-

putation stage was modi-

fied to generate hatched images. Instead of

simulating a physical illumination processes, a

procedural texture is evaluated to generate

hatching patterns. These are discretized in a

final step according to illumination data and

composed with object silhouettes.

Deussen et al. (1999)

To create hatching lines, the authors first com-

pute an internal skeleton of a given triangular

mesh. Following the path of this skeleton the

object's surface is cut with planes perpendicu-

lar to the skeleton.The line width of the result-

ing visible intersection curves are post-

processed according to shading infor-

mation and then rendered. However,

this approach can only be applied to

non-branching structures which

severely limits the possible application

areas.

Rössl and Kobbelt (2000)

All nodes of the model's mesh are processed

using a discrete curvature analysis to approxi-

mate the principal curvatures. They are then

linearly interpolated over the surface of the

model and projected according to the virtual

camera to generate a G-buffer. Now, parts of

the image can be covered with curves

following the principal curvature direc-

tions. In order to suppress turbulences

and noise, only a few very significant

curves are chosen. Curves in between

these are determined using interpola-

tion to generate the final rendition.

Hertzmann and Zorin (2000)

This technique also uses a discrete curvature

analysis. In contrast to the previous method,

however, the authors determine a vector field

of principal curvature directions to be used for

cross-hatching. To guarantee homogeneous

directions as much as possible, the vec-

tor field is first enhanced using a glob-

al optimization strategy. After a projec-

tion into image-space, streamlines are

traced along both projected curvature

directions to generate cross-hatching.

9

4. Direction
Vector Fields

Since lines on the model's surface should not

follow arbitrary directions, we first need a

technique to specify line directions for the

entire surface. We use a tensor field for this

purpose which we will call direction field in

the following. It will be used to store a unit

vector in each vertex' tangential plane which

specifies the preferred hatching direction in

this point.

There are many possibilities for specifying the

directions in such a field. For example, the

direction of an internal skeleton can be used

as a basis (as done by Deussen et al, 1999).

However, we want to focus on curvature

analysis in our approach. Local curvature is

well suited for our purpose because it can be

derived directly from the object's geometry

and since artists also seem to follow principal

curvature direction in hatched images. In addi-

tion, there are a number of previous tech-

niques that successfully base hatching line gen-

eration on local curvature (see, for example,

Interrante (1997), Girshick et al. (2000), and

Hertzmann and Zorin (2000)). These works

are based on psychological studies that sug-

gest that curves following the principal direc-

tions are well suited to visualize the three-

dimensional structure of objects to a viewer

even if the lines are projected onto a plane.

4.1 Curvature Analysis

The curvature of a point on a curve is defined

by the circle that meets the curve tangentially

in that point and that has locally the same first

and second derivative (see Figure 4.1). The

reciprocal value of the radius of the circle

equals the curvature k of the point on the

curve. The sign of the curvature denotes

whether the curve turns to the right (negative

curvature) or to the left (positive curvature).

To extend this concept to surfaces, we have to

look at a set of curves through one point on

the surface.These curves result from intersec-

tions of the surface with all planes that contain

both the point on the surface and its normal

vector. Essentially, this is equivalent to a plane

containing the point's normal vector which is

rotated around it. Curvature values can now

be determined for each of the resulting inter-

section curves as described above. However,

two of the intersection curves deserve further

attention: those with the maximum and mini-

mum curvature value – the so-called principal

curvatures (k1 and k2, respectively). The

directions characterized by the corresponding

intersection curves are called principal direc-

tions and lie orthogonal to each other. They

also both lie in the point's tangential plane

and, thus, form an orthonormal basis together

with the point's normal vector.The product of

k1 and k2 is called Gaussian curvature and

10

r

k = /r

Figure 4.1:
Definition of
curvature k.

the mean value of k1 and k2 is called average

curvature.

However, when trying to apply this concept to

polygons it quickly becomes apparent that

already the piecewise linear nature of polygo-

nal strokes (in 2D) leads to problems when

trying to determine the radius of the tangen-

tial circles.The radius would be zero at nodes

and infinitely long everywhere else.Therefore,

in practice polygonal strokes are approximat-

ed by smooth curves which, in turn, are ana-

lyzed to determine the curvature. For 3D sur-

faces a similar approach is taken. For example,

a quadric is defined through a node and its

neighbors. In our approach we apply a similar

method which that is based on approximating

the mesh locally by fitting a second degree

Taylor polynomial to a node and its direct

neighbors (see Rössl et al., 1999). This tech-

nique has proven to be very robust in prac-

tice.

Once having approximated the principal cur-

vatures of a vertex it is also necessary to use

this information in order to determine which

direction a hatching line should follow at this

point. In hand-made illustrations the hatching

lines often run cylindrically around elongated

structures (see, for example, Figures 2.1 and

2.2). This has the advantage that, in particular,

the distortion of the circles caused by their

projection indicates the orientation of the

object's basic structure (see Hodges, 1989,

page 99).Therefore, to achieve a similar effect,

a simple heuristic suffices to determine the

hatching direction.

The first or second principal direction is

selected depending on the local form of the

surface. Because we are interested in the

direction of maximum absolute curvature, it

suffices to evaluate the sign of the average cur-

vature. Depending on the individual absolute

values of the principal curvatures, the one with

the maximum absolute value determines the

sign of the average curvature. In case it is pos-

itive we choose the first principal direction

(i.e., that of k1) and otherwise the second

principal direction (i.e., that of k2) as illustrat-

ed in Figure 4.2.

4.2 Optimization

Unfortunately, there are some fundamental

problems with determining the hatching direc-

tion based on discrete curvature analysis. On

the one hand, the curvature is not defined for

every vertex of a mesh. For example, on pla-

nar surface or on a sphere it is impossible to

determine the first and second principal direc-

tions. On the other hand, the method is very

sensitive to high frequencies of the surface

geometry, e.g., due to noise or fine details.

These result in inhomogeneous direction

fields. Trying to derive hatched illustrations

from such inhomogeneous fields would yield

very unnatural and rather disturbing images

that do not support the recognition of form.

11

Figure 4.2:
Selection of
hatching direction
for a vertex on
the surface of a
mesh based on
the maximum
absolute values of
k1 and k2.

In order to overcome problems with high fre-

quencies filtering can be applied. For example,

the model can be smoothed prior to deter-

mining the direction field or details of the

mesh can be removed using a mesh simplifica-

tion algorithm (see, for example, Praun et al.,

2001). This, however, only removes parts of

the problems.There will remain points where

the principal directions are not well defined.

The problem may even get worse because

mesh smoothing operations tend to increase

the percentage of planar and round parts of

the model.Then, even less nodes are assigned

a well defined first and second principal direc-

tion.

Therefore, we put more emphasis on meth-

ods that first compute the direction field and,

afterwards, try to homogenize the field as well

as complete it by adding directions where they

were previously not well defined. In order to

do this, first a criterion is necessary that can be

used to evaluate the field and determine those

inhomogeneous regions. This is achieved by

using an energy term that indicates how

severe the differences are between the indi-

vidual direction vectors. The higher its value

the higher is the inhomogeneity. To compute

such an energy term we examine two differ-

ent versions and discuss them in the following.

4.3 Tensions Between Neighbors

The first approach determines the tension

between adjacent nodes. For every pair of

two nodes the respective situation is translat-

ed into a planar problem. For that purpose we

project the connection vector between both

nodes into each respective tangential plane of

both involved nodes.The projection is used to

align the local coordinate systems of both tan-

gential planes and to form a uniform shared

coordinate system. Now we are able to also

find the transformed direction vectors of the

two vertices (which were already located in

the respective tangential plane) in this joint

coordinate system and we can derive the dif-

ference between the two vectors. Attention

has to be paid to the fact that the tension

should be biggest for orthogonal directions

while it should be minimal when the two

direction vectors are linearly dependent. In

order to model this we take the angle

between both vectors and apply the following

function to it:

In contrast to directly working with angles this

has the advantage that we may obtain a con-

tinuous derivative which will later be of impor-

tance.

Performing the step described above for

every edge in the model and summing up the

results for the individual nodes yields the com-

plete tension for each node.

tension = 1 − cos (2θ) Equation 4.1

12

4.4 Tensions in Local
Neighborhoods

This second approach is equivalent to the pre-

vious one in most aspects except that now we

do not only consider adjacent edges but all

edges in a well defined local environment of

the node.The size of this environment is given

by a sphere with a user-defined radius.To find

all edges in the environment we first collect all

faces into a set that are adjacent to the start-

ing node.Then, as long as there are faces adja-

cent to the set that are still located at least

partially in the sphere we add them to the set.

Finally, all edges that bound the faces in the set

are examined and their tension is determined.

The tension of each edge is weighted accord-

ing to how much of the edge lies inside the

sphere (see Figure 4.3).The final energy term

for the local environment is now obtained by

summing up the weighted individual tensions.

4.5 Minimization

After having defined a criterion for homo-

geneity, a user-defined threshold is used to

determine all nodes that do not meet this cri-

terion.Their degree of homogeneity has to be

improved (see an example of a non-optimized

direction field in Figure 4.4). We accomplish

this by minimizing the nodes' energy term. By

doing so we reduce the inhomogeneity of the

entire field which was the initial goal.The most

simple approach is to consider each node indi-

vidually and alter its direction vector depend-

ing on the direction vectors in the local neigh-

borhood so that the energy term is minimized.

A simple method for this is, for example, the

local relaxation of the direction field. For every

node we determine by how much the direc-

tion vector deviates from the vectors in the

neighborhood. The vector in question is then

rotated back by the average difference so that

the tension to its neighbors is reduced. By iter-

ating this process several times the direction

field can be improved to a certain degree.

However, there are situations where this tech-

nique has limitations.Then, remaining tensions

cannot be further removed since there are

zones that remain in a stable but not energy-

minimized situation. These problems can only

be solved by rotating several direction vectors

at once which is not possible due to the local

character of the algorithm (see Figure 4.5).

In order to avoid such problems a global opti-

mization technique (see Hertzmann and

Zorin, 2000) is preferrable. A well-known and

freely usable algorithm for global optimization

of systems with a very high number of vari-

ables is the L-BFGS-B technique (see Zhu and

Byrd, 1997). An implementation thereof is

13

P

Figure 4.3:
All edges in the local environment of point P. In order to weight
the contribution of each edge the percentage of the edge inside
the environment is considered.

available as a complete package. However,

since this is implemented in FORTRAN it had

to be ported to C++ first to be usable for our

application. We employed

[F2C] to do this with rela-

tively little effort. L-BFGS-B

is a gradient descent tech-

nique, and therefore we

need access not only to the

global energy term and to

the variables to be opti-

mized but also to their derivatives. The tech-

nique tries to optimize the angles by which the

direction vectors have to be rotated so that

these offset angles were used as the input

variables. In order to obtain both the global

energy term and the gradi-

ent vector of the variables

we again use the homo-

geneity criterion. Due to

computational complexity

considerations we only use

the simple version, i.e., the

criterion of tensions

between neighbors. Using this and the angle

offsets we are now able to determine the

degree of tension at the individual vertices.

The sum of all tensions yields the global ener-

gy term. The respective components of the

gradient vector can be

determined using the deriv-

ative of the previously given

cosine term (see Equation

4.1). The optimization now

tries to find a constellation

of angle offsets in which the

global energy term is mini-

mal. Rotating all direction vectors by exactly

this computed amount will results in a very

homogeneous direction field (see Figure 4.6).

14

Figure 4.4:
Direction field
without any
optimization.

Figure 4.5:
Direction field
with only local
optimization.

Figure 4.6:
Direction field
with global
optimization.

5. Streamlines
After we have obtained a direction field as

homogeneous as possible, we now have to

create lines based upon the given direction

information that follow the direction vectors

on the surface of the model. Since this process

is rather time-consuming and we want to

allow the interactive exploration of models

we do not place the streamlines in image-

space but let them live in object-space.

Although this means that some artifacts arise

during projection that have to be dealt with

separately this has the advantage that the line

representation is independent from the view-

ing direction and has to be recomputed only if

the model itself changes.

During the streamline computation it has to

be ensured that the entire surface is covered

so that no empty spots occur. In addition, all

lines should have approximately equal dis-

tances to each other. Since it is not feasible to

require exactly the same distance everywhere

we only define minimal and maximal distances.

As foundation for our line placement tech-

nique we use an algorithm previously suggest-

ed for the visualization of 2D vector fields (see

Jobard and Lefer, 1997) and adapt it to 3D.The

algorithm starts by integrating streamlines

originating from an initial starting vertex.

During this process, new potential starting

vertices are determined and stored in a queue

for later use. While being constructed, a

streamline grows simultaneous at both of its

ends and continues to grow until a termina-

tion criterion prevents further growth. To

ascertain that the entire surface is covered

with streamlines we use the centers of gravity

of one of the the mesh's triangles as a new

starting vertex if the queue of starting vertices

should be empty at one point in time. The

algorithm terminates as soon as the queue of

possible starting vertices is empty and the

centers of gravity of all triangles have been

tested. In order to find new starting vertices

while a line is integrated we repeatedly start

two queries orthogonal to the line.These try

to move away from the line far enough so that

they reach the maximal allowed distance from

the line. If there is no other line within the

minimal line distance from this new point it is

considered to be a potential starting vertex

and we add it to the starting vertex queue.

5.1 Integration

For the integration itself we use a fourth order

Runge-Kutta ODE solver (see Press, 1992).

We also experimented with a simple Euler

integrator. However, this did not produce sat-

isfying results. By using a better integrator we

are able to keep the step size larger without

having to compromise the stability of the inte-

gration process.This not only results in a signif-

icantly reduced processing time for the inte-

gration but also reduces the number of result-

ing line segments. Ultimately, this also increas-

es the frame-rate when rendering the result-

ing line drawing and allows interactive pro-

cessing.

Since the direction vectors are only defined

for the vertices of the polygonal model it is

necessary to interpolate them for in-between

points. For this purpose we first determine the

barycentric coordinates for the point based

15

on its position inside the surrounding triangle.

These, in turn, are used to compute a direc-

tion vector for the point using spherical linear

interpolation of the direction vectors of the

vertices of the triangle. Since it is important

that all direction vectors point in approximate-

ly the same direction potentially we have to

turn the direction vectors of the triangle's ver-

tices by 180 degrees before doing the interpo-

lation. As a reference for this step we use the

last determined orientation. By computing its

dot product with the direction vectors of the

new triangle we are able to determine

whether the new directions differ by more

than 90 degrees or not. If this is the case we

negate them. In case there are no previous

orientations (which is only the case for start-

ing vertices of streamlines) we use the direc-

tion vector of the closest triangle vertex.

In addition to determining the direction vector

for a given point it is also necessary for the

Runge-Kutta integration to obtain a modified

direction vector that will later be used for the

actual integration step. It is sampled at differ-

ent points that lie in the direction extracted

from the direction field and have certain dis-

tances. We follow the direction vector from

the previous point and run along the surface

until we have reached the given distance. In

case we hit a triangle edge during this process

we adapt the direction vector by rotating it

around the triangle edge until it lies in the

plane defined by the new triangle. When we

have reached the desired distance from the

original point we determine a sampled direc-

tion vector by interpolation as before. Now

we have to back-transform this sample into

the original local coordinate system. This way

we end up with several sampled direction vec-

tors that are then weighted according to the

Runge-Kutta scheme. This allows us to deter-

mine the effective direction vector that we can

now use to follow the streamline.

This completes the necessary steps required

for implementing the ODE solver. Based on

weighting several direction vectors and a given

step size we determine a new direction vec-

tor.This is used to run along the surface of the

model and to find a new vertex for the

streamline. In case triangle edges are crossed

new vertices are added there as well in order

to make sure that the streamline does not

leave the surface of the model.

5.2 Termination Criteria

As mentioned before a streamline is contin-

ued until a termination criterion has been met.

In our implementation we provide several of

these for the user to turn on and off in order

to achieve different effects. However, in some

rare cases it may happen that streamlines have

to be stopped because the integration cannot

be continued. These cases occur because the

program uses floating point arithmetic which

may result in floating point underflows in cer-

tain situations. Such cases are also considered

to be termination criteria.

During the integration of a streamline it is

recorded how much a line is bent, i.e., how

much it deviates from a straight path due to

the direction field.The user is able to specify a

threshold for this value which is then used to

determine when a streamline should no

longer be followed.This is necessary to avoid

too sharp bends of streamlines. In particular,

16

this comes in handy when working with less

homogeneous direction fields or in the neigh-

borhood of singularities.

To visualize sharp bends of the surface we

only pass the border of triangles if the angle

between their normals is less than a certain

user-defined threshold. This results in a visual

discontinuity of the flow of streamlines along

sharp edges of the model. This simulates a

technique which is often used by artists in

hand-made illustrations (see, for example,

Figures 2.1 and 2.2).

Very long streamlines often tend to emerge as

separate structures which is a not desired

effect. In order to prevent this it is possible to

specify a maximum length for a streamline. If

this is exceeded during the integration only

that part of the specific step is finished that is

required to exactly reach the maximum

length.

The most important termination criterion,

however, is the distance to other streamlines

in the neighborhood. Since it is not desired

that streamlines cross each other we termi-

nate the integration of a new streamline as

soon as its distance to other streamlines is less

than the minimum line distance.

In addition, we test each finished streamline

whether it has reached a minimum length. If

this is not the case we discard the entire

streamline. This prevents the creation of very

short line fragments and results in a more

quiet appearance.

5.3 Distance Between
Streamlines

As already mentioned it is important to deter-

mine the distance of one streamline to other

streamlines on the surface in order to avoid

line collisions and to discard starting vertices

for new streamlines.There are several ways to

accomplish this which we will discuss in the

following.

Our first approach was to use 3D grid hash-

ing. For this purpose each segment is repre-

sented by a series of points that are stored in

a 3D grid. The storage space for such a 3D

matrix may be very high although most of the

cells are empty. Hence, it is advantageous to

use a so-called sparse matrix. This sparse

matrix was implemented by deriving a hash

value from the 3D grid coordinates which, in

turn, was used to access an array of the

respective grid cells. The size of each cell is

bounded by the minimum line distance. In

order to test the environment of a given point

it is first determined to which 3D grid cell it

belongs.Then, all points in this cell and its eight

neighboring cells are determined and the min-

imum distance to them is computed. This

approach is fairly fast and the error introduced

by the necessary discretization can be neglect-

ed in practice. However, the region of influ-

ence of a line is not bounded by the object's

surface. This can be noticed, in particular, on

very thin structures where the geometry is

thinner than the minimum line distance. This

occurs, for example, for models of flowers

where the flower petals are usually very thin.

In such cases the generation of lines on one

side of the petal is prevented by the lines on

the other side.

17

Instead, we now represent streamlines by a

sequence of segments that are, in turn, repre-

sented by cylinders having the radius of the

minimum line distance (see Figure 5.1). They

are stored together with the triangles on

which their respective line segments are locat-

ed. In addition, they are also stored in the tri-

angles that are at least partially inside the cylin-

ders. In order to accomplish this we start from

the original triangle and test its edges if they

intersect or are contained in the cylinder. We

continue to recursively test all neighbors pro-

vided that the angle between each two neigh-

boring faces' normals is sufficiently small. This

results in cylinders that only have influence on

their local environments. Provided that the tri-

angles do not get to large the access of the

contained cylinders is sufficiently fast. In order

to test the environment of one point it is suf-

ficient to check all cylinders assigned to the

respective triangle. As long as the size of the

triangles is smaller than the minimum line dis-

tance one cylinder at most may be contained

in each triangle and has to be tested.

An additional advantage of this approach is

that lines can come much closer to each other

than with techniques that test the actual dis-

tance between a point and a segment (see

Figure 5.2). Otherwise there would be a gap

of at least the minimum line distance between

two not connected stream-

lines (see Figure 5.3). One

aspect to notice, however,

is that at the connection

between two line segments

gaps occur between the

respective cylinders. These

gaps should not be filled

with additional lines. In

order to prevent this we

add additional cylinders

that will close this gap but that do not repre-

sent a specific line segment of a streamline

(see Figure 5.4).

18

Figure 5.1:
The integration of the black line
terminates at the surface of the cylinder
which ensures that the minimum line distance
is not violated.

Figure 5.2:
Line ends may
come to lie closer to each
other due to the use of cylinders.

Figure 5.3:
Detail from a flow field
generated by Hertzmann
and Zorin (2000) show-
ing obvious gaps between
the line ends.

Figure 5.4:
The cylinders of a two-
segment streamline
exhibit gaps at bends
of the streamline.These
have to be covered by
an additional cylinder
to prevent lines enter-
ing this gap.

5.4 Implementation Details

For the previously described algorithms it is

necessary to work intensively on the surface

of the models. Therefore, information about

the local neighborhood of triangles is very

important. Since it is sufficient for our purpos-

es to work with two-manifolds we decided to

work with the half edge data structure (see

Mäntylä, 1988).This data structure represents

each edge of the mesh by two directed edges

that each belong to one of the two adjacent

faces and that carry information about their

neighborhood (see Figure 5.5).With this fairly

simple data structure it is possible to answer

the most important queries about neighbor-

ing triangles in very little time:

struct HalfEdge {

Vertex* vert;

HalfEdge* next;

HalfEdge* loop;

HalfEdge* pair;

Triangle* tri;

};

A frequently used operation is to flip a vector

around an edge in order to transform it from

one triangle to the next. A naïve implementa-

tion would simply rotate the vector by the

angle between the two adjacent faces' nor-

mals. However, this is quite complex to com-

pute and there is a much simpler geometric

way to achieve the same effect. By projecting

the problem into a plane the two planes given

by the two triangles become straight lines with

the given vector being part of the one line and

the wanted vector being part of the other line.

Because the rotation does not alter the length

of the vector the original and the wanted vec-

tor together span an isosceles triangle. Splitting

this triangle at the bisector results in two right

triangles whose hypotenuses represent the

given and the wanted vectors.The shared part

along the bisector is equivalent to the projec-

tion of one of the vectors onto the bisector.

Therefore, based on the given vector and this

projection it is easily possible to derive the

wanted vector. This can now directly be

applied to the original case (see Figure 5.6).

19

loop

vert

pair

next

Figure 5.5:
Visualization of a half edge along with
its direct neighbors.

�a2

�a1

�m(�a1 �m)
�m

�m =
�n1 + �n2

|�n1 + �n2|
�a2 = �a1 − 2�m(�a1 · �m)

Figure 5.6:
Flipping a vector
from one triangle
to an adjacent tri-
angle.

6. Visualization
After the pre-processing has been completed

the generated data will now be used to gen-

erate the final hatched rendition. The steps

necessary for this task will be discussed in the

following.

6.1 Hidden Line Removal

We will only render lines into our final image

and do not use occluding surfaces as in tradi-

tional rendering. Therefore, we will have to

remove those parts of the surface that are

occluded by parts of the model that lie in

front of them. In the system our implementa-

tion is based upon (OpenNPAR, see Halper et

al., 2003) there is already a module for remov-

ing hidden parts of lines (see Isenberg et al.,

2002). This module, however, was originally

intended for the hidden line removal of silhou-

ette lines. This algorithm removes occluded

parts of a stroke based on the completed z-

buffer rendering of the 3D model.The stroke

segments are rasterized and compared with

the z-buffer data. In case there is a line pixel or

a pixel in its 8-neightborhood that is closer to

the viewer than the pixels recorded in the z-

buffer then it is visible. The invisible parts of

the stroke are detected using this method and

eliminated from it. Since the strokes generated

by our method do also lie on the surface of

the model this technique works as well. The

only needed modification was to treat some

additional data similar to the strokes' geome-

try so that this was adapted accordingly.

In addition, some of this supplemental data

was used to perform backface culling prior to

the hidden line removal so that only about half

of the original stroke data had to be

processed by the hidden line module. The

resulting gain of rendering speed was very

noticeable. An additional advantage of the

backface culling step is that streamlines that

intersect with silhouette strokes were previ-

ously not clipped correctly due to the only

pixel accuracy of the z-buffer technique. This

caused a small part of the back-facing portion

of the streamline to be rendered anyway (see

Figure 6.1). This problem was also solved by

first applying backface culling and

performing the hidden line

removal after-

wards.

6.2 Line Shading

Before we can apply shading to the stream-

lines we have to make sure that the perceived

gray value of the unprocessed streamlines is

homogeneous for the whole model. After this

has been done we are able to apply shading to

the lines by simply modulating the lines' thick-

ness which is proportional to their perceived

gray value. Therefore, the shading model is

entirely local and can be applied on a per-ver-

tex basis.

20

Figure 6.1:
Due to tolerances in the z-buffer based hidden line
removal technique the streamlines do not get clipped
exactly at the change of visibility.This can be correct-
ed by first applying a backface culling step.

One factor that causes inhomogeneities it the

projection of lines from object-space into

image-space. Depending on the orientation of

the surface and the direction of approximate-

ly parallel lines on it the distance between the

projected lines is much smaller than it was

originally specified in object-space. If now the

line thickness is not affected by the projection

then only the distances change. Therefore, a

changed proportion

between space covered

by lines and background

results depending on

the orientation of the

surface. This directly

affects the perceived

gray value as shown in

Figure 6.2.

In order to account for this we employ a

heuristic to approximate the distances of lines

after their projection into image-space. For

this purpose we construct a unit vector per-

pendicular to the average direction of the

streamlines s lying in the tangential plane of

the considered vertex given by the vertex

normal n.The length of its projection onto the

viewing plane is proportional to the actually

rendered line distances (see Equation 6.1).

Modulating the line

thickness using this value

increases the homo-

geneity of the perceived

gray value significantly

(see Figure 6.3). For fur-

ther improvement of

the quality, however, we

would have to use additional information. For

example, one possibility would be to directly

compute and store two vectors in each ver-

tex that denote the distance to the two neigh-

boring lines.

Inhomogeneities are also caused by lines hav-

ing not exactly the same distance to each

other because the distance may vary between

the minimum and maximum distance. To

account for this, we apply a prepro-

cessing step that examines all stroke

vertices in object-space and com-

putes a correction factor after all

lines have been placed. This factor

tapers lines that come closer to

each other by computing a quotient

of the distance to the nearest seg-

ment in the neighborhood of the

vertex and the difference between

maximum and minimum line dis-

tance. Similar to the approach of

using cylinders for computing the

distance criterion when integrating

the streamlines we here compute

the distance not omni-directionally

(as shown in Figure 6.4) but parallel

to the direction of the streamline

(as can be seen in Figure 6.5).To do

so, we determine the average direc-

tion of the streamline at a vertex

and construct a plane that has this direction

vector as normal vector.We now compute the

intersections of near-by streamlines with this

plane and derive the shortest distance to the

vertex. The advantage of this method is that

now lines can come much closer to each

other without having their line thickness

reduced too early. Thus, we avoid the occur-

rence of visible gaps.

21

Figure 6.2:
Differences in the perceived
gray value due to placing the
lines in object-space.

Figure 6.4:
Tapering based on an omni-
directional distance metric.

Figure 6.5:
Tapering based on a distance
metric that considers distances
parallel to the direction of the
streamlines only.

Figure 6.3:
The same set of streamlines
as in Figure 6.2.To control the
perceived gray value a correc-
tion factor has been applied.

w′ = w

∣
∣
∣
∣

∣
∣
∣
∣

s × n

||s × n||T
∣
∣
∣
∣

∣
∣
∣
∣ Equation 6.1

The shading model itself consists of two

expressions – one for changing the line thick-

ness and the other one to control line densi-

ty.The latter allows to change the line appear-

ance from a solid line into a stippled style (see

Figure 6.6).These two expressions are evaluat-

ed for each vertex and are used by the line

rendering module described below to control

the actual appearance of the lines.

6.3 Virtual Machine

To evaluate the shading expressions we imple-

mented a specialized virtual machine.This has

the advantage that the expressions do not

have to be specified at compilation-time but

can be altered at run-time.This makes it much

easier to develop a feeling for the result of dif-

ferent expressions and to interactively create

new expressions for a set of effects.

The expression itself consists of a defined set

of identifiers and operations.These are trans-

lated at run-time into a specific byte-code

along with changing it from infix notation into

postfix notation (i.e., inverse polish notation).

Thus, all brackets are removed and the prece-

dence of operators becomes irrelevant (see

Figure 6.7).

When such a byte-code expression has to be

evaluated for a vertex, first the values for each

of the identifiers in the expression are deter-

mined. For example, if the identifier "LIGHT" is

used in the expression the virtual machine

determines the diffuse component of the

Phong illumination model at the vertex.Then,

the byte-code is processed by a stack-based

interpreter that exchanges all identifiers by

their previously computed values.

In addition to the usual operations +, -, *, /,

and ^ we offer the following identifiers for the

user to work with (inspired by the non-photo-

realistic shading model by Hamel (2000)):

LIGHT

The value of the diffuse component of the

Phong illumination model.The necessary nor-

mal at the streamline vertex is computed by

interpolation as used in Phong shading. The

light is set to come from a constant light

source left from and above the model as usu-

ally used by illustrators (Hodges, 1989, page

71).

RIM

Similar to the LIGHT identifier only that the

light source is placed between viewer and

object in order to simulate rim shadows.

DEPTH

The distance between viewing plane and

depicted object in order to be able to imple-

ment depth cueing.

CURVATURE

The average curvature for using it in curvature

lighting.

22

Figure 6.6:
The line density allows to change
the line appearance from a solid
line into a stippled style.The dis-
tances between two stipples are
chosen such that the perceived
gray value equals that of the
desired line density.

infix notation: “1+3*(light-rim)”
postfix notation: 1 3 LIGHT RIM - * +

byte code: 02 02 05 06 10 11 09

Figure 6.7:
An example
expression on
its way from
infix notation
to byte code.

7. Vector
Output of Lines

Lines play a central role in this work so we will

now focus on their visualization. Related

approaches can be found, for example, in

Vehmeier (2002).

7.1 OpenGL

When using OpenGL for line rendering the

obvious choice is to work with the

glLineWidth parameter and render lines

as usual using the line primitive.The disadvan-

tage of this approach, however, is that

OpenGL rather aims for fast rendering than

for quality in line depiction. This can easily be

observed in the fact that lines are modeled as

sheared rectangles.This means that depending

on the angle of the line its thickness varies.

Only for horizontal and vertical lines the cor-

rect line thickness is used.The

more the line is rotated to a

diagonal orientation the bigger

gets the introduced error.

Diagonal lines ultimately only

have approximately 70% of

the specified line width (see

Figure 7.1).

A related problem occurs at

the joints of two adjacent line

segments. If the two connect-

ed line segments lie in differ-

ent orientation quadrants the

joint will be visible as a small

quadratic gap in the stroke

which creates a very unpleasant appearance

(see Figure 7.2).

The same effect can be observed at line ends.

If the last segment in a stroke is oriented

approximately diagonally its end is rather

pointed and it is dull if the segment is orient-

ed horizontally or vertically.

These artifacts are visible, in particular, in ani-

mations if the gap in the joint can change from

one frame to the next.Also, the change of line

width due to a transformation applied to the

line becomes very disturbing.

7.2 Quadrangles

As an alternative to the simple line drawing

technique it is also possible to represent

stroke segments as connected sets of textured

quadrangles along the line's path.This has the

advantage that we are able to profit from

hardware acceleration when displaying these

textured polygons. This enables us to apply

many different effects to the line drawings.

A simple version computes for each joint

between two adjacent line segments the

respective bisector and places two ver-

tices on it having the distance correspon-

ding to the desired line thickness. These

vertices are then rendered as part of a

GL_TRIANGLE_STRIP. Unfortunately,

problems similar to those occurring with

OpenGL lines arise. Sharp bends are charac-

terized by a reduced line thickness (see Figure

7.3). However, this effect can easily be

accounted for by looking at the geometry of a

correct miter.The bisector of the joint is equiv-

23

dd√
2 d

dd

Figure 7.1:
OpenGL lines vary
their effective line
width depending on
their orientation.

Figure 7.2:
OpenGL artifacts at
the joints between
two connected line
segments.

Figure 7.4:
Right triangles at
a correct miter.

Figure 7.3:
Although the
diameter of the
line at the joint is
the same as at
the ends the line
does not have the
same width there.

alent to the hypotenuse of a right triangle (see

Figure 7.4). The adjacent leg of the triangle

now is shorter than the hypotenuse with the

factor being the cosine of the angle between

the two.Therefore, it is sufficient to divide the

original line diameter at each joint vertex by

this value in order to achieve a homogeneous

line with for a stroke.

7.3 Miter Limit

Unfortunately, even this approach is still not

free of problems. The larger the considered

angel gets (i.e., the sharper the bent gets) the

smaller will be the compute cosine value.

Ultimately this would end in an infinitely long

tip. Therefore, we have to cut off the tip at a

certain threshold (the miter threshold). For

this purpose we connect the outer vertices of

the two quadrangles representing the line seg-

ments.This means that we construct two vec-

tors perpendicular to the two direction vec-

tors at each point.These new vectors point to

the outside and have half the length of the

desired line width. Finally, the resulting points

are connected as shown in Figure 7.5.

7.4 Rounded Lines

A different type of lines is commonly used, in

particular, in the classic technical illustration –

the rounded line. For this type both the line

ends as well as the segment joints are round-

ed.

This is achieved similarly to the procedure

described in the previous section only that we

now connect the outer vertices of the two

quadrangles with arcs and add a

semicircle to each stroke end

(see Figure 7.6).This construction

is an easy task for lines with con-

stant width. However, it is desir-

able to be able to use radii at dif-

ferent vertices of a stroke in

order to introduce variations to

the line width along a line. The

construction of the contour line of a segment

now is a bit more complicated than in the triv-

ial case because now the contour does not

have to be parallel to the segment direction

anymore. In order to achieve seamless transi-

tions between contour lines and arcs the lines

have to run tangential to the circles.The cosine

of the angle to the segment direction equals

the ratio between the difference of radii and

the distance between the two circle centers

(see Figure 7.7).

7.5 Implementation Details

First we will discuss the simple case of con-

stant line width. In order to keep the algorithm

simple we have to apply some preprocessing

and remove segments with zero length. In

addition, we collect the data that will later be

24

Figure 7.5:
When exceeding
the miter threshold
the tip is cut off.

Figure 7.6:
Arcs located on
bends and semi-
circles at the
stroke ends.

P1

S
r1 r2

T1

P2

T2

θ

cos θ =
|ST2|
|ST1| =

r1 − r2

|P1P2|

Figure 7.7:
Computation of the angle between the
line to the connection point of contour
line and arc where they meet tangen-
tially and the segment's center line.

used for rendering the lines. This includes, in

particular, connection vectors and for each of

them an additional perpendicular vector with

unit length.

In principle there are tree main cases each of

which can be again split into two sub-cases.

The main cases are right turns, left turns, and

collinear segments. It is easy to distinguish

these with an orientation test. For the two

cases of left turns and right turns one has to

check whether the intersection of the two

inner outlines is valid, i.e., if it is inside the two

outer outlines. In case of collinear segments it

is possible that there is no turn altogether

because we deal with a straight segment sub-

divided into two which can be skipped.

However, it is also possible that we encoun-

tered a U-turn by 180°.

The rendering routine itself treats the vertices

of the stroke sequentially, classifies each turn,

and converts it into a triangle strip represen-

tation. This results in a triangulation for the

lines once all lines have been processed. Since

one vertex of a triangle strip may be accessed

more than once it is advantageous to use ver-

tex arrays in order to avoid gaps in the rendi-

tion.This way the OpenGL driver can discard

degenerated triangles during the triangle

setup. These are necessary for being able to

represent the corners of turns as triangle fans

although triangle strips are

used for the entire render-

ing. This situation occurs

when the triangles on the

inside of a turn are squished

together tightly so that all fall

onto the same vertex (see

Figure 7.8).

However, if there is no single vertex that can

represent all inner turn vertices (i.e., in case

the inner intersection does not lie on both

inner outlines or if we encountered a 180

degrees U-turn) we have to stop and restart

the triangulation at this point. Also, in this case

we add degenerated triangles in

order to avoid the costs of start-

ing and drawing a new vertex

array (see Figure 7.9).

For the more complicated case with variable

line thickness the algorithmic procedure is

similar to the previously described simple ver-

sion. However, due to the changed conditions

there arise more cases (see Figure 7.10) that

cannot easily be distinguished by an orienta-

tion test.Therefore we chose to work with the

angles of the four tangential seam points. Each

individual angle is tested whether it lies inside

the range of the

respective pair of angles

of the opposite seg-

ment. This results in

four comparison opera-

tions that all can be

combined in a four bit

expression. This is, in

turn, used as an index

to a lookup table where

the respective case can

be found. Experiments

have proven that this

implementation is not

only fast but also very

robust in practice.

25

1

2

3

4,6,8

5 7

10

9

Figure 7.8:
Triangle strips with
degenerated trian-
gles allow to simu-
late triangle fans.

Figure 7.9:
Starting over in a
triangle strip using
several degenerat-
ed triangles.

U
T
U
R
N

A
R
C
A
R
C

R
I
G
H
T

L
E
F
T

I
N
T
I
N
T

U
T
U
R
N
2

Figure 7.10:
The six cases of
turn classification
and the respec-
tive overlapping
angle ranges.

7.6 Negative Line Widths

Because we are restricted to parameterize the

line widths only at individual vertices, line ends

within a stroke can also only occur at vertices.

This only happens if the line width is zero for

such a vertex. To remove this restriction we

introduce the possibility to specify negative

line widths.This results in splitting segments for

which their two end vertices have different

signs of the line width. These segments are

split exactly where the two lines tangential to

the two radii would intersect (see Figure

7.11).This way we are able to place line ends

independently from the specific stroke ver-

tices.

7.7 Line Stippling

When looking at hand-made line drawings

one can observe that in addition to varying

the line widths artists tend to use another

style element as well – line stippling.This is typ-

ically employed when working with pure black

ink to simulate varying line density without

changing the line width. Either this is done

two-dimensionally to depict surface shading

and surface details or it is restricted to lines,

for example, to end them in a more soft way.

Therefore we implemented point stippling

into our line renderer.This makes it possible to

vary the density of lines by splitting them into

a series of single dots (see Figure 6.6).

7.8 Point Distances

To compute the distance between stipple dots

we examine the inverse case first – the per-

ceived brightness of two neighboring dots.This

can be approximated by the ratio of black

area to white background in the quadrangle

formed by the two dots.Without loss of gen-

erality, this approximation can be performed

with two dots of unit size. However, two cases

must be examined separately – either the two

dots are separated by at least two radii and,

therefore, at most touch each other tangen-

tially (see Figure 7.12) or they are closer than

this and overlap (see Figure 7.13) in which

case we have to avoid to count the over-

lapped area twice. For both of these cases it is

easy to derive respective formulas that take a

given distance d and yield the approximated

intensity I(d):

26

Figure 7.11:
Effects produced by
successively reducing
the line width of one
of the vertices.

d

r

d

r

Figure 7.13:
Approximation of the
perceived brightness
between two dots of the
same size with distance
d < 2r.

Figure 7.12:
Approximation of the
perceived brightness
between two dots of
the same size with dis-
tance d >= 2r.

f(b) =
∫ b

0

√
1 − x2dx = b

√
1 − b2 + arcsin b

I(d) =




für d ≥ 2r πr2

2dr = πr
2d

sonst f(d
2r) 2r2

2dr = f(d
2r) r

d

Originally, we were interested in the inverse

case.Although it is easy to find an inverse func-

tion for the first case this is not as easy any-

more for the second case. Since we are only

interested in speed and approximate exact-

ness it is sufficient, an approximate solution

using a lookup table can be employed. We

have to pay attention to the fact that the val-

ues in the lookup table should have approxi-

mately equal distances. For this purpose we

use an adaptive grid to sample the function

starting from its minimum. The adaptive step

size is changed such that at least one function

value lies between the horizontal grid lines.

The exact intersection point is determined by

linear interpolation of one value above and

one below the horizontal line (see Figure

7.14).

In order to use this distance data for placing

dots along a stroke we proceed as follows.

First, we subdivide a stroke into several parts

if it contains vertices that have minimum den-

sity or less because this would otherwise

result in infinitely long distances.Then we start

with a vertex of maximum density and begin

with distributing dots on the lines path. For

every point on the segment we first linearly

interpolate the desired density and use that to

estimate the distance to the next dot.

However, this is only a first estimate for the

distance because the goal is to approximate

the distance between two dots and not to

approximate the distance at a single point.

Therefore, we use this first value to obtain an

average density for the section it specifies.This

is used in turn to determine the final distance

between the current and the next dot. This,

again, is only an approximation of the density

but it has proven in practice to be a good

compromise between exactness, speed, and a

balanced dot distribution.

7.9 Minimum Dot Distances

In most cases it is more important to have an

esthetically pleasing transition from a regular

line to the stippled style than to have a math-

ematically perfect approximation of the line

density for all positions. In hand-made draw-

ings one can observe that the dots often have

a certain minimum distance to the regular

lines. Therefore, we allow the user to specify

an equivalent minimum dot distance (see

Figure 7.15).To achieve this we subdivide the

line segments exactly at

those positions where

the density equals that

of the desired distance.

The part where the dis-

tance would have been

too small is rendered as

a regular line and the

other one is stippled.

27

0 2
0

1

0 2
0

1

Figure 7.14:
Sampling the function of which we want to compute a lookup
table for the inverse function. Segments are computed that
intersect the grid lines to derive the lookup values.

Figure 7.15:
Different minimum distances in
the range of [0, 4].

There is a problem at the line ends that arises

due to the sequential placement of stipple

dots along the line.While the algorithm is able

to use the correct distance when starting to

place stipples it runs into problems when plac-

ing the last stipple.The stippling ends as soon

as a stipple dot would be placed closer to a

line end than allowed which usually results in

an unpleasant gap. Therefore, we place the

dots in a two-step process. In the first stage

only their relative positions are computed.

Once this is finished for an entire stipple sec-

tion these positions are stretched such that

the minimum distance is also maintained for

the end of the section (see Figure 7.16).

7.10 Line Output

We implemented two different output mod-

ules that each have different goals. On the one

side we provide a WYSIWYG preview. This

allows the user to interactively work with the

model and change both the view of the model

and the shading formula in order to find opti-

mum values for all of the parameters.We real-

ize this using an optimized line renderer that

converts the lines into triangle strips and the

points into triangle fans as discussed above.

This means that arcs are discretized using a

user-defined resolution and the lines are slight-

ly simplified. This allows to adapt the quality

according to the users wishes.

For the rendering of monochrome lines on a

raster screen with limited resolution it is very

important to use measures to fight aliasing

problems. Current graphics boards offer full-

scene anti-aliasing for this purpose. However, it

was not possible to use this technique with

our implementation due to a conflict with the

used hidden line removal module. When try-

ing to display a model with average complexi-

ty that produced about 900 streamlines which

in turn yielded about 12,700 single segments

this resulted in drastic rendering speed drops.

Rendering of the model without hidden line

removal allowed 20 fps while rendering with

hidden line removal only resulted in not

acceptable 2 fps (on a Dual Athlon 1600+ and

GeForce2 MX400). Unfortunately, this prob-

lem could not be traced down so that the

quality of the preview was reduced.

In addition to the WYSIWYG preview we also

provide a second output module. This allows

to export the graphic as vector data into a

PDF file. In this case the arcs are not dis-

cretized but remain in their native form (see

Figure 1.17).This allows not only to view them

in full quality on the screen but can also be fur-

ther processed which is advantageous, in par-

ticular, in the print domain.

Using the PDF format directly allows many

possibilities for further processing. For exam-

ple, several layers of hatching can be produced

by turning the entire direction field by a cer-

tain angle and adapting the shading model

(see Figures 7.18 and 7.19).This can be taken

even further by assembling entire collages and

colorizing areas and lines (see Figure 7.20).

This way the limitation of black-and-white

drawings is overcome.An additional advantage

is that the limitation to the CMYK color

scheme is overcome and spot colors can be

used instead.This way colored images do not

have to be rasterized in the printing process

which significantly benefits the quality of line

drawings.

28

Figure 7.16:
Dot placement
without and with
balancing.

Figure 7.17:
A line with indi-
cated variable line
thickness and its
rendition with tri-
angle strips and
vector contours.

29

Figure 7.18:
Pitcher plant
(Nepenthes alata),
once with a single layer
of hatching and with
three layers of hatching
where each direction
field has been turned
slightly.

Figure 7.19b:
Detail from Figure 7.18.

Figure 7.20b:
Colorized composition using five colors and black.

Figure 7.20a:
Procedural geometry rendered with line shading.

Figure 7.19a:
Hodges (1989),
Figure 115, hatch-
ing in a hand-
made illustration.

8. OpenNPAR
OpenNPAR is a NPR framework that is being

developed at the Department of Simulation

and Graphics of the Otto-von-Guericke

University of Magdeburg, Germany (Halper et

al., 2003). OpenNPAR is based on the Open

Inventor framework and uses its scene graph

structure to manage the communication of

different scene graph nodes. Each node imple-

ments a certain part of the entire process and

the complete program is created by connect-

ing several of the nodes into a pipeline.

In the following we will discuss how the algo-

rithms described above have been integrated

into OpenNPAR by giving a slightly simplified

sequence of nodes in the OpenNPAR pipeline

and describe roughly the information flow

between them.

This node converts, if

necessary, the raw data

of the model into a

Winged Edge data structure.

If desired, this node

applies operations such

as mesh smoothing or

mesh subdivision to the previously created

Winged Edge data structure.

This node translates the

Winged Edge data struc-

ture into a Half Edge data

structure for further processing. If a polygon

consists of more than three edges it is triangu-

lated to produce a triangle mesh.

Using the Half Edge data

structure as the basis this

node computes curva-

ture information for each vertex of the mesh.

This includes the first and second principal

curvature as well as their respective principal

directions.

Based on the curvature

information a suitable

direction vector is cho-

sen for each vertex and stored in a flow field.

If desired , this field can be optimized by the

user.

This node renders the

Winged Edge data struc-

ture. However, in the

default setting only a z-buffer representation is

generated for the model.

Using the Winged Edge

data structure silhouette

edges are extracted.They

are stored in the Coordinates element and

the LineCoordinateIndices element and will

be called strokes in the following.

This node removes the

occluded parts of the sil-

houette strokes.

Now, thickness informa-

tion is generated for each

stroke to specify the line

widths. However, silhouette lines are assigned

constant line width everywhere.

SoLineThickener

SoLineHidden-
LineRemover

SoGenerate-
Silhouette

SoWingedEdge

SoGenerate-
FlowFieldHQ

SoGenerate-
CurvatureHQ

SoGenerate-
HeModelHQ

SoModify-
WingedEdge

SoGenerate-
WingedEdge

30

This node stores all

stroke date generated up

to this point and re-

moves it from the stroke pipeline so that the

following data can be processed indepen-

dently.

Using the previously gen-

erated Half Edge data

structure the also previ-

ously generated flow field is integrated. The

resulting streamlines are stored as strokes. In

addition, information is collected that

describes which vertices from the streamlines

belong to which triangles (LineTriangle ele-

ment).Also, for each vertex of the streamlines

a tapering factor is stored (LineTaper ele-

ment).

As done with the silhou-

ette strokes, also the

streamlines are pro-

cessed to remove the occluded subset. Since

we previously recorded the triangles that are

associated with each streamline segment we

can remove all backfacing stroke segments

prior to hidden line removal. When removing

streamline segments from the strokes the cor-

responding data in the LineTriangle element

and LineTaper element have to be removed as

well.

Similar to the regular

LineThickener node this

node also assigns line

widths to the streamlines. By accessing the

associated triangles of each streamline seg-

ment we are able to interpolate the normals

for each streamline vertex which enables us to

implement shading.

This module is identical

to the LineThickenerHQ

except that it modifies

the LineDensity element instead of the line

thickness. This makes the modulation of line

density as shown in Figure 6.6. possible.

The previously stored sil-

houette strokes are now

restored and merged

with the hatching strokes to make both avail-

able in the pipeline.

Since there are more

than one line renderers

that all work with the

same parameters these are stored by this

node in form of a LineSetting element.

This node is able to gen-

erate a pixel image

screenshot in form of a

TGA image with full anti-aliasing. It makes use

of the LibArt library.

Similar to the previous

node, this node gener-

ates a vector image

screenshot using the ClibPDF library and

stores it in a PDF file.

This node implements an

interactive stroke render-

er that triangulates the

strokes and renders them onto the screen

using OpenGL vertex arrays.

SoLineShapeHQ

SoLineOutput-
PdfHQ

SoLineOutput-
TgaHQ

SoLineSettingsHQ

SoLineMergerHQ

SoLine-
DensifierHQ

SoLine-
ThickenerHQ

SoLineHidden-
LineRemover

SoStreamlinerHQ

SoLineMergerHQ

31

frame caption
newly developed node
modified node
available node

9. Examples
The graphical user interface was implemented

in Qt based on an OpenNPAR example appli-

cation (see Figure 9.1).

The user is able to manipulate most of the

OpenNPAR nodes using several non-modal

dialog windows.These can be used to change

the parameters of the nodes while watching

the resulting effects in the main window. In

case operations are invoked that take some

time to finish we show the progression of

these operations using a progress bar at the

bottom of the main window. Some status data

about the scene and the streamlines are dis-

played there as well.

Using an entry in the file menu the user is able

to invoke a PDF screenshot and store it into a

file (see Figure 9.2). The dimensions of the

image are chosen such that the aspect ratio

and placement of the graphic in the window is

preserved. However, at the same time we

make sure that the format fits onto a DIN-A4

page as good as possible so that the length of

at least one of the graphic's sides equals the

format of a DIN-A4 side.

In order to explain and visualize how users are

able to work with the expressions of the dis-

cussed line shading model we give an

overview of an example session in the follow-

ing.

32

Figure 9.1:
Main window and the
three most important
parameter dialogs of
the application.

Figure 9.2:
PDF screenshot.

We start with constant line

thickness and constant line

density. This way the

appearance of the lines is

only influenced by the pre-

viously discussed tapering

operation and correction

factor (for both see Section

6.2) as depicted in Figure

9.3.This creates the impres-

sion of a fairly constant

tone. Once the user starts

to modulate the line width

using the illumination con-

dition the impression of

three-dimensionality and

depth is created as shown

in Figure 9.4. If rim shadows

are added to the term this

effect gets even stronger

because the object con-

tours get darker (see Figure

9.5). If now illumination is

additionally used to influ-

ence the line density the

image is brightened and a

grid pattern is created as

can be seen in Figure 9.6. In

order to limit this effect to

a smaller region it is suffi-

cient to multiply the term

with a constant value as

demonstrated in Figure 9.7.

If, in contrast, the range

should be constrained from

the opposite side in order

to create more white space the user can, for

example, take the entire term to the power of

some value as shown in Figure 9.8.This yields

an effect very similar to that of a highlight.

Figure 9.9 demonstrates not only the impor-

tance of the previously discussed shading

expressions but also shows the effect of vary-

ing line distances. These are important for

influencing the viewer's impression of the

communicated degree of detail. In addition,

the combination of several layers of hatching

is shown that allows to articulate the shading

more clearly.

By keeping the line distance almost constant

and only varying the line density to show the

shading creates an effect that comes close to

the one of traditional stippling (see Figure

9.10). However, a better quality of this effect

could be achieved by loosening the determin-

istic dot placement using stochastic influences.

33

Figure 9.3:
thickness = 1

density = 1

Figure 9.4:
thickness = light

density = 1

Figure 9.5:
thickness = light+rim

density = 1

Figure 9.6:
thickness = light+rim

density = light

Figure 9.7:
thickness = light+rim

density = 5rim

Figure 9.8:
thickness = light+rim

density = (5rim)50

Figure 9.9:
Visualization of a
Moai statue using
a variety of differ-
ent effects.

Figure 9.10:
Flower of an
orchid viewed
from the back
using pseudo-
stippling.

10. Conclusion
As it was demonstrated with the examples

the presented approach is very well suited for

creating high quality illustrations. However,

more work is necessary to make this easier.

A big open problem, for example, is an easy

way of creating the direction field. The rather

technical approach we presented above was

intended to make this easy for the user.

However, this way the user does not have

enough possibilities to influence the field. In

many cases it would be desirable to change

parts of the field manually because the direc-

tions generated by the program appear rather

unnatural and do not follow intuitively expect-

ed directions.At that point it would be nice to

have a process that involves the user more

intensively. In addition, it would be beneficial

for the whole process to be able to apply sev-

eral algorithms to different parts of the model.

In this context we envision a 3D paint pro-

gram that allows the user not only to manual-

ly comb the direction field directly on the

model but also to select parts of it by painting

them in order to apply specific algorithms

selectively to this area. This way not only a

binary application of the algorithm would be

possible (i.e., apply it or do not apply it) but

also a weighted influence depending on the

prior painted selection process. This would

rather resemble an image processing work

flow where it is also possible to create a soft

mask that is then used to apply a filter only to

selected parts of the image.

On the other hand, there are still a few prob-

lems with the integration of the streamlines.

The chosen algorithm tends to produces cer-

tain artifacts that disturb the viewer due to

their clearness (see Figure

10.1). This already occurs

in the 2D version of the

algorithm and seems to be

a fundamental problem. In

such cases a streamline

early collides with itself

and this way blocks further

streamlines as well so that

the error extends to a larger area of the sur-

face. One possibility to avoid this would be to

use more care when choosing the starting

vertices of streamlines. A simple yet more

expensive strategy would, therefore, be to first

create all children of a streamline and then

choose the longest one of them. However, not

only the n starting vertices of the children

have to be checked then but also all possible

starting vertices.This would increase the com-

plexity of streamline integration from O(n) to

O(n) and certainly lead to slowing down the

process considerably. Alternatively, a simple

heuristic could be tested that sorts the start-

ing vertices created by the streamlines by how

tangential their direction vectors lie compared

to the original streamline.The intention would

be to fill in the more homogeneous regions of

the surface first. These should generally tend

to contain streamlines that are more even

and, hence, are more tangential.

A completely different approach would be to

hierarchically create streamlines, i.e., to recur-

sively divide the line distances by two if no

more streamlines can be created at a certain

point in time. This is continued until the final

minimum distance has been reached. This

would also have the advantage of being able

34

Figure 10.1:
Streamline artifacts.

to use the created streamline hierarchy to

adjust the number of displayed lines depend-

ing on the distance of the surface to the view-

er.

A different problem, finally, is related to the

previous one. Since our technique works in

object-space the resulting line distances are

not as balanced as they would be in an image-

space method.To avoid this it may be desirable

to use a hybrid approach instead. This means

that for the interactive work with the model

the lines would still be generated in object-

space. However, for the offline image genera-

tion it would be desirable in some cases to fol-

low the approach of Hertzmann and Zorin

(2000) and create the lines only after the

direction field has been projected into image-

space.

35

Literature
[Deussen et al., 1999]

O, Deussen, J, Hamel, A, Raab, S, Schlechtweg and T, Strothotte: An illustration technique using hardware-based
intersections and skeletons. In Proceedings of Graphics Interface ‘99 (1999), Morgan Kaufmann Publishers Inc.,
pp. 175-182.

[Girshick et al., 2000]
A. Girshick,V. Interrante, S. Haker,T. Lemoine: Line Direction Matters: An Argument For The Use Of Principal
Directions In 3D Line Drawings. In Proceedings NPAR 2000 (New York, 2000), ACM Press, pp. 43-52.

[Goldfeather, 2001]
J. Goldfeather: Understanding Errors in approximating principal direction vectors.
Technical Report 01-006, University of Minnesota, 2001.

[Hertzmann and Zorin, 2000]
A. Hertzmann and D. Zorin: Illustrating smooth surfaces.
In Proceedings of SIGGRAPH 2000 (New York, 2000), ACM Press, pp. 517-526.

[Interrante, 1997]
V. Interrante: Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral
Convolution. In Proceedings of SIGGRAPH’97 (New York, 1997), pp. 109-116.

[Isenberg et al., 2002]
T. Isenberg, N. Halper and T. Strothotte: Stylizing Silhouettes at Interactive Rates: From Silhouette Edges to
Silhouette Strokes. Computer Graphics Forum 21-3 (September 2002), pp. 249-258.

[Hsu and Lee 1994]
S. C. Hsu and I. H. H. Lee: Drawing and Animation Using Skeletal Strokes.
In Proceedings of SIGGRAPH’94 (Orlando, July 1997), pp. 109-118.

[Jobard and Lefer, 1997]
B. Jobard and W. Lefer : Creating Evenly-Spaced Streamlines of Arbitrary Density.
In Proceedings of the 8th Eurographics Workshop on Visualization in Scientific Computing (1997), pp. 45-55.

[Kalnins et al., 2003]
R. D. Kalnins, P. L. Davidson, L. Markosian und A. Finkelstein: Coherent Stylized Silhouettes.
In Proceedings of SIGGRAPH 2003 (New York, 2003), ACM Press, pp. 856-861.

[Leister, 1994]
W. Leister : Computer Generated Copper Plates.
Computer Graphics Forum 13-1 (Mar. 1994), pp. 69-77.

[Mäntylä, 1988]
M. Mäntylä: An Introduction to Solid Modeling. Principles of Computer Science.
Computer Science Press, Maryland, U.S.A, 1988, pp. 401.

[Oustromoukhov, 1999]
V. Oustromoukhov: Digital Facial Engraving.
In Proceedings of SIGGRAPH’99 (New York, 1999), ACM Press, pp. 417-424.

[Pnueli and Bruckstein, 1994]
Y. Pnueli and A. M. Bruckstein: DigiDürer - A Digital Engraving System.
The Visual Computer 10-5 (Apr. 1994), 277-292.

[Press, 1992]
W. H. Press, S. A.Teukolsky,W.T.Vetterling and B. P. Flannery: Numerical Recipes in C.
Cambridge University Press, New York, 1992, Second Edition.

36

[Praun et al., 2001]
E. Praun, H. Hoppe, M.Webb and A. Finkelstein: Real-Time Hatching.
In Proceedings of SIGGRAPH 2001 (New York, 2001), ACM Press, pp. 581-586.

[Rössl, 1999]
C. Rössl: Semi-Automatische Methoden für die Rekonstruktion von CAD-Modellen aus Punktdaten.
Diploma Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 1999.

[Rössl and Kobbelt, 2000]
C. Rössl and L. Kobbelt: Line-Art Rendering of 3D-Models.
In Proceedings of WSGC’2000 (2000),The University of West Bohemia, Plzen, Czech Republic, pp. 168-175.

[Salisbury et al., 1994]
M. P. Salisbury, S. E. Anderson, R. Barzel and D. H. Salesin: Interactive pen-and-ink illustration.
In Proceedings of SIGGRAPH’94 (New York, 1994), ACM Press, pp. 101-108.

[Strothotte and Schlechtweg, 2002]
T. Strothotte and S. Schlechtweg: Non-Photorealistic Computer Graphics: Modeling, Rendering, and Animation.
Morgan Kaufmann, San Francisco, 2002.

[Vehmeier, 2002]
B.Vehmeier : Qualität in Liniendarstellungen durch lokale Informationen.
Diploma Thesis, Otto-von-Guericke-Universität Magdeburg, 2002.

[Winkenbach and Salesin, 1994]
G.Winkenbach and D. H. Salesin: Computer-Generated Pen-and-Ink Illustration.
In Proceedings of SIGGRAPH’94 (New York, 1994), ACM Press, pp. 91-100.

[Winkenbach and Salesin, 1996]
G.Winkenbach and D. H. Salesin: Rendering Parametric Surfaces in Pen and Ink.
In Proceedings of SIGGRAPH’96 (New York, 1996), ACM Press, pp. 469-476.

[Zhu et al., 1997]
C. Zhu, R. H. Byrd, P. Lu and J. Nocedal: L-BFGS-B - Fortran Subroutines for Large-Scale Bound Constrained
Optimization. ACM Trans. Math. Software 23-4 (1997), pp. 550-560.

[Zander et al., 2004]
J. Zander,T. Isenberg, S. Schlechtweg, and T. Strothotte: High Quality Hatching.
Computer Graphics Forum (Proceedings of Eurographics), 23(3), September 2004.To appear.

37

Image References
[Hodges, 1989]

Elaine R. S. Hodges: The Guild Handbook of Scientific Illustration.
Van Nostrand Reinhold, New York, 1989.

[Rogers, 1992]
A.W. Rogers: Anatomy.
Churchill Livingston, Edinburgh • Madrid • Melbourne • New York • Tokyo, 1992.

[Tortora, 1997]
Gerhard J.Tortora: Introduction to the Human Body.
Benjamin Cummings, Menlo Park, California • Reading, Massachusetts • New York, 1997,
Fourth Edition.

[Wood, 1994]
Phyllis Wood: Scientific Illustration.
John Wiley & Sons, New York • Chichester • Weinheim • Brisbane • Singapore • Toronto, 1994,
Second Edition.

WWW References and Links
[ClibPDF]

http://www.fastio.com/

[F2C]
http://www.netlib.org/f2c/

[LibArt]
http://www.levien.com/libart/

[OpenNPAR]
http://opennpar.org/

38

	1. Introduction
	2. Illustration Techniques
	3. Related Work
	4. Direction Vector Fields �
	4.1	Curvature Analysis
	4.2	Optimization
	4.3	Tensions Between Neighbors
	4.4	Tensions in Local Neighb...
	4.5	Minimization

	5. Streamlines �
	5.1	Integration
	5.2	Termination Criteria
	5.3	Distance Between Streaml...
	5.4	Implementation Details

	6. Visualization �
	6.1	Hidden Line Removal
	6.2	Line Shading
	6.3	Virtual Machine

	7. Vector Output of Lines

	7.1	OpenGL
	7.2	Quadrangles
	7.3	Miter Limit
	7.4	Rounded Lines
	7.5	Implementation Details
	7.6	Negative Line Widths
	7.7	Line Stippling
	7.8	Point Distances
	7.9	Minimum Dot Distances
	7.10	Line Output

	8. OpenNPAR
	9. Examples
	10. Conclusion
	Literature
	Image References
	WWW References and Links

