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Abstract

In applications such as architecture, early design sketches containing accurate line draw-
ings often mislead the target audience [Schumann et al., 1996]. Approximate human-drawn
sketches are typically accepted as a better way of demonstrating fundamental design con-
cepts. To this end we have designed an algorithm that creates lines that perceptually resem-
ble human-drawn lines. Our algorithm works directly with input point data and a physically-
based mathematical model of human arm movement. Our algorithm generates unique lines
of arbitrary length given the end points of a line, without relying on a database of human-
drawn lines. We found that an observational analysis obtained through various user studies
of human lines made a bigger impact on the algorithm than a statistical analysis. Additional
studies have shown that the algorithm produces lines that are perceptually indistinguishable
from that of a hand-drawn straight pencil line. A further expansion to the system resulted
in mimicked dashed lines.

Key words: Non-photorealistic rendering (NPR), natural media simulation, pencil rende-
ring, dynamic optimization yielding voluntary arm movement trajectory, image processing

1 Introduction

Non-photorealistically rendered images can convey information more effectively
by omitting extraneous detail (abstraction), by focusing the viewer’s attention on
relevant features (emphasis), and by clarifying, simplifying, and disambiguating
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shape [Gooch and Gooch, 2001, Strothotte and Schlechtweg, 2002]. In fact, a dis-
tinguishing feature of non-photorealistic rendering (NPR) is the concept of control-
ling and displaying detail in an image to enhance communication. The control of
image detail is often combined with stylization to evoke the perception of complex-
ity in an image without its explicit representation. NPR imagery, therefore, allows:

• the communication of uncertainty: precisely rendered computer graphics imply
an exactness and perfection that may overstate the fidelity of a simulation or
representation; and

• the communication of abstract ideas: simple line drawings, like the force dia-
grams used in physics textbooks, can communicate abstract ideas in ways that a
photograph cannot.

Although there are many current computer-generated drawing techniques that en-
able the creation of complex stylized images, such stylization techniques are typi-
cally limited to a library of previously drawn strokes and may not provide lines with
the qualities of expressiveness and aesthetics that match hand-drawn illustrations.

The ultimate goal of this research is to capture the essence of a single stroke, drawn
by humans as straight pencil lines of arbitrary length, and encode it into an algo-
rithm. In turn, an application may use this algorithm to produce a line that resem-
bles a human-drawn line, and it could be used to replace traditional computer-drawn
lines (e. g., Bresenham’s line algorithm [1965]).

A challenge in our work is that no precise metric has been developed to generally
differentiate between hand-drawn and computer-generated line drawings, although
some attempts have been made for specific techniques, such as stippling [Maciejew-
ski et al., 2008]. However humans can typically distinguish differences of these re-
sults with relative ease [Isenberg et al., 2006]. For pencil lines this may be due to
changes in grey levels, a variation not proportional to the path, or a glitch in the
path orientation. Such variations make it difficult to produce aesthetically pleasing,
natural looking results that mimic human-drawn lines.

We divide our algorithm for generating a human-like pencil lines into two parts: (a)
synthesizing the path that corresponds to human arm movement and (b) synthesiz-
ing the pencil texture applied along the path [Hsu and Lee, 1994, Schlechtweg et al.,
1998, Strothotte and Schlechtweg, 2002], inspired by the textures produced by real
pencils. Based on this general approach, our algorithm produces high quality simu-
lations of hand-drawn lines, easily incorporated into existing applications, produces
lines of arbitrary length and multiple styles, does not require a library of sample
lines or user specified attributes (as is the case with Sousa and Buchanan’s [2000]
technique); it uses only a grey level dynamic range array and a co-occurrence ma-
trix.

The evaluation of our technique was done by conducting user studies to show that
the proposed approach successfully captures and synthesizes aesthetically pleasing
lines that mimic hand-drawn lines.
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Our contribution, therefore, is a high quality pencil media line reproduction agent
for creating aesthetically pleasing lines that mimic human-drawn lines. For this
purpose, we use methods of image synthesis and a model of human arm movement
for its replication. Our method avoids computationally expensive techniques and
large storage space while continuously producing new, unique lines. In addition,
the algorithm does not require the setting of user-determined parameters (patterns
of deformation, pressure, density, etc) except for a pencil type selection through the
user interface.

A first version of this technique was published in the Computational Aesthetics
Conference 2008 [Meraj et al., 2008]. Building on this initial work, more extensive
research has been done to analyze and compare real and generated line textures
followed by an enhanced explanation of the evaluation strategy. Details involving
the original experimental user studies have been added in addition to two algorithms
for higher resolution textures and dashed lines.

2 Previous Work

Our work draws from research on interactive non-photorealistic rendering methods
that approximate artistic hand-drawn images or paintings. We classify this research
into three categories: (1) research in human line drawing algorithms that use differ-
ent style capturing techniques to achieve a replication of a similar stroke containing
all of its feature characteristics, (2) texture synthesis methods used in research to
reconstruct synthesized images from data taken from natural scenes, and (3) mathe-
matical models replicating unconstrained point-to-point human arm movement tra-
jectories. We review previous work in these three areas in the following.

2.1 Simulating Human Line Drawings

Characteristics of lines in sketched and hand-drawn images have been studied
closely in the field of NPR (e. g., [Isenberg et al., 2006, Cole et al., 2008]). Many
algorithms captured style characteristics and applied multiple parameters (such as
length, width, pressure, etc.). Previous methods [Hsu and Lee, 1994, Schlechtweg
et al., 1998, Strothotte and Schlechtweg, 2002] used such style parameters, applied
a vector or texture representation of the style to a path, and distorted the piecewise
polynomial curve or polygon path to create a stylized line. Other approaches repro-
duced and synthesized similar styles from examples lines [Finkelstein and Salesin,
1994, Jodoin et al., 2002, Kalnins et al., 2002, Freeman et al., 2003, Simhon and
Dudek, 2004, Brunn, 2006].

Our work is inspired by methods that simulate wax crayons (e. g., [Rudolf et al.,
2003]) and pencils as a medium. Specifically the work by Sousa and Buchanan
[1999, 2000] is related to our own, who simulated graphite pencils on a paper
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medium using a two-level system based on microscopic observations [Sousa and
Buchanan, 1999]. Their work focused on generating fill strokes, using it for hatch-
ing purposes to reproduce artistic drawings. Our method differs because our lines
are not restricted to short strokes and can vary greatly in length with no repeating
segments. We also base our work on interactive pen-and-ink illustration by Salis-
bury et al. [1994] who described a level-of-detail system that interactively produces
multiples of strokes to avoid tediously placing them manually. Our algorithm for
drawing lines could easily be incorporated into the above approaches, adding the
benefit of a model of human arm movement and a simple perceptual simulation
model for graphite pencils without the requirement of a library of lines to copy,
paste, and reshape.

Our method differs from example-based methods explained above in that we do not
require example lines to generate unique paths and textures. For each pencil type
there exists two pieces of information in the algorithm, a dynamic range, and a co-
occurrence matrix. We simply only require vector endpoints to produce lines. Our
aim is not to generate varying style from a single given style as seen in example-
based methods, but to develop an algorithm that generates lines that vary in path
orientation and texture synthesis, mimicking human movement and graphite pencil
deposits observed from real straight line drawings on paper.

2.2 Texture Synthesis

We were also influenced by a texture synthesis method based upon sequential syn-
thesis [Gagalowicz and Ma, 1985] that creates a new texture by preserving the sec-
ond order statistics of the natural texture into the newly synthesized texture. Gaga-
lowicz and Ma also provided experimental results demonstrating that the visual
system is only sensitive to second-order spatial averages of a given texture field,
which is one of the reasons we adopted such methodology. More recent texture syn-
thesis research renames second order statistics (spatial averages) [Gagalowicz and
Ma, 1985] using the term co-occurrence (CC) models or grey level co-occurrence
(GLC) models [Copeland et al., 2001]. These are defined as the proportion of sec-
ond order probability statistics of pairs of grey levels when their locations differ by
a delta in the texture field plane. Copeland et al. [2001] used a texture similarity
metric based on the texture field of a model texture. The multi-resolution version
of their algorithm “Spin Flip” demonstrated satisfactory performance and resulted
in pleasing outputs.

Zalesny and Gool’s work [2001] also introduced a texture synthesis method based
on image intensity statistics by collecting first order statistics, measured using an
intensity histogram, and then extracting the co-occurrence matrix (CCM) by sam-
pling with point pairs defining a vector. The CCM stores the distribution of intensity
differences between the pair of pixels for a given orientation of the vector. The con-
ventional way of calculating the CCM is by summing all the joint probabilities of
intensities for a given pixel neighbourhood into their relative position in the CCM.
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Zalesny and Gool point out that the results are better for textures that contain con-
siderable variations, but at some computation cost. In our work we found that the
conventional method to acquire the co-occurrence matrix gave adequate results and
there was no advantage to be gained using this technique since the textures we use
are not so complex.

2.3 Mathematical Models of Human Arm Movement

In order to produce a good simulation of a human line drawing, we also exam-
ined studies of the coordination of voluntary human arm movements. Human mo-
tor production has been analyzed, modeled and documented for well over a century
[Woodworth, 1899, Bernstein, 1967, Adams, 1971, Schmidt, 1975]. Over the past
few decades, theories of the functions of the central nervous system (CNS) with
respect to human arm movement lead to the hypothesis of various mathematical
models [Flash and Hogan, 1985, Uno et al., 1989, Bizzi et al., 1991, Mazzoni et al.,
1991, Kawato and Gomi, 1992, Contreras-Vidal et al., 1997]. According to these
CNS theories, arm movements are produced in either one of two ways: (1) nat-
ural movements maintain a constant ratio of angular velocities of joints to bring
reduction in control complexity and constrain the degrees of freedom; or (2) hand
trajectories are in extra-corporal space, joint rotations and additional non-physical
parameters are tailored to produce the desired or intended hand movements.

Plamondon’s model [1995] described a synergy of agonist and antagonist neuro-
muscular systems involved in the production of arm movements. He developed his
theory by modeling the impulse responses to neuromuscular activities; His system
produced a close proximity bell-shaped velocity profile to represent an entire point-
to-point movement.

The minimum jerk model introduced by Flash and Hogan [1985] formulated an
objective function to solve a dynamic optimization problem for measuring the per-
formance of any possible movement as the square of the jerk (rate of change of
acceleration) of the hand position integrated over an entire movement from start to
end positions. Flash and Hogan [1985] showed that the unique trajectory of planar,
multi-joint arm movements that yields the best performance was in agreement with
experimental data. Their analysis was based solely on the kinematics of movement
and independent of the dynamics of the musculoskeletal system as in the work done
by Plamondon [1995].

We adopt the Flash and Hogan model because this model produces trajectories that
resemble physical arm movements in a planar field, and because it achieves the best
time performance independent of the dynamics of the musculoskeletal system.
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3 The Human Line Algorithm

Our algorithm combines a number of separate steps or stages in order to success-
fully synthesize realistic straight and dashed pencil lines. First, we perform a close
analysis of lines acquired through user studies of both short, long, and dashed lines.
Based on the observational study and a model of human-arm movement, we can
construct an method to generate a realistic path. We then synthesize a suitable pen-
cil lead texture at a high resolution. Our algorithm has been tested on various forms
of input data and verified via a perceptual experiment.

An overview of the complete system is shown in Figure 1. The first step (Phase
A) is a one-time pre-processing stage that captures the statistical properties of hand-
drawn lines. Each pencil type is used to draw a model semi-straight (fairly accurate)
line that is scanned into the computer; analysis of the line captures grey levels that
are stored as a histogram and a Co-occurrence Matrix (CCM).

The second step in the line generation process (Phase B) is as follows: First, the
input from the user consists of a pencil type and end points of lines to be drawn.

(1)                                    (2)                                        (3)

Range
[ 56
  43
  57
  22
  73
  ...
  ..]

CCM
[3  7  4  . .
 5  23 2  . .
 . . . 
 . . . 
 . . .   
 . . 
 . .  .            ]

(4)                                      (5)                                       (6)

A:    Capturing the Statistics

B:  Re-using Pencil Types

Choose Pencil Type:
  HB
  H
  F
  B
  3B 
  6B
  8B

Fig. 1. An overview of the line drawing system. Phase A (top), capturing of the pencil style
from an original drawing by scanning it in (1), capturing the dynamic range of the pencil
line (2); and (3) capturing the CCM of the line and storing it together with the histogram.
The second phase B (bottom), selecting a pencil type in (4); loading a 3D model into 2D
space (5); and finally (6) the resulting illustration of applying the selected pencil type to the
model.
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These points can be placed on the screen using mouse or tablet, or read in from text
files formatted to include start and end points of all segments (postscript files). The
main algorithm consists of the following steps:

(1) Initialize the set of statistical values for the pencil type selected (from the data
stored in phase one).

(2) Input user provided point positions into the model of human-arm movement
to generate line paths.

(3) Synthesize pencil textures and place modified textures along the line to repre-
sent a real pencil texture.

(4) Output the final textured lines to the display.

Our approach uses the concept of path and style [Strothotte and Schlechtweg, 2002],
a human arm trajectory model by Flash and Hogan [1985], and a co-occurrence tex-
ture synthesis technique similar to that of Gagalowicz and Ma [1985]. The system
creates lines that are always unique, both in path and texture. This is achieved by
performing a distribution of texture across the resulting path aligned with its ori-
entation, and using the pencil style co-occurrence matrix to make the line texture
closely resemble an original pencil sample. The trajectory path may also require
creating a smooth spline along the line depending on the line length.

3.1 Short and Long, Straight and Dashed Line Observations

This section covers the observations we made when conducting two user studies to
observe the hand-drawing of pencil lines. The first of these studies concentrated on
solid lines, while the second one analyzed lines with different kinds of dotted and
dashed patterns. We compare our observations with results previously presented
such as the models by Schlechtweg et al. [1998], Sousa and Buchanan [1999], or
Kalnins et al. [2002].

The main aim of both studies was to capture: the pencil texture and path devia-
tions from various path orientations; how the pencil texture appeared for different
line orientations; whether the pencil texture properties can be classified into groups
depending on line orientation; how the human arm performs its movement when
drawing different line orientations; how much the line path is affected by the hu-
man arm movement; and the path and texture of dashed lines.

Participants included 12 volunteer students and faculty from the Computer Science
department at the University of Victoria, Canada. A video recorder was used to cap-
ture the complete arm movements and drawing process of the participants. This
proved very useful when making the decision of whether or not to use a mathemat-
ical arm movement model to replicate human movement.

Each study took 3 minutes to complete on average. Participants were seated in front
of a horizontal desk at a reasonable distance (see Figure 2(a)), and were asked to sit

7



(a) Study setup. (b) Connecting lines from circles to squares.

Fig. 2. Pencil drawing study.

upright, hold the pencil steadily, draw lines at a comfortable pace, not to move the
papers position throughout the experiment, not to draw over the lines once already
done, not to erase anything, and to adhere to starting and ending points.

The participants were given sheets of paper with circles and squares (Figure 2(b)).
A circle defined a starting point and a square defined an ending point for a line to
be drawn. Each study paper was placed in a frame created on the table to ensure
that the user kept the paper in one position as he or she drew. While this also leads
to awkward drawing postures at times, we wanted to observe how this affects the
line quality, and through our setup we always included comfortable positions as
well. The ultimate goal was to collect standard line drawing with the least amount
of bias possible.

In the first user study participants drew solid lines that ranged from horizontal,
vertical, and angled lines of three different lengths (short (≤ 5 cm), medium (≤
10 cm), and long (≤ 25 cm)). The objective assigned to participants in this first user
study was to draw straight lines as specified between the given dots while not using
a dot more than once and to adhere to dot starting and ending points. With the same
objectives, the second user study acquired different styles of dashed lines that the
user drew horizontally, either from left to right or vise versa. Sample line figures
were placed on each sheet of paper to give the participants an exact idea of what
was expected.

The ideas collected from this experiment formed the basis of our Human Line Al-
gorithm. For example, when observing straight lines drawn on paper in random
orientations from a starting position to an ending position, the amount of deviation
found in paths for different line orientations were approximately equal and a large
observational significance was not noticed. In addition, we noticed some other ir-
regular and inconsistent characteristics that may be interesting to examine in the
future but do not affect the reproduction quality of our lines such as: a slight curve
near the end of some lines, slight perturbation of the paths to either side of the
center, and variation in pencil darkness along the lines.
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The following observations have influenced the implementation of our Human Line
Algorithm for pencil line synthesis. We noticed that long lines (≤ 25 cm) tend to
have more irregularity along the sides of the pencil texture and deviation from the
path. The widths of the lines varied from start to finish (due to pressure and pen-
cil handling), this coincided with the change in grey levels along the line, caused
mostly by distributed pressure.

The observations for short lines, medium and dashed lines (≤ 10 cm) revealed that
widths of the lines are fairly constant from start to finish, however the tips of short
and dashed lines are less tapered than longer lines. Changes in grey levels along
the shorter lines are barely noticeable and the path deviation from the line centre is
less evident.

We noticed some commonality between the different dashed lines we collected in
our studies, in particular, that the line widths remain fairly constant for each dash.
The pencil textures are similar for all dashes, they contain a small percentage of
light grey pixels and do not (or very rarely) contain any white pixels. The start
and end points of each dash do not always taper. Pencil pressure is slightly higher
for alternate dashes. All of the observed paths follow approximately the same path
simulated by the Flash and Hogan model for lines.

None of our observations identify distinguishable features for any type of angled
line including horizontal and vertical. Orientation is also a missing parameter in
the Flash and Hogan mathematical model but as our observations show, orientation
does not appear to play a role in the ability to create algorithms for reproducing
human-like lines.

3.2 Flash and Hogan User Studies

Flash and Hogan’s model is also based solely on observational conclusions, not
on neuro-muscular limitations or facts about how humans move their arms. Flash
and Hogan evaluated their model by comparing their simulated trajectories to mea-
sured hand trajectories. Planar horizontal arm movements were recorded using an
apparatus (see Figure 3) involving a horizontal table and a mechanical two-link ma-
nipulandum held by the hand of the user. The user’s shoulders were restrained in all
the experiments. The joint angles of the apparatus were measured by precision po-
tentiometers. Data analysis was performed to compute the hand position and joint
angles. Lagrange polynomial differentiation was used to calculate joint angular ve-
locities, hand velocities, and curvature of the path.

Flash and Hogan [1985] specifically noted the lack of invariance of joint trajec-
tories to translation and rotation of the movements compared to the invariance of
hand paths and speed profiles, due to the assumptions they made in the initial op-
timization stage. Very little discussion was made as to how the lines were actually
perceived and how the observational conclusions were drawn. We also noticed the
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Fig. 3. Apparatus used by Flash and Hogan [1985] to measure arm trajectories in a horizon-
tal plane. Movement of the hand was measured using potentiometers P1 and P2.

lack of rotational variation in our user studies (Section 3.1) and subsequent evalua-
tion studies (Section 5).

3.3 The Path

We construct a path that conforms to a human arm trajectory using the method
described by Flash and Hogan. We use this method as it provides “the smoothest
motion to bring the hand from an initial position to the final position in a given
time” [Flash and Hogan, 1985]. Our goal is to simulate a hand-drawn line only
given two points. The Flash and Hogan model produces trajectories that (1) are
invariant under translation and rotation and (2) whose shape does not change with
amplitude or duration of the movement. All of these conclusions were based on
observations of low frequency movements of human subjects. No high frequency
movements were observed or implemented. Our work follows through with the
same assumptions.

The mathematical model of Flash and Hogan satisfies our criteria in that it leads to a
fast and interactive line path algorithm by providing a realistic overall velocity and
acceleration profile, as well as trajectory. Our user studies conducted in Section 3.1
show that the disparity of the line orientation was not noticed by the users and did
not effect the overall classification criteria used by participants.

The algorithm for synthesizing a path operates upon two points, representing an
initial and a final position of a segment. The points can be entered into the system
using one of the three previously mentioned methods

Every point pair is used to specify the start and end position of the path to be
generated by the Flash and Hogan model (Equation 1). The mathematical model
produces the trajectory (the path) control points that are then used as input for a
Catmull-Rom spline.
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Our lines are defined by Equation 1, a fifth order polynomial:

x(t)= x0 +(x0− x f )(15τ
4−6τ

5−10τ
3)+D

y(t)= y0 +(y0− y f )(15τ
4−6τ

5−10τ
3)+D (1)

where τ =
t
t f

, t ∈ [0,2], and D = n, n ∈ [−5,5]

and in which x0,y0 are the initial hand position coordinates at time increment t = 0,
and x f ,y f are the final hand positions at t = t f . The value of t is the continuous pa-
rameter for generating the path, defined in the interval [0,2]. It begins with the start
position t0 and ends with final position t f . We found empirically that the average
time needed to move the hand from an initial position to a final position for the line
lengths we specify should be t f = 2. We found empirically that this provides the
most satisfactory results.

The trajectory points provide control points for a Catmull-Rom interpolating spline
[Shirley et al., 2005]. Catmul-Rom has the advantage of interpolating control points
reasonably reproduces the variations of a human line. We chose this over b-splines
since b-splines do not interpolate control points and in a high-degree form b-splines
are not easy to control. The number of points (defined by the time step, ∆t) depends
on the length of the line. Experimental evidence [Flash and Hogan, 1985] shows
that short hand drawn lines are perceptually closer to straight lines and longer lines
have more variation. We conducted experiments to find reasonable values for ∆t and
provide the results in Table 1. Figure 4 shows the positions of the control points for
three lines of varying length using each of the prescribed values for ∆t.

approx. line length in pixels approx. line length in cm time step ∆t

[0,200] ≤ 5 0.5

(200,400] ≤ 10 0.3

> 400 ≤ 25 0.2
Table 1
Empirical Values for the time step ∆t.

The straight line data collected from the first pilot study explained in Section 3.1
showed considerably more variation from the center line than can be accounted for
with the variation of trajectories calculated by Equation 1.

To represent this variation, we introduce a deviational parameter called squiggle (in
pixels) as an extension to the Flash and Hogan model.

The squiggle as defined and implemented in previous work by Strothotte and
Schlechtweg [2002] acts as a control variable; by setting its value to a maximal
amplitude, random displacements are used to give the appearance of a more irregu-
lar path. We adopt this as an additional term seeing it necessary to provide sufficient
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(a) Short line.

(b) Medium Line.

(c) Long line.

Fig. 4. Generated lines and control point positions for varying lengths. For time steps of (a)
∆t = 0.5, for (b) ∆t = 0.3 and for (c) ∆t = 0.2. The red dots represent the control point.

variation in the line paths based on our observations of human drawn drawings. 1

We further define squiggle as a variable, D, for controlling the deviation approxi-
mately normal to the Catmull-Rom spline at each of the lines control points also
similar to methods used by Strothotte and Schlechtweg [2002]. The magnitude of
the squiggle parameter controls the magnitude of random displacements applied
to the Catmull-Rom spline’s controls points and, therefore, strongly influences the
appearance of the path.

The deviational value is applied approximately normal to the Catmull-Rom spline
at each of its control points. The variable D (see Equation 1) varies randomly based
on a C++ pseudo-random number generator in order to provide variation along the
path, producing independent displacement values for each control point. Empiri-
cally we found a range [−5,5] (in pixels) to work for the lines regardless of the line
length. The result of applying the deviation factor is shown in Figure 5, as well as
our texturing scheme and spline incorporation.

3.4 The Pencil Line Texture

After having determined the path of the pencil line to draw, we need to generate
its texture. Using a texture synthesis technique, our method produces aesthetically
pleasing pencil textures that mimic human-drawn lines. This is possible through
closely observing the textures of the human-drawn lines gathered in the initial user
study as discussed in Section 3.1.

These observations are then incorporated into our own observational model of
graphite pencil on paper and used as a basis for our approach. The emphasis is
on the graphite texture distribution and natural appeal, not on the paper quality or
attributes of graphite deposits. The goal was to capture the natural appearance of
graphite texture and develop a way to semi-accurately display them through a gen-
erated process.

1 We conducted a number of experiments to validate this choice, see Section 5 for details.
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Path Without Texture Path With Texture

(a)

Path Without Squiggle Path With Squiggle

(b)

Path Without Catmull-Rom Spline Path With Catmull-Rom Spline

(c)

Fig. 5. This figure shows trajectories that can be generated using our path algorithm. It
offers a comparison between various trajectories shown (a) with and without texture, (b)
with and without squiggle, and (c) with and without a Catmull-Rom interpolating spline
incorporated.

As briefly mentioned before, the texture synthesis algorithm is divided into two
steps, (Figure 1). Phase A (texture extraction) gathers information from a wide
range of graphite pencils—ranging from soft ones to hard ones—from scans of
human drawn lines and creates a statistical profile from these. We then analyze
the lines for their statistical information and store them as histograms and co-
occurrence matrices. A co-occurrence matrix (CCM) is defined as the tabulation
of how often different combinations of pixel values (intensities) occur in any given
image. Based on this data, the pencil type selection, and the user’s input lines, Phase
B (texture synthesis) generates synthetic pencil textures along the line paths.

Our pencil texture synthesis algorithm starts generating the line texture using a
pixel metric (pixels per inch) by distributing random grey values along the line’s
path, applies the CCM for the pencil type, and finally applies a Gaussian filter.
The texturing method used here is inspired by the use of second order statistics,
also called grey-level co-occurrence matrices (GLCM) [Gagalowicz and Ma, 1985,
Copeland et al., 2001, Zalesny and Gool, 2001]. Verification later revealed that
the synthesized textures represent a striking similarity to human made ones (see
Section 5). In the following subsections we provide details about the texture statistic
capturing as well as the texture synthesis steps.

3.4.1 Texture Extraction

For each pencil type, we extract its statistical profile in form of a co-occurrence
matrix (CCM, a second order statistics of textures) by analyzing example lines from
our study in a pre-processing step. Choosing co-occurrence matrices to synthesize
texture have been shown to be extremely efficient in human texture discrimination
[Julesz and Bergen, 1987]; the amount of data necessary to achieve the synthesis is
very small and the texture can be generated easily to fit all kinds of surface shapes
and sizes. Using this method allows us to control the second-order spatial averages

13



of a given texture, since the synthesis is achieved directly from these second order
statistics without the computation of higher order statistics [Gagalowicz and Ma,
1985]. Also, texture similarity techniques using CCM probability distribution have
shown to have high correlation with human perception of textures (the generated
images appear to be very similar visually to the original natural textures).

Copeland et al. [2001] showed in their work on psychophysical experiments of syn-
thesis algorithms that human vision is sensitive to second order statistics, where
a texture similarity metric was shown to have a high correlation with human per-
ception of textures. Therefore, we used second order statistics to synthesize lines
textures.

In our approach, we scanned texture samples from graphite pencil types 2H, H, HB,
F, B, 3B, 6B, 8B and then analyzed them statistically. The pencil textures used for
this process were acquired on plain, 20 lb long grain, 100% recycled, A4 smooth
white paper.

The scanned texture samples were then analyzed in order to extract their statistical
profile. First, we determine the range of grey levels for pixels along the approx-
imate centre of the pencil line (non-repeating Catmull-Rom control points) and
record them in a histogram within the range [minmid,maxmid]. This serves as a start-
ing point to imitate the bell-shaped curve property we noticed when analyzing the
statistical information of the sample pencil textures. We discuss how to simulate
this effect in the synthetic lines in Section 3.4.2.

Next, we determine the histogram of the grey levels for the complete line image,
assuming that white pixels surround each line segment when scanned in. The his-
togram records intensities in the range [minrange,maxrange]. This histogram serves
as the basis of the lines pencil texture. Finally, we compute the grey level co-
occurrence matrix (CCM) for the line image.

To determine the co-occurrence matrix (CCM), each image is acquired on a flatbed
scanner so that the line is approximately vertical. The co-occurrence matrix is up-
dated by examining each pixel (p,q) with value i∈ [0,255] and its immediate neigh-
bour in the positive y-direction, (p,q +1) with value j ∈ [0,255]. The values (i, j)
are indices to the appropriate cell of the co-occurrence matrix C defined over an
n×m image I, parameterized by an offset (∆x, ∆y) ≡ (0,+1) as in Equation 2:

CCM(i, j) =
n

∑
p=1

m

∑
q=1

 1 i f I(p,q) = i andI(p+∆x,q+∆y) = j

0 otherwise
(2)

The CCM probabilities for any single displacement are tabulated in the form of a
256×256 matrix (to ensure all possible combinations of grey levels are accounted
for) with i serving as the row index and j serving as the column index. Since very
few white pixels appear inside the line image, we do not consider the white pixels
of the histogram when generating the pencil textures.
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3.4.2 Texture Synthesis

We use both the histogram and the co-occurrence statistics of a target pencil texture
to synthesize new textures. We formulate our own grey value distribution technique
according to statistical observations that indicate, for most pencil lines, the distribu-
tion of grey pixel values starts at a dark value in the middle of the line and falls off
according to the bell-shaped curve in the direction normal to the line. This can be
seen in Figure 6. From analyzing scanned lines we used visualization techniques
using Matlab software to view the complete data set in 3D view.

Fig. 6. The approximately bell-shaped curve showing intensity values of cross sections of
a lines drawn with a 6B pencil.

First, we fill the line with initial random values (using the histogram for the pre-
selected pencil type) and then apply the co-occurrence matrix. The initial line fill
includes a random grey value fill of all points along the line and limited to the
predefined width.

According to the bell-shaped fall-off that we observed, we distribute grey levels
across the centre pixels of the generated spline, replicating the histogram in the
range [minmid,maxmid]. The approximate direction normal to the line is determined
and the pixels along this direction to either side of the centre pixel are set to values
randomly chosen in the range [minrange,maxmid] and pixels further to the side of the
path are given a lighter intensity in the range [maxmid,maxrange], 2 following the
example illustrated in Figure 7.

The random function defined uses a flat, uniform distribution. This serves its pur-
pose since the second step of the algorithm applies pixel manipulations to create a
texture using the CCM.

Next, the co-occurrence matrix is used to re-organize the initial random values to

2 Due to the wide range of grey pixel values extracted from real line, these intensity ranges
may overlap.
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Fig. 7. Initial synthesized line texture. Placing the grey dynamic range values across the
width and length of the path uniformly.

a more suitable pattern that causes the synthesis of a texture that is similar to the
sample texture. The ultimate goal of this process is to produce a final synthesis with
a quality that has more visual similarity to the target texture, and not focus as much
on the numerical measure of error between the CCMs of the synthesized and model
texture as in [Copeland et al., 2001]. We achieve this through synthesizing a texture
from a CCM.

Next, the CCM is applied by comparing a 3 × 3 neighbourhood of pixels. If the
combination of pixel intensities does not exist in the CCM, the neighbouring pixel’s
grey value is replaced with an existing neighbouring value from the co-occurrence
matrix. The CCM encodes the fact that a neighbourhood relation exists by assigning
1 to CCM(i, j) where i is the grey and index value of the point and j is the grey and
pixel value of the neighbour, and assigning 0 to CCM(i, j) otherwise. Because the
model textures are taken from lines of set lengths, its is not possible to calculate
a quantitative measure of error between the two matrices, the synthesized and the
model.

This co-occurrence correction process is repeated over the entire line multiple times
until the amount of pixel changes for each step reach a minimum (pixel combina-
tions equal zero), indicating how well the synthesized co-occurrence matrix repre-
sents the model CCM. An example result is shown in Figure 8.

Fig. 8. The values of the pixels are analyzed and pairs of pixels are compared to their indices
in the co-occurrence matrix and replaced with an appropriate value if their pair does not
exist.

Once the CCM correction stage is complete, a final step is performed. We apply a
single-pass Gaussian filter to the generated lines to reduce tone differences and filter
out aliasing effects (Figure 9). Further investigation of this method could better
address line aliasing, such as using a multi-pass Gaussian filter, to enhance the
quality of the presented lines. However, even without such further adaptation, our
texture synthesis model enables the synthesis of perceptually convincing textures
of a pencil line as shown in Figure 9. 3

3 In Section 4 we show more results of the synthetic pencil line algorithm along with
comparisons to real drawn textures.
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Fig. 9. A 3 × 3 single-pass Gaussian filter is then applied resulting in the final pencil line
texture.

3.5 Pencil Resolution

In order to improve the results of our pencil line synthesis technique we examined
how the scan resolution affects the results. For this purpose we obtained higher-
resolution scans of hand-drawn pencil lines and re-analyzed them using our proce-
dure. In addition to the previously described technique explained in Section 3.4.2,
we also addressed the small changes in line width that we observed in hand-drawn
samples. While the line images in the previous sections have been scanned in at
around 100 ppi and generated at the same resolution, the new samples were scanned
and images were synthesized at 800 ppi.

After each scan, we slightly changed the scanning procedure and adjusted the bright-
ness levels of the scanned textures. This became necessary because we noticed that
scanners automatically change the brightness levels in individual scans. Therefore,
to match an approximate target range of grey values we scanned in a grey level
ramp at extremely high resolution 2400 ppi, with 16 bit grey scale. Necessary ad-
justments in PhotoShop were applied to calibrate the scanned grey levels to the
approximate brightness of the grey level ramp, this is done by comparing the ramp
to each image and adjusting the gamma levels to the same brightness. We then use
this second set of adjusted pencil textures as a foundation for our higher resolution
line generations.

We used an LCD screen as an output medium. The resulting grey levels of higher
resolution images appear better in print than lower resolution images, but still more
work needs to be done to improve the quality of the line generation for printing. We
leave this as a problem for future work.

In addition, we applied line width variations to achieve a more realistic effect of the
pencil textures. This was accomplished by applying Perlin noise to the width param-
eter of the synthesized line textures to obtain a more irregular appearance along the
sides of the generated pencil texture. The specific Perlin noise function we use is
made up of adding several noise functions together and gives the effect of natural
randomness [Perlin, 2002], this is then added to the sides of the pencil texture to
give a more natural appeal. A selection of final results is shown in Figure 10.

3.6 Dashed Lines

As another aspect of pencil line drawing, our approach can reproduce dotted or
dashed lines. People use dashed lines, for example, to differentiate various parts
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Pencil Real Generated High Resolution

2H

HB

B

6B

Fig. 10. This figure shows real and generated high resolution pencil textures for a few of
the pencil types. The grey levels have been modified and result in better screen and printed
image quality.The generated images also include Perlin noise to enhance realism of the
generated line texture hrough randomizing the line width slightly along the path.

of a drawing. To be able to mimic these styles we used the results of the second
part of our first user study that collected various hand-drawn examples of different
types of dashed lines (see Section 3.1). Once acquired, the lines were also scanned,
brightness re-adjusted, and processed for their statistical information (histogram
and CCM) as were the continuous lines. The overall grey-level pixel average for
the dashes is used to generate a dashed line. In the user study, three types dashing
schemes were acquired from the participants as seen in Table 3. This is an initial
attempt to study dashed lines, and further studies could be made to look closer at
more styles of dashed or dotted lines.

Closer observations on the different features of the humans-drawn dashed lines
from our studies resulted in clear distinctions between three dashing schemes: For
the dashed lines of Type 1, the spaces between the dashes are approximately as long
as the dash itself and are repeated consecutively. The grey levels of the dashes are
all applied with similar pressure. The dashes most often miss one of the endpoints.
However, the spaces between each consecutive dashes for the Type 2 scheme are
slightly larger than the spaces between each two dashes. We observed that the pres-
sure of each consecutive dash is slightly darker than that of the first in the hand-
drawn lines. Type 3 dashed lines have relatively short spaces between every three
dashes while the space between groups of three dashes is relatively larger. In Ta-
ble 4 we show examples for how our synthesized dashed lines compare to real
hand-drawn dashed lines.

We assign dash lengths depending on the length of the dashed lines. Samples of
dashed lines that were drawn by our participants showed that dashes in longer lines
are drawn with longer strides and larger spaces. Shorter lines are drawn with shorter
dashes and shorter spaces in general. Figure 11 illustrates how we divide and la-
bel the dashed lines for replication. We call the smaller gaps between dashes that
are found in type two and three of the dashed lines, M-Gaps (Median gaps). The
larger gaps found in all the styles in Table 3 are called G-Gaps (Group gaps). We
conducted experiments to find reasonable values for these lengths and provide the
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Fig. 11. Dashed line labeling scheme.

results in Table 2.

Approx. dash lengths Dash length Type 1. Dash length Type 2. Dash length Type 3.

[0,200] 15−25 15−25 10−20

(200,400] 20−30 25−30 20−30

> 400 25−45 35−40 30−45
Table 2
Empirical values for the gap lengths for the three styles of dashed lines used in this algo-
rithm. All units are in (pixels)

The G-Gaps are set to be within a range of [50,70] pixels. This resulted in pleasing
dashed images seen in Table 4.

Type Example Dashed Lines

1

2

3

Table 3
Three types of dashed lines used for synthesis: single, double, and triple dashed lines.

Real Generated

Table 4
Examples of real and generated dashed lines for the three dashing types.

4 Results

The human line drawing system is implemented through the Qt framework in C++
using OpenGL, and runs on a 2.00 GHz Intel dual core processor workstation with-
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out any additional hardware assistance. We can interactively draw lines while the
system synthesizes the new path and texture. The system has shown to be successful
at assisting users in easily producing a variety of images. All line drawing figures
in this paper indicated as “generated by HLA” were drawn using our Human Line
Algorithm (HLA) system.

Currently each pencil line can be rendered using the HLA in 0.24 of a second per
line. This is then followed by a postprocess step to apply a gaussian blur. The speed
of the algorithm has lots of room for improvements.

Line 1. Real human 2. “HLA”-generated 3. “HLA”-generated
type line lines lines, no CCM

H

HB

B

3B

6B

8B

Fig. 12. Line samples: comparison of hand-drawn lines with synthesized lines and synthe-
sized lines not using the CCM (deviation parameter set to zero).

To verify the need for an approach that employs statistics, Figure 12 shows a com-
parison between real textures in column 1, generated textures not using a CCM in
column 2 (without Step 2 of the synthesis process), and the final synthesized lines
in column 3. The placement of all variants side-by-side makes it easier to see the
differences between the cases. When analyzed closely, it can be seen that the con-
trol of texture composition is more evident in the images of column 3. The CCM
applied texture is more homogeneous and big variations between pixel grey values
in surrounding neighbourhoods are not noticeable. The textures not using the CCM
step in column 2 (only using the grey value distribution technique) are less faithful
to textures generated by humans: the white and dark pixel arrangements in these
textures give a sense of disorganization and do not represent the smoothness that
can be seen in true graphite pencil drawn lines.
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(a) Hand-drawn image. (b) Generated image. (c) Study setup.

Fig. 13. In our verification study we asked participants whether pencil images were hand–
drawn or generated. Here we show samples of these images and the experimental setup.

5 Verification

We verify the quality of our technique with a study in which participants are asked
to decide whether they thought an image was hand-drawn or computer-generated.
In this study we concentrate only on the continuous lines to better be able to appre-
ciate the aspect of pencil line texture, rather than the influence of a path or a dash-
ing pattern. Our study uses 18 images, nine of which were scanned human-made
drawings and the other nine replicate real drawing paths but rendered with our line
algorithm. Some samples of the images used and the study setup are shown in Fig-
ure 13. Eleven participants took part in our study, all graduate and undergraduate
students in the department. Each participant spent three seconds viewing each im-
age and then selecting true if they thought the drawing was hand-made, false if they
thought the drawing was computer-generated. In doing this we also implicitly ask
about the line aesthetics, assuming that the hand-drawn aesthetics of sketched lines
is our goal, being relevant for a number of applications (e. g., [Schumann et al.,
1996]). The viewing time of three seconds was chosen empirically such that par-
ticipants had enough time to compare drawings without having too much time to
over-analyze their decision.

Out of the 42% of mistakes made by all subjects, 69.5% of the decisions selected im-
ages to be hand-drawn (when they were actually computer-generated) and 30.5% of
the wrong choices selected images to be computer-generated (when they were actu-
ally hand-drawn). This means that the ratio of mistakes that were made of choosing
a computer-generated line to be real compared to real lines thought to be computer-
generated was about 2 : 1. A paired sample t-test showed that our computer-
generated lines were significantly more often thought to be hand-drawn than hand-
drawn lines were thought to be computer-generated (paired t(10) = 2.849, p < .05).
This result suggest that the computer-generated pencil line drawings were good
enough to often pass for hand-drawn ones.
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(a) Gosper’s Flowsnake. (b) Dragon curve.

Fig. 14. Two space filling curves using a B pencil generated by HLA.

6 Applications

We applied our technique to a number of different example domains. Our line gen-
eration (both straight and dashed) can easily be integrated into existing graphics
programs that produce line end points, including systems in which the line paths
are editable by artists or additional algorithms. Our technique only requires the se-
lection of a pencil type and the specification of the end points for each line. For
example, Figure 14 shows two space-filling curves, Gosper’s Flowsnake [Gardner,
1976] and the dragon curve, rendered with human-like lines using the B pencil set-
ting.

The synthesized lines are applied to each of the short individual line segments of
each curve. The drawings could be improved by detecting co-linear segments and
processing them as a single, longer line to better emulate a human drawing.

In Figure 15, hatching lines are generated and replaced with synthesized lines. We
can simulate the effect of hatch-like fill strokes, where each line is unique. The
individual unit squares seen in this image were generated using the Life Game
algorithm and filled with a basic hatching method.

Fig. 15. Line hatching generated by HLA (6B pencil).

In Figure 16 vector lines are extracted from a hand drawn illustration and then
used as input to the HLA algorithm resulting in the image shown in Figure 16(c).
In comparison, the artist who drew the original image Figure 16(a) seems to have
used the assistance of some sort of ruler, while we chose to add more randomness
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to the lines. This is not a perfect example of the algorithm at work, but is used to
show some rather different affect that can be achieved from HLA.

(a) Hand-drawn illustration. (b) Extracted vector lines. (c) Our result.

Fig. 16. Our method takes as input lines specified via their start and end points, such as
the vector line drawing in (b). The goal is to produce a line drawing that mimics a real
hand-drawn graphite pencil image as seen in (a). This is done by modeling human arm
trajectory and a statistical model of graphite texture to produce unique, natural looking
lines (c), with the aesthetics of hand-drawn pencil lines but without the need for databases
of example strokes.

For enhanced affects, higher resolutions can be obtained by selecting an option in
the application interface. Figure 17(a) shows an example where the output from a
CAD application (an object with 36-edges) was replaced by our lines while Fig-
ure 17(b) shows the same object rendered with dashed lines. In both cases a simu-
lated 8B pencil was used. Figure 18 presents an additional example of dashed lines
applied to input vectors lines.

Figure 19 demonstrates an architectural drawing rendered using our lines. This
example shows the variability of the line paths when compared with the original
straight line drawing, provides a convincing hand made image.

(a) (b)

Fig. 17. A 36-sided object generated by HLA with a simulated 8B pencil, both solid (low
resolution) and dashed (higher resolution).
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(a) 6B pencil. (b) HB pencil. (c) 6B pencil.

Fig. 18. Dashed line representation of a group of rectangles and of a cube in higher resolu-
tion.

(a) Pure vector lines. (b) Simulated pencil.

Fig. 19. A barn generated by HLA (H pencil in low resolution).

Finally, by capturing lines (e. g., through tablets) or generating lines from images,
the pencil style can be applied to those drawings as well. An example of latter
scenario is shown in Figure 20 in which the lines extracted from a pixel image
were rendered using our techniques.

In summary, we have applied our work in this paper to four genres: space-filling
curves, architectural drawings (e. g., CAD, Google’s Sketch up), line patterns gen-
erated from the Life Game, and reproductions of artist’s drawings.

7 Conclusion and Future Work

The main contribution of this work is a technique and system that can synthesize
high quality and aesthetically pleasing pencil lines, mimicking those drawn by hu-
mans. Our technique is based on observations of humans drawing pencil lines, both
in terms of the line trajectories observed and the textures this process produces.
Our algorithm combines texture synthesis with a model of human arm movement
to generate unique textures and paths for each line processed. The algorithm avoids
computationally expensive techniques and large storage space, thus can easily be
applied interactively as an additional step to any process that produces continu-
ously changing unique lines. We verified the results our system produces with a
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Fig. 20. Using lines extracted from a photograph with HLA: first, the image is filtered to
extract a version in which edges are emphasized; then, the result is vectorized, finally, line
output of this step is rendered using a simulated H type pencil.

user study which suggested that our computer-generated pencil line drawings were
good enough to often pass for hand-drawn line drawings.

More investigation is needed to mimic the appearance of pressure along the lines.
Choosing parameters that will make the lines appear to have more character will
also increase the aesthetic property of the lines. While we have temporarily in-
cluded a squiggle factor to compensate for the extra deviation found in longer lines,
we hope that through further research we can determine how the human field of
view or other factors contribute to the waviness problem of longer lines. More stud-
ies should be conducted to rectify problems with print quality.

Similar approaches to the work documented here may work for drawing curved
lines (an initial result is shown in Figure 21), but further investigation would be nec-
essary to correctly mimic the resulting graphite textures on curved paths. Also more
work can be done to mimic human hatching through similar observation-based stud-
ies, recording the relationship between arm and wrist movement when producing
shorter strokes. Figure 15 is our first attempt to consider hatching as an application,
more experiments and analysis are needed to present accurate human hatching tech-
niques.
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Fig. 21. Example curve generated by HLA, using the Flash and Hogan curve optimization
methods, inspired by Finkelstein and Salesin [1994].
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