
Scale-Dependent and Example-Based Grayscale Stippling

Domingo Mart́ın1 Germán Arroyo1 M. Victoria Luzón1 Tobias Isenberg2,3

1 University of Granada, Spain 2 University of Groningen, The Netherlands 3 DIGITEO & CNRS/INRIA, France

Abstract

We present an example-based approach to synthesizing stipple illustrations for static 2D images that produces scale-
dependent results appropriate for an intended spatial output size and resolution. We show how treating stippling as a
grayscale process allows us to both produce on-screen output and to achieve stipple merging at medium tonal ranges. At
the same time we can also produce images with high spatial and low color resolution for print reproduction. In addition,
we discuss how to incorporate high-level illustration considerations into the stippling process based on discussions with
and observations of a stipple artist. Also, certain features such as edges can be extracted and used to control the
placement of dots to improve the result. The implementation of the technique is based on a fast method for distributing
dots using halftoning and can be used to create stipple images interactively. We describe both a GPU implementation of
the basic algorithm that creates stipple images in real-time for large images and an extended CPU method that allows a
finer control of the output at interactive rates.

Keywords: Stippling, high-quality rendering, scale-dependent NPR, example-based techniques, illustrative visualization

1. Introduction

Stippling is a traditional pen-and-ink technique that is pop-
ular for creating illustrations in many domains. It relies on
placing stipples (small dots that are created with a pen)
on a medium such as paper such that the dots represent
shading, material, and structure of the depicted objects.
Stippling is frequently used by professional illustrators for
creating illustrations, for example, in archeology (e. g., see
Figure 2), entomology, ornithology, and botany.

One of the essential advantages of stippling that it
shares with other pen-and-ink techniques is that it can be
used in the common bilevel printing process. By treating
the stipple dots as completely black marks on a white
background they can easily be reproduced without losing
spatial precision due to halftoning artifacts. This prop-
erty and the simplicity of the dot as the main rendering
element has lead to numerous approaches to synthesize
stippling within Non-Photorealistic Rendering (NPR), de-
scribing techniques for distributing stipple dots such that
they represent a given tone. Unfortunately, computer-
generated stippling sometimes creates distributions with
artifacts such as unwanted lines, needs a lot of computa-
tion power due to the involved computational complexity
of the approaches, cannot re-create the merging of stipple
dots in middle tonal ranges that characterizes many hand-
drawn examples, or produces output with dense stipple
points unlike those of hand-drawn illustrations.

To address these issues, our goal is to realize a stippling
process for 2D images (see example result in Figure 1) that
is easy to implement, that considers the whole process
of hand-made stippling, and that takes scale and output

Figure 1: An example stipple image created with our technique.

devices into account. For this purpose we do not con-
sider stippling to always be a black-and-white technique,
in contrast to previous NPR approaches (e. g., [1]). In
fact, we use the grayscale properties of hand-made stipple
illustrations to inform the design of a grayscale stipple
process. This different approach lets us solve not only
the stipple merging problem but also lets us create output
adapted to the intended output device. To summarize, our
paper makes the following contributions:

• an analysis of high-level processes involved in stip-
pling and a discussion on how to support these using
image-processing,

• a method for example-based stippling in which the
stipple dot placement is based on halftoning,

• the scale-dependent treatment of scanned stipple
dot examples, desired output, and stipple placement,

Preprint submitted to Computers & Graphics November 19, 2010

• a grayscale stippling process that can faithfully repro-
duce the merging of stipples at middle tonal ranges,

• the enabling of both print output in black-and-white
and on-screen display in gray or tonal scales at the
appropriate spatial and color resolutions,

• an optional special treatment of image edges that
improves the control of the placement of stipples,

• a technique that is easy to implement and permits
the interactive creation of stipple images,

• a description of a GPU implementation of the basic
technique, and

• a comparative analysis of the stipple dot placement
statistics for both the hand-drawn example and gen-
erated synthetic stipple images.

This article is an extended version of a paper [2]
published at NPAR 2010. The remainder is structured
as follows. First we review related work in the context
of computer-generated stippling in Section 2. Next, we
analyze hand-made stippling in Section 3, both with re-
spect to high-level processes performed by the illustrator
and low-level properties of the stipple dots. Based on this
analysis we describe our scale-dependent grayscale stip-
pling process in Section 4. We analyze the performance
and describe a GPU implementation in Section 5, before
discussing the results in Section 6. We conclude the paper
and suggest some ideas for future work in Section 7.

2. Related Work

Pen-and-ink rendering and, specifically, computer-genera-
ted stippling are well-examined areas within NPR. Many
approaches exist to both replicating the appearance of
hand-drawn stipple illustrations and using stippling within
new contexts such as animation. In the following discus-
sion we distinguish between stipple rendering based on 3D
models such as boundary representations or volumetric
data on the one side and stippling that uses 2D pixel
images as input on the other.

The variety of types of 3D models used in computer
graphics is also reflected in the diversity of stipple ren-
dering approaches designed for them. There exist tech-
niques for stippling of volume data [3, 4] typically aimed
at visualization applications, stipple methods for implicit
surfaces [5, 6], point-sampled surfaces [7, 8], and stip-
pling of polygonal surfaces [9, 10]. The placement of
stipple dots in 3D space creates a unique challenge for
these techniques because the viewer ultimately perceives
the point distribution on the 2D plane. Related to this
issue, animation of stippled surfaces [11, 12] presents an
additional challenge as the stipples have to properly move
with the changing object surface to avoid the shower-door
effect. A special case of stippling of 3D models is the
computation in a geometry-image domain [13] where the

stippling is computed on a 2D geometry image onto which
the 3D surface is mapped.

While Yuan et al. [13] map the computed stipples back
onto the 3D surface, many approaches compute stippling
only on 2D pixel images. The challenge here is to achieve
an evenly spaced distribution that also reflects the gray
value of the image to be represented, an optimization
problem within stroke-based rendering [14]. One way
to achieve a desired distribution is Lloyd’s method [15,
16] that is based on iteratively computing the centroidal
Voronoi diagram (CVD) of a point distribution. Deussen
et al. [17] apply this technique to locally adjust the point
spacing through interactive brushes, starting from initial
point distribution—generated, e. g., by random sampling
or halftoning—in which the point density reflects the in-
tended gray values. The interactive but local application
addresses a number of problems: the computational com-
plexity of the technique as well as the issue that automat-
ically processing the entire image would simply lead to
a completely evenly distributed set of points. Thus, to
allow automatic processing while maintaining the desired
density, Secord [18] uses weighted Voronoi diagrams to
reflect the intended local point density. A related way of
achieving stipple placement was explored by Schlechtweg
et al. [19] using a multi-agent system whose RenderBots
evaluate their local neighborhood and try to move such
that they optimize spacing to nearby agents with respect
to the desired point density.

Besides evenly spaced distributions it is sometimes
desirable to achieve different dot patterns. For instance,
Mould [20] employs a distance-based path search in a
weighted regular graph that ensures that stipple chains are
placed along meaningful edges in the image. In another
example, Kim et al. [21] use a constrained version of
Lloyd’s method to the arrange stipples along offset lines
to illustrate images of faces. However, in most cases the
distribution should not contain patterns such as chains of
stipple points—professional illustrators specifically aim to
avoid these artifacts. Thus, Kopf et al. [22] use Wang-
tiling to arrange stipple tiles in large, non-repetitive ways
and show how to provide a continuous level of detail while
maintaining blue noise properties. This means that one
can zoom into a stipple image with new points continu-
ously being added to maintain the desired point density.

In addition to stipple placement, another issue that has
previously been addressed is the shape of stipple points.
While most early methods use circles or rounded shapes to
represent stipples [17, 18], several techniques have since
been developed for other shapes, adapting Lloyd’s method
accordingly [23], using a probability density function [24],
or employing spectral packing [25].

It is also interesting to examine the differences be-
tween computer-generated stipple images and hand-drawn
examples. For example, Isenberg et al. [26] used an
ethnographic pile-sorting approach to learn what people
thought about both and what differences they perceive.
They found that both the perfectly round shapes of stipple

2

Figure 2: Hand-drawn stipple image by illustrator Elena Piñar of the Roman theater of Acinipo in Ronda, Málaga (originally on A4 paper). This image
is © 2009 Elena Piñar, used with permission.

dots and the artifacts in placing them can give computer-
generated images away as such, but also that people still
valued them due to their precision and detail. Look-
ing specifically at the statistics of stipple distributions,
Maciejewski et al. [27] quantified these differences with
statistical texture measures and found that, for example,
computer-generated stippling exhibits an undesired spa-
tial correlation away from the stipple points and a lack
of correlation close to them. This lead to the exploration
of example-based stippling, for instance, by Kim et al.
[1]. They employ the same statistical evaluation as Ma-
ciejewski et al. [27] and use it to generate new stipple
distributions that have the same statistical properties as
hand-drawn examples. By then placing scanned stipple
dots onto the synthesized positions Kim et al. [1] are
able to generate convincing stipple illustrations. However,
because the technique relies on being able to identify the
centers of stipple points in the hand-drawn examples it has
problems with middle tonal ranges because there stipple
dots merge into larger conglomerates.

This issue of stipple merging in the middle tonal ranges
is one problem that remains to be solved. In addition,
while computer-generated stippling thus far has addressed
stipple dot placement, stipple dot shapes, and animation,
other aspects such as how to change an input image to
create more powerful results (i. e., how to interpret the
input image) have not yet been addressed.

3. Analysis of Hand-Drawn Stippling

To inform our technical approach for generating high-
quality computer-generated stipple illustrations, we start
by analyzing the process professional stipple illustrators
perform when creating a drawing. For this purpose we
involved a professional stipple artist and asked her to ex-
plain her approach/process using the example illustration
shown in Figure 2. From this analysis we extract a number
of specific high-level processes that are often employed
by professional stipple artists that go beyond simple dot
placement and use of specific dot shapes. We discuss these
in Section 3.1 before analyzing the low-level properties of
stipple dots in Section 3.2 that guide our synthesis process.

3.1. High-Level Processes
The manual stipple process has previously been analyzed
to inform computer-generated stippling. As part of this
analysis and guided by literature on scientific illustration
(e. g., [28]), researchers identified an even distribution of
stipple points as one of the major goals (e. g., [17, 18])
as well as the removal of artifacts (e. g., [22, 27]). Also,
Kim et al. [1] noted the use of tone maps by illustrators
to guide the correct reproduction of tone. While these
aspects of stippling concentrate on rather low-level prop-
erties, there are also higher-level processes that stipple
artists often employ in their work. Artists apply prior

3

(a) Original photograph, Roman theater of Acinipo in Ronda, Málaga. (b) Interpreted regions.

Figure 3: Original photograph and interpreted regions for Figure 2.

knowledge about good practices, knowledge about shapes
and properties of the depicted objects, knowledge about
the interaction of light with surfaces, and knowledge about
the goal of the illustration. This leads to an interpretation
of the original image or scene, meaning that stippling goes
beyond an automatic and algorithmic tonal reproduction.

To explore these processes further we asked Elena
Piñar, a professional illustrator, to create a stipple illustra-
tion (Figure 2) from a digital photo (Figure 3(a)). We
observed and video-recorded her work on this illustration
and also met with her afterwards to discuss her work
and process. In this interview we asked her to explain
the approach she took and the techniques she employed.
From this conversation with her we could identify the
following higher-level processes (see Figure 3 for a visual
explanation with respect to the hand-made illustration in
Figure 2 and photograph in Figure 3(a)). While this list is
not comprehensive, according to Elena Piñar it comprises
the most commonly used and most important techniques
(some of these are mentioned, e. g., by Guptill [29]). Also,
each artist has his or her own set of techniques as part of
their own personal style.

Abstraction: One of the most commonly used techniques
is removing certain parts or details in the image
to focus the observer’s attention on more important
areas. In our example, the sky and some parts of
the landscape have been fully removed (shown in
violet in Figure 3(b)). In addition, removing areas
contributes to a better image contrast.

Increase in contrast: Some parts of the original color
image exhibit a low level of contrast, reducing their
readability when stippled. To avoid this problem il-
lustrators increase the contrast in such regions (green
area) through global and local evaluation of light-
ness, enhancing the detail where necessary.

Irregular but smoothly shaped outlines: If objects in an
image are depicted with a regular or rectilinear shape
they are often perceived as being man-made. To
avoid this impression for natural shapes, stipple artists
eliminate parts of these objects to produce an irregu-
lar form and add a tonal gradient (yellow).

Reduction of complexity: It is not always possible to re-
move all unimportant areas. In these cases the
complexity or amount of detail is reduced. This
effect is shown in orange in Figure 3(b): the artist
has removed some small parts that do not contribute
to the illustration’s intended message.

Additional detail: As visible in the red areas in Figure 3(b),
some parts that are not (or not clearly) visible in the
original are still shown in the illustration. Here, the
illustrator has enhanced details of the rocks based
on her prior knowledge.

Inversion: Sometimes artists convert very dark zones or
edges into very clear ones to improve the contrast.
This technique is applied subjectively to specific parts
of the drawing rather than to the image as a whole.
In the hand-made stippled drawing the cracks be-
tween rocks are shown in white while they are black
in the original photograph (blue in Figure 3(b)).

Despite the fact that these high-level processes are an
integral part of hand-drawn stipple illustration, computer-
generated stippling techniques have largely concentrated
on dot placement and dot shapes. This is understandable
as these low-level processes can be automated while the
higher-level processes to a large degree rely on human
intelligence and sense of aesthetics. To be able to incorpo-
rate higher-level interpretations of images, therefore, we
manually apply global and local image processing opera-
tions to the input image (Figure 4). Instead of directly
using a gray-level input image (Figure 4(a)) we first apply

4

(a) Grayscale version of Figure 3(a).

(b) Adjusting global contrast and local detail of (a).

(c) Manually added edges, inversion, local contrast.

Figure 4: Deriving the helper image to capture the high-level stippling
processes.

pre-processing to accommodate the identified high-level
processes. Following the list of processes given above
(see Figure 4(b)), we remove non-relevant parts from
the image such as the sky and parts of the background.
Also, we increase the contrast globally but also increase
the brightness of some regions locally. Next, we locally
delete parts of natural objects and smooth the border of
these regions. To reduce the complexity of certain parts
such as the metal grid we select these regions and apply a
large degree of blur. Adding elements based on previous
knowledge typically requires the artist painting into the
image. Some additional information, however, can be
added with algorithmic support, in particular edges that
border regions that are similar in brightness such as the
top borders of the ruin. We support this by either extract-
ing an edge image from the original color image, taking
only regions into account that have not been deleted in
Figure 4(b) and adding them to the helper image. Alter-
natively, artists can manually draw the necessary edges as
shown in Figure 4(c). Finally, inversion can be achieved
by also manually drawing the intended inverted edges
as white lines into the touched-up grayscale image (see
Figure 4(c)).

While this interactive pre-processing could be included
into a comprehensive stipple illustration tool, we apply
the manipulations using a regular image processing suite
(e. g., Adobe Photoshop or GIMP). This allows us to make
use of a great variety of image manipulation tools and
effects to give us freedom to achieve the desired effects.
The remainder of the process, on the other hand, is im-
plemented in a dedicated tool. Before discussing our
algorithm in detail, however, we first discuss some low-
level aspects of hand-drawn stipple dots that are relevant
for the approach.

3.2. Low-Level Properties of Stipple Dots
Stipple dots and their shapes have been analyzed and
used in many previous computer stippling techniques, in-
spired by the traditional hand-drawn stippling. Hodges
[28] notes that each dot should have a purpose and that
dots should not become dashes. In computer-generated
stippling, therefore, dots have typically been represented
as circular or rounded shapes1 or pixels that are placed
as black elements on a white ground. However, each
use of a pen to place a dot creates a unique shape (e. g.,
Figure 5) which is partially responsible for the individual
characteristics of a hand-made stipple illustration. Thus,
recent computer-generated stippling employed scans of
dots from hand-made illustrations to better capture the
characteristics of hand-drawn stippling [1].

We follow a similar approach and collected a database
of stipple points from a high-resolution scan of a hand-
drawn original illustration, a sample of which is shown in

1Aside from more complex artificial shapes that have also been used
but that are not necessarily inspired by hand-drawn stippling, see Sec-
tion 2.

5

Figure 5: Enlarged hand-drawn stipple dots (scanned at 1200 ppi).

Figure 5. These stipple dots are not all equal but have
varying shapes and sizes. One can also notice that the
stipples are not completely black but do exhibit a grayscale
texture. This texture is likely due to the specific interaction
of the pen’s ink with the paper and typically disappears
when the stipple illustration is reproduced in a printing
process. This lead to the assumption that stipple dots are
always completely black marks on a white background as
used in much of the previous literature. However, the
grayscale properties of real stipple dots are a character-
istic of the real stippling process which one may want
to reproduce provided that one employs an appropriate
reproduction technology. In addition, we also make use
of these grayscale properties for realizing a technique that
can address one of the remaining challenges in stippling:
the merging of dots in the middle tonal ranges.

4. A Grayscale Stippling Process

Based on the previous analysis we now present our process
for high-quality example-based stippling. In contrast to
previous approaches, our process captures and maintains
the stipple image throughout the entire process as high-
resolution grayscale image, which allows us to achieve
both stipple merging for the middle tonal ranges and
high-quality print output. Also, to allow for interactive
control of the technique, we use Ostromoukhov’s [30] fast
error-diffusion halftoning technique to place the stipples.
Below we step through the whole process by explaining
the stipple placement (Section 4.1), the stipple dot selec-
tion and accumulation (Section 4.2), and the generation
of both print and on-screen output (Section 4.3). In
addition, we discuss adaptations for interactive processing
(Section 4.4).

4.1. Stipple Dot Placement using Halftoning
Our stippling process starts by obtaining a grayscale ver-
sion of the target image using the techniques described
in Section 3.1. In principle, we use this image to run
Ostromoukhov’s [30] error-diffusion technique to derive
locations for placing stipple dots, similar to the use of
halftoning to determine the starting distribution in the
work by Deussen et al. [17]. However, in contrast to
their approach that adds point relaxation based on Lloyd’s
method, we use the locations derived from the halftoning
directly which allows us to let stipple dots merge, unlike
the results from relaxation (see Figure 6). The reason
for choosing a halftoning technique over, for example,

Figure 6: Basic process: one black pixel in the halftoning image is
converted to one dot in the final image.

distributions based on hand-drawn stipple statistics [1]
is twofold. The main reason is that halftoning has the
evaluation of tone built-in so that it does not require a tone
map being extracted from the hand-drawn example. The
second reason lies in that halftoning provides a continuum
of pixel density representing tonal changes as opposed
to the approach of using both black pixels on a white
background for brighter regions and white pixels on a
black background for darker areas as used by Kim et al.
[1].

Specifically, we are employing Ostromoukhov’s [30]
error-diffusion, partially because it is easy to implement
and produces results at interactive frame-rates. More im-
portantly, however, the resulting point distributions have
blue noise properties, a quality also desired by related
approaches [22]. This means that the result is nearly free
of dot pattern artifacts that are present in results produced
by many other error-diffusion techniques, a quality that is
important for stippling [28].

Using a halftoning approach, however, means that
we produce a point distribution based on pixels that are
arranged on a regular grid, in contrast to stipples that can
be placed at arbitrary positions. In addition, we cannot
use the grayscale input image in the same resolution as the
intended output resolution for the stipple image. Let us
use an example to better explain this problem and describe
its solution. Suppose we have a hand-stippled A4 image
(in landscape) that we scan for analysis and extraction of
stipple dot examples at 1200 ppi.2 This means that the
resulting image has roughly 14,000 × 10,000 pixels, with
stipple dot sizes ranging from approximately 10 × 10 to
20 × 20 pixels.3 If we now were to produce an equiva-
lent A4 output image at 1200 ppi, would hence use an
14,000 × 10,000 pixel grayscale image, and compute its
halftoned version at this size, each pixel in this image
would represent one dot. This means we would need to
place scanned stipple dots (whose average size is 16 × 16

2Please notice that ppi stands for pixels per inch and is used intention-
ally while dots per inch (dpi) is used when we discuss printing.

3These values are derived from the example in Figure 2 (done with a
pen with a 0.2 mm tip) and can be assumed to be valid for many stipple
images as similar pen sizes are used by professional illustrators [28].

6

Figure 7: Effect of the packing factor.

pixels, this is equivalent to a spatial size of 0.338 mm,
slightly larger than the nominal size of 0.2 mm of the tip of
the used pen) at the pixel locations of the halftoned image.
Consequently, this would produce a result that is 16×
larger than the intended output image and reproducing it
at A4 size would result in the characteristics of the stipple
dot shapes being lost because each stipple would again be
shrunken down to the size of approximately one pixel.

Therefore, for a given output resolution reso we com-
pute the dot distribution using error-diffusion halftoning
at a smaller halftoning resolution resht , which implies that
the halftoning image must be obtained by scaling the input
image. The value of the scaling is the halftoning factor fht .
Intuitively for our 1200 ppi example, one could suggest
a halftoning factor fht whose value is 1

/
16 of reso to

compute resht , using the average stipple’s diameter of 16
pixels:

resht = fht · reso ; fht = 1
/

16 ; reso = 1200 ppi . (1)

In a completely black region and for ideally circular
stipples, however, this would result in a pattern of white
spots because the black dots on the grid only touch. To
avoid this issue one has to use a factor fht of

√
2/16 to

allow for a denser packing of stipple points such that they
overlap (see Figure 7). For realistic stipple points with non-
circular shapes one may even have to use a fht of 2

/
16

or more. On the other hand, even in the darkest regions
in our example the stipple density is not such that they
completely cover the canvas. Thus, we leave this choice
up to the user to decide how dense to pack the stipples,
and introduce a packing factor fp to be multiplied with fht
to control the density of the stipples:

fht = fp
/

16 . (2)

For fp = 1 and, thus, fht = 1
/

16 we would perform
the halftoning in our example on an image with size
875 × 625 pixels to eventually yield a 1200 ppi landscape
A4 output. For other output resolutions, however, the
situation is different. Because the stipples have to use
proportionally smaller pixel sizes for smaller resolutions

(a) Grid placement of stipples. (b) After random perturbation.

Figure 8: Magnified comparison of stipple placement before and after
random perturbation of the stipple locations.

to be reproduced at the same spatial sizes, the factor
between output image and halftoning image has to change
proportionally as well. For example, for a 600 ppi output
resolution the average stipple’s diameter would only be
8 pixels, and consequently fht would only be 1

/
8 . Thus,

we can derive the halftoning resolution resht for a given
output resolution reso in ppi based on the observations we
made from scanning a sample at 1200 ppi as follows:

resht = fht · reso ; fht =
fp ·1200 ppi

16 · reso

resht = 75 ppi · fp . (3)

This means that the halftoning resolution is, in fact, inde-
pendent of the output resolution. Consequently, the pixel
size of the halftoning image only depends on the spatial
size of the intended output and the chosen packing factor
(and ultimately the chosen scanned example stippling
whose stipple dot size depends on the used pen).

This leaves the other mentioned problem that arises
from computing the stipple distribution through halfton-
ing: the stipple dots would be arranged on a regular grid,
their centers always being at the centers of the pixels from
the halftoning image. To avoid this issue, we perturb the
locations of the stipple dots by a random proportion of
between 0 and ±100% of their average diameter, in both
x- and y-direction. Together with the random selection
of stipple sizes from the database of scanned stipples and
the blue noise quality of the dot distribution due to the
chosen halftoning technique this successfully eliminates
most observable patterns in dot placement (see Figure 8).

4.2. Stipple Dot Selection and Accumulation
We begin the collection of computed stipple points by
creating a grayscale output buffer of the desired resolution,
with all pixels having been assigned the full intensity (i. e.,
white). Then we derive the stipple placement by re-scaling
the modified grayscale image to the halftoning resolution
and running the error-diffusion as described in the previ-
ous section. Based on the resulting halftoned image and
the mentioned random perturbations we can now derive
stipple location with respect to the full resolution of the
output buffer.

For each computed location we randomly select a dot
from the previously collected database of stipple dot scans.

7

(a) Lighter region. (b) Darker region.

Figure 9: Merging of synthesized stipples at two tonal ranges.

This database is organized by approximate stipple dot
sizes, so that for each location we first determine the
size class using a random function that follows a uniform
distribution (all the sizes have the same probability) or
a normal distribution centered on the average size, and
then randomly select a specific dot from this class. The
selection of which random function to use is of aesthetic
nature and left up to the user. The default random func-
tion uses the uniform distribution, producing a less regular
result. The selected dot is then added to the output
buffer, combining intensities of the new stipple dot is
and the pixels previously placed into the buffer ibg using
(is · ibg)/255 (for 8 bits). This not only ensures that stipples
placed on a white background are represented faithfully
but also that the result gets darker if two dark pixels are
combined (accumulation of ink; for example, given is = 45
and ibg = 64, the result is 11 which is darker than the
original values).

Both the range of stipple sizes and the partially random
stipple placement ensure that stipples can overlap. This
overlapping is essential for our approach, it ensures the
gradual merging of stipples into larger conglomerates as
darker tones are reproduced (see example in Figure 9).
Therefore, we can for the first time simulate this aspect of
the aesthetics of hand-drawn stippling.

4.3. Generation of Print and Screen Output
One challenge that remains is to generate the appropriate
output for the intended device. Here we typically have
two options: on-screen display and traditional print repro-
duction. These two options for output differ primarily in
their spatial resolution and their color resolution. While
normal bilevel printing offers a high spatial resolution
(e. g., 1200 dpi), it has an extremely low color resolu-
tion (1 bit or 2 bit) while typical displays have a lower
spatial resolution (approximately 100 ppi) but a higher
color resolution (e. g., 8 bit or 256 bit per primary). These
differences also affect the goals for generating stipple
illustrations. For example, it does not make much sense
to print a grayscale stipple image because the properties
of the individual stipple points (shape, grayscale texture)
cannot be reproduced by most printing technology, they
would disappear behind the pattern generated by the
printer’s halftoning [31]. In contrast, for on-screen display
it does not make sense to generate a very high-resolution
image because this cannot be seen on the screen.

(a) Grayscale. (b) Black and white. (c) Dithered.

Figure 10: Details of the 1200ppi outputs with the grayscale, black and
white, and halftoning process.

Therefore, we adjust our stippling process according
to the desired output resolutions, both color and spatial.
For output designed for print reproduction we run the
process at 1200 ppi, using a stipple library from a 1200 ppi
scan, and compute the scaling factor for the halftoning
process to place the stipples accordingly. The resulting
1200 ppi grayscale output image is then thresholded using
a user-controlled cut-off value, and stored as a 1 bit pixel
image, ready for high-quality print at up to 1200 dpi (e. g.,
Figure 16). These images, of course, do no longer contain
stipples with a grayscale texture but instead are more
closely related to printed illustrations in books.

As a print reproduction alternative we also provide the
option to apply a dedicated halftoning step (using Ostro-
moukhov’s [30] error-diffusion algorithm) to a grayscale
stippling result. This allows us to maintain the grayscale
properties of the stipple dots even in a black-and-white
output medium such as print (Figure 10). For instance,
for 1200 dpi output we can reproduce approximately 32
grayscale tones, while bypassing the problem that many
printers apply a Postscript dithering which is limited com-
pared to Ostromoukhov’s stochastic dithering. On suffi-
ciently high-resolution (1200 dpi and higher) printers, the
dedicated dithering allows us to maintain the grayscale
properties of the stipple dots while the dither pattern is
close to being unnoticeable.

For on-screen display, in contrast, we run the process
at a lower resolution, e. g., 300 ppi (while 300 ppi is larger
than the typical screen resolution, it also allows viewers
to zoom into the stipple image to some degree before
seeing pixel artifacts). For this purpose the stipples in the
database are scaled down accordingly, and the appropriate
scaling value for the halftoning process is computed based
on average stipple size at this lower resolution. The
resulting image (e. g., Figure 18) is smaller spatially but
we preserve the texture information of the stipples. These
can then be appreciated on the screen and potentially be
colored using special palettes (e. g., sepia). In addition,
grayscale stipple images can also be used for special con-
tinuous tone printing processes such as dye-sublimation.

4.4. User Interaction
Several parameters of the process can be adjusted inter-
actively according to aesthetic considerations of the user,
in addition to applying the high-level processes (parallel

8

(a) Original. (b) DoG filter. (c) Improved with DoG. (d) Sobel filter. (e) Improved with Sobel.

Figure 11: Details of the improvement in the placement of borders dots (the images of the filters are scaled).

or as pre-processing). The most important settings are
the intended (spatial) size and output resolution because
these affect the resolutions at which the different parts of
the process are performed. For example, a user would
select A5 as the output size and 300 ppi as the intended
resolution. Based on this the (pixel) resolution of both
output buffer and halftoning buffer are derived as outlined
in Section 4.1. To control the stipple density, we let the
users interactively adjust the packing factor (the default
value is 2). In addition we let users control the amount
of placement randomness as a percentage of the average
size of the stipple dots (the default value is 25%). This
means that we specify the packing factor and placement
randomness based on the average stipple size at the cho-
sen resolution, which results in visually equivalent results
regardless of which specific resolution is chosen.

4.5. Stipple Dot Placement Improvements
Of course, our general approach is not without flaws. One
problem arises from the use of halftoning on a resolution
lower than the output one to derive stipple distributions
because this initially leads to the stipples being placed on
a grid. While we address this grid arrangement by in-
troducing randomness to the final stipple placement, this
also leads to noise being added to otherwise clear straight
lines in the input image. This effect can be observed by
comparing the upper edge of the ruin in Figure 16 with
the same location in the hand-made example in Figure 2
where the line of stipple dots is nicely straight.

Given the importance of lines and borders in the il-
lustration process, we address this issue by analyzing the
local character of the source image. We detect the edges
in the source image using an edge detector. These border
filters produce grayscale images, with darker values show-
ing that borders are nearer. This value is used to control
the random displacement of the stipple dots: the degree
of the detected edge (de, value between 0 and 1) controls
the maximum random displacement, i. e., it is used as
a factor for the stipple points average diameter as used
in the displacement computation. Figure 11 illustrates
this displacement process, showing that reducing the dis-
placement for stipples dots on edges reduces the noise
introduced for these effects. While the improvement is
subtle in these detail images, it is more visible in complete
images (see the examples in Figures 20–21). This seems
to be a global perception since the dots are better placed

overall in the image, producing a more contrasted and
defined result.

Specifically, we experimented with the Sobel operator
[32] because it is fast to compute and with the Differ-
ence of Gaussians (DoG) [33] because it relates to the
processing in the human perceptual system. While there
is no ideal method to compute the borders to control the
random displacement, the ones we implemented allow
users to experiment with the effects by controlling their
parameters.

The control of randomness of stipple dot placement is
combined with other measures to reduce the noise on lines
and borders. These measures include more control over
the sizes of the stipple dots using a random selection that
follows a normal distribution centered around the mean
dot size to ensure that most dots on a line or border have
the same mean size which maintains the aesthetic of more
regularity of stipple placement on these lines.

In addition, the dot placement needs to be controlled
based on the visual center of the scanned dot so that lined-
up dots also visually form a line. The concept of a visual
center is based on the observation that, while the scanned
dots are embedded in a regular and square grid, they
do not have to have a regular shape or ink distribution
and the geometric center of the grid is not necessarily
the visual center. For example, the dot may have one
main dark zone that is close to a corner, or there may be
two dark zones, etc. For computing the visual center we
use a straightforward approach—we ‘posterize’ each dot
image: First, the number of gray levels is reduced to a low
number of levels, usually between 4 and 7 (see Figure 12).
Then, the mean position of the pixels in the darkest level is
computed and recorded as the stipple dot’s visual center.

All techniques used together allow us to improve the
treatment of borders and lines in the stipple images but
still fail to solve all issues. For example, our resolution-
dependent stippling requires us to scale the input image to
the size of the halftoning image, which is then subjected
to the halftoning process to inform the stipple placement.
The linear interpolation employed in this scaling process
leads to a distribution of gray values that, after halftoning,
may lead to the black pixels used for stipple dot placement
not being aligned even though the original was a perfectly
straight line. This produces patterns as shown in Figure 13.
We leave the treatment of this problem for future work.

9

Figure 12: High resolution dots (left) and their ‘posterized’ versions
(right) for determining the dots’ visual centers.

Figure 13: Scaling problem with non horizontal straight lines.

5. Performance and GPU Implementation

An important aspect to discuss about the stippling process
is its computation and rendering performance. While we
can easily allow interactive work with the CPU implemen-
tation at resolutions of up to 300 ppi for A4 output, the
process is less responsive for larger images. For example,
stippling the image shown in Figure 4(c) takes approxi-
mately 0.51, 0.25, and 0.13 seconds for A4, A5, and A6
output, respectively, while a completely black input image
requires 1.41, 0.70, and 0.36 seconds, respectively (Intel
Core2 Duo E6600 at 3GHz with 2GB RAM, running Linux).
However, our approach can easily allow users to adjust the
parameters interactively at a lower resolution and then
produce the final result at the intended high resolution
such as for print output. For example, stippling Figure 4(c)
on A4 at 1200 dpi in black-and-white takes approximately
10.1 seconds while a completely black image requires
approximately 15.2 seconds. We ensure that both low-
and high-resolution results are equivalent by inherently
computing the same halftoning resolution for both reso-
lutions using the resolution-dependent scaling factor and
appropriately seeding the random computations.

We can improve the performance of the computation
by implementing the stipple dot placement on the GPU.
This is particulary useful for systems where the CPU is
slower than the GPU such in some notebooks or netbooks
or when the technique is used on high-resolution or large
displays. For this purpose we store the library of scanned
stipple points in a texture, load the halftoned image into
another texture, generate a texture with random numbers
due to the CPU producing better pseudo-random numbers
than the GPU, and prepare a frame buffer object (FBO) to
record the final output as shown in Figure 14.

We then create a fragment shader that takes over the
task of placing the stipples which is the time-consuming
part in the CPU implementation but which can be highly
parallelized on the GPU. To create this shader we have to

Blending
FBO 1 FBO 2

Random
numbers

Halftoning
image

Stippling
points
library

Blending

Figure 14: Three textures are passed to a fragment shader program: the
halftoning, the stippling points, and a texture containing random values.
The image is rendered into a frame buffer object (FBO). The partial result
is blended with the previous one. Two FBOs are needed for this process
because a FBO cannot feed itself.

consider that a shader only sees the fragment it is process-
ing without being able to look into its neighborhood and
that the shader is computed in parallel for many fragments
at a time. The latter, in particular, means that the shader
could potentially compute contributions for the same out-
put fragment but that arise from different input fragments
due to the overlapping neighboring stipple dots (from
packing and random offset). However, since the fragment
shaders cannot operate recursively, we need to ensure that,
while placing one stipple dot, no other neighboring stipple
dots are being placed. We avoid the processing of overlap-
ping stipple dots by only computing dots on a regular grid
in one pass, spaced apart in both the horizontal and the
vertical direction (see Figure 15). The spacing between
concurrently processed dots depends on the maximum dot
size, the maximum random displacement, and the packing
factor, and the scaling factor. Specifically, the minimal
separation for the dots is computed as the size of the
larger dot divided (integer division) by the average size
of the dot and then multiplied by the average size of the
dot plus twice the average size of the dot. Then, the
process/pass is repeated by repeatedly moving the grid to
the next untreated set of stipple dots until all potential
dots have been placed. For example, the largest dot in our
dot library for 1200 dpi b/w images has a size of 562 pixels,
while the average size is 242 pixels. Thus, the separation
is computed as sep = (ceil(sizelargest dot/sizeaverage dot)+2) ·
sizeaverage dot = (ceil(56/24)+2) ·24= 5 ·24 to be 120 pixels.
The number of passes per coordinate axis depends on
how dense the stipple points lie to each other, which is
controlled by the packing factor fp. The total number of
passes, therefore, can be computed as passes= (f loor(sep ·
fp/sizeaverage dot))

2. Hence, in our example we have to
compute 100 passes of the shader code using a packing

10

Figure 15: The two first steps of the algorithm: In the 1st step (left),
the algorithm renders the dots with the necessary distance to prevent
overlapping. In the 2nd step (right), the next dots are rendered and
blended to the previous step. The algorithm is repeated until the final
illustration is complete.

factor of 2. An example of the two first steps of this
algorithm is shown in Figure 15.4

To ease the actual stipple dot placing, we actually scale
the halftoning input image during pre-processing without
interpolation (NEAREST filter) to avoid repeated position
calculations. During processing, the shader determines
if it is treating an active grid location and checks for a
black pixel in the scaled halftoning texture. If this is the
case, the shader determines the center location of the
stipple point currently being treated, the pixel offset of
the fragment being considered to the center of the dot,
with this derives the stipple dot texel, and determines
the overall offset for the current stipple dot. Based on
this computation, the gray level of the output fragment is
being determined and blended with the previous fragment
at this location. For this purpose we use two FBOs in an
alternating setup to avoid feedback loops. This means
that the newly computed fragment is blended with the
previous fragment at this location (from FBO2) and is
placed into FBO1. If no new fragment is computed (not
on active grid or halftoning pixel not black) the fragment
from FBO2 is simply copied into FBO1. After each pass, the
pointers to both FBOs are swapped. The result of the GPU
algorithm is exactly the same as the basic CPU algorithm
only if the random values are stored in the same order
and if the blending operation were commutative (which is
the case of our CPU implementation). Thus, the difference
between both algorithms is the order of rendering because
the GPU algorithm chooses the dots that do not overlap in

4The detailed algorithm can also be reviewed in the shader code of
the demo.

the same pass, and then blending them with a previous
set of dots. The main limitation with respect to the CPU
algorithm lies in the memory limits of the GPU because the
result is captured in the two FBOs, thus the GPU technique
is limited with respect to the image sizes it can process.

The performance of the algorithm depends on the
parallelization of the dots rendering. If the packing factor
is small (i. e., 1–3), the algorithm will work very fast
(i. e., approx. 100 fps for an A5 image at 1200 ppi on a
GeForce 9400 GT) because grid spacing is small and thus
the number of passes will be small (i. e., approx. 121).
The reason that 121 passes are still rendered very fast is
that the shader is relatively simple and that each pass only
needs to render a single, screen-filling quad. In addition,
the fragment shader used does not contain any loops so
the operations are executed very fast for every fragment.
However, if the packing factor is high (e. g., approx. 6),
the number of passes will increase (approx. 529 in this
case), thus losing performance (approx. 5 fps for the same
image). Nevertheless, the algorithm on the GPU is faster
than on the CPU because the number of black stipple
dots in the halftoning image has almost no affect on the
performance of the GPU algorithm.

6. Results and Discussion

Figure 16 shows a synthesized stipple image based on the
photo (Figure 3(a)) in its touched-up form (Figure 4(c))
that was also used to create the hand-drawn example in
Figure 2. Figure 16 was produced for print-reproduction
at A5 and 1200 dpi. As can be seen from Figure 17,
our process can nicely reproduce the merging of stipples
in a way that is comparable between the hand-drawn
example and the computer-generated result. In addition,
this process preserves the characteristic stipple outlines
found in hand-drawn illustrations.

Figure 18 shows an example produced for on-screen
viewing. In contrast to the black-and-white image in
Figure 16, this time the grayscale texture of the stipple
dots is preserved. In fact, in this example we replaced the
grayscale color palette with a sepia palette to give the illus-
tration a warmer tone, a technique that is often associated
with aging materials. However, in typical print processes,
images like this will be reproduced with halftoning to
depict the gray values. These halftoning patterns typically
‘fight’ with the stipple shapes and placement patterns. To
avoid these, one has to produce b/w output as discussed
before by employing thresholding (or through stochastic
dithering if the printer has a sufficiently high resolution)
or use dye-sublimation printing which can reproduce gray
values.

Figures 20–22 show examples with improved stipple
placement using edge detectors. In particular Figure 22 ex-
hibits an improved stipple placement which is visible, for
example, at the edges of windows and other dark zones.
For comparison, Figure 23 shows the higher-resolution
black-and-white version of Figure 22.

11

Figure 16: Example generated for A4 print reproduction at 1200 dpi resolution, using Figure 4(c) as input.

(a) Detail from Figure 2. (b) Detail from Figure 16.

Figure 17: Comparison of stipple merging between a hand-drawn and a
synthesized sample, taken from the same region of the images.

One final aspect that we would like to discuss is the
use of a halftoning image as the basis for the stipple
placement. While we have presented the reasons for
our decision in Section 4.1, one may also argue that it
could be better to use other types of halftoning (e. g.,
[34]) or try to adapt Kim et al.’s [1] technique to fit
our needs. To investigate this issue further, we took
samples from both Figures 2 and 16 and analyzed these
using the statistical approach described by Maciejewski
et al. [27]. The result of this analysis is shown in Fig-
ure 19 and reveals that the examined hand-drawn and
our computer-generated stippling examples exhibit almost
identical statistical behavior when compared with each
other. Following the lead by Maciejewski et al. [27],

we compared the samples with respect to the correlation,
energy, and contrast measures. We can see in Figure 19
that the the curves for related regions closely match each
other, regardless if the sample was taken from the hand-
drawn image or the computer-generated one. In addi-
tion, the curves representing the two distinct regions—
densely stippled and sparsely stippled—also match each
other quite closely. Finally, the graphs show that our
computer-generated examples do not exhibit the correla-
tion artifacts described by Maciejewski et al. [27] for other
computer-generated stippling techniques. Thus, we can
conclude that our choice to base the stipple distribution
on halftoning seems to be justified.

7. Conclusion and Future Work

In summary, we presented a scale-dependent, example-
based stippling technique that supports both low-level stip-
ple placement and high-level interaction with the stipple
illustration. In our approach we employ halftoning for
stipple placement and focus on the stipples’ shape and
texture to produce both gray-level output for on-screen
viewing and high-resolution binary output for printing. By
capturing and maintaining the stipple dots as grayscale
textures throughout the process we solve the problem of

12

Figure 18: Sepia tonal stipple example generated for A4 on-screen viewing at up to 300 ppi resolution, with slight gamma correction.

the merging of stipple dots at intermediate resolutions
as previously reported by Kim et al. [1]. The combined
technique allows us to capture the entire process from
artistic and presentation decisions of the illustrator to the
scale-dependence of the produced output. We discuss
both CPU and GPU implementations of the technique, the
CPU version allowing us to add further control while the
GPU version can be run at real-time frame-rates for better
interactive experimentation with the parameters.

One of the interesting observations from our stippling
process is that the resolution at which the stipple dis-
tribution occurs (using halftoning in our case) depends
on the spatial size of the target image but needs to be
independent from its resolution, just like other pen-and-
ink rendering [35, 36, 37]. For example, there should be
the same number of stipples for a 1200 ppi printer as there
should be for a 100 ppi on-screen display. However, there
need to be fewer stipples for an A6 image compared to an
A4 image. This complements the observation by Isenberg
et al. [26] that stippling with many dense stipple points is
often perceived by viewers to be computer-generated.

While our approach allows us to support the inter-
active creation of stipple illustrations, this process still
has a number of limitations. One of the limitations we
mentioned previously consists of issues concerning stipple
placement at edges in the input image, where edges in

the image would become fuzzy due to the introduced ran-
domness. We partially solved this issue by controlling the
amount of randomness when placing the stipples, depend-
ing on the results of an edge filter. However, the scaling in-
volved in our scale-dependent stippling process combined
with halftoning as the underlying placement principle still
results in some lines not being as crisp as would be desired.
One of the most important remaining limitations concerns
the presentation of the interaction: the use of high-level
processes as described in Section 3.1 is currently a sepa-
rate process that does require knowledge of the underlying
artistic principles—a better integration of this procedure
into the user interface would be desirable. Also, we would
like to investigate additional algorithmic support for these
high-level interaction. This includes, for example, an
advanced color-to-gray conversion techniques [38, 39, 40]
to support illustrators in their work. In addition, an
interactive or partially algorithmically supported creation
of layering or image sections according to the discussed
high-level criteria such as background, low or high detail,
level of contrast, or inversion would be interesting to
investigate as future work. For this automatic or salience-
based abstraction techniques [41] could be employed.

13

(a) Samples: original—dense (same as Figure 17(a)), synthetic—
dense (same as Figure 17(b)), original—sparse from Figure 2, and
synthetic—sparse from Figure 16, respectively.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

Contrast

original–dense synthetic–dense original–sparse synthetic–sparse(b)

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

Correlation

original–dense synthetic–dense original–sparse synthetic–sparse(c)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

Energy

original–dense synthetic–dense original–sparse synthetic–sparse(d)

Figure 19: Samples and results of the statistical evaluation.

Acknowledgments

We thank, in particular, Elena Piñar for investing her
time and creating the stippling examples for us. We

also thank Ross Maciejewski who provided the stipple
statistics script and Moritz Gerl for his help with Matlab,
and the reviewers for their nice suggestions on improving
the paper. Finally, we acknowledge the support of the
Spanish Ministry of Education and Science to the projects
TIN2007-67474-C03-02 and TIN2007-67474-C03-01, and
the Ministry of Innovation, Science, and Business of the
Junta de Andalućıa to the project PE09-TIC-5276.

References

[1] Kim S, Maciejewski R, Isenberg T, Andrews WM, Chen W,
Costa Sousa M, et al. Stippling By Example. In: Proc. NPAR. New
York: ACM; 2009, p. 41–50. doi: 10.1145/1572614.1572622

[2] Mart́ın D, Arroyo G, Luzón MV, Isenberg T. Example-Based Stip-
pling using a Scale-Dependent Grayscale Process. In: Proc. NPAR.
New York: ACM; 2010, p. 51–61. doi: 10.1145/1809939.1809946

[3] Lu A, Morris CJ, Ebert DS, Rheingans P, Hansen C. Non-
Photorealistic Volume Rendering using Stippling Techniques. In:
Proc. VIS. Los Alamitos: IEEE Computer Society; 2002, p. 211–8.
doi: 10.1109/VISUAL.2002.1183777

[4] Lu A, Morris CJ, Taylor J, Ebert DS, Hansen C, Rheingans P,
et al. Illustrative Interactive Stipple Rendering. IEEE Transactions
on Visualization and Computer Graphics 2003;9(2):127–38. doi:
10.1109/TVCG.2003.1196001

[5] Foster K, Jepp P, Wyvill B, Costa Sousa M, Galbraith C, Jorge JA.
Pen-and-Ink for BlobTree Implicit Models. Computer Graphics Fo-
rum 2005;24(3):267–76. doi: 10.1111/j.1467-8659.2005.00851.x

[6] Schmidt R, Isenberg T, Jepp P, Singh K, Wyvill B. Sketching,
Scaffolding, and Inking: A Visual History for Interactive 3D
Modeling. In: Proc. NPAR. New York: ACM; 2007, p. 23–32. doi:
10.1145/1274871.1274875

[7] Xu H, Chen B. Stylized Rendering of 3D Scanned Real World
Environments. In: Proc. NPAR. New York: ACM; 2004, p. 25–34.
doi: 10.1145/987657.987662

[8] Zakaria N, Seidel HP. Interactive Stylized Silhouette for Point-
Sampled Geometry. In: Proc. GRAPHITE. New York: ACM; 2004,
p. 242–9. doi: 10.1145/988834.988876

[9] Lu A, Taylor J, Hartner M, Ebert DS, Hansen CD. Hardware-
Accelerated Interactive Illustrative Stipple Drawing of Polygonal
Objects. In: Proc. VMV. Aka GmbH; 2002, p. 61–8.

[10] Costa Sousa M, Foster K, Wyvill B, Samavati F. Precise Ink Drawing
of 3D Models. Computer Graphics Forum 2003;22(3):369–79. doi:
10.1111/1467-8659.00684

[11] Meruvia Pastor OE, Freudenberg B, Strothotte T. Real-Time
Animated Stippling. IEEE Computer Graphics and Applications
2003;23(4):62–8. doi: 10.1109/MCG.2003.1210866

[12] Vanderhaeghe D, Barla P, Thollot J, Sillion FX. Dynamic Point
Distribution for Stroke-based Rendering. In: Rendering Techniques.
Aire-la-Ville, Switzerland: Eurographics Association; 2007, p. 139–
46. doi: 10.2312/EGWR/EGSR07/139-146

[13] Yuan X, Nguyen MX, Zhang N, Chen B. Stippling and Silhouettes
Rendering in Geometry-Image Space. In: Proc. EGSR. Aire-la-Ville,
Switzerland: Eurographics Association; 2005, p. 193–200. doi: 10.
2312/EGWR/EGSR05/193-200

[14] Hertzmann A. A Survey of Stroke-Based Rendering. IEEE Computer
Graphics and Applications 2003;23(4):70–81. doi: 10.1109/MCG.
2003.1210867

[15] Lloyd SP. Least Squares Quantization in PCM. IEEE Transactions
on Information Theory 1982;28(2):129–37.

[16] McCool M, Fiume E. Hierarchical Poisson Disk Sampling Distri-
butions. In: Proc. Graphics Interface. San Francisco: Morgan
Kaufmann Publishers Inc.; 1992, p. 94–105.

[17] Deussen O, Hiller S, van Overveld C, Strothotte T. Floating Points:
A Method for Computing Stipple Drawings. Computer Graphics
Forum 2000;19(3):41–50. doi: 10.1111/1467-8659.00396

[18] Secord A. Weighted Voronoi Stippling. In: Proc. NPAR. New York:
ACM; 2002, p. 37–43. doi: 10.1145/508530.508537

14

http://doi.acm.org/10.1145/1572614.1572622
http://doi.acm.org/10.1145/1809939.1809946
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2002.1183777
http://doi.ieeecomputersociety.org/10.1109/TVCG.2003.1196001
http://doi.ieeecomputersociety.org/10.1109/TVCG.2003.1196001
http://dx.doi.org/10.1111/j.1467-8659.2005.00851.x
http://doi.acm.org/10.1145/1274871.1274875
http://doi.acm.org/10.1145/1274871.1274875
http://doi.acm.org/10.1145/987657.987662
http://doi.acm.org/10.1145/988834.988876
http://dx.doi.org/10.1111/1467-8659.00684
http://dx.doi.org/10.1111/1467-8659.00684
http://doi.ieeecomputersociety.org/10.1109/MCG.2003.1210866
http://dx.doi.org/10.2312/EGWR/EGSR07/139-146
http://dx.doi.org/10.2312/EGWR/EGSR05/193-200
http://dx.doi.org/10.2312/EGWR/EGSR05/193-200
http://dx.doi.org/10.1109/MCG.2003.1210867
http://dx.doi.org/10.1109/MCG.2003.1210867
http://dx.doi.org/10.1111/1467-8659.00396
http://doi.acm.org/10.1145/508530.508537

[19] Schlechtweg S, Germer T, Strothotte T. RenderBots—Multi Agent
Systems for Direct Image Generation. Computer Graphics Forum
2005;24(2):137–48. doi: 10.1111/j.1467-8659.2005.00838.x

[20] Mould D. Stipple Placement using Distance in a Weighted Graph.
In: Proc. CAe. Aire-la-Ville, Switzerland: Eurographics Assoc.;
2007, p. 45–52. doi: 10.2312/COMPAESTH/COMPAESTH07/045
-052

[21] Kim D, Son M, Lee Y, Kang H, Lee S. Feature-Guided Image
Stippling. Computer Graphics Forum 2008;27(4):1209–16. doi:
10.1111/j.1467-8659.2008.01259.x

[22] Kopf J, Cohen-Or D, Deussen O, Lischinski D. Recursive Wang
Tiles for Real-Time Blue Noise. ACM Transactions on Graphics
2006;25(3):509–18. doi: 10.1145/1141911.1141916

[23] Hiller S, Hellwig H, Deussen O. Beyond Stippling – Methods
for Distributing Objects on the Plane. Computer Graphics Forum
2003;22(3):515–22. doi: 10.1111/1467-8659.00699

[24] Secord A, Heidrich W, Streit L. Fast Primitive Distribution for Illus-
tration. In: Proc. EGWR. Aire-la-Ville, Switzerland: Eurographics
Association; 2002, p. 215–26. doi: 10.1145/581924.581924

[25] Dalal K, Klein AW, Liu Y, Smith K. A Spectral Approach to NPR
Packing. In: Proc. NPAR. New York: ACM; 2006, p. 71–8. doi:
10.1145/1124728.1124741

[26] Isenberg T, Neumann P, Carpendale S, Costa Sousa M, Jorge JA.
Non-Photorealistic Rendering in Context: An Observational Study.
In: Proc. NPAR. New York: ACM; 2006, p. 115–26. doi: 10.1145/
1124728.1124747

[27] Maciejewski R, Isenberg T, Andrews WM, Ebert DS, Costa Sousa
M, Chen W. Measuring Stipple Aesthetics in Hand-Drawn and
Computer-Generated Images. IEEE Computer Graphics and Appli-
cations 2008;28(2):62–74. doi: 10.1109/MCG.2008.35

[28] Hodges ERS, editor. The Guild Handbook of Scientific Illustration.
Hoboken, NJ, USA: John Wiley & Sons; 2nd ed.; 2003. ISBN 0-471-
36011-2.

[29] Guptill AL. Rendering in Pen and Ink. New York: Watson-Guptill
Publications; 1997.

[30] Ostromoukhov V. A Simple and Efficient Error-Diffusion Algorithm.
In: Proc. SIGGRAPH. New York: ACM; 2001, p. 567–72. doi: 10.
1145/383259.383326

[31] Isenberg T, Carpendale MST, Costa Sousa M. Breaking the
Pixel Barrier. In: Proc. CAe. Aire-la-Ville, Switzerland: Euro-
graphics Association; 2005, p. 41–8. doi: 10.2312/COMPAESTH/
COMPAESTH05/041-048

[32] Sobel I, Feldman G. A 3 × 3 Isotropic Gradient Operator for Image
Processing. Talk at Stanford Artificial Project; 1968.

[33] Marr D, Hildreth E. Theory of Edge Detection. Proceedings of
the Royal Society B: Biological Sciences 1980;207(1167):187–217.
doi: 10.1098/rspb.1980.0020

[34] Chang J, Alain B, Ostromoukhov V. Structure-Aware Error-
Diffusion. ACM Transactions on Graphics 2009;28(5):162(1–8).
doi: 10.1145/1618452.1618508

[35] Salisbury MP, Anderson C, Lischinski D, Salesin DH. Scale-
Dependent Reproduction of Pen-and-Ink Illustration. In: Proc.
SIGGRAPH. New York: ACM; 1996, p. 461–8. doi: 10.1145/
237170.237286

[36] Jeong K, Ni A, Lee S, Markosian L. Detail Control in Line Drawings
of 3D Meshes. The Visual Computer 2005;21(8–10):698–706. doi:
10.1007/s00371-005-0323-1

[37] Ni A, Jeong K, Lee S, Markosian L. Multi-Scale Line Drawings from
3D Meshes. In: Proc. I3D. New York: ACM; 2006, p. 133–7. doi:
10.1145/1111411.1111435

[38] Gooch AA, Olsen SC, Tumblin J, Gooch B. Color2Gray: Salience-
Preserving Color Removal. In: Proc. SIGGRAPH. New York: ACM;
2005, p. 634–9. doi: 10.1145/1186822.1073241

[39] Rasche K, Geist R, Westall J. Detail Preserving Reproduction of
Color Images for Monochromats and Dichromats. IEEE Computer
Graphics and Applications 2005;25(3):22–30. doi: 10.1109/MCG.
2005.54

[40] Rasche K, Geist R, Westall J. Re-Coloring Images for Gamuts of
Lower Dimension. Computer Graphics Forum 2005;24(3):423–32.
doi: 10.1111/j.1467-8659.2005.00867.x

[41] Santella A, DeCarlo D. Visual Interest and NPR: An Evaluation and

Manifesto. In: Proc. NPAR. New York: ACM; 2004, p. 71–150. doi:
10.1145/987657.987669

15

http://dx.doi.org/10.1111/j.1467-8659.2005.00838.x
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH07/045-052
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH07/045-052
http://dx.doi.org/10.1111/j.1467-8659.2008.01259.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01259.x
http://doi.acm.org/10.1145/1141911.1141916
http://dx.doi.org/10.1111/1467-8659.00699
http://doi.acm.org/10.1145/581924.581924
http://doi.acm.org/10.1145/1124728.1124741
http://doi.acm.org/10.1145/1124728.1124741
http://doi.acm.org/10.1145/1124728.1124747
http://doi.acm.org/10.1145/1124728.1124747
http://doi.ieeecomputersociety.org/10.1109/MCG.2008.35
http://doi.acm.org/10.1145/383259.383326
http://doi.acm.org/10.1145/383259.383326
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/041-048
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/041-048
http://dx.doi.org/10.1098/rspb.1980.0020
http://doi.acm.org/10.1145/1618452.1618508
http://doi.acm.org/10.1145/237170.237286
http://doi.acm.org/10.1145/237170.237286
http://dx.doi.org/10.1007/s00371-005-0323-1
http://dx.doi.org/10.1007/s00371-005-0323-1
http://doi.acm.org/10.1145/1111411.1111435
http://doi.acm.org/10.1145/1111411.1111435
http://doi.acm.org/10.1145/1186822.1073241
http://doi.ieeecomputersociety.org/10.1109/MCG.2005.54
http://doi.ieeecomputersociety.org/10.1109/MCG.2005.54
http://dx.doi.org/10.1111/j.1467-8659.2005.00867.x
http://doi.acm.org/10.1145/987657.987669
http://doi.acm.org/10.1145/987657.987669

Figure 20: A5 300 ppi grayscale stippling of Annecy without enhancing the borders.

Figure 21: The same example enhanced with a Sobel filter.

16

Figure 22: The same example enhanced with a DoG filter.

Figure 23: The 1200 ppi black-and-white version of Figure 22.

17

	Introduction
	Related Work
	Analysis of Hand-Drawn Stippling
	High-Level Processes
	Low-Level Properties of Stipple Dots

	A Grayscale Stippling Process
	Stipple Dot Placement using Halftoning
	Stipple Dot Selection and Accumulation
	Generation of Print and Screen Output
	User Interaction
	Stipple Dot Placement Improvements

	Performance and GPU Implementation
	Results and Discussion
	Conclusion and Future Work

