

DiffFit: Differentiable Fitting of Inria Molecule Structures to a Cryo-EM Map

Deng Luo, Zainab Alsuwaykit, Dawar Khan, Ondřej Strnad, Tobias Isenberg, Ivan Viola

Introduction

A common practice in structural biology, often performed in the first step once a Cryo-EM map is ready

Existing solutions: Manual placing, slow computation, low hit rate

Inspiration – Reddy et al. DiffComp 2020

Method

$$L_m([\mathbf{p},\mathbf{q}]) = \sum_{j=1}^n w_j \cdot L(\mathbf{p},\mathbf{q},\mathbf{X}_m,\hat{V}_{F_{-c}}^{G_j})$$

Use case 1: Fit a single structure

(a) Source structure. (b) Target map. (c) Fit result.											
PDB	Res	Hit rate			Time (sec)			RMSD			
		С	D	G	С	D	G	C	M	D	DC
6MEO	3.90	7.4	214.6	41.2	128.2	9.4	13.7	0.489	1.940	0.790	0.483
7PM0	3.60	44.0	195.2	4.5	352.4	7.0	50.3	0.029	1.640	0.976	0.027
7SP8	2.70	4.6	238.8	117.5	130.58	12.2	10.9	0.996	1.290	0.779	0.024
6M5U	3.80	0.0	277.0	INF	162.2	18.8	8.2	69.413	2.36	0.944	0.014
5NL2	6.60	0.6	179.6	200.0	92.8	9.6	10.4	23.110	2.440	1.903	0.047
7K2V	6.60	49	170.4	3.3	240.6	8.56	29.3	0.338	2.440	1.532	0.337
3J1Z	13.00	138.6	441.6	3.20	64.4	3.0	21.5	0.396	32.330	2.436	0.399

Use case 2: Composite multiple structures

Use case 3: Identify unknown densities

Future

- Comprehensive visualization
- Deformable transformations
- Collision handling
- Splitting and splicing structures

