
G-Strokes:

A Concept for Simplifying Line Stylization

Tobias Isenberg a and Angela Brennecke b

aDepartment of Computer Science, University of Calgary, Canada
bDepartment of Simulation and Graphics, Otto-von-Guericke University of

Magdeburg, Germany

Abstract

In most previous NPR line rendering systems, geometric properties have been di-
rectly used to extract and stylize certain edges. However, this approach is bound
to a tight stylization of strokes as the focus lies on the edge extraction. Styles are
applied to the currently extracted edges, making it necessary to re-do certain com-
putations whenever several different styles are to appear concurrently in the same
rendition. Consequently, the generation of renditions is often constrained to one or
two styles to keep computational cost low. To broaden the possibilities of generating
highly expressive line drawings we introduce the concept of G-strokes. In contrast
to the above-mentioned approach, we propose to keep all edges and to extract the
geometric properties instead. According to these properties, one style could be ap-
plied to a particular set of edges and another style could be applied to another set
of edges without having to extract the designated edges anew. This makes it easy
to enrich the set of line stylization means, allowing more freedom and creativity for
generating varied line drawings. We show a number of possible G-strokes using both
simple and complex examples to demonstrate the power of our approach.

Key words: Non-photorealistic rendering, line rendering, line stylization, stroke
pipeline, G-strokes, G-buffers.

1 Introduction

In the past two decades, line rendering has been established as one of the ma-
jor areas of research within the growing field of non-photorealistic rendering
(NPR) [1,2]. Fueled by the development of a variety of silhouette extraction
algorithms [3] as well as feature detection techniques (e. g., [4]), numerous
methods for line and stroke-based rendering using a wide range of styles have
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been and are being conceived. In particular, the use of object-space edge ex-
traction facilitates the further stylization and processing of these edges as
strokes since they are available in analytic form.

Typically, the stylization process is implemented using a stylization pipeline
within which strokes are processed. In general, a stylization pipeline comprises
a sequence of pipeline elements. At each stage of the pipeline, data is either
modified, added, or simply prepared for the next element in line. The sequen-
tial approach of this procedure, therefore, is appropriate for the analytic stroke
stylization process where strokes are to be stylized in a number of steps [5,6,7].
The interconnection between the line drawing and its generation technique is
crucial to the below-stated problem and the necessity of the G-Strokes concept:
The rendition’s explanatory power depends on the stroke’s topology and style
which are in turn established and altered by the pipeline elements. Therefore,
the pipeline elements as well as their combination have to be as flexible as
possible to achieve the favored line drawings.

However, the more stylization elements are being created and added to the
stylization pipeline, the more difficult the stylization process itself becomes.
This is because a new element may introduce new data that not only has to be
captured but also has to be processed. For instance, texture or line thickness
parameters may be added to the coordinates and their indices of the current
stroke set. Whenever the indexing of the strokes changes, the parameters also
have to change. Consequently, all pipeline elements that already have been
implemented need to be adapted as well in order to handle the new data.
Only then can the old elements be used together with the new one. Likewise,
every new element also has to ensure that it can handle the increasing number
of already existing data sets. Therefore, a two-way dependency between the
pipeline’s elements and the processed stroke data exists. This makes the devel-
opment of a comprehensive line stylization and rendering toolkit increasingly
complex and difficult to manage.

Inspired by the groundbreaking work of Saito and Takahashi on G-buffers
[8], we propose the concept of G-strokes as a solution to this problem. We
regard all data added to the stroke (coordinates and indices) by a pipeline
element as geometric stroke properties and call them G-strokes. These are
maintained parallel to the underlying geometry. In this context, for example,
the stroke’s parameterization (e. g., for texturization) and visibility are geomet-
ric properties. The latter could be captured in a G-stroke telling the current
stroke set which strokes are visible and which are not and could then be used
to apply a certain style to the extracted edges (see Figure 3).

In contrast to Saito and Takahashi’s G-buffers, G-strokes might need to
be adapted during the stylization process since the underlying geometry or
topology of the stroke may change. We demonstrate how this can be achieved
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and how the necessary programming work can be minimized, making it easy
to add new pipeline elements without having to care for the existing data sets.

The remainder of this paper is structured as follows. In Section 2 we review
related work with respect to the concept presented in this paper. Then, in
Section 3 we discuss the problems arising from the previous handling of styl-
ization pipelines and introduce our G-strokes concept to overcome them. In
Section 4 we address implementation issues and design decisions we made to
realize the concept. In Section 5 we present a number of case studies in order
to illustrate the flexibility of a G-strokes based stylization. In Section 6 we
summarize our contribution and discuss directions for future work.

2 Related Work

The field of non-photorealistic rendering has diversified and grown consider-
ably in recent years [1,2]. However, line rendering was one of the first issues
to be discussed [8,9,10] and this topic continues to be one of the major areas
of NPR (e. g., [3,4,7,11,12]). As one of the earliest and most important contri-
butions for the area, Saito and Takahashi presented the G-buffer concept
for enhancing the expressiveness of renditions [8]. In their paper, the authors
describe how to extract additional data during the rendering process, store it
in what they call G-buffers, and use it for computing NPR primitives. These
primitives (silhouettes and feature lines) are then composited into the image
to extend the comprehensibility of the shown objects. It is important to note
that G-buffers use the same underlying topology as the rendition they were
generated for, i. e., the x× y pixel matrix of the image. Thus, G-buffers form
a stack of images, each recording a different property.

Although Saito and Takahashi used their G-buffers to store extracted linear
features from 3D data, this happened entirely in image-space. Besides this
pixel-based approach there are also two different approaches to extract edges
and render strokes—hybrid methods and techniques in object-space [3]. In
particular, the latter group is of interest for this paper as it offers a greater
freedom in terms of line parametrization and further processing than hybrid
and image-based techniques. In the area of object-space stroke generation, the
concept of using line stylization pipelines has emerged. The pipeline’s elements
are used to extract significant edges from a model, concatenate them to strokes,
stylize these strokes according to certain properties and parameters, and finally
render them [6,7,12]. In particular, Grabli et al. discuss the process of line
stylization in a pipeline in greater detail. Their main contribution to NPR
line drawing is the separation of lines or edges from the attributes which
guide the line stylization. This separation is achieved by collecting as much
information on the scene as possible. The gathered data is categorized into 3D
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scene information (3D coordinates, normals, object IDs, ect.), auxiliary maps
(local average depth, item buffer, etc.), the view map (a planar graph which is
received by projecting the extracted feature edges into the view plane), and the
current drawing (local stroke density). This data is then used to create style
sheets for stylizing the lines extracted from a 3D model. These can now be
arranged to model different NPR-pipelines. The individual style sheet modules
operate on the 2D view map’s edges and consist of selecting, chaining, splitting,
and assigning attribute operation. Furthermore, several of these modules can
be used simultaneously. In a final step, each resulting image layer is combined
into a single image leading to a huge amount of different styles which can be
used in one image. However, in contrast to our technique, they are bound to
a sequential pipeline in a greater extent. Moreover, the information acquiring
step is fairly complex and could be handled in an easier way.

3 G-Strokes

In order to support the creative process of generating expressive line rendi-
tions, a wide variety of stylization elements and stroke properties need to be
available to the artist. The realization of previous stylization pipelines hin-
ders the creation of truly powerful line rendering systems. In the following, we
present the concept of G-strokes that not only can overcome these limitations
but also reduce both the amount of necessary coding for each new stylization
element and the complexity of the resulting stroke pipeline.

3.1 A New Stroke Concept

A common way to represent an edge is to store the edge’s segments as an
indexed list with pointers to the actual coordinates of the edge’s vertices, each
segment being separated by a -1 (see Figure 1). This method is more efficient
since vertices typically occur at least twice (with the exception of vertices
where strokes end).

Previously, a stroke has been defined as a path (usually a set of concatenated
edges extracted from a 3D model) that is modified by a line style [13]. The line
style itself consists of a style curve and, in particular, it’s parameters including
the deviation from a straight style line. In our approach we re-define the term
stroke to be a unique sequence of indices each representing a pointer into a
list of 3D coordinates. This captures the geometric aspect of the stroke and is
similar to the previous path.
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Fig. 1. Vertex and index list for a simple set of strokes.

3.1.1 G-Stroke Definition

As suggested by Grabli et al. [7], the style of the lines has to be captured
by tracking a number of attributes. Inspired by Saito and Takahashi’s G-
buffers [8], our new notion of a stroke includes a set of usually geometric
properties being maintained parallel to the index sequence that we call G-
strokes (see Figure 2).
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Fig. 2. Parallel handling of stroke and G-strokes. Each stroke is terminated by a -1.

Similar to the G-buffers, each of the G-strokes is unique and only represents
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exactly one property. In contrast to the fairly static G-buffers, however, the G-
strokes have to be adapted to a potentially changing stroke geometry or topol-
ogy and are, therefore, a dynamic data structure. This results in a two-way
dependency between stroke and G-strokes and is crucial for the G-stroke’s def-
inition: the G-strokes have to be adapted according to changes in the stroke’s
geometry while G-strokes themselves can initiate such a change in geometry
during stroke stylization. Phrased differently, a G-stroke represents a certain
property of the stroke and can be used whenever a style is to be applied
to a stroke or its segments. Whenever the stroke changes (e. g., due to arte-
fact removal), the G-stroke has to adjust to this modification. In turn, when
the stroke is being stylized, the G-stroke can be used to alter the stroke’s
topology (e. g., different drawing of visible and invisible edges, see Figure 3).
G-strokes may capture geometric properties (such as orientations, parameter-
izations etc.) as well as non-geometric properties (e. g., edge type, color etc.).

Fig. 3. A stroke and its visibility property captured by a G-stroke.

3.1.2 Hierarchy of G-Strokes

In order to encapsulate central G-stroke features that are to be inherent to
any G-stroke we designed an object-oriented G-stroke hierarchy (see Figure 4).
The root of this hierarchy is a general G-stroke, primarily maintaining the
functionality of G-stroke adaptation to stroke modification. Many specific G-
strokes are based on the same abstract data type (e. g., an edge type ID
G-stroke and an object ID G-stroke that both are based on INTEGER values).
These G-strokes exhibit similar behavior which can also be encapsulated in
the G-stroke hierarchy for frequently used abstract data types. This ensures
that the common functionality of G-strokes only has to be maintained once
and can be inherited by concrete stroke properties.

One important difference between individual G-strokes is whether the values
of the G-stroke denote a property of the associated stroke vertices or of the
following stroke segments. This fact has to be observed in all specific G-strokes
of the hierarchy.
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Fig. 4. Hierarchy of G-strokes.

3.2 Previous Stroke Pipelines

In former stroke-based rendering systems (e. g., [6,7,12]), the procedure of
rendering the images followed the previously mentioned stylization pipeline
approach. However, since typically not only the stylization itself but also the
extraction and assembling of different strokes is performed in the pipeline we
will instead refer to the combination of both these stages as the stroke pipeline.

At the first stage of a stroke pipeline, certain significant edges are extracted
from the model and added to the pipeline as geometry data—typically the
silhouette and specific feature edges (refer to Figure 5). There are a number
of methods for silhouette edge extraction ranging from the trivial method (se-
lecting edges that share a front- and a back-facing polygon) to pre-processing
techniques on to hardware acceleration via the GPU [14,15,16,17,18,19]. In
contrast to silhouette edges, feature edges rather support the object’s inner
shape. There are several types of feature edges extracted by different sys-
tems including creases, border edges, self-intersections, and suggestive con-
tours [3,4,9,18,20].

At the next stage, the extracted edges are concatenated using adjacency infor-
mation to form the strokes that will later be stylized. Each stroke then consists
of a chain of edges or stroke segments and is terminated by a -1. The concate-
nation of single segments to segment chains simulates the human approach
to line drawing where several long strokes are used to depict the objects. To
simplify matters, we will refer to the term stroke as the generic term for all
strokes derived from the model, therefore describing the strokes’ topology.

After the strokes have been formed, typically the visible subset of them is
determined (e. g., [5,21]). Also, when using polygonal meshes as the underlying
3D models, certain artifacts such as zig-zags are removed (see, e. g., [5,21]).
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Fig. 5. Typical stroke pipeline in NPR.

Subsequently, a set of base strokes has been identified that can then be stylized.

The stylization process itself can only be performed with the proper stroke data
and, therefore, has to be conducted at a later stage. For example, one or more
parameterizations may be assigned to the strokes to ensure a balanced scaling
of textures and frame-coherent animation [11]. Then, the line width may be
modified, e. g., according to the distance from the viewer to add depth-cueing.
Also, the geometry of the strokes themselves may be modified, for example,
by introducing overshooting that is meant to simulate a very sketchy look
(e. g., [7]). In order to improve the overall appearance, a spline curve may be
fitted to the stroke. Finally, a texture could be assigned that simulates specific
characteristics of the simulated traditional drawing utensil.

In summary, during each pipeline stage, tasks of three types are being per-
formed: the adding of new edges/strokes to the pipeline (e. g., the silhouette
and feature line extraction), the adding of further data sets (properties) to
the strokes in the pipeline (e. g., the parametrization or the line width ma-
nipulation), and the modification of the underlying geometry of the strokes
(e. g., concatenating edges, artifact removal, overshooting, and spline fitting).
This includes also the removal of certain vertices or segments. However, there
is no inherent sequence in which these actions have to be performed (other
than that the first step must be to add an initial set of edges to the pipeline).
Thus, even after certain properties have been derived, the stroke geometry
or topology may change. As a consequence, each pipeline element that does
change the stroke’s geometry or topology has to ensure that all existing prop-
erties are being updated accordingly in order to maintain a consistent stroke
representation.

Consequently, the implementation of each new geometry- or topology-modify-
ing stylization element has to ensure that all previously added stroke properties
are adapted as well. Furthermore, when implementing a new stylization ele-
ment that introduces a new property to the pipeline, the programmer has to
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ensure that all previously implemented pipeline stages handle this new prop-
erty accordingly. Therefore, a two-way dependency between pipeline elements
and stroke properties exists that hinders the extension of line rendering sys-
tems. The more elements and properties have previously been implemented,
the more difficult it becomes to further extend the system.

3.3 New Stroke Pipelines

The logical separation of stroke geometry (coordinates and indices) and stroke
properties (G-strokes) facilitates a new handling of stroke data. G-strokes as
the stroke’s properties now depend on the stroke’s geometry and topology
and, therefore, can automatically adapt to potential changes of the stroke.
Hence, for being able to apply manipulations to the stroke that potentially
lead to changes of its geometry and topology, only the coordinates and indices
themselves have to be adapted—all other necessary changes are performed
automatically.

In order to realize the above dependency, we provide the stroke with a list of
its G-strokes. Consequently, whenever a pipeline element changes the stroke’s
geometry, the stroke calls an update function in each of its G-strokes. The G-
strokes, on the other hand, all implement these update functions and modify
themselves accordingly. This is necessary because of the G-stroke hierarchy’s
encapsulation of behavior that allows for the consistent handling of G-strokes.
Naturally, this modification is specific to the data type and the actual data of
each G-stroke.

We identified the following five types of modifications that each G-stroke has
to implement:

(1) vertex insertion,
(2) vertex removal,
(3) vertex coordinate modification,
(4) vertex splitting, and
(5) vertex joining.

Vertex insertion is needed whenever a new vertex has to be added somewhere
in an already existing stroke segment. This type of modification occurs, e. g.,
when deriving the visibility G-stroke (see Figure 6). In this case, some G-
strokes have to interpolate their data according to the new position while
others just have to replicate their values. The second modification is the dele-
tion of a vertex from the stroke. This is necessary, for example, for artifact
removal modules. It might require just the deletion of the respective G-stroke
value, though there may be cases where more complex adaptations may be
necessary. The vertex coordinate modification is similar to inserting a new
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Fig. 6. Inserting new vertices for visibility G-stroke.

vertex. It also may require new interpolations of G-stroke values. Vertex split-
ting is necessary whenever a stroke has to be separated into two at a certain
vertex. On the G-stroke side, this usually only requires replicating the respec-
tive data. Finally, it has to be possible to join two G-strokes at a vertex that
both share (geometrically or on the 3D mesh). The handling of G-strokes in
this case may be tricky, since the two strokes may store different values at the
vertex. Some G-strokes, in particular those that store their data with respect
to segments, may just keep the according data. However, in other cases special
interpolation or more complex computations may be necessary. To solve issues
that may arise in this context, we developed the priority G-stroke, which pre-
vents the deletion of important vertices. This boolean G-stroke stores a 1 for
vertices or segments with a high priority and a 0 for low priority values. A
high priority prohibits deletion whereas a low priority permits the deletion.
Whenever a G-stroke is composed, the priority of the current value has to be
confirmed.

In general, the specific G-strokes have to implement all these modification
operations according to what their data represents. The necessary modification
operation is not specific to the data types but will typically even vary among
G-strokes using the same base data type.

Since the G-Strokes use the above explained self-administration, the only data
that has to be exchanged is the stroke’s coordinates and indices. With this
new scheme we developed a clearly defined interface between pipeline elements,
strokes, and their properties that does not change when new elements are
implemented. Hence, old elements do not have to be adapted anymore when
a new one implements a new property.

3.4 Stylization Using G-Strokes

In order to use the information stored in the G-strokes for line stylization
three methods can be used, each requiring the implementation of a novel
pipeline element. As our implementation of the G-strokes concept is based on
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the Open Inventor scene graph API, the following figures refer to scene graphs
and nodes rather than to traditional pipelines and pipeline elements or stages.
Nevertheless, the concept suits any pipeline or scene graph approach other
than Open Inventor.

The first and most flexible way is to use a filter element. A filter element
monitors one specified G-stroke and filters only those segments of a stroke
where the G-stroke fulfills a certain condition. For example, a filter element
could be used to filter out the invisible segments of a stroke by observing the
visibility stroke. The element can then serve as a root element for a pipeline
subtree that stylizes the filtered stroke segments in a specified way. By using
several filter elements in one stroke pipeline, different properties can be filtered
and stylized differently. Figure 7 shows an example that demonstrates the use
of an actual filter node to stylize the visible part of the strokes one way and
the invisible part in a second. This is similar to the concurrent handling of the
style modules by Grabli et al. [7].

Input Edge

Extraction

Stylization

I E
E

Strokes

HLR

Style1 O OStyle2

R

Visible StrokesHidden Strokes

Root

Edges

OutputOutput

Filter Filter

G-Stroke

Fig. 7. From the input 3D model edges are extracted, concatenated, and their visi-
bility determined. Now, filter nodes are employed to depict visibility using separate
subgraphs.

A second way to use the G-stroke data is to implement a style element. Such
a style element uses the data in one or more G-strokes and generates output
according to it—either in the form of other G-strokes or by rendering directly.
Hence, a style element is very specific in the results it produces, i. e., to produce
a different result a new style element has to be implemented. As the name
suggests, a style element represents a complete style that is applied to the
entire set of strokes at the same time (see scene graph in Figure 8). It is useful,
in particular, when a style is to be used several times.
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Fig. 8. Instead of using filter nodes as in Figure 7, stylization can also be done with
a single style node.

Finally, a hybrid form between the two methods discussed before is to use a
filter-style element. This element applies a certain pre-defined style (similar to
the style element) to a subset of the strokes that is being filtered similar to
the filter element. This means that, to fully stylize a set of strokes, typically a
number of filter-style elements have to be used (see Figure 9). Therefore, it is
more flexible than the style element but not as flexible as the filter element. In
addition, the scene graphs created using the filter-style element are not as big
as the ones created using the filter element but bigger than the ones using the
style element. The rendering time is fastest whenever the style element is used
because no copying operation has to be applied to the stroke data. However,
this element is most restricted in its flexibility.

Input Edge
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Stylization

I E
E

Strokes
O

R
Root

Edges Output

Filter FilterHLR
G-Stroke Style1 Style2

Fig. 9. Stylization using a filter-style node is a hybrid between the the methods
shown in Figures 7 and 8.
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4 Implementation Issues

The consequences of implementing the G-strokes concept in a NPR rendering
system based on the Open Inventor scene graph API are briefly discussed in
the following. Finally, we explain the created G-strokes hierarchy and what
has to be done in order to implement additional G-strokes.

In addition, in order to achieve an implementation close to the concept laid
out above, we used two object-oriented design patterns. The first one, the
singleton pattern, describes how to limit the number of an object’s instances
to a single one and, thus, suited the realization of the G-Stroke’s uniqueness
perfectly. The second design pattern we deployed was the observer pattern. It
is based on the relationship between one subject and (many) observers. When-
ever the subject changes, all observers adapt to this change and it, therefore,
was suitable for realizing the relationship between Stroke and G-stroke.

4.1 Scene Graph API

Using a scene graph API has a number of important advantages. It not only
allows us to use, e. g., the available rendering and 3D model handling capabil-
ities, but also provides a means to implement the stroke pipeline as a subtree
of the scene graph. This is important, in particular, for implementing the filter
element that uses subtrees for stylizing selected parts of the stroke set (see Fig-
ure 7). Among other things, the use of caching is required to reestablish the
previous state of the pipeline after the subgraph has been traversed. We used
the Open Inventor API which meets these demands. In addition, although the
stroke pipeline is now a hierarchical entity, its linear character is still preserved
since the traversal of the scene graph imposes a linear sequence upon it.

The Open Inventor scene graph API also allows us to prepare specific scene
graphs ahead of time that implement specific stylization functionality. These
pre-defined subgraphs can be integrated into the stroke pipeline easily and
interactively whenever this specific style is requested by the user. In addition,
the scene graphs can be stored as a file and can be reloaded into the program
at any time.

4.2 Implementing New G-Strokes and Pipeline Nodes

Based on the G-stroke hierarchy described in Section 3.1.2, new G-stroke
classes can easily be implemented by sub-classing one of the abstract base
data type G-stroke classes. Much of the behavior of a G-stroke is already im-
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plemented in these base classes or even in the main G-stroke class, such as the
observer behavior and the basic data handling. A new G-stroke class only has
to implement its own update function so that the G-Stroke adapts to topology
changes correctly.

Each new pipeline node typically just has to work with the stroke geometry
and/or stroke topology data. The G-strokes adapt according to their imple-
mented update behavior. Moreover, if the new node does not alter the stroke
itself, it can add data to a new G-stroke or modify data of an existing G-stroke.
Reading out data from a specific G-stroke can also be easily achieved by ac-
cessing individual G-strokes. In any case, it is not necessary to update specific
line properties data in the pipeline nodes.

5 Case Study and Examples

In this section, we will first discuss a number of the implemented G-strokes
separately and show some related simple examples to demonstrate their effect.
In this overview, we omit some of the obvious properties of strokes such as
line width, line saturation, surface normal, and stroke orientation that are also
kept as G-strokes and can be both influenced by the values in other G-strokes
and used in stylization. Afterwards, we will talk about and show a few more
elaborate examples to demonstrate the power of our approach.

The color G-stroke is used to encode the color property of the strokes as 3D
vectors representing red, green, and blue (see Figure 10). It can either be
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(a) Stroke and G-stroke. (b) Example.

Fig. 10. Color G-stroke. It stores the color to be used by a specific stroke segment.

interpreted as the color of the starting stroke segment or as the color of the
vertex. In the latter case, the color would need to be interpolated along the
segment between two consecutive vertices. For now, however, we use the former
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method and encode the color of entire stroke segments directly. The color
G-stroke is particularly useful in illustrations to emphasize certain objects.
Although coloring of strokes has previously been accomplished by assigning a
color directly before rendering the stroke, we allow the color to be varied even
within one stroke (see example in Figure 16(e)).

The visibility G-stroke captures the visibility of the segment starting at a
particular vertex using a simple BOOLEAN value (see Figure 11). In many

1 2 3 4 5Indices

Data

...

...1 1 0 0 1

(a) Stroke and G-stroke. (b) Example.

Fig. 11. Visibility G-stroke. Gray dots in (a) denote newly inserted vertices while
black dots denote the original ones. These can now be used to stylize hidden lines
different from visible ones.

previous approaches, the invisible part of a set of strokes used to be removed
(hidden line removal) so that these strokes could not be used anymore in an
illustration. Now, the former hidden line removal node just determines the
visibility of a segment into the visibility G-stroke and later on the information
can be used for stylization as shown in the example in Figure 11(b). Potentially,
this requires adding new vertices to a segment when the visibility changes, as
was illustrated in Figure 6.

As noted before, it is necessary to track a parameter property of the strokes
to ensure that textures are scaled evenly across the whole rendition. This is
where the parameter G-stroke is employed (see Figure 12). It is determined
using the projected coordinates of the strokes and stores FLOAT values between
0.0 and 1.0, 0.0 denoting the start of a texture and 1.0 denoting its end. In the
actual system 0.0 denotes both the values of 0.0 and 1.0 at the same time since
at these points both a parameter segment ends and a new one starts. Similar
to the visibility G-stroke, deriving the parameter G-stroke might also require
adding one or more new vertices within a segment where the parameter value
reaches 1.0.

The dashing G-stroke can be used to generate a wide variety of line patterns.
It subdivides each parameter segment (ranging from 0.0 to 1.0) into n evenly
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(a) Stroke and G-stroke. (b) Example.

Fig. 12. Parameter G-stroke. It allows to assign parametrized stroke textures.

sized subsegments and assigns an INTEGER dashing ID between 0 and n− 1 to
them (see Figure 13). This can now be used, for example, to assign different
textures to each of the dashing IDs and assemble a unique dasing pattern as
shown in Figure 13(b).

1 2 3 4 5Indices

Data

...

...0 1 2 3 0

(a) Stroke and G-stroke. (b) Example.

Fig. 13. Dashing G-stroke. It can be used to create many different repeating patterns.

A very important property of the strokes in a line drawing is the type of
algorithm used to extract its edges. This property is captured by the edge type
G-stroke (see Figure 14). It can distinguish, e. g., between silhouettes and the
various types of feature edges—each of them denoted by a unique ID. Even
the different methods to extract silhouettes from a 3D model—edge-based
or sub-polygon-based—can be assigned different edge type IDs. When used
in stroke rendering, this can lead to very nice effects (see, e. g., Figure 14(b))
since, in traditional renditions, the different edge types are also depicted using
different styles. In perspective, it is certainly possible to add more line types
such as hatching lines and wireframe lines etc. or types of strokes that were
not derived from the 3D model such as a grid for the background.
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(a) Stroke and G-stroke. (b) Example.

Fig. 14. Edge type G-stroke. It allows to stylize different edge types differently.

It is very important for line renditions used as illustrations to render different
objects using different styles. This can easily be achieved using the object ID
G-stroke (see Figure 15). The object ID property is extracted early when the

1 2 3 4Indices

Data

...

...0 0 0 -1 1

-1

(a) Stroke and G-stroke. (b) Example.

Fig. 15. Object ID G-stroke. Notice that it is used to treat both objects differently:
the cone’s hidden lines are shown while they are not rendered for the box.

strokes are initially extracted from the 3D model. The values are typically
later used to influence the values of other G-strokes (see Figure 15(b)), such
as the color, line width, and line saturation G-strokes.

Based on the simple examples presented above, we will now show more com-
plex examples that partially make use of more than one G-stroke at the same
time. The first two examples in Figures 16(a) and 16(b) demonstrate the use
of the parameter and the edge type G-strokes, respectively. The first example
shows that, using this information, it is possible to improve the quality of tex-
tured line drawings by applying evenly scaled textures throughout the image.
The second example demonstrates that the use of different stroke stylizations
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(a) Use of parameter G-stroke.

(b) Use of edge type G-stroke.

(c) Use of dashing, object ID, and color
G-strokes.

(d) Use of both edge type and visibility
G-strokes.

(e) Modifying the color G-stroke
with NPR Lenses.

(f) Object ID G-stroke used to empha-
size objects in illustrations.

Fig. 16. More complex examples for using G-stroke to stylize line renderings.

for different edge types (silhouettes and angle-thresholded feature lines) may
be subtle, yet very powerful.

Combining the dashing G-stroke with the object ID and the color G-strokes
produces the result shown in Figure 16(c). Using the object ID G-stroke the
individual objects are identified. Consecutively, this data is used to assign the
color G-stroke with a different color to each object ID. The dashed G-stroke
is used to create a dashing pattern that is partially in the object’s color and
partially in black.

The next example in Figure 16(d) shows the use of both edge type and visibility
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G-strokes at the same time. This type of drawing employs the visibility G-
stroke to render hidden lines using a dashed texture and could easily be used
for architectural or archaeological illustrations where it is important to also
reveal the internal structure of buildings. Again, the edge type G-stroke is
used to create the subtle but powerful effect to hint more structure than just
silhouettes but not to disturb from the main shape.

Figure 16(e) demonstrates how G-strokes can be used to stylize line drawings
independent of the scene’s object structure and how the values of the color G-
stroke can be adjusted even within a stroke. Using NPR Lenses [22], a recently
developed interaction technique for NPR line stylization based on G-strokes,
the flower was colorized in the center with the focus color smoothly blended
to the background.

Finally, the last two examples show that coloring certain objects may easily
be used in medical illustration. In particular, in this domain it is common to
render certain organs in very specific colors, such as the arteries in red, as seen
in the first image in Figure 16(f). Of course, it is also possible to emphasize
different objects using other colors, as in the second image in Figure 16(f).

Using this example, we show a comparison of the previous way of stylizing
with the new G-strokes method with respect to the necessary scene graphs
in Figure 17. Previously, each group of objects that needed to be stylized dif-
ferently was extracted from the 3D model and a separate stylization pipeline
was applied to it. This leads to a very complex and computationally expensive
scene graph (upper part of Figure 17). With the G-stroke approach, this com-
plexity is no longer necessary. Now, we can simply use one stylization pipeline
and filter the generated strokes according to the automatically extracted ob-
ject ID G-stroke. Afterwards, we just have to use a few sub-pipelines to stylize
and render each group of objects accordingly (lower part of Figure 17).

6 Summary and Future Work

In this paper, we presented an approach that enables the consistent handling
of all stroke properties that may occur in a line rendering system. In contrast
to previous direct methods, we propose a global technique that allows coherent
and consistent storage and management of the attributes. We demonstrated
that there is a dependency between strokes and their properties—called G-
strokes—and how this can be solved by separating the data management be-
tween strokes and G-strokes. We discussed what types of G-strokes may occur
in a typical system and how these can be arranged in a G-strokes hierarchy.
This hierarchy makes the development of new strokes very easy because most
of the functionality is implemented in the upper levels so it simply needs to
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Fig. 17. Comparison of a scene graph that uses the previous way for stylization
(above) with one that uses G-strokes (below) for rendering objects in different colors.

be re-defined. Moreover, we demonstrated the use of many G-strokes both
with simple and more advanced examples. Finally, we could show that our
approach simplifies the creation of elaborate stylization techniques by signifi-
cantly reducing the size of the used scene graphs leading to simpler and faster
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computation.

The presented approach of computing the necessary changes to all G-strokes
and the stroke itself “on the fly” naturally raises two questions: (1) is this
technique necessary to achieve the desired effects and (2) how big is the perfor-
mance impact. The answer to the first question—that it is indeed an effective
approach—is given by the previously mentioned two-way dependency between
properties and stroke geometry and topology. Changes to the stroke lead to
changes in the properties as well as vice versa. Thus, the computation “on
the fly” is essential in order to keep the specification of line stylizations as
simple as possible. With respect to the performance impact, we have not no-
ticed any measurable slowdown of the hierarchical stylization “pipeline” when
compared to the previously used linear one. The system allows interactive to
real-time line stylization depending on the size of the used model with the line
extraction being the bottleneck.

Future work includes the extension of the G-strokes concept in terms of cre-
ating new specific G-strokes. For example, several notions of curvature such
as in [23] could each be tracked as an individual G-stroke, the degree of an
extracted feature edge (e. g., in terms of angle) could be stored as a G-stroke
and used to influence the line width, and many more. Also, new nodes can be
implemented that make use of the G-stroke data for stroke modification and
stroke stylization. For example, overshooting could be implemented as in [7],
the curvature G-strokes could be used to influence the line thickness as in [23],
etc.

Very important for future line rendering systems is the development of good
and efficient interaction metaphors and/or interfaces that allow users to intu-
itively specify rendering styles. For example, the system presented by Halper
et al. [24] could serve as a starting point for this task.

Although the G-strokes concept lends itself very easily to local modifications of
the strokes, it can also be used to do more global modifications. For example, it
could be used to modify stroke density in the resulting drawings depending on
the region of the model from which the strokes originated. For that purpose, a
pipeline node would use the 3D coordinates of the stroke data that it maintains
in the pipeline and derive the density based on a second data source to decide
whether a specific stroke or portion of it would be drawn.

Another direction for future work needs to address the issue of temporal corre-
lations such as, e. g., in [11]. This would require tracking the parametrization
of strokes as in their system which could be handled by an additional node that
maintains a separate data structure for this purpose. In addition, the G-buffer
concept can also be applied to domains other than pixel images or strokes. In
fact, the variety of texture types that are used in regular rendering could be
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considered to be G-properties of the 3D surface model. The development of a
G-strokes system for surface textures of 3D models will be challenging future
work.
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