
For a long time, line drawings have been a
part of artistic expression (for example,

any pencil or pen-and-ink drawing), scientific illustra-
tions (medical or technical), or entertainment graph-
ics (such as in comics). Hence, computer graphics
researchers have extensively studied the automatic gen-
eration of such lines. In particular, the area of nonpho-

torealistic rendering has focused on
two main directions of research in
this respect: the generation of
hatching that conveys illumination
as well as texture in an image and
the computation of outlines and sil-
houettes.

Silhouettes play an important role
in shape recognition because they
provide one of the main cues for fig-
ure-to-ground distinction. Howev-
er, since silhouettes are view
dependent, they need to be deter-
mined for every frame of an anima-
tion. Finding an efficient way to
accomplish this is nontrivial.
Indeed, a variety of different algo-
rithms exist that compute silhou-

ettes for geometric objects. This article provides a
guideline for developers who need to choose between
one of these algorithms for his or her application.

Here, we restrict ourselves to discussing only those
algorithms that apply to polygonal models, because
these are the most commonly used object representa-
tions in modern computer graphics. (For an algorithm
to compute the silhouette for free-form surfaces see, for
example, Elber and Cohen.1) Thus, we can use all algo-
rithms discussed here to take a polygonal mesh as input
and compute the visible part of the silhouette as out-
put. Some algorithms, however, can also help compute
the silhouette only, without additional visibility culling.
The silhouette’s representation might vary depending
on the algorithm class—that is, the silhouette might
take the form of a pixel matrix or a set of analytic stroke
descriptions.

Definitions and terminology
The silhouette S of a free-form object is typically

defined as the set of points on the object’s surface where
the surface normal is perpendicular to the vector from
the viewpoint.2 Mathematically, this means that the dot
product of the normal ni with the view vector at a sur-
face vertex P’s position pi is zero: S = {P : 0 = ni ⋅ (pi −
c)}, with c being the center of projection. In case of
orthographic projection (pi − c) is exchanged with the
view direction vector v.

Unfortunately, for polygonal objects this definition
can’t be applied because normals are only well defined
for polygons and not for arbitrary points on the surface.
Hence, typically no points exist on the surface where the
normal is perpendicular to the viewing direction. How-
ever, we can find silhouettes along those edges in a
polygonal model that lie on the border between changes
of surface visibility. Thus, we define the silhouette edges
of a polygonal model as edges in the mesh that share a
front- and a back-facing polygon.

Some authors refer to the contour rather than the sil-
houette. We define a contour as the subset of the sil-
houette that separates the object from the background.
Also, the subset of the silhouette, which in 2D divides
one portion of the object from another one of the same
object, is not part of the contour. Those lines are some-
times called internal silhouettes.

Other lines significant in the context of silhouettes are
creases, borders, and self-intersections. Creases are
edges that should always be drawn, for instance the
edges of a cube. Typically, we can identify a crease by
comparing the angle between its two adjacent polygons
with a certain threshold. Border lines only appear in
models where the mesh is not closed and are those edges
with only one adjacent polygon. Lastly, self-intersection
lines are where two polygons of a model intersect. They
aren’t necessarily part of the model’s edges but are impor-
tant for shape recognition. In the literature, these three
additional line categories together with the silhouette
lines are often called feature lines. Some silhouette detec-
tion methods make no algorithmic distinction between
these types of lines. This is because you must determine

Survey

Generating object

silhouettes lies at the heart

of nonphotorealism.

Algorithms for computing

polygonal model silhouettes

are surveyed to help find the

optimal approach for

developers’ specific needs.

Tobias Isenberg, Bert Freudenberg, Nick Halper,
Stefan Schlechtweg, and Thomas Strothotte
Otto-von-Guericke University of Magdeburg,
Germany

A Developer’s
Guide to Silhouette
Algorithms for
Polygonal Models

28 July/August 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

the visibility for all of these line types
to generate an image. Hence, an
algorithm’s visibility aspect usually
treats the lines in the same way. The
visibility test yields visible segments
of silhouette edges and potentially
also feature lines. Sometimes visible
segments are joined together into
visible strokes.

Classification
Every silhouette algorithm must

solve two major problems. First, we
must detect the set of silhouette
edges. Next, we determine the visi-
ble subset thereof (visibility culling).
For the purpose of this article, we
classify the approaches according to
how they solve each of these prob-
lems. With respect to solving the
edge detection problem, we distin-
guish between image space algo-
rithms that only operate on image
buffers, hybrid algorithms that per-
form manipulations in object space
but yield the silhouette in an image
buffer, and object space algorithms
that perform all calculations in
object space with the resulting sil-
houette represented by an analytic
description of silhouette edges. The
second problem—visibility culling—
is inherently solved within the algo-
rithm for both image space and
hybrid approaches of silhouette
detection. However, for object space
methods, we must approach this
problem separately. We can catego-
rize the algorithms that perform this
visibility culling into image-space,
object-space, and hybrid approach-
es. Besides belonging to one of these
categories, the algorithms differ
from each other in other aspects
more relevant in practice, such as:

■ whether they solve the edge detection and edge visi-
bility problem in one step or separately,

■ how they represent results (that is, an image with the
lines of a specific color or an analytic set of edges),

■ how precise the results are (image, subpixel, or exact
precision),

■ how complete their results are (finding all silhouette
edges or only a subset of them),

■ how much computation time the algorithm takes
(real-time, interactive rates, or offline rendering),

■ how much memory the algorithms needs,
■ whether they allow animation of the model, and
■ whether they are easy to implement.

According to these measures, we give recommendations
for which algorithm to use in a certain situation in Table 1.

Image space algorithms
Image space algorithms exploit discontinuities in the

image buffer(s) that result from conventional render-
ing and extract them using image-processing methods.
These methods provide a silhouette represented as fea-
tures in a pixel matrix.

The easiest way to find significant lines would be to
detect edges in the color buffer. This, however, doesn’t
necessarily detect silhouettes since changes in shading
and texturing can cause erroneous edge detection. Saito
and Takahashi suggest using the z-buffer instead and
applying an edge detector such as the Sobel operator.3

This has the advantage of only finding object-relevant
edges such as silhouette lines including contours,
because at most of the places where silhouette lines are
in the image there is a (C0) discontinuity in the z-buffer

IEEE Computer Graphics and Applications 29

Table 1. Choosing the best silhouette detection algorithm.

Requirements Recommendations

Real-time or interactive Image space and hybrid algorithms.
frame rates. Object space methods that use

precomputation for silhouette
detection and an image space or hybrid
method for visibility culling.

Brute-force object space silhouette detection
or silhouette visibility test not recommended.

Silhouettes in an Object space silhouette algorithms with an object
analytic description. space or a hybrid visibility test.
Exact results; pixel or subpixel Object space silhouette algorithms with an
accuracy is not sufficient. object space visibility test. (This usually slows

down the program significantly.)
Guarantee that all silhouette An object space algorithm for all edges sharing a
edges can be found. front- and a back-facing polygon; also image

space and hybrid algorithms for all silhouette
edges that contribute visually to the silhouette.

A stochastic silhouette edge detection approach
is not appropriate.

Animate model in real time Real-time technique.
beyond a mere flight through Object space silhouette detection method that
the scene. uses preprocessing is not appropriate.
Stylized silhouettes. Object space silhouette detection algorithm with

an object space or a hybrid visibility test.
Hybrid silhouette detection algorithms can also

produce somewhat stylized silhouettes.
Cope with all model types, Image space or a hybrid silhouette detection
even those with errors. algorithm typically don’t need connectivity

information (polygon soups can be handled)
and can deal with errors.

Silhouettes for a huge data set Image space or a hybrid silhouette detection
(with millions of polygons). algorithm for interactive or real-time

applications.
All other algorithms, but these probably won’t

scale linearly in their computation times.
Least amount of memory. Image space or hybrid algorithm (these usually

don’t require an additional data structure
besides the geometry).

Compute just the contour. Rustagi’s hybrid contour algorithm.8

Object space silhouette detection algorithm with
an adapted hybrid silhouette visibility test.

(see Figure 1). Hertzmann extends this method by using
a normal buffer instead.4 This can also detect C1 dis-
continuities. Combining both approaches yields a pleas-
ing result (see Figure 2).

Deussen and Strothotte use a simplified version of
Hertzmann’s algorithm to compute pen-and-ink illus-
trations of trees.5 They render the tree’s foliage as prim-
itives (such as oriented disks) only to the z-buffer and
look for discontinuities larger than a specified thresh-
old. Depending on the primitives’ size and the depth
threshold this achieves the special look of pen and ink.

The advantage of image space algorithms is that we
can use existing graphics hardware and rendering pack-
ages to generate the buffers on which the algorithms
operate. This makes these algorithms relatively simple
to implement. The computational complexity of silhou-
ette detection in this manner depends on the number of
pixels that comprise the image, rather than the number
of polygons in the model, and thus is constant provid-
ed that image resolution remains constant. (Although
silhouettes are not computed from polygons, these poly-
gons must be rendered first into the required buffers.)
Thus, these algorithms are usually fast, and appropri-
ate graphics hardware can accelerate them even more.
Mitchell suggests using the pixel shader technique on
newer graphics cards for hardware acceleration of
image space silhouette detection.6 Finally, an image
space algorithm deals with silhouette edges in the same
manner as it does with feature lines. In contrast to other
methods, these algorithms can automatically find self-
intersections. They also share similarities with z-buffer
rendering; the algorithms are generic and robust to
errors in the models.

The main disadvantage of image space algorithms is
that the user has little control over the resulting lines’
attributes. The only way to directly influence the result-

ing lines is by choosing an edge detection operator and
a source buffer on which to apply the operator. A second
disadvantage is that the silhouette is not available in the
form of an analytic line description. Hence, silhouettes
can typically not be stylized or used for further process-
ing. Thus, we can’t readily apply many techniques simu-
lating traditional drawing or painting utensils because
they usually require this analytic information. On the
other hand, some approaches extract curves from the sil-
houette pixels such as presented by Loviscach, who fits
Bezier curves to the pixels.7 Loviscach’s approach allows
for subsequent stylization of the resulting curves. How-
ever, the process of fitting curves to the pixel silhouettes
might introduce new artifacts and inaccuracies. In addi-
tion, this approach is too slow for interactive or real-time
applications.

Inherent in the use of image processing operators is
that the resulting silhouettes don’t have distinct borders.
On the contrary, the intensity—the gray value—of a sil-
houette pixel usually depends on the derivative and thus
on the intensity of features detected in the original buffer.
However, this also means that the resulting images tend
to not have significant aliasing problems. Another char-
acteristic of these algorithms is that they are limited to
pixel precision. This means that some fine details of less-
than-pixel size might be hidden. However, for visual
appearance this usually makes no difference.

Hybrid algorithms
Hybrid algorithms are characterized by operations in

object space that are followed by rendering the modi-
fied polygons in a more or less ordinary way using the z-
buffer. This usually requires two or more rendering
passes. The result is similar to image space algorithms in
that the silhouette is represented in a pixel matrix.

Rustagi presents a simple algorithm using the stencil

Survey

30 July/August 2003

(a) (b) (c) (d)

1 Image space silhouette detection based on edge detection operators on the z-buffer. (a) Original image, (b) z-
buffer, (c) detected edges, and (d) composed image. (Courtesy of Saito and Takahshi3 © 1990 ACM. Reprinted with
permission.)

(a) (b) (c) (d) (e)

2 Image space silhouette detection using edge detection operators on the z-buffer and the normal buffer. (a) z-
buffer, (b) edges extracted from the z-buffer, (c) normal buffer, (d) edges extracted from the normal buffer, and
(e) combination of both edge buffers. (Courtesy of Aaron Hertzmann4 © 1999 ACM. Reprinted with permission.)

buffer that delivers the contour—not the complete sil-
houette—of an object.8 The algorithm renders the
object’s mesh four times, each time translating the
objects by one pixel in screen coordinates in the positive
or negative x or y directions. During each pass it incre-
ments the stencil buffer where the object fills the view-
port. After these four passes, the object’s interior pixels
will have a stencil value of four, the perimeter pixels will
have values of two or three, and the exterior will have
values of zero or one. Finally, setting the stencil func-
tion to pass if the stencil value is two or three and ren-
dering a primitive larger than the object will result in
only the outline pixels being changed.

Rossignac and Emmerik present a method based on z-
buffer rendering that yields silhouettes and not only
contours.9 They show four algorithms that differ slight-
ly from each other and that render polygonal objects
either in wireframe or silhouette mode with the hidden
lines either removed or dashed. For generating an image
with visible silhouette and feature lines only, they first
draw the object’s faces into the z-buffer. Then they trans-
late the mesh away from the viewer by a small distance
and render a wireframe representation using wide lines.
This ensures that only silhouette edges are visible since
the previously rendered faces in the z-buffer will occlude
the other lines. Finally, they translate the object forward
again by twice the former distance and render the fea-
ture lines of the objects in regular line width.

Raskar and Cohen generalize this approach in their
work.10 For automatically determining front- and back-
facing polygons that define the silhouette they use tra-
ditional z-buffering along with back- or front-face
culling, respectively. Similar to Rossignac and Emmerik,
by first rendering all polygons in white on a white back-
ground with back-face culling enabled, they fill the z-
buffer with the depth data of front-facing polygons.
Afterwards, they render all polygons again, but this time
in the desired silhouette color and using front-face
culling. Hence, only the back-facing polygons affect the
frame buffer during this second pass. By employing the
equal to depth function, Raskar and Cohen’s approach
draws only the edges where the two groups of polygons
meet and thus yield the model’s silhouette. Rendering
the wireframe representation in the second pass
achieves similar results. This allows silhouette rendering
with a certain line width by using thicker lines for the
wireframe rendering.

Performing additional transformations before ren-
dering the back-facing polygons can improve this gen-
eral technique. A translation of the back-facing polygons
toward the viewer yields thicker silhouette lines in the
resulting image. However, these lines don’t have a con-
stant line width. For silhouettes with adjustable but con-
stant width, the back-facing polygons are enlarged
depending on the distance from the viewer and the
angle with the viewing direction (see Figure 3).

Gooch et al. present a similar technique that also uses
hardware-accelerated rendering.11 Instead of rendering
directly to a color buffer, their method draws lines into
a stencil buffer. This stencil buffer acts as a mask for
drawing the back-facing polygons in a second pass. Also,
it can render creases in a different color than silhouettes.

Raskar proposes a one-pass hardware implementa-
tion that basically adds borders around each triangle.12

This method arranges the borders in such a way that
they disappear between two neighboring front-facing
polygons during rendering. It also inherently includes
generating crease lines where the angle between the
faces exceeds a given threshold.

Another technique introduced by Gooch et al. uses
environment mapping in addition to regular shading.11

By using a partially darkened environment map, this
method assigns dark values to vertices with normals that
are almost perpendicular to the viewing direction,
whereas other vertices remain unchanged. This method
achieves a stylistic effect (see Figure 4).

The advantage of hybrid over image space algorithms
is the typically higher degree of control over the out-
come. The choice of algorithm and parameters such as
translation or enlargement factors that control line
width provide this control. The visual appearance of the
generated images tends to be a more stylistic one. Also,
in contrast to image space algorithms, the silhouettes
inherently have distinct borders, which might be a
desired trait. On the other hand, the distinct borders can
cause aliasing artifacts in the image. However, we can
avoid these artifacts by employing well-known antialias-
ing techniques.

Computation times for hybrid algorithms generally
don’t differ much from those for image space methods
and run at interactive to real-time frame rates. Some algo-
rithms need two or more render passes but, in return,
don’t require additional manipulation of the generated
buffers. Object space manipulations needed for some of
the algorithms might add computation time in addition
to the number of rendering passes. However, the algo-
rithms can easily make use of commonly available graph-
ics hardware to speedup the rendering process.

The drawbacks of a pixel matrix representation of the

IEEE Computer Graphics and Applications 31

3 Enlargement of a back-facing polygon to achieve wide
silhouette lines. (Courtesy of Ramesh Raskar and Michael
Cohen10 © 1999 ACM. Reprinted with permission.)

4 Silhouette
generated with
a hybrid algo-
rithm. (Cour-
tesy of Bruce
Gooch,11 Uni-
versity of Utah
© 1999 ACM.
Reprinted with
permission.)

detected silhouette lines—as mentioned for image-
space algorithms—apply to hybrid algorithms also. Sim-
ilarly, the silhouette lines have pixel resolution and don’t
facilitate further stylization. In addition, the algorithms
might have some numerical problems due to limited z-
buffer resolution.

Object space algorithms
To apply further stylization to the lines an analytic

representation of the silhouette is needed. This is not
achievable with the previously discussed algorithms
because of the disadvantage of a pixel matrix represen-
tation of the computed silhouette. A good way to over-
come this problem is to employ an object space
algorithm. The computation of silhouettes in this group
of algorithms, as the name suggests, takes place entire-
ly in object space. In contrast to hybrid and image space
algorithms, object space algorithms deal with the prob-
lems of edge detection and edge visibility in separate
stages. Thus, we discuss these algorithms in two parts:
methods for silhouette edge detection and, because
parts of the silhouette edges might be occluded, finding
the visible subset of those edges.

Silhouette edge detection
A straightforward way to determine a model’s sil-

houette edges follows directly from the definition of a
silhouette. Approaches that speed up the process use
some precomputed data structures, while other algo-
rithms achieve faster execution by employing stochastic
methods.

Trivial method. The trivial algorithm is based on
the definition of a silhouette edge. The algorithm con-
sists of two basic steps. First, it classifies all the mesh’s
polygons as front or back facing, as seen from the cam-
era. Next, the algorithm examines all model edges and
selects only those that share exactly one front- and one
back-facing polygon. The algorithm must complete
these two steps for every frame.

Buchanan and Sousa suggest using a data structure
called an edge buffer to support this process.13 (The edge
buffer optimizes platforms such as game consoles that
have certain hardware restrictions.) In this data struc-
ture they store two additional bits per edge, F and B for
front and back facing. When going through the poly-
gons and determining whether they face front or back,
they XOR the respective bits of the polygon’s adjacent
edges. If an edge is adjacent to one front- and one back-
facing polygon the FB bits are 11 after going through all
polygons and we can use them for silhouette rendering.
Buchanan and Sousa extend this idea to support border
edges and other feature edges.

This simple algorithm—with or without using the
edge buffer data structure—works for both perspective
and orthographic projections. Also, it’s guaranteed to
find all silhouette edges in the model, be easy to imple-
ment, and be well suited for applications that only use
small models. However, it’s computationally expensive
for common hardware-based rendering systems and the
model sizes typically used with them. (For software-
based rendering systems, however, the silhouettes com-

puted with the brute-force approach come at little extra
cost.) Even if we suppose an effective data structure that
delivers local connectivity information in constant time,
an algorithm must look at every face, determine face
orientation (using one dot product per face; for per-
spective projection it must recompute the view vector
for every face), and look at every edge. This is a linear
method in terms of the number of edges and faces but
too slow for interactive rendering of reasonably sized
models. When we also consider that only a small num-
ber of edges typically exist that are in fact silhouette
edges, testing each one also seems unnecessary.

To speed up the brute-force algorithm, Card and
Mitchell suggest employing user-programmable vertex
processing hardware.14 For every potential silhouette
edge in the model a separate quad is generated along
the edge. In addition, each vertex of such an edge stores
the normals of both faces adjacent to the edge. When
rendering the quads, a vertex program tests whether
the normals are front or back facing. Only in cases
where the result is different for both normals is the
quad actually drawn.

Subpolygon silhouettes. Because a polygonal
mesh is usually only an approximation of a free-form
object, silhouettes of polygonal meshes typically have
some artifacts (for example, zigzags or silhouette edge
clusters). Hence, the expected silhouette of the real
object can differ significantly from the silhouette that
the trivial algorithm yields. Therefore, besides the quest
for a fast algorithm, there are approaches that try to find
a more exact silhouette, similar to that of the real object.

Hertzmann and Zorin consider the silhouette of a
free-form surface approximated by a polygonal mesh.2

To find this silhouette, they recompute the normal vec-
tors of the approximated free-form surface in the ver-
tices of the polygonal mesh. Using this normal, they
compute its dot product with the respective viewing
direction. Then, for every edge where the sign of the dot
product is different at both vertices, they use linear inter-
polation along this edge to find the point where it is zero.
These points connect to yield a piecewise linear sub-
polygon silhouette line (see Figure 5). The resulting sil-
houette line is likely to have far fewer artifacts. Also, the
result is much closer to the real silhouette than the result
of a traditional polygonal silhouette extraction method.
Hence, it’s well suited for later stylization of the lines.
Figure 6 shows an example of this method.

Precomputation methods. To speed up the
process of silhouette edge determination, various authors
have developed methods that accomplish some type of
preprocessing. The preprocessing stage sets up data struc-
tures used to find silhouette edges more quickly.

Gooch et al.11 and Benichou and Elber15 present a pre-
processing procedure based on projecting face normals
onto a Gaussian sphere. Here, every mesh edge corre-
sponds to an arc on the Gaussian sphere, which connects
the normal’s projections of its two adjacent polygons
(see Figure 7). For orthographic projection, a view of
the scene is equivalent to a plane through the origin of
the Gaussian sphere. They further observe that every

Survey

32 July/August 2003

arc intersected by this plane is a silhouette edge in the
corresponding view. Applying this observation to sil-
houette edge extraction removes the need to check for
each frame if every face is front or back facing. The arcs
are computed in a preprocessing step and at runtime
only the intersections with the view plane are tested.
Figure 8 shows an example rendering.

To further limit the number of arcs tested, Gooch et al.
use a hierarchical decomposition of the sphere. They
start with a platonic solid and consecutively apply sub-
division to solid’s sides.11 The arcs are stored in the low-
est possible level. Benichou and Elber, on the other
hand, map the Gaussian sphere and the arcs to a cube
surrounding the sphere.15 The arcs are equivalent to line
segments on the cube. This method maps the view
plane’s great arc onto the cube, resulting in a set of line
segments, which simplifies the intersection test. To
reduce the number of arcs tested, this approach decom-
poses the sides of the cube into a grid and only tests for
intersection those edge line segments in grid cells that
touch a viewplane line segment.

Hertzmann and Zorin2 present a method that uses a
data structure also based on a dual representation, which

is, in fact, similar in principle to the one by Benichou and
Elber. This approach, however, constructs a dual repre-
sentation of the mesh in 4D space based on the position
and tangent planes of every vertex. The viewpoint’s dual
(a plane in 4D) intersects with the mesh triangles’ dual.
Beforehand, the approach normalizes the dual vertices
using the l∞ norm so that the vertices end up on one of the
unit hypercube’s sides. (The normalization does not
make a difference because the viewpoint’s dual plane
goes though the origin.) This reduces the problem to
intersecting the triangles on a hypercube’s sides with the
viewpoint’s dual plane. This means you need to intersect
triangles in eight 3D unit cubes (the eight hypercube
sides) with a plane. Here, again, speedup occurs by
employing space partitioning, namely by using an octree
for each hypercube sides. At runtime, the approach only
computes the viewpoint’s dual plane and then intersects
it with each hypercube side, resulting in edges that inter-
sect the silhouette. The major advantage of this approach
over methods discussed earlier in this section is that it
works for orthographic as well as perspective projections.
For orthographic projection you simply place the view-
point at infinity.

Pop et al. present another algorithm based on a dual
representation.16 Similar to the previous approach but
this time in 3D, this method constructs a dual space with

IEEE Computer Graphics and Applications 33

- -

-

-

--
-

-
--

-

- +

+ +

+
+

+ + +

+++++

+

++

(a) (b)

-

- +

5 Computation of a subpolygon silhouette for (a) a
single triangle and (b) a mesh. The dot product
between normal vector and view direction is positive at
vertices with plus signs and negative at vertices with
minus signs. Between a positive and a negative vertex
linear interpolation is used to find the silhouette. (Cour-
tesy of Aaron Hertzmann4 © 1999 ACM. Reprinted with
permission.)

6 Two images generated with Hertzmann and Zorin’s
subpolygon method. The silhouettes are combined
with a hatching technique. (Courtesy of Aaron Hertz-
mann and Denis Zorin2 © 2000 ACM. Reprinted with
permission.)

(a) (b)

7 Preprocessing using projection of the normals of two
faces adjacent to an edge onto (a) the Gaussian sphere
and (b) its surrounding cube. (Courtesy of Gershon
Elber and Fabien Benichou15 © 1999 IEEE.)

8 Example scene rendered with the Gaussian sphere
preprocessing algorithm. No visibility test was used.
(Courtesy of Gershon Elber and Fabien Benichou.)

vertices having planes as duals and vice versa. This
reduces the silhouette problem to finding intersections
of the viewpoint’s dual plane with the duals of the mesh
edges. This, unfortunately, is still expensive to compute
for every frame. These authors note, however, that you
only need to find silhouette changes in two consecutive
frames. To accomplish this they identify the dual edges
with one vertex inside and the other vertex outside the
wedge formed by the dual planes of two consecutive
viewpoints. Similar to Hertzmann and Zorin’s method,
to speed up this process they use an octree data struc-
ture. The advantage of this approach is that it works in
3D only. Hence, it performs the search for intersections
only once per frame as opposed to eight times. Also, the
approach only detects silhouette changes. However,
although Hertzmann and Zorin’s approach requires
eight octrees instead of just one, each of the eight octrees
only contains one-eighth of the faces. Also, both meth-
ods should have an expected extraction time linear to
the number of found silhouette edges.

Sander et al. use a different method for silhouette
edge detection.17 This approach constructs a hierarchi-
cal search tree that stores the mesh’s edges. All the faces
attached to edges that are stored in a node or its associ-
ated subtree make up a face cluster. At runtime, the
method searches the tree recursively to find face clus-
ters that are entirely front or back facing. All edges of
such a face cluster can be discarded and the search for
the associated subtree stopped. To effectively test
whether a face cluster is entirely front or back facing in
constant time, Sander et al. store two anchored cones
in every node (see Figure 9). One cone represents those
positions where the viewpoint can be located for the
entire face cluster to be front facing, the other cone for
the face cluster to be back facing.

Summarizing, all precomputation methods present-
ed here reduce the number of triangles or edges checked
at runtime, speeding up the silhouette detection process
without trading accuracy. They accomplish this by estab-
lishing an efficient data structure during preprocessing.
All authors claim to achieve at least interactive frame
rates for reasonably sized models. However, these meth-

ods make animation of the models
inefficient since the precomputed
data structure stores information
about the visibility of polygons to
quickly identify silhouettes for the
moving viewpoint. If a model were
animated beyond a flight through
the scene, this precomputed data
structure would become invalid and
result in new precomputation steps
for every frame. On current hard-
ware, this would reduce the frame
rate to below interactive rates. In
addition, precomputation algo-
rithms need a separate elaborate
data structure besides the actual
geometry for achieving their
speedups.

Stochastic method. In con-
trast to precomputation, Markosian et al. suggest a sto-
chastic algorithm to gain faster runtime execution of
silhouette detection.18 They observe that only a few
edges in a polygonal model are actually silhouette edges.
(Typically O(√ n) edges of the n polygons according to
Sander et al.17.) In the hope of finding a good initial set
of candidates for front- and back-face culling, they ran-
domly select a small fraction of the edges and exploit
spatial coherence. Once they detect a silhouette edge,
they recursively test adjacent edges until they reach the
end of the silhouette line. In addition, they also exploit
spatial coherence, as the silhouette in one frame is typ-
ically not far from the (visually) similar silhouette in the
next frame.

The combination of these two parts of the algorithm
yields most of the silhouette edges in one image. By
exploiting spatial and temporal coherence, Markosian
et al. achieve fast runtime execution for interactive or
real-time applications. Also, the method is not restrict-
ed to static objects, so animation does not pose a prob-
lem. However, in contrast to the precomputation
algorithms we discussed previously, the algorithm can’t
guarantee finding the entire set of silhouette edges for
a certain view on the scene.

Line visibility determination
In most cases the process of computing object space

silhouettes produces the problem of visibility culling of
the silhouette edges. This problem is the classic computer
graphics problem of hidden line removal. Similar to the
problem of silhouette detection, three general ways exist
to attack this problem. A fast way to solve it is an image
space approach. A highly precise solution employs an
object space method that yields visible silhouette seg-
ments in an analytic description. Finally, by combining
both approaches you can use a hybrid method that’s
faster than an object space method but still yields ana-
lytic descriptions of the visible silhouette lines.

Image space. A trivial and fast way to determine
the visibility of silhouette edges in image space is to use
the z-buffer. The simplest method is to render the sil-

Survey

34 July/August 2003

θθ

θθ

9 Preprocess-
ing for faster
silhouette
detection
through
arrangement of
face clusters in
anchored cones
(visualized in
2D) by Sander
et al.17 (© 2000
ACM. Reprinted
with permis-
sion.)

houette edges and let the z-buffer remove the hidden
lines. The result is comparable to Raskar and Cohen’s
hybrid method using wireframe rendering in the sec-
ond pass. A more advanced algorithm renders the sil-
houettes in a certain line width and perpendicular to
the viewing direction. Unfortunately, this generates
images with thick internal silhouettes and thin contour
lines because the object itself partly occludes contour
lines but not internal silhouettes.

Besides the limitation to pixel accuracy, the main dis-
advantage of this image space approach is that when
you apply style variations to the silhouette the line might
be partially occluded.

Object space. Researchers have proposed many
algorithms for hidden line removal in object space (see,
for example, Sutherland et al.19). Most of these also solve
the problem of hidden surface removal. It would go
beyond the scope of this article to address all of these
algorithms, but you could use many of them to easily
determine silhouette visibility. The visible line algorithm
presented by Appel,20 however, deserves further atten-
tion since it’s frequently used in the context of silhou-
ette algorithms. The algorithm is based on the notion of
quantitative invisibility (QI)—the number of front-
facing polygons between a point on the edge to be ren-
dered and the viewer—which is determined for all edge
segments (see Figure 10). All edge segments with a QI
value of zero are visible; all others are invisible. The fact
that the QI value only changes when the edge to be ren-
dered intersects a silhouette edge in the 2D projection
allows for propagation along connected sets of edges.
(However, it can also change at a vertex if the vertex lies
on a silhouette edge, which causes some complications
for the computation.) Therefore, for every connected
set of edges tested the QI value is initially established
for one point using, for example, ray tracing. The QI
value is then propagated along the edges to be rendered
determining whether it increases or decreases each time
the edge passes behind a silhouette edge.

Markosian et al.18 use a modified version of Appel’s
algorithm to improve computation time. They redefine
the QI value as the total number of faces between a point
and the viewer. This simplifies Appel’s algorithm in that
the QI value can now only change at a vertex if that ver-
tex is a so-called cusp vertex. In addition, they avoid
many of the required ray tests by first finding out how
the QI value changes by establishing relative QI values
when traversing a connected set of edges before exe-
cuting the ray test. Sometimes, this marks as invisible
the whole connected set of edges, making it unneces-
sary to establish initial QI values. In the remaining cases,
they avoid even more tests by inferring from QI values
of one set of connected edges to those of others by using
the relative QI values determined previously.

Hertzmann and Zorin apply this approach to their
algorithm for subpolygon silhouettes.2 First, they divide
their silhouette curves into segments at points where
the visibility can possibly change and determine visibil-
ity individually for each of these segments. Then, in
addition to their subpolygon silhouette edges, they also
determine regular (non-subpolygon) silhouette edges

that are a subset of the input mesh. They determine edge
visibility using the adapted Appel’s algorithm described
previously. Finally, they use the visibility of the majori-
ty of edges adjacent to a subpolygon silhouette edge seg-
ment to infer the segment’s visibility. For finely
tessellated objects this yields a sufficiently correct visi-
ble silhouette.

The advantage of analytic algorithms is they typical-
ly yield highly precise visibility information. However,
since their computational complexity is not constant,
they usually take longer to compute than image space
approaches.

Hybrid. As we just showed, because they precisely
solve the hidden line problem, object space silhouette
visibility tests are usually expensive. A fast but less accu-
rate way of determining silhouette edge visibility is an
image space approach. However, in many applications
only pixel accuracy is necessary. Thus, combining object
space and image space approaches in a hybrid algorithm
can achieve significant speedup for the visibility test.

In addition to regular rendering with a z-buffer,
Northrup and Markosian use an ID buffer to determine
silhouette edge visibility.21 A unique color identifies each
triangle and silhouette edge in this ID buffer. For each
frame, the ID buffer is read from the graphics hardware
and all reference image pixels are examined to extract
all silhouette edges represented by at least one pixel.
The approach then scan converts and checks for visibil-
ity the remaining silhouette edges according to whether
a pixel with the edge’s unique color exists in the ID
buffer. Figure 11 shows an example rendering.

Isenberg et al. use a similar approach, in principal.22

IEEE Computer Graphics and Applications 35

0

1

1

2

0

10 Example for Appel’s notion of quantitative invisibili-
ty for a line passing behind the object. The dots denote
the positions where the QI value changes. Adapted from
Appel.20 (© 1967 ACM. Reprinted with permission.)

11 Image generated using
Northrup and Markosian’s hybrid
visibility test. Line styles are used
for rendering silhouette strokes.
(Courtesy of J.D. Northrup21 © 2000
ACM. Reprinted with permission.)

However, they base their visibility test on the z-buffer
instead of an additional ID buffer. This saves time for
the second render pass otherwise required for the ID
buffer. In addition, they note that simply scan convert-
ing silhouette edges and comparing the computed pix-
els with values in the z-buffer is somewhat numerically
unstable. Thus, they suggest not only looking at the
pixel’s exact position but also at its 8-pixel neighborhood
for pixels that are further away than the tested pixel (see
Figure 12). This significantly reduces the numerical
problems. To further speed up the process they only look
at every nth pixel. This introduces a trade-off between
accuracy and speed.

The result of either of these techniques is—as with
object space visibility algorithms—a set of visible sil-
houette lines. We can now use them, for example, for
stylized silhouette rendering. After concatenating the
visible silhouettes to form paths, we can apply line styles
and render them without an additional visibility test
(Figure 13 shows an example). In contrast to image
space visibility-tested silhouettes, style features that sig-
nificantly distort the path are now completely visible.

Future work
The various algorithms presented here can guide

developers who need to find a polygonal model’s sil-
houette. Goals for future research could include, for
example, making object animation compatible with cer-
tain precomputation algorithms for object space sil-
houette detection—that is, to find ways to efficiently
update the data structure. This would open the catego-

ry of object space silhouette detection to general appli-
cations that require large models and animation. Also,
recent advances in computer graphics hardware could
speed the process of silhouette visibility detection in
hybrid methods or even support the computation of sil-
houettes directly. ■

Acknowledgments
We thank Stefan Schirra for many interesting discus-

sions on the topic and Bert Vehmeier for his help with
the images.

References
1. G. Elber and E. Cohen, “Hidden Curve Removal for Free

Form Surfaces,” Proc. Siggraph 90, Computer Graphics (Proc.
Ann. Conf. Series), vol. 24, ACM Press, 1990, pp. 95-104.

2. A. Hertzmann and D. Zorin, “Illustrating Smooth Surfaces,”
Proc. Siggraph 00, Computer Graphics (Proc. Ann. Conf.
Series), S.N. Spencer, ed., ACM Press, 2000, pp. 517-526.

3. T. Saito and T. Takahashi, “Comprehensible Rendering of
3-D Shapes,” Proc. Siggraph 90, Computer Graphics (Proc.
Ann. Conf. Series), F. Baskett, ed., ACM Press, 1990, pp.
197-206.

4. A. Hertzmann, “Introduction to 3D Non-Photorealistic
Rendering: Silhouettes and Outlines,” Non-Photorealistic
Rendering (Siggraph 99 Course Notes), S. Green, ed., ACM
Press, 1999.

5. O. Deussen and T. Strothotte, “Computer-Generated Pen-
and-Ink Illustration of Trees,” Proc. Siggraph 2000, Com-
puter Graphics (Proc. Ann. Conf. Series), vol. 34, ACM
Press, 2000, pp. 13-18.

6. J.L. Mitchell, C. Brennan, and D. Card, “Real-Time Image-
Space Outlining for Non-Photorealistic Rendering,” Sig-
graph 02 Conf. Abstracts and Applications, ACM Press,
2002, p. 239.

7. J. Loviscach, “Rendering Artistic Line Drawings Using Off-
the-Shelf 3-D Software,” Proc. Eurographics: Short Presen-
tations, I.N. Alvaro and P. Slusallek, eds., Blackwell
Publishers, 2002, pp. 125-130.

8. P. Rustagi, “Silhouette Line Display from Shaded Models,”
Iris Universe, Fall 1989, pp. 42-44.

9. J.R. Rossignac and M. van Emmerik, “Hidden Contours on
a Frame-Buffer,” Proc. 7th Eurographics Workshop Com-
puter Graphics Hardware, Eurographics, 1992, pp. 188-204.

10. R. Raskar and M. Cohen, “Image Precision Silhouette
Edges,” Proc. 1999 ACM Symp. Interactive 3D Graphics, S.N.
Spencer, ed., ACM Press, 1999, pp. 135-140.

11. B. Gooch et al., “Interactive Technical Illustration,” Proc.
1999 ACM Symp. Interactive 3D Graphics, ACM Press, 1999,
pp. 31-38.

12. R. Raskar, “Hardware Support for Non-Photorealistic Ren-
dering,” Proc. 2001 Siggraph/Eurographics Workshop on
Graphics Hardware, ACM Press, 2001, pp. 41-46.

13. J.W. Buchanan and M.C. Sousa, “The Edge Buffer: A Data
Structure for Easy Silhouette Rendering,” Proc. 1st Int’l
Symp. Non-Photorealistic Animation and Rendering, ACM
Press, 2000, pp. 39-42.

14. D. Card and J.L. Mitchell, “Non-Photorealistic Rendering
with Pixel and Vertex Shaders,” Vertex and Pixel Shaders
Tips and Tricks, W. Engel, ed., Wordware, 2002.

Survey

36 July/August 2003

12 Testing visibility by looking at the z-buffer values of the pixel and its 8-
pixel neighborhood. Not every pixel is tested (in this case every fifth pixel is
examined). (Courtesy of Tobias Isenberg, Nick Halper, and Thomas
Strothotte, Computer Graphics Forum, published by Blackwell Publishing.22

Reprinted with permission.)

13 Image generated by applying
the hybrid z-buffer visibility test.
(Courtesy of Tobias Isenberg, Nick
Halper, and Thomas Strothotte,
Computer Graphics Forum, published
by Blackwell Publishing.22 Reprint-
ed with permission.)

15. F. Benichou and G. Elber, “Output Sensitive Extraction of
Silhouettes from Polygonal Geometry,” Proc. 7th Pacific
Graphics Conf., IEEE CS Press, 1999, pp. 60-69.

16. M. Pop et al., “Efficient Perspective-Accurate Silhouette
Computation,” Proc. 17th Ann. ACM Symp. Computational
Geometry, ACM Press, 2001, pp. 60-68.

17. P.V. Sander et al., “Silhouette Clipping,” Proc. Siggraph
2000, Computer Graphics (Proc. Ann. Conf. Series), S.N.
Spencer, ed., ACM Press, 2000, pp. 327-334.

18. L. Markosian et al., “Real-Time Nonphotorealistic Render-
ing,” Proc. Siggraph 97, Computer Graphics (Proc. Ann.
Conf. Series), T. Whitted, ed., Addison Wesley, 1997, pp.
415-420.

19. I.E. Sutherland, R.F. Sproull, and R.A. Schumacker, “A
Characterization of Ten Hidden-Surface Algorithms,” Com-
puting Surveys, vol. 6, no. 1, 1974, pp. 1-55.

20. A. Appel, “The Notion of Quantitative Invisibility and the
Machine Rendering of Solids,” Proc. ACM National Conf.,
Thompson Books, 1967, pp. 387-393.

21. J.D. Northrup and L. Markosian, “Artistic Silhouettes: A
Hybrid Approach,” Proc. 1st Int’l Symp. Non-Photorealistic
Animation and Rendering, J.-D. Fekete and D.H. Salesin,
eds., ACM Press, 2000, pp. 31-37.

22. T. Isenberg, N. Halper, and T. Strothotte, “Stylizing Sil-
houettes at Interactive Rates: From Silhouette Edges to Sil-
houette Strokes,” Computer Graphics Forum (Proc.
Eurographics 2002), vol. 21, no. 3, 2002, pp. 249-258.

Tobias Isenberg is a PhD candi-
date in the Department of Simulation
and Graphics at the Otto-von-Guer-
icke University of Magdeburg, Ger-
many. His research interests include
feature detection on 3D shapes and
nonphotorealistic rendering with an

emphasis on silhouette algorithms, line stylization, and
hybrid rendering. Isenberg received a BSc from the Univer-
sity of Wisconsin, Stevens Point, and a Diplom from the
Otto-von-Guericke University of Magdeburg.

Bert Freudenberg is a PhD candi-
date in the Department of Simulation
and Graphics at the Otto-von-Guer-
icke University of Magdeburg. His
research interests include real-time
rendering, nonphotorealistic com-
puter graphics, and interactive edu-

cational environments. Freudenberg received a Diplom
from the Otto-von-Guericke University of Magdeburg.

Nick Halper is a PhD candidate in
the Department of Simulation and
Graphics at the Otto-von-Guericke
University of Magdeburg. His
research interests include nonphoto-
realistic rendering (modular sys-
tems, user interfaces, evaluating the

influence of nonphotorealistic rendering), camera pre-
sentation (declarative specification, real-time techniques),
and computer games (action summarization, nonphoto-
realistic rendering in games). Halper received an MEng in
computer systems and software engineering from the Uni-
versity of York, England.

Stefan Schlechtweg is an assis-
tant professor in the Department of
Simulation and Graphics at the
Otto-von-Guericke University of
Magdeburg. His research interests
include nonphotorealistic rendering,
the application of nonphotorealistic

techniques in interactive systems, and visualization.
Schlechtweg received a PhD in computer science from the
Otto-von-Guericke University of Magdeburg.

Thomas Strothotte is a full pro-
fessor of computer science in the
Department of Simulation and
Graphics at the Otto-von-Guericke
University of Magdeburg, where he
is the Chair for Graphics and Inter-
active Systems. His research interests

include nonphotorealistic rendering, image-text coherence
in interactive systems, and techniques for rendering illus-
trations. Strothotte received a BSc and MSc from Simon
Fraser University, a PhD in computer science from McGill
University, as well as a Habilitation degree from the Uni-
versity of Stuttgart.

Readers may contact Tobias Isenberg at the Otto-von-
Guericke University of Magdeburg, Dept. of Simulation and
Graphics, Universitatsplatz 2, 39106 Magdeburg, Germany;
isenberg@isg.cs.uni-magdeburg.de.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 37

	Introduction
	Definitions and terminology
	Classification
	Image space algorithms
	Hybrid algorithms
	Object space algorithms
	Silhouette edge detection
	Trivial method
	Subpolygon silhouettes
	Precomputation methods
	Stochastic method

	Line visibility determination
	Image space
	Object space
	Hybrid

	Future work
	Acknowledgements
	References

