
OPENNPAR: A System for Developing, Programming, and Designing
Non-Photorealistic Animation and Rendering

Nick Halper Tobias Isenberg Felix Ritter
Bert Freudenberg Oscar Meruvia Stefan Schlechtweg Thomas Strothotte

Department of Simulation and Graphics
Otto-von-Guericke University of Magdeburg

{nick|isenberg|fritter|bert|oscar|stefans|tstr}@isg.cs.uni-magdeburg.de

Abstract

The notable amount and variation of current techniques
in non-photorealistic rendering (NPR) indicates a level of
maturity whereby the categorization of algorithms has be-
come possible. We present a conceptual model for NPR,
on which we base a modular system,OPENNPAR, which
integrates NPR algorithms into distinct classes. Compo-
nents inOPENNPARare modularized and consequently re-
integrated for various rendering purposes, allowing many
kinds of NPR algorithms to be reproduced, including the
integration of 2D and 3D methods. Additionally, the sys-
tem provides support for a range of users (developers, pro-
grammers, designers) according to their respective levels of
abstraction, thus being available in multiple contexts. Ul-
timately,OPENNPAR holds great potential as a tool in the
development, augmentation, and creation of NPR effects.

1. Introduction

The nature of non-photorealistic rendering (NPR) in its sim-
plest definition, is a form of visual communication. As com-
munication is virtually endless in its possibilities, NPR at-
tempts to succinctly define options within this scope. Par-
ticular rendering styles are capable of conveying context-
specific information in an application-dependent environ-
ment. Thus, there is a need for an effective rendering system
which provides support for multivariate applications.

Despite the plethora of non-photorealistic effects avail-
able [2, 9], there exists a rather limited number of primitives
actually employed to generate these effects [1]. There also
remains a similarly limited number of general techniques
for the application of these primitives. The ingenuity of the
algorithms underlying the aforementioned effects lies not in
the mere application of these primitives, but rather, in their
combination. Thus, a system could be designed wherein all
modular components are freely combined and interchanged.

Moreover, photorealistic rendering is often used to comple-
ment NPR. Therefore, this system could also include pho-
torealistic capabilities.

To achieve the necessary modularity for the proposed
system, NPR techniques must first be categorized according
to their various properties. Specific classes of algorithms
can then operate on the same sets of data—consequently
sidestepping unnecessary data conversions between soft-
ware projects. In addition, NPR algorithms can be individ-
ually broken down into a set of smaller algorithms, wherein
an ‘elementary set’ of algorithms are eventually defined.
Logically, keeping modules small and simple increases the
range and flexibility when generating more complex algo-
rithms. Finally, functionality is little without application.
An effective means of presenting available options in the
system to a variety of users will allow content creation at a
level that satisfies individual requirements. Involved herein
are those who actually create the modules, those who plug
the different modules together to create a specific effect, and
finally those who use effects to produce images.

2. OPENNPAR

Our main contribution is an attempt to unify many NPR
techniques into a single framework, OPENNPAR, that is
accessible by users at different levels of abstraction. This
section first categorizes base classes for algorithms to es-
tablish the conceptual framework for OPENNPAR and then
describes OPENNPAR’s architecture and user classes.

2.1. Classes of Algorithms

Classification of NPR techniques [1] aid both terminol-
ogy and discussion, yet there is still no clear direction for
a unification of algorithms into a single system. A re-
cent effort specialized for stroke stylization constructed a

http://www.opennpar.org/
http://wwwisg.cs.uni-magdeburg.de/isg/halper.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/isenberg.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/fritter.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/bert.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/oscar.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/stefans.html.en
http://wwwisg.cs.uni-magdeburg.de/isg/tstr.html.en
http://isgwww.cs.uni-magdeburg.de/index.html.en
http://www.uni-magdeburg.de/unv_eng.html
mailto:nick@isg.cs.uni-magdeburg.de
mailto:isenberg@isg.cs.uni-magdeburg.de
mailto:fritter@isg.cs.uni-magdeburg.de
mailto:bert@isg.cs.uni-magdeburg.de
mailto:oscar@isg.cs.uni-magdeburg.de
mailto:stefans@isg.cs.uni-magdeburg.de
mailto:tstr@isg.cs.uni-magdeburg.de
mailto:nick@isg.cs.uni-magdeburg.de
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/

pipeline of operations allowing flexible combinations of ef-
fects [3]. Unfortunately, an ordered pipeline of operations
within a larger framework for NPR would potentially sacri-
fice the system’s generality. Therefore, our basic philos-
ophy is to allow free flow of operations between sets of
primitive states. By classifying primitives according to our
conceptual model in Figure 1, building blocks (individual
processes) can be arbitrarily combined (a sequence of pro-
cesses) for different rendering pipelines (the collective se-
quence of processes).

Figure 1: Our conceptual model for algorithms in NPR.

Many hybrid algorithms combine two or all three of these
classes [1, 9]. Thus, by providing numerous but small and
well-identified processes centered around a set of extend-
able basic primitives, we hope to achieve a generality of
use covering a large range of NPR algorithms. The goal of
OPENNPAR is to embody our conceptual model and enable
users at all levels of expertise to interact with the system us-
ing knowledge requirements depicted in Figure 2.

Developer O NPARPEN Programmer Designer End User
develops
modules

el
em

en
ts

m
od

ul
es

m
od

ul
es

m
od

ifi
er

s

im
ag

esuses modules
to produce
modifiers

uses
modifiers

to generate
effects

views
images

Figure 2: OPENNPAR knowledge pipeline

2.2. DevelopingOPENNPAR

OPENNPAR is built on the foundation provided by OPEN

INVENTOR, an object-oriented graphics architecture, that
employs a scene graph based approach [8]. Essentially,
OPEN INVENTOR developer principles are adapted to meet
our conceptual model requirements—primitives are com-
posed fromelementsin OPEN INVENTOR, whereas pro-
cesses are performed in the render action procedure in nodes

during a rendering traversal. In addition, OPENNPAR re-
stricts each node to perform one specific process only—we
distinguish these nodes from normal OPEN INVENTOR op-
eration by calling themmodules. Thus, we execute pro-
cesses in Figure 1 though the use of modules, and represent
the classes of primitives with elements.

The developer adds functionality to OPENNPAR by cre-
ating numerous new modules that each compute a single,
specific task. In contrast, primitive elements in the system
are extended but kept to a small generic set suitable for a
broad range of application. Thus, a variety of modules op-
erate on the same primitive elements which aids the inter-
change of data and resulting flow of computation.

2.3. Programming with OPENNPAR

Programmers access OPENNPAR’s functionality by plac-
ing modules into a rendering pipeline and taking care of
module dependencies and data flow connections, either by
editing an external scene description or by calling OPEN-
NPAR’s API within an application. Their primary task is to
exploit OPENNPAR’s existing range of effects and poten-
tially define new algorithms by ordering modules and in-
terchanging data in novel ways. Since NPR algorithms of-
ten require access to multiple stages in a rendering pipeline,
fieldsare used to aid the propagation of data between mod-
ules within scene-graphs.

2.4. Designing withOPENNPAR

Whereas the programmer has the technical expertise to ex-
periment with the system at a modular level, designer pro-
ductivity increases when part of an entirely visual and iter-
ative process. Therefore, we devised an interface to over-
come technological knowledge requirements on designers
that closely follows our conceptual model’s data flow [5].

Designer’s interact with OPENNPAR by applyingmod-
ifiers that enable both (1) amethod of interactionwhich
leaves the designer unaware of the data being used to create
a given effect, and (2) amethod of computationwhich as-
sembles a unique pipeline of graphical operations to achieve
the effect. A modifier manipulates, adds, or removes mod-
ules in a scene-graph as defined by the programmer. In ad-
dition, modifiers handle all internal ordering dependencies
and data conversion between modules to produce a desired
effect. The end result—each modifier assembles a unique
operation pipeline for the effect that is compatible with the
required system data flow, yet the designer’s original appli-
cation order of effects is visually maintained.

http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.sgi.com/software/inventor/
http://www.opennpar.org/
http://www.sgi.com/software/inventor/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/

3. OPENNPAR Examples

This section demonstrates the range of effects achieved with
OPENNPAR, using simple examples to highlight advan-
tages in the development and subsequent re-use of modules
and modifiers by programmers and designers respectively.

3.1. Silhouettes

A number of succinct modules are defined in OpenNPAR
to encapsulate elementary stroke algorithms for stylization,
silhouette extraction, stroke concatenation, and artefact fil-
tering (see [6]). Each stroke module alters the current stroke
primitive state in the pipeline. Therefore, in similar fashion
to the stroke stylization stages in GRABLI et al.’s system
[3], the programmer selects modules and pipes them in dif-
ferent ways to produce different cumulative results. The
result of a silhouette extraction module with subsequently
applied stroke stylization modules that add a chalk texture,
texture coordinate generation, stroke orientation, and thick-
ness depth-cueing (whereby thickness is aligned according
to stroke orientation) is shown in Figure 3(a).

Since basic algorithms are individually encapsulated in
modules, a different effect is easily achieved by replacing
the silhouette extraction module with a surface skeletoniza-
tion module-rather than setting stroke primitives to form a
silhouette, strokes are generated based on the model’s skele-
tal structure. Rendering of skeletal strokes is more efficient
due to its view-independency in contrast to silhouette ex-
traction that requires re-computation with every change in
viewer position. Observing that skeletal strokes are effec-
tive when the object is at a distance (see Figure 3(b)), both
the silhouette extraction and skeletonization module are
grouped under a level-of-detail module that selects which
of the two to process depending on the object’s projected
size. Thus, when the object is visibly small, skeletal strokes
are used to depict the object’s form instead of its actual sil-
houette.

3.2. Interactive Illustration

Since OPENNPAR’s functionality is layered on top of Open
Inventor, we already have substantial support for user inter-
action. For instance, a 3D Painter application (Figure 4(a))
is written in less than 1000 lines of code that enables the
user to ’paint’ onto the surface in various styles in simi-
lar fashion to [7]. Each point picked on the surface maps
its surface coordinates, normal, and color (material or tex-
ture) to a newly generated stroke point. The stroke styl-
ization modules from our previous example subsequently
determine the quality, texture, and style of the stroke.

Interaction can also be extended specifically for OPEN-
NPAR. Figure 4(b) shows an interactive illustration that al-

lows users to pick shadows while combining photorealism
and NPR to provide relevant abstraction in guiding user fo-
cus. Silhouettes and stroke stylization modules are applied
to shadow data to illustrate the interaction context, whereas
skeletonization modules help determine anchor text place-
ment.

3.3. Real-Time Shading

Rendering modules access primitive states to determine out-
put. Default conditions are assumed for primitive state com-
ponents that remain undefined, otherwise values introduced
by previous modules are used. This gives modules free-
dom to manipulate primitive elements to alter a subsequent
effect. To achieve real-time shading, developers introduce
modules that alter programmable features of graphics hard-
ware. The programmer defines the code to be compiled at
run-time, and the hardware configuration subsequently al-
ters output from standard rendering modules. Figure 4(c)
shows examples for cool-to-warm shading, colored hatch-
ing, cel shading, and black-and-white stroke textures all im-
plemented with vertex programmable modules and texture-
combiner modules. Hardware programmable features in
OPENNPAR can also render output in real-time from data
generated from external applications. Stippling points and
conditions are generated off-line and output to an OPEN-
NPAR compatible scene graph defining modules for real-
time stipple and silhouette rendering (Figure 3(c)).

3.4. Animation

OPENNPAR is capable of reading VRML files extended to
include animation modules. To produce the variety of re-
sults in Figure 5, the programmer first edits the exported
VRML scene description from a professional 3D animation
package to include an image module that reads frame-buffer
contents after each animation frame rendering. A variety of
image processing modules are then appended to the scene
graph description and their output connected to a video
module parameterized to insert images at specific time in-
tervals to a video file. The scene description is imported
into an OPENNPAR viewer application that subsequently
writes the animation to disk in a specified video format.

3.5. Designer Interaction

The advantages of OPENNPAR become apparent with its
designer’s interface: modifiers are easily implemented by
programmers, and designers subsequently explore diverse
effects to reach a communicative intent using even a lim-
ited set of modifiers. For example, Figure 6 demonstrates a
designer’s work on two initial images using only 10 mod-
ifiers to come up with a ‘sponge-painting’ effect within a

http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/

(a)Visible silhouette rendered in
real-time with oil paint texture
and depth cueing.

(b) Comparison of rendering silhouette drawings or
skeleton drawings for different sizes of the object.

(c) Using OPENNPAR to render
stipples and silhouettes.

Figure 3: Sample algorithms implemented using OPENNPAR.

few minutes. Notice how the designer applies a new effect
directly after each previous visual result without the need to
observe module dependencies.

4. Conclusion

We have presented OPENNPAR, a system for creating NPR
and animation. OPENNPAR appears to be the first system
of its kind that allows for a range of different user classes to
both reproduce a variety of algorithms as well as create new
ones. This was made possible by structuring OPENNPAR
onto a conceptual framework for NPR that categorizes al-
gorithms and primitives to support the interchange and re-
use of data. Consequently, OPENNPAR offers potential for
defining an effective presentation method within the wide
scope of NPR.

Developers increase OPENNPAR’s functionality by con-
structing modules and extending primitives. Programmers
access functionality either by linking an application directly
to OPENNPAR or through textual descriptions of modules
in a rendering pipeline. Due to its modular structure, pre-
defined effects can be reproduced or entirely new ones cre-
ated by the manipulation of interchangeable modules.

A potential limitation of the system is that algorithms are
constrained to formulations in the scene graph. Thus, cer-
tain NPR pipelines utilizing multiple primitives, in particu-
lar those requiring feedback loops, require atypical structur-
ing of the scene-graph. This may invoke additional imple-
mentation overhead and loss of performance. Although we
are using OPENNPAR in both advanced education and re-
search, we have not yet conducted a broad evaluation of the
usability of the tool. However, we hypothesize that many
existing NPR algorithms can be created by modularizing
components into OPENNPAR. The effectiveness of the sys-
tem lies in the flexibility of available modules and the com-
pleteness of its elements.

In conclusion, OPENNPAR holds potential as a power-
ful tool for the development, augmentation, and creation of
NPR. Further details about OPENNPAR can be found in
[4], and additional animations and example application are
available atwww.opennpar.org .

References

[1] F. Durand. An Invitation to Discuss Computer Depiction. In
Proceedings of NPAR’2002, pages 111–124, New York, USA,
2002. ACM Press.

[2] B. Gooch and A. Gooch.Non-Photorealistic Rendering. A K
Peters, Ltd., Natick, 2001.

[3] S. Grabli, F. Durand, E. Turquin, and F. Sillion. A Procedural
Approach to Style for NPR Line Drawing from 3D Models.
Technical Report 4724, INRIA, 2003.

[4] N. Halper. Supportive Presentation for Computer Games.
PhD thesis, University of Magdeburg, Submitted 2003.

[5] N. Halper, S. Schlechtweg, and T. Strothotte. Creating Non-
Photorealistic Images the Designer’s Way. InProceedings of
NPAR’2002, pages 97–104, New York, 2002. ACM Press.

[6] T. Isenberg, N. Halper, and T. Strothotte. Stylizing Silhou-
ettes at Interactive Rates: From Silhouette Edges to Silhou-
ette Strokes.Computer Graphics Forum (Proceedings of Eu-
rographics 2002), 21(3):249–258, Sept. 2002.

[7] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowal-
ski, J. C. Lee, P. L. Davidson, M. Webb, J. F. Hughes,
and A. Finkelstein. WYSIWYG NPR: Drawing Strokes Di-
rectly on 3D Models. InProceedings of SIGGRAPH’2002,
Computer GraphicsProceedings, Annual Conference Series,
pages 755–762, Reading, MA, July 2002. Addison Wesley.

[8] P. Strauss and R. Carey. An Object-Oriented 3D Graphics
Toolkit. In Proceedings of SIGGRAPH’99, pages 341–349,
New York, 1992. Addison Wesley.

[9] T. Strothotte and S. Schlechtweg.Non-Photorealistic Com-
puter Graphics: Modeling, Rendering, and Animation. Mor-
gan Kaufmann, San Francisco, 2002.

http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
www.opennpar.org
http://doi.acm.org/10.1145/508530.508550
http://www.akpeters.com/book.asp?bID=131
http://www-imagis.imag.fr/Publications/2003/GDTS03
http://www-imagis.imag.fr/Publications/2003/GDTS03
http://doi.acm.org/10.1145/508530.508548
http://doi.acm.org/10.1145/508530.508548
http://www.eg.org/EG/CGF/volume21/issue3/abstracts/CGF584.HTML
http://www.eg.org/EG/CGF/volume21/issue3/abstracts/CGF584.HTML
http://www.eg.org/EG/CGF/volume21/issue3/abstracts/CGF584.HTML
http://doi.acm.org/10.1145/566570.566648
http://doi.acm.org/10.1145/566570.566648
http://doi.acm.org/10.1145/133994.134089
http://doi.acm.org/10.1145/133994.134089
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=1558607870
http://www.elsevier-international.com/catalogue/title.cfm?ISBN=1558607870

(a)3D Painter: Textured strokes ‘paint’
over models in this still life scene

(b) Illustrative Shadows: Shadows convey the cur-
rent interaction context

(c) Real-time NPR: Modular surface
shaders integrated into a game

Figure 4: Applications that use OPENNPAR.

Figure 5: An animation played back with nine different image filters for artistic effect.

Figure 6: Producing complex effects from modifiers that manipulate modules in a rendering pipeline.

http://www.opennpar.org/

	Introduction
	OpenNPAR
	Classes of Algorithms
	Developing OpenNPAR
	Programming with OpenNPAR
	Designing with OpenNPAR

	OpenNPAR Examples
	Silhouettes
	Interactive Illustration
	Real-Time Shading
	Animation
	Designer Interaction

	Conclusion

