Exploration of the Brain's White Matter Structure through Visual Abstraction and **Multi-Scale Local Fiber Tract Contraction**

Maarten H. Everts, Eric Begue, Henk Bekker, Jos B.T.M. Roerdink, **Tobias Isenberg**

university of groningen

Analysis of the Brain's Structure

long-distance connections of macaque brain regions Science 339(6119), February 2013

structure of a mouse brain Nature 508(7495), April 2014

representation of DTI as tensors using glyphs [image: Thomas Schultz]

[Kindlmann and Westin, 2006]

representation of DTI as tensors using glyphs [image: Thomas Schultz]

volumetric skeleton of mean FA volume [Smith et al., 2006]

(a) RGB Map with Fibers

(b) Ridge Surfaces

(c) Valley Surfaces

(d) Valleys with Fibers

anisotropy crease surfaces [Kindlmann et al., 2007]

(a) RGB Map with Fibers

(b) Ridge Surfaces

(c) Valley Surfaces

(d) Valleys with Fibers

anisotropy crease surfaces [Kindlmann et al., 2007]

tensor field topology (probabilistic fiber tracking) [Schultz et al., 2007]

DTI Tractography

[image: Aaron G. Filler]

Everts et al. - Exploration of the Brain's White Matter Structure ...

VIS 2015, October 30, 2015

White Matter Fibertract Visualizations

White Matter Fibertract Visualizations

[LineAO: Eichelbaum et al., 2013]

White Matter Fibertract Visualizations

[LineAO: Eichelbaum et al., 2013]

Everts et al. - Exploration of the Brain's White Matter Structure ...

VIS 2015, October 30, 2015

White Matter Structure of the Whole Brain?

White Matter Structure of the Whole Brain?

White Matter Structure of the Whole Brain?

Goals

1. analyze brain connectivity at a higher level/scale \rightarrow use of abstraction

2. method suited for analysis of full-brain tractograms

3. ability to control the scale of the abstraction

- dense & even tract sampling/re-tessellation (1mm)
- then tract-to-tract comparison

8

5

6

9

3

4

5

6

7

- dense & even tract sampling/re-tessellation (1mm)
- then tract-to-tract comparison

three conditions

1. distance between p and q < d_{max}

8

9

3

5

4

6

7

- dense & even tract sampling/re-tessellation (1mm)
- then tract-to-tract
 comparison
 1 2 3 4 5 6 7

three conditions

1. distance between p and q < d_{max}

8

9

3

5

6

7

- dense & even tract sampling/re-tessellation (1mm)
- then tract-to-tract
 comparison
 1 2 3 4 5 6

three conditions

- 1. distance between p and q < d_{max}
- edges in A and B that connect to (p,q) are roughly || to each other (angle threshold)

8

5

6

9

3

5

4

6

7

- dense & even tract sampling/re-tessellation (1mm)
- then tract-to-tract
 comparison

three conditions

- 1. distance between p and q < d_{max}
- edges in A and B that connect to (p,q) are roughly || to each other (angle threshold)
- 3. the nearest-neighbor relation of p and q is approximately mutual, i.e., the nearest neighbor of q in A is at most 1 index away from p, and vice versa

Everts et al. - Exploration of the Brain's White Matter Structure ...

8

6

9

3

5

6

- dense & even tract sampling/re-tessellation (1mm)
- then tract-to-tract
 comparison
 1 2 3 4 5

three conditions

- 1. distance between p and q < d_{max}
- 2. edges in A and B that connect to (p,q) are roughly || to each other (angle threshold)
- 3. the nearest-neighbor relation of p and q is approximately mutual, i.e., the nearest neighbor of q in A is at most 1 index away from p, and vice versa

Contraction based on Similarity/Proximity

Contraction based on Similarity/Proximity

Contraction based on Similarity/Proximity

Visual Evidence for Brain's sheet-like Structure

Visual Evidence for Brain's sheet-like Structure

Creation of Volumetric Voids

Creation of Volumetric Voids

Interactive Exploration: Lenses

Interactive Exploration: Lenses

Filtering for Vertex Degree in Similarity Graph

unfiltered (average vertex degree ≈ 200)

Filtering for Vertex Degree in Similarity Graph

Filtering for Vertex Degree in Similarity Graph

vertex degree \geq 560

 $d_{max} = 0$ mm

$$d_{max} = 1$$
mm

 $d_{max} = 0$ mm

 $d_{max} = 0$ mm $d_{max} = 1$ mm $d_{max} = 3$ mm

Implications for the Use of Contraction

Implications for the Use of Contraction

anatomically correct, but only limited abstraction

Implications for the Use of Contraction

can be anatomically incorrect, but more abstraction, higher-level view

Everts et al. - Exploration of the Brain's White Matter Structure ...

VIS 2015, October 30, 2015

Everts et al. - Exploration of the Brain's White Matter Structure ...

Everts et al. - Exploration of the Brain's White Matter Structure ...

Everts et al. - Exploration of the Brain's White Matter Structure ...

Everts et al. - Exploration of the Brain's White Matter Structure ...

Everts et al. - Exploration of the Brain's White Matter Structure ...

Everts et al. - Exploration of the Brain's White Matter Structure ...

- neuroscience researcher (male, age 40, 19 years experience)
- neuroscience engineer (female, age 28, 4 years experience)
- neuroscience engineer (male, age 32, 7 years experience)
- research intern

- work with connectivity data several times daily to several times yearly
- 90 minute focus group session, video-recorded

- full-brain tractography useful, good as unbiased overview
- R: "It's often the first step."
 E2: "This is less biased than putting your seeds somewhere and then doing tracking."
- starting point of a detailed analysis

contraction useful for better analysis, in particular for probabilistic tractography

 main benefit: removal of noise; ability to check for error E1: "We don't see spaghetti, we see bundles." ([©])

- use for registration of different patients' datasets
- no problem if anatomically incorrect due to high d_{max}
- similar to registration to "average brain" (e.g., FreeSurfer)

[Gramfort et al., 2013]

• exciting possibility: tract selection in abstracted views

• exciting possibility: tract selection in abstracted views

• exciting possibility: tract selection in abstracted views

 exciting possibility: tract selection in abstracted views future: automatic bundle segmentation from abstraction analytic sheet representation with splitting bundles

 exciting possibility: tract selection in abstracted views future: automatic bundle segmentation from abstraction analytic sheet representation with splitting bundles

 exciting possibility: tract selection in abstracted views future: automatic bundle segmentation from abstraction analytic sheet representation with splitting bundles

• future: use FA field for guiding contraction

• could also be useful for local deep-brain analysis

Performance and Limitations

- exploration interactive frame rates (GPU-supported)
- naïve computational complexity: O(N² M²); N: # tracts; M: mean # of vertices per tract
- improvements: (a) grid search, (b) storing angle comparisons,
 (c) linear sweep algorithm to process two tracts in parallel
- practical computation times of the similarity graph:
 - 4× Intel[®] Xeon[®] X7350, 4 cores @ 2.93GHz each, 128GiB RAM
 - 77,389 tracts, total of 1,944,570 vertices, $d_{max} = 1$ mm
 - naïve: 76min; improved: 15min (using 4 threads)
Analysis of the Similarity Graph

Everts et al. - Exploration of the Brain's White Matter Structure ...

Performance and Limitations

- individual computation manageable, but:
- iterative computation of several levels in the order of hours
- would be much worse for probabilistic tractography

Performance and Limitations

- individual computation manageable, but:
- iterative computation of several levels in the order of hours
- would be much worse for probabilistic tractography
- possible topological changes:

Connection to Related Analyses of Scale

- Kindlmann et al., VIS 2009: Sampling and Visualizing Creases with Scale-Space Particles
 - faithful analysis of features in space
 - similar sheet features
 - could be used to evaluate our approach

[Kindlmann et al., 2009]

Connection to Related Analyses of Scale

[Kindlmann et al., 2009]

Everts et al. - Exploration of the Brain's White Matter Structure ...

Thanks

http://tobias.isenberg.cc/VideosAndDemos/Everts2015EBW

Everts et al. - Exploration of the Brain's White Matter Structure ...