

Depth-Dependent Halos: Illustrative Rendering of Dense Line Data

Maarten H. Everts, Henk Bekker, Jos B.T.M. Roerdink, and Tobias Isenberg

University of Groningen
The Netherlands

Motivation & Related Work

Visualization of dense line data

[Zöckler et al., 2007]

created with VTK

Visualization of dense line data

[Blaas et al., 2005]

[Petrovic et al., 2007]

tubes

black lines

black lines with halos

black lines with depth-dependent halos

Halos in illustration and visualization

[Appel et al., 1979]

Halos in illustration and visualization

[Appel et al., 1979] [Bruckner et al., 2007]

Halos in illustration and visualization

[Appel et al., 1979] [Bruckner et al., 2007]

[Tarini et al., 2006]

Depth-Dependent Halos

lines

- duplicate each vertex
- add texture coordinates (u, v)
- ullet add average direction vector ${f D}$

- duplicate each vertex
- add texture coordinates (u, v)
- ullet add average direction vector ${f D}$

- duplicate each vertex
- add texture coordinates (u, v)
- ullet add average direction vector ${f D}$
- zero-width triangle strip

- duplicate each vertex
- add texture coordinates (u, v)
- ullet add average direction vector ${f D}$

zero-width triangle strip

- duplicate each vertex
- add texture coordinates (u, v)
- add average direction vector D
- zero-width triangle strip
- change vertex position:

$$p_{\text{out}} = p_{\text{in}} + \|\mathbf{V} \times \mathbf{D}\|(v - 0.5)w_{\text{strip}}$$

- duplicate each vertex
- add texture coordinates (u, v)
- add average direction vector D
- zero-width triangle strip
- change vertex position;

$$p_{\text{out}} = p_{\text{in}} + \|\mathbf{V} \times \mathbf{D}\| (v - 0.5) w_{\text{strip}}$$

- duplicate each vertex
- add texture coordinates (u, v)
- add average direction vector D
- zero-width triangle strip
- change vertex position:

$$p_{\text{out}} = p_{\text{in}} + ||\mathbf{V} \times \mathbf{D}|| (v - 0.5) w_{\text{strip}}$$

Depth manipulation (fragment shader) / / / - -

Depth manipulation (fragment shader) / / / -

Depth manipulation (fragment shader) / / / -

Depth manipulation (fragment shader) / / / - -

Depth manipulation (fragment shader)

Depth manipulation (fragment shader)

$$d_{\text{new}} = d_{\text{old}} + d_{\text{max}} f_{\text{displacement}}(2|v - 0.5|)$$

$$d_{\text{new}} = d_{\text{old}} + d_{\text{max}} f_{\text{displacement}} (2|v - 0.5|)$$

$$d_{\text{new}} = d_{\text{old}} + d_{\text{max}} f_{\text{displacement}} (2|v - 0.5|)$$

$$d_{\text{new}} = d_{\text{old}} + d_{\text{max}} f_{\text{displacement}}(2|v - 0.5|)$$

Depth-dependent halos

Depth-dependent halos

Depth-attenuated line width

Depth-attenuated line width

Tapering

Tapering

Image quality

- Screen: anti-aliasing and anisotropic filtering
- Print: high resolution black & white images

Image quality

- Screen: anti-aliasing and anisotropic filtering
- Print: high resolution black & white images

Illustration principles

emphasis

de-emphasis/ abstraction

Results

Results: flow visualization (1)

Results: flow visualization (1)

Results: flow visualization (2)

Results: flow visualization (2)

Results: flow visualization (2)

Filtering

Filtering

Results: simple shapes (knots)

Anaglyphic rendering

Anaglyphic rendering

Displacement function

Displacement function

Performance

Machine specs:

- 3 GHz Intel Core2 Extreme
- 4 GB RAM
- NVIDIA 8800 GTX

lines: 11 306

vertices: 260 836

frame rate: 123 fps

Performance

Machine specs:

- 3 GHz Intel Core2 Extreme
- 4 GB RAM
- NVIDIA 8800 GTX

lines: 786

vertices: 278 849

frame rate: 290 fps

Performance

Machine specs:

- 3 GHz Intel Core2 Extreme
- 4 GB RAM
- NVIDIA 8800 GTX

lines: 1 400

vertices: 2 603 605

frame rate: 43 fps

Informal evaluation with medical domain experts

- All experts were impressed.
- Compared to the tract visualization they used, our illustrative visualizations "show better depth relation and structure."
- Very suggestive.
- Requests for more interactivity.
- Suggestions to combine with other visualization methods to show context.

Conclusion

- A new technique for illustrative visualization of dense line data.
- Emphasis and abstraction through depth-dependent halos around lines.
- Simple method that easily maps to the (hardware) graphics pipeline.
- Interactive frame rates and high quality print reproduction.
- Positive feedback from informal evaluation.

Depth-Dependent Halos: Illustrative Rendering of Dense Line Data

http://www.cs.rug.nl/svcg/to/halos